
Subcubic Equivalences Between
Graph Centrality Problems, APSP and Diameter

Amir Abboud∗ Fabrizio Grandoni† Virginia Vassilevska Williams‡

Abstract
Measuring the importance of a node in a network is a major
goal in the analysis of social networks, biological systems,
transportation networks etc. Different centrality measures have
been proposed to capture the notion of node importance. For
example, the center of a graph is a node that minimizes the
maximum distance to any other node (the latter distance is
the radius of the graph). The median of a graph is a node
that minimizes the sum of the distances to all other nodes.
Informally, the betweenness centrality of a node w measures the
fraction of shortest paths that have w as an intermediate node.
Finally, the reach centrality of a node w is the smallest distance
r such that any s-t shortest path passing through w has either s
or t in the ball of radius r around w.

The fastest known algorithms to compute the center and
the median of a graph, and to compute the betweenness or reach
centrality even of a single node take roughly cubic time in the
number n of nodes in the input graph. It is open whether these
problems admit truly subcubic algorithms, i.e. algorithms with
running time Õ(n3−δ) for some constant δ > 01.

We relate the complexity of the mentioned centrality prob-
lems to two classical problems for which no truly subcubic al-
gorithm is known, namely All Pairs Shortest Paths (APSP) and
Diameter. We show that Radius, Median and Betweenness Cen-
trality are equivalent under subcubic reductions to APSP, i.e.
that a truly subcubic algorithm for any of these problems im-
plies a truly subcubic algorithm for all of them. We then show
that Reach Centrality is equivalent to Diameter under subcubic
reductions. The same holds for the problem of approximating
Betweenness Centrality within any constant factor. Thus the lat-
ter two centrality problems could potentially be solved in truly
subcubic time, even if APSP requires essentially cubic time.

1 Introduction
Identifying the importance of nodes in networks is a major
goal in the analysis of social networks (e.g., citation net-
works, recommendation networks, or friendship circles),
biological systems (e.g., protein interaction networks),
computer networks (e.g., the Internet or peer-to-peer net-
works), transportation networks (e.g., public transporta-
tion or road networks), etc. A variety of graph theoretic
notions of node importance have been proposed, among
the most relevant ones: betweenness centrality [20], graph
centrality [29], closeness centrality [47], and reach cen-
trality [28].

∗Stanford University, abboud@cs.stanford.edu.
†IDSIA, University of Lugano, fabrizio@idsia.ch. Partially

supported by the ERC Starting Grant NEWNET 279352.
‡Stanford University, virgi@cs.stanford.edu. Supported by

NSF Grant CCF-1417238, BSF Grant BSF:2012338 and a Stanford SOE
Hoover Fellowship.

1The Õ notation suppresses poly-logarithmic factors in n and M .

The graph centrality of a node w is the inverse of
its maximum distance to any other node. The closeness
centrality of w is the inverse of the total distance of w
to all the other nodes. The reach centrality of w is the
maximum distance between w and the closest endpoint
of any s-t shortest path passing through w. Informally,
the betweenness centrality of w measures the fraction of
shortest paths having w as an intermediate node.

In this paper we study four fundamental graph cen-
trality computational problems associated with the men-
tioned centrality measures. Let G = (V,E) be an n-node
m-edge (directed or undirected) graph, with integer edge
weights w : E → {0, . . . ,M} for some M ≥ 12. Let
dG(s, t) denote the distance from node s to node t, and
let us use d(s, t) instead when G is clear from the context.
Let also σs,t be the number of distinct shortest paths from
s to t, and σs,t(b) be the number of such paths that use
node b as an intermediate node.

• The Radius problem is to compute R∗ :=
minr∗∈V maxv∈V d(r∗, v) (radius of the graph).

• The Median problem is to compute M∗ :=
minm∗∈V

∑
v∈V d(m∗, v).

• The Reach Centrality problem (for a given node b) is
to compute

RC(b) = max
s,t∈V :

d(s,t)=d(s,b)+d(b,t)

{min{d(s, b), d(b, t)}}.

• The Betweenness Centrality problem (for a given
node b) is to compute

BC(b) :=
∑

s,t∈V−{b}, s̸=t

σs,t(b)

σs,t
.

All of these notions are related in one way or another
to shortest paths. In particular, we can solve the first three
problems by running an algorithm for the classical All-
Pairs Shortest Paths problem (APSP) on the underlying
graph and doing a negligible amount of post-processing.
The same holds for Betweenness Centrality by assuming

2Though we focus here on non-negative weights, our results can be
extended to the case of directed graphs with possibly negative weights
and no negative cycles.

that shortest paths are unique: we will next make this as-
sumption unless differently stated3. Using the best known
algorithms for APSP [55], this leads to a slightly subcu-
bic (by an no(1) factor) running time for the considered
problems, and no faster algorithm is known.

Each of these problems however only asks for the
computation of a single number. It is natural to ask, is
solving APSP necessary? Could it be that these problems
admit much more efficient solutions? In particular, do
they admit a truly subcubic4 algorithm?

Besides the fundamental interest in understanding the
relations between such basic computational problems (can
Radius be solved truly faster than APSP?), these ques-
tions are well motivated from a practical viewpoint. As
evidence to the necessity of faster algorithms for the men-
tioned centrality problems, we remark that some papers
presenting algorithms for Betweenness Centrality [6] and
Median [30] have received more than a thousand citations
each.

1.1 Approach. In this paper we address these ques-
tions with an approach which can be viewed as a refine-
ment of NP-completeness. The approach strives to prove,
via combinatorial reductions, that improving on a given
upper bound for a computational problem B would yield
breakthrough algorithms for many other famous and well-
studied problems. At high-level, the idea is to consider a
given prototypical problem A for which the fastest known
algorithm has running time Õ(nc) (here n is a size pa-
rameter). Then we show that a Õ(nc−ε)-time algorithm
for a second problem B, for some constant ε > 0, would
imply a Õ(nc−δ)-time algorithm for problem A for some
other constant δ > 0. This can be used as evidence that a
Õ(nc−ε) time algorithm for problem B is unlikely to ex-
ist (or at least very hard to find). For c = 3 a reduction
of the above kind is called a subcubic reduction [53] from
A to B. We say that two problems A and B are equiva-
lent under subcubic reductions if there exists a subcubic
reduction from A to B and from B to A. In other terms, a
truly subcubic algorithm for one problem implies a truly
subcubic algorithm for the other and vice versa.

Vassilevska Williams and Williams [53] introduced
this approach to the realm of Graph Algorithms to show
the subcubic equivalence between APSP and a list of
seven other problems, including: deciding if an edge-
weighted graph has a triangle with negative total weight
(Negative Triangle), deciding if a given matrix defines a
metric, and the Replacement Paths problem [27, 46, 51,
54]. Other examples of this approach [1, 2, 44] include

3In the case of multiple shortest paths, the fastest known algorithm
for Betweenness Centrality takes Õ(n4) time; please see the discussion
in the related work section.

4We recall that a truly subcubic algorithm is an algorithm with
running time Õ(n3−δ) for some constant δ > 0.

the famous results on 3-SUM hardness starting with the
work of Gajentaan and Overmars [21].

In this paper we exploit both APSP and Diameter as
our prototypical problem and prove a collection of sub-
cubic equivalences with the above graph centrality prob-
lems. Recall that the Diameter problem is to compute the
largest distance in the graph. There is a trivial subcubic
reduction from Diameter to APSP and, although no truly
subcubic algorithm is known for Diameter, finding a re-
duction in the opposite direction is one of the big open
questions in this area: can we compute the largest distance
faster than we can compute all the distances?

1.2 Subcubic equivalences with APSP. Our first main
result is to show that Radius, Median and Betweenness
Centrality are equivalent to APSP under subcubic reduc-
tions! Therefore, we add three quite different problems to
the list of APSP-hard problems [53] and if any of these
problems can be solved in truly subcubic time then all of
them can.

THEOREM 1.1. Radius, Median, and Betweenness Cen-
trality are equivalent to APSP under subcubic reductions.

Unfortunately, this is strong evidence that a truly sub-
cubic algorithm for computing these centrality measures
is unlikely to exist (or at least very hard to find) since it
would imply a huge and unexpected algorithmic break-
through.

We find the APSP-hardness result for Radius quite in-
teresting since, prior to our work, there was no good rea-
son to believe that Radius might be a truly harder problem
than Diameter. Indeed, in terms of approximation algo-
rithms, any known algorithm to approximate the diameter
can be converted to also approximate the radius in undi-
rected graphs within the same factor [3, 5, 10, 45]. Fur-
thermore, the exact algorithms for Diameter and Radius
in graphs with small integer weights are also extremely
similar [13]. Our results seem to indicate the following
bizarre phenomenon. In dense graphs, Radius seems to
be harder than Diameter, as it is actually equivalent to
APSP, whereas a Diameter/APSP equivalence seems elu-
sive. In sparse graphs, however, Diameter seems more
difficult than Radius since a known reduction [45] from
CNF-SAT seems to imply that even approximating the Di-
ameter in subquadratic time is hard. No such reduction is
known for Radius, and so far there is no evidence against
a subquadratic Radius algorithm in sparse graphs.

1.3 Subcubic equivalence with Diameter. Our sec-
ond main result is to show that Reach Centrality and Di-
ameter are equivalent under subcubic reductions.

THEOREM 1.2. Diameter and Reach Centrality are
equivalent under subcubic reductions.

On the positive side, it is within the realm of possi-
bility that Diameter is a truly easier problem than APSP,
which would imply the same for Reach Centrality. On the
negative side, Theorem 1.2 shows that finding a subcu-
bic algorithm for Reach Centrality is as hard as finding a
subcubic algorithm for Diameter - a big open problem.

As a consequence of the tightness of our reductions,
namely not only the number of nodes but also the largest
absolute weight is roughly preserved, we also obtain a
faster algorithm for Reach Centrality in directed graphs
with small integer weights.

THEOREM 1.3. There exists an Õ(Mnω) time algorithm
for Reach Centrality in directed graphs.

Above ω ∈ [2, 2.373) [12, 14, 22, 52] denotes fast matrix
multiplication exponent. The previous best algorithm for
small integer weights, which is based on the solution
of APSP, takes time Õ(M0.681n2.575) [57]. This is
interesting in our opinion since Reach Centrality has
been used in some very fast (in practice) shortest paths
algorithms [24, 25, 28].

1.4 Approximation algorithms. An approximate
value of the mentioned graph centrality measures might
be sufficiently good in practice. This is indeed the topic
of several empirical works on Betweenness Centrality
[4, 7, 23]. Furthermore, the mentioned practically fast
shortest paths algorithms [24, 25, 28] can be adapted to
work with approximate values of the reach centrality as
well. In this paper we formally study the approximability
of the mentioned problems.

In more detail, given a graph centrality measure X ,
our goal is to compute (quickly) a quantity x such that
1
αX ≤ x ≤ αX for some α ≥ 1 as small as possible (α is
the approximation factor). It is known how to solve APSP
within a multiplicative error (1 + ε) in time Õ(nω) [56].
This provides truly subcubic (1 + ε) approximation al-
gorithms for Radius and Median. However, this approach
does not help with Reach/Betweenness Centrality, since in
those measures almost shortest paths are irrelevant. Here
we present some negative and (conditionally) positive re-
sults on the approximability of the latter two problems.

It is not hard to see that any approximation algorithm
for Reach/Betweenness Centrality can be used to deter-
mine whether BC(b) > 0. We show that, while solving
the latter problem for a single node is equivalent to Diam-
eter, solving it for every node is at least as hard as APSP!
As a consequence any approximation algorithm (for any
finite α) to compute the reach/betweenness centrality of
all nodes implies a truly subcubic algorithm for APSP.

On the positive side, we show that (single-node) Ap-
proximate Betweenness Centrality is equivalent to Di-
ameter under subcubic reductions. This equivalence is
quite strong: any truly subcubic approximation algorithm

with finite approximation factor for Betweenness Central-
ity implies a truly subcubic Diameter algorithm, while a
truly subcubic Diameter algorithm implies a truly sub-
cubic (1 + ε)-approximation algorithm for Betweenness
Centrality, for any constant ε > 0. Our reductions are
Monte-Carlo, i.e. the resulting algorithm might fail to
provide the desired approximation with some small prob-
ability. In more detail, we provide a subcubic reduction to
Diameter to compute the exact value of the betweenness
centrality when that value is sufficiently small. For the
complementary case, we use a non-trivial random sam-
pling algorithm. Analogously to the case of Reach Cen-
trality, this gives some more hope that a truly subcubic al-
gorithm for Approximate Betweenness Centrality exists,
however such algorithm is probably not easy to find. Part
of the mentioned reductions are summarized in Figure 1.

1.5 Related Work. APSP is among the best stud-
ied problems in Computer Science. If the edge weights
are non-negative, one can run Dijkstra’s algorithm [16]
from every source node, and solve the problem in time
O(mn+n2 logn) (by implementing Dijkstra’s algorithm
with Fibonacci heaps [19]). Johnson [36] showed how
to obtain the same running time in the case of negative
weights also (but no negative cycles). Pettie [41] im-
proved the running time to O(mn+ n2 log logn) and to-
gether with Ramachandran to O(mn logα(m,n)) [42].
If the graph is undirected and the edge weights are in-
tegers fitting in a word, one can solve the problem in
time O(mn) in the word-RAM model [50]. In dense
graphs the running time of these algorithms is O(n3).
Slightly subcubic algorithms were developed as well,
starting with the work of Fredman [18]. Following a long
sequence of improvements (among others, [8, 31]), very
recently Williams [55] obtained an algorithm with run-
ning time Õ(n3/2Ω(

√
logn)). Faster algorithms are known

for small integer weights bounded in absolute value by
M : in undirected graphs APSP can be solved in Õ(Mnω)

time [49] and in directed graphs in Õ(n2(Mn)
1

4−ω)
time [57]. The result for the directed case can be refined
to Õ(M0.681n2.575) using fast rectangular matrix multi-
plication [32].

As we already mentioned, for general edge-weights
the fastest known algorithms for Diameter and Radius
solve APSP (hence taking roughly cubic time). In the case
of directed graphs with small integer weights bounded
by M there are faster, Õ(Mnω) time algorithms (see
[13] and the references therein). Faster approximation
algorithms are known. Aingworth et al. [3] showed
how to compute a (roughly) 3/2 approximation of the
diameter in time Õ(m

√
n+n2). The same approximation

factor and running time can be achieved for Radius in
undirected graphs [5]. The running time for both Radius
and Diameter was reduced to Õ(m

√
n) by Roditty and

3

Figure 1 The main subcubic reductions considered in this paper. Dashed arrows correspond to trivial reductions. All
the remaining reductions are given in this paper, excluding the one from APSP to Negative Triangle which is taken
from [53].

Reach
Centrality

Approx. Betw.
Centrality

DiameterAPSPNegative
Triangle

Betweenness
Centrality

Radius

Median

Vassilevska Williams [45] (see also [10] for a refinement
of the approximation factor). The authors also show
that a 3/2 − ε approximation for Diameter running in
time O(m2−ε) (for any constant ε > 0) would imply
that the Strong Exponential Time Hypothesis (SETH)
of [33] fails, thus showing that improving on the 3/2-
approximation factor while still using a fast algorithm
would be difficult.

The notion of betweenness centrality was introduced
by Freeman in the context of social networks [20], and
since then became one of the most important graph cen-
trality measures in the applications. For example, this no-
tion is used in the analysis of protein networks [15, 35],
social networks [40, 43], sexual networks [38], and terror-
ist networks [11, 37]. From an algorithmic point of view,
betweenness centrality was used to identify a highway-
node hierarchy for routing in road networks [48]. Bran-
des’ algorithm [6] computes the betweenness centrality of
all nodes in time O(mn + n2 logn). This result is based
on a counting variant of Dijkstra’s algorithm. We remark
that [6], similarly to other papers in the area, neglects
the bit complexity of the counters which store the num-
ber of pairwise shortest paths. This is reasonable in prac-
tice since the maximum number N of alternative short-
est paths between two nodes tends to be small in many
of the applications. By considering also N , the running
time grows by a factor O(logN) = O(n log n). Indeed,
in some applications one can even assume that shortest
paths are unique (as we do in most of this paper). The
uniqueness of shortest paths is either a consequence of
tie breaking rules (Canonical-Path Betweenness Central-
ity problem [23]), or can be enforced by perturbing edge
weights [24]. However, the running time to compute the
exact betweenness centrality can be prohibitive in practice
for very large networks even assuming the uniqueness of
shortest paths. For this reason, some work was devoted
to the fast approximation of the betweenness centrality of
all nodes [4, 7, 23]. Those works are based on random
pivot-sampling techniques. They do not provide any the-
oretical bound on the approximation factor: this is not sur-

prising a posteriori, in view of our APSP-hardness results.
In contrast, our results suggest a candidate way to obtain
a provably fast and accurate algorithm for Approximate
Betweenness Centrality (for a single node). Our approach
deviates substantially from [4, 7, 23] for small values of
the betweenness centrality.

The Reach Centrality notion was introduced by Gut-
man [28] in the framework of practically fast algorithms
to solve the Single-Source Shortest Paths problem. In par-
ticular, the values RC(b) can be used to filter out some
nodes during an execution of Dijkstra’s algorithm. The
notion of Reach Centrality is also used in other works on
the same topic [24, 25].

Eppstein and Wang [17] consider the problem of
approximating the closeness centrality of all nodes. They
present a random-sampling-based O((m + n logn) log n

ε2)
time algorithm which w.h.p. computes estimates within
an additive error εD∗, where D∗ is the diameter of the
graph. The same problem is investigated in [7] from an
experimental point of view. The Median problem was also
studied in a distance-oracle query model [9, 26, 34].

1.6 Preliminaries and Notation. W.l.o.g. we assume
that the considered graph G = (V,E) is connected, hence
m ≥ n− 1. We make the usual assumption that the nodes
of the considered graph are labelled with integers between
0 and n−1, and where needed we implicitly assume that n
is lower bounded by a sufficiently large constant. For two
nodes u, v ∈ V , by uv we indicate either an undirected
edge between u and v or an edge directed from u to v.
The interpretation will be clear from the context.

We remark that, in our subcubic reductions, it would
be sufficient to preserve (modulo poly-logarithmic fac-
tors) the number n of nodes only. However, whenever
possible, we will also try to preserve (in the same sense)
also m and M . In many cases we obtain extremely tight
reductions that even allow us to obtain new faster algo-
rithms, as is the case with Reach Centrality via our tight
reduction to Diameter.

For a given node w ∈ V , we let Rad(w) :=

maxv∈V {d(w, v)} (eccentricity of w) and Med(w) :=∑
v∈V d(w, v). A node w minimizing Rad(w) and

Med(w) is a center and a median of the graph, respec-
tively.

In some claims we assume that a T (n,m) time,
T (n,M) time, or T (n,m,M) time algorithm for some
problem is given. In all those claims we implicitly
assume that those running times are polynomial functions
lower bounded by m. More generally, however, it is
sufficient for our proofs that Õ(m + T (Õ(n), Õ(m))) =
Õ(T (n,m)) and similarly for the other cases.

Throughout this paper, with high probability (w.h.p.)
means with probability at least 1− 1/nO(1).

2 Subcubic Equivalence with APSP
In this section we prove the subcubic equivalence between
APSP and the following problems: Radius, Median and
Betweenness Centrality. As mentioned in the introduc-
tion, reducing these problems to APSP is fairly straight-
forward and here we will focus on the opposite reductions.

We exploit Negative Triangle as an intermediate sub-
problem: determine whether a given undirected graph
G = (V,E), with integer edge weights w : E →
{−M, . . . ,M}, contains a triangle whose edges sum to
a negative number; such a triangle is called a negative
triangle. The latter problem was shown to be equivalent
to APSP under subcubic reductions in [53].

LEMMA 2.1. [53] Negative Triangle and APSP (in di-
rected or undirected graphs) are equivalent under subcu-
bic reductions.

In order to simplify our proofs, we assume that the
input instance of Negative Triangle satisfies the following
properties:

1. Path lengths are even. This can be achieved by
multiplying the weights by a factor 2.

2. Any two nodes are connected by a path containing
at most 2 edges. This can be achieved by adding a
dummy node r, and n edges of weight 2M between
r and any other node. Observe that no new negative
triangle is created this way.

3. By appending at most n + 1 leaf nodes to r with
edges of cost 2M , we can assume w.l.o.g. that the
final number of nodes is 2k+1 for some integer k.

These reductions can be performed in linear time, they
increase the number of nodes by O(n), the number of
edges by O(n), and the maximum absolute weight by
a factor 2. Therefore, any algorithm with (polynomial
and at least linear in m) running time Õ(T (n,m,M)) for
the modified instance, can be used to solve the original
instance in time Õ(m + T (O(n),m + O(n), 2M)) =
Õ(T (n,m,M)).

Combining the reductions below with Lemma 2.1
proves Theorem 1.1.

2.1 Betweenness Centrality. We start with the reduc-
tion to Betweenness Centrality.

LEMMA 2.2. Given a Õ(T (n,m)) time algorithm for
Betweenness Centrality in directed or undirected graphs,
there exists a Õ(T (n,m)) time algorithm for Negative
Triangle.

Proof. Let (G = (V,E), w) be the input instance of Neg-
ative Triangle (reduced as described above). In particular,
n = 2k+1 is the number of nodes of G.

We start with the simpler directed case (see also Fig-
ure 2). We construct a weighted directed graph (G′, w′)
as follows. Graph G′ contains four sets of nodes I , J , K ,
and L (layers). Each layer contains a copy of each node
v ∈ V . Let vI be the copy of v in I , and define analo-
gously vJ , vK and vL. Let Q = Θ(M) be a sufficiently
large integer. For each edge uv ∈ E, we add to G′ the
edges uIvJ , uJvK , and uKvL, and assign to those edges
weight 2Q+w(uv). We add to G′ a dummy node b, and
edges vIb and bvL for any v ∈ V , of weight 3Q − 1 and
3Q, respectively. We also add to G′ two sets of nodes
Z = {z0, . . . , zk} and O = {o0, . . . , ok}. For any v ∈ V ,
we add the following edges of weight 3Q − 1 to G′. Let
v0, v1, . . . , vk be a binary representation of v (interpreted
as an integer between 0 and n− 1 = 2k+1 − 1). For each
j = 0, . . . , k, we add edges vIzj and ojvL if vj = 0, and
edges vIoj and zjvL otherwise. We also add edges ojzj
and zjoj of weight 3Q− 1 for j = 0, . . . , k. Observe that
k = O(log n), hence there are O(n log n) edges of the
latter type.

On (G′, w′) we compute BC(b), and output YES to
the input Negative Triangle instance iff BC(b) < n. The
running time of the algorithm is Õ(m+ T (O(n), O(m+
n logn))) = Õ(T (n,m)). Let us prove its correctness.
The only paths passing through b are of the form sI , b, tL
and have weight 6Q−1. For s ̸= t, there must exist a node
w ∈ Z ∪ O such that sI , w, tL is a path of cost 6Q − 2.
Therefore, the only pairs of nodes that can contribute to
BC(b) are of the form (sI , sL). The shortest path of type
sI , vJ , wK , sL has weight at most 6Q−2 if s belongs to a
negative triangle, and at least 6Q otherwise. Therefore
BCsI ,sL(b) = 1 if s does not belong to any negative
triangle, and BCsI ,sL(b) = 0 otherwise. The correctness
follows.

In the undirected case, we use the same weighted
graph (G′, w′) as before, but removing edge directions
(and leaving one copy of parallel edges). The rest of
the algorithm is as before, and the running time trivially
remains Õ(T (n,m)). Proving correctness requires a
slightly more complicated case analysis. Consider any
pair s, t ∈ V − {b}. Suppose (s, t) /∈ (I × L) ∪ (L× I).

5

Figure 2 (Left) Negative Triangle instance. (Middle-Left) Reduction to Betweenness Centrality (partially drawn).
Full and dashed gray edges have weight 3Q − 1 and 3Q, respectively. The pair 0I , 0L does not contribute to BC(b)
(since 0 belongs to a negative triangle) while the pair 3I , 3L does it (since 3 does not belong to any negative triangle).
(Middle-Right) Reduction to Radius. Only edges in the shortest path tree from 0I are illustrated. The full and dashed
gray edges have weight Q and 3Q− 1, respectively. (Right) Reduction to Median (partially drawn). Gray edges have
weight Q/4. The path 0A, 1B, 2C is shorter than the path 0A, 2C : this corresponds to a negative triangle.

1 2

0

3

-8
4

6

4

2

3I

2I

1I

0I 0J

1J

2J

3J

0K

1K

2K

3K 3L

2L

1L

0L

z0

z1

o0

o1

b

2Q-8

2Q+2

2Q
+4

2
Q

+6

2Q-8

2Q
+4

3I

2I

1I

0I 0J

1J

2J

3J

0K

1K

2K

3K 3L

2L

1L

0L

z0

z1

o0

o1

x

y

Q-8

Q+2

Q+4Q+4

Q+6

Q+2

Q-8

Q+4

0A

1A

2A

3A

0B

1B

2B

3B

0C

1C

2C

3C

0B′

1B′

2B′

3B′

0C′

1C′

2C′

3C′

r

Q-8 Q+8

Q+2

2Q-4

2Q+4

Then any s-t path passing through b costs at least 2(3Q−
1) + (2Q − M). On the other hand, any s ∈ Z ∪ O can
reach any t ∈ Z ∪ O within distance 2(3Q− 1), and any
t ∈ I ∪J ∪K ∪L within distance 3Q− 1+ 2(2Q+M).
If s, t ∈ I ∪ J ∪ K ∪ L, there exists an s-t path of
length at most 3(2Q + M). It remains to consider the
case that s = sI ∈ I and t = tL ∈ L. The path
sI , b, tL has cost 6Q − 1. If s ̸= t, analogously to the
directed case there exists w ∈ Z ∪ O such that sI , w, tL
is a path of weight 6Q − 2. We can conclude that, like
in the directed case, the only pairs which can contribute
to BC(b) are of the form (sI , sL). The shortest path of
the form sI , vJ , wk, sL has weight at most 6Q − 2 if s
belongs to a negative triangle, and at least 6Q otherwise.
Any other path avoiding b contains at least 4 edges, and
therefore costs at least 4(2Q − M). We can conclude
that BCsI ,sL(b) = 1 if s is not contained in a negative
triangle of (G,w), and BCsI ,sL(b) = 0 otherwise. The
correctness follows.

For the sake of simplicity, we did not enforce unique-
ness of shortest paths in our reduction but that can be done
easily by perturbing the edge weights by small polynomial
factors exploiting the Isolation Lemma [39].

2.2 Radius. Our reduction from Negative Triangle to
Radius is similar to the one in Lemma 2.2. Consider the
same construction when we remove the node b from the

graph. The key observation is that a node sI has distance
at most 6Q−2 to every node tL (including sL) if and only
if s is in a negative triangle in G. Intuitively, this allows us
to show that an algorithm distinguishing between radius
6Q − 2 and radius 6Q − 1 can solve Negative Triangle.
To complete the reduction we need to make sure that sI is
close to every node in the graph (not only nodes in part L)
and that the center can only lie in part I .

LEMMA 2.3. Given a Õ(T (n,m,M)) time algorithm for
Radius in directed or undirected graphs, there exists a
Õ(T (n,m,M)) time algorithm for Negative Triangle.

Proof. Let (G = (V,E), w) be the considered instance
of Negative Triangle (modified as described before). We
start with the directed case (see also Figure 2). Let
Q = Θ(M) be a sufficiently large integer. We construct
a directed weighted graph (G′, w′) as follows. Similarly
to Lemma 2.2, graph G′ contains four copies I , J , K ,
and L of the node set V (layers). Let vX be the copy of
v ∈ V in layer X . For each edge uv ∈ E, we add to
G′ edges uIvJ , uJvK , and uKvL of weight Q + w(vu).
We also add to G′ two sets of nodes Z = {z0, . . . , zk}
and O = {o0, . . . , ok}. We add edges incident to nodes
Z ∪ O in the same way as in Lemma 2.2, using edges of
cost Q. In more detail, let v0, v1, . . . , vk be the binary
representation of node v: we add the edges vIzj and ojvL
if vj = 0, and the edges vIoj and zjvL otherwise. We also

add edges zjoj and ojzj of weight Q for all j = 0, . . . , k.
Finally, we add nodes x and y, and for any v ∈ V we add
edges vIx, xvI , and xvJ of weight Q, and edges vIy of
weight 3Q− 1.

We compute the radius R∗ of (G′, w′), and output
YES to the input instance of Negative Triangle iff R∗ ≤
3Q − 1. The running time of the algorithm is Õ(m +
T (O(n), O(m + n logn), O(M))) = Õ(T (n,m,M)).
Let us prove its correctness. We first observe that the
center r∗ of the graph belongs to I ∪ {x} since the other
nodes cannot reach any node in I . Observe that d(x, y) =
4Q − 1. On the other hand, any node sI is at distance at
most 2Q to nodes in Z ∪ O ∪ J ∪ {x} ∪ (L − {sL}), at
most 2Q + 2M to nodes in K (using the copy rJ of the
root node r), and exactly 3Q − 1 to node y. Note also
that, if s belongs to a negative triangle, there exists an sI -
sL path of the form sI , vJ , wK , sL with length at most
3Q− 2. Otherwise one shortest sI -sL path passes trough
nodes in Z ∪ O and has length 3Q. We can conclude
that the center of the graph belongs to I , and that the
corresponding radius is upper bounded by 3Q−1 iff there
exists a negative triangle in (G,w).

In the undirected case we use precisely the same con-
struction, but removing edge directions (and leaving only
one copy of parallel edges). The algorithm is analogous as
well as its running time analysis. Its correctness can also
be proved analogously. In more detail, similarly to the di-
rected case, nodes in I can reach any other node within
distance at most 3Q+ 3M . Since d(y, x) = 4Q− 1, and
d(s, y) ≥ (3Q−1)+(Q−M) for s /∈ I∪{y}, we can con-
clude that r∗ ∈ I . Also in this case, for any node sI , its
maximum distance to any other node is d(sI , y) = 3Q−1
if s belongs to a negative triangle, and d(sI , sL) ≥ 3Q
otherwise.

2.3 Median. The reduction to Median is based on a
rather different approach.

LEMMA 2.4. Given a Õ(T (n,M)) time algorithm for
Median in undirected or directed graphs, there exists a
Õ(T (n,M)) time algorithm for Negative Triangle.

Proof. Let (G = (V,E), w) be the given instance of
Negative Triangle. First, consider the directed case (see
also Figure 2). We create a weighted directed graph
(G′, w′). Graph G′ contains five copies A,B,B′, C, C′

of V . With the usual notation, vA is the copy of v in A
and similarly for the other sets. Let Q = Θ(M) be a
large enough integer. For any pair of nodes u, v, we add
the edges uAvB of weight Q + w(uv), uAvB′ of weight
Q−w(uv), uAvC of weight 2Q−w(uv), uAvC′ of weight
2Q + w(uv), and uBvC of weight Q + w(uv). In this
construction, when uv /∈ E (including the special case
u = v), we simply assume w(uv) = 2M . Furthermore,
we add a dummy node r, and edges rvA and vAr of

weight Q/4 for any v ∈ V .
In this graph we compute the median value M∗, and

output YES to the input instance of Negative Triangle iff
M∗ < Q/4+(n−1)Q/2+6nQ. The running time of the
algorithm is Õ(m + T (O(n), O(M))) = Õ(T (n,M)).
Let us show its correctness. Next d(·) denotes distances
in G′. Observe that the median node has to be in A ∪ {r}
since the remaining nodes cannot reach r. Note that

Med(r) ≥ n
Q

4
+ (

Q

4
+ 2Q− 2M)2n

+ (
Q

4
+Q−M)2n

>
Q

4
+ (n− 1)

Q

2
+ 6nQ.

On the other hand, for any node vA,

Med(vA) = d(vA, r) +
∑

u∈V

d(vA, uA)

+
∑

u∈V

(d(vA, uB) + d(vA, uB′))

+
∑

u∈V

(d(vA, uC) + d(vA, uC′))

=
Q

4
+ (n− 1)

Q

2

+
∑

u∈V

(Q + w(vu) +Q− w(vu))

+
∑

u∈V

(d(vA, uC) + 2Q+ w(vu)))

=
Q

4
+ (n− 1)

Q

2
+ 2nQ

+
∑

u∈V

(d(vA, uC) + 2Q+ w(vu)))

≤ Q

4
+ (n− 1)

Q

2
+ 6nQ.

Therefore the median is in A. In the last inequality we
upper bounded d(vA, uC) with w′(vAuC) = 2Q−w(vu).
Observe that a strict inequality holds if there exists a third
node zB such that w′(vAzB) + w′(zBuC) < w′(vAuC).
Note that this can happen only if vu ∈ E, since otherwise
w′(vAuC) = 2Q−2M ≤ w′(vAzB) + w′(zBuC). Note
also that, if either vz /∈ E or zu /∈ E, w′(vAzB) +
w′(zBuC) ≥ 2Q+M ≥ w′(vAuC). Therefore we can
conclude that the strict inequality holds iff there exists a
triangle {v, z, u} in G such that Q+w(vz)+Q+w(zu) <
2Q− w(vu), i.e. a negative triangle. The claim follows.

Consider next the undirected case. We construct the
same weighted graph (G′, w′) as in the directed case,
but removing edge directions. The rest of the algorithm
is as in the directed case, and the running time remains
Õ(T (n,M)). In order to prove correctness, we need
a slightly more complicated case analysis. Like in the

7

directed case, Med(vA) ≤ Q/4 + (n − 1)Q/2 + 6nQ,
where a strict inequality holds iff v belongs to a negative
triangle. For any uB ∈ B, Med(uB) ≥ (Q − M +
Q/4) + 2n(Q −M) + n(2Q− 2M) + n(3Q − 2M) =
(7n + 5/4)Q − (6n + 1)M . Similarly Med(uB′) ≥
(9n+5/4)Q−(7n+1)M , Med(uC) ≥ (10n+9/4)Q−
(9n+2)M and Med(uC′) ≥ (12n+9/4)Q−(8n+1)M .
Furthermore, Med(r) ≥ nQ/4 + 2n(5Q/4 − M) +
n(9/4Q− 2M) + n(9/4Q−M) = (29n/4)Q− 5nM .
We can conclude that the median is in A. The correctness
follows.

Finally, we also prove a similar reduction for the
following All-Nodes Median Parity problem: compute
Med(v) (mod 2) for all nodes v.

LEMMA 2.5. Given a Õ(T (n,M)) time algorithm for
the All-Nodes Median Parity problem in a directed or
undirected graph, there exists a Õ(T (n,M)) time algo-
rithm for Negative Triangle.

Proof. Let (G = (V,E), w) be the considered instance
of Negative Triangle. Let us start with the directed case.
Let Q = Θ(M) be a sufficiently large even integer. We
construct the usual four layer weighted directed graph
(G′, w′) with layers I , J , K , and L, and edges vIuJ ,
vJuK , and vKuL of weight 2Q+w(vu) for any uv ∈ E.
We also introduce a fifth copy B of V , and for any
vB ∈ B we add edges vIvB and vBvL of weight 3Q and
3Q − 1, respectively. We also add edges vIuB of weight
3Q+3M+2 for any u ̸= v. Finally, we add a node r, and
edges vIr and rvI of weight Q for all v ∈ V . Observe that
the edges of type vBvL are the only edges of odd weight
(by the preprocessing of the Negative Triangle instance).

In this graph we compute Med(v) (mod 2) for all
v ∈ V (G′) and we output YES to the input Negative
Triangle instance iff Med(vI) (mod 2) = 0 for some
vI ∈ I (i.e., some Med(vI) is even). The running time
is Õ(T (O(n), O(M))) = Õ(T (n,M)). Let us prove
correctness. Consider any vI ∈ I . Any node is reachable
from vI , hence Med(vI) is finite. Any path of type
vI , u′, uL, u ̸= v, cannot be a shortest path since it has
length 6Q+ 3M + 2 − 1 while there exists a vI -uL path
of length at most 6Q + 3M avoiding B. Therefore the
unique candidate shortest path of odd weight is vI , v′, vL
of length 6Q − 1. However, by the usual argument, this
is not a shortest path if v is contained in some negative
triangle. The claim follows.

In the undirected case we can use the same graph
(G′, w′), but removing edge directions (and leaving one
copy of parallel edges). The rest of the algorithm is the
same and its analysis is analogous to the directed case.

COROLLARY 2.1. Given a truly subcubic algorithm for
All-Nodes Median Parity, there exists a truly subcubic
algorithm for APSP.

3 Subcubic Equivalence with Diameter
In this section we show that Diameter is equivalent to
Reach Centrality under subcubic reductions. We start with
the simple reductions from Diameter.

LEMMA 3.1. Given a Õ(T (n,m)) time algorithm for
Reach Centrality in directed (resp., undirected) graphs,
there is a Õ(T (n,m)) time algorithm for Diameter in
directed (resp., undirected) graphs.

Proof. Let (G = (V,E), w) be the input instance of
Diameter. Consider first the directed case. Let D be an
integer in [1, (n− 1)M]. Construct an auxiliary weighted
graph (G′, w′) consisting of a copy of (G,w) plus a
dummy node b and dummy edges vb and bv of weight
D/2 for any v ∈ V 5. Observe that any pair of nodes
s, t ∈ V is connected by a path of length D using b.
By performing a binary search on D and solving each
time the resulting instance of Reach Centrality on b, we
determine the largest value D′ of D such that the answer
is RC(b) ≥ D/2. The output value of the diameter is D′.

The running time of the algorithm is Õ((m+ T (n+
1, 2n+m)) log(nM)) = Õ(T (n,m)). Let (s∗, t∗) be a
witness pair for the diameter D∗. In any execution where
D∗ ≥ D, there exists a shortest s∗-t∗ path using node
b and hence the answer is RC(b) ≥ D/2. In any other
execution (whereD∗ < D), any shortest s-t path avoiding
b has length at most D∗ ≤ D − 1 while passing through
b would cost at least D (thus the answer is RC(b) = 0).
The correctness of the algorithm follows.

For the undirected case, we use the same auxiliary
weighted graph, but without edge directions (and leaving
one copy of parallel edges). The algorithm and its analysis
are analogous to the directed case.

Now, we present the more tricky reduction to Diam-
eter. The following very efficient reduction completes
the equivalence between Diameter and Reach Centrality
and, using the Õ(Mnω) [13] algorithm for Diameter in
directed graphs, gives the new Õ(Mnω) algorithm for
Reach Centrality in Theorem 1.3.

LEMMA 3.2. Given a Õ(T (n,m,M)) time algorithm for
Diameter in directed graphs, there is a Õ(T (n,m,M))
time algorithm for Reach Centrality in directed graphs.

Proof. Let (G = (V,E), w, b) be the input instance of
Reach Centrality. We show how to determine whether
RC(b) ≥ K for a given integer parameter 0 ≤ K ≤
(n − 1)M/2 in Õ(T (n,m,M)) time6. The value of

5In order to avoid fractional edge weights, it is sufficient to multiply
edge weights by a factor 2.

6Observe that the reach of a node is upper bounded by one half of the
diameter.

RC(b) can then be determined via binary search with an
extra factor O(log(nM)) = Õ(1) in the running time.

Observe that, if the answer is YES, there must be
two nodes s, t ∈ V − {b} such that some shortest s-
t path passes through b, K + M > d(s, b) ≥ K , and
K + M > d(b, t) ≥ K . We construct an instance
(G′, w′) of Diameter as follows. We add to G′ a copy
of G. Furthermore, we add a set of nodes A that contains
a node vA for each node v ∈ V such that K + M >
d(v, b) ≥ K . Symmetrically, we add a set of nodes B
that contains a node vB for each node v ∈ V such that
K + M > d(b, v) ≥ K . We also add edges vAv and
vvB of weight K + M − d(v, b) and K + M − d(b, v),
respectively. Note that the weight of the latter edges is in
[1,M] by construction. Finally, we add a directed path
P = v0, . . . , vq , q = ⌈(2K + 2M − 2)/M⌉, whose
edge weights are chosen arbitrarily in [1,M] so that the
length of P is exactly 2K + 2M − 2. For every v ∈ V ,
we add edges vv0 and vqv of weight zero. We also add
edges av0 of weight 1 and vqa of weight 0 for any a ∈ A.
Symmetrically, we add edges vqb of weight 1 and bv0 of
weight 0 for any b ∈ B.

We compute the diameter D∗ of (G′, w′) and output
that RC(b) ≥ K iff D∗ ≥ 2K + 2M . The running time
of the algorithm is Õ(m + T (O(n), O(m + n),M)) =
Õ(T (n,m,M)). Consider its correctness. The distance
between any two nodes in G∪P is at most 2K+2M−2.
The distance between any node in G ∪ P and any other
node is at most 2K + 2M − 1. The distance between any
node in B and any other node is at most 2K+2M−1. The
distance between any node in A and any node in G∪P ∪A
is at most 2K + 2M − 1.

Consider next any pair sA ∈ A and tB ∈ B. An sA-
tB path using P would cost at least 2K +2M . A shortest
sA-tB path avoidingP costs 2K+2M−d(s, b)−d(b, t)+
d(s, t) ≤ 2K+2M , where the equality holds iff b is along
some shortest s-t path. Therefore D∗ ≤ 2K + 2M and
the equality holds iff there exists a pair (sA, tB) ∈ A×B
such that d(s, t) = d(s, b) + d(b, t), i.e. iff RC(b) ≥ K .
The correctness follows.

Our subcubic reduction in the undirected case is
slightly less efficient in terms of the edge weights and will
follow from Lemmas 4.2 and 4.3 of the next section.

4 Fast Approximation of Reach and Betweenness
Centrality

In this section we present our results about the approx-
imability of Reach and Betweenness Centrality. A key
idea in our approach is to consider the following Positive
Betweenness Centrality problem, which might be of in-
dependent interest: determine whether BC(b) > 0 for
a given node b (i.e., whether some shortest path uses b
as an intermediate node). In this case it is convenient to

consider the standard definition of BC(b), where multiple
shortest paths are allowed. Our results can be easily ex-
tended to the case of unique shortest paths by perturbing
weights by small polynomial factors.

Trivially, any α-approximation algorithm for Be-
tweenness Centrality, for any finite α, also solves Pos-
itive Betweenness Centrality since the answer is 0 iff
BC(b) = 0. A similar reduction also works for Reach
Centrality. In more detail, by definition RC(b) ≥
min{d(b, b), d(b, b)} = 0 and RC(b) > 0 implies
BC(b) > 0. However, it might still be that RC(b) = 0
and BC(b) > 0. We can solve this issue by initially per-
turbing edge weights by small polynomial factors, so as
to obtain an equivalent instance of Positive Betweenness
Centrality where all weights are strictly positive. In the
reduced instance RC(b) > 0 iff BC(b) > 0.

4.1 Some Results on Positive Betweenness Centrality.
A simple observation is that on unweighted graphs,

Positive Betweenness Centrality is asking whether there is
an in-neighbor x of b and an out-neighbor y of b such that
xy /∈ E, and therefore can be solved in O(m) time. We
next show that, on weighted graphs, Positive Betweenness
Centrality and Diameter are equivalent under subcubic
reductions.

THEOREM 4.1. Diameter and Positive Betweenness
Centrality are equivalent under subcubic reductions.

Theorem 4.1 follows from the following two lemmas.

LEMMA 4.1. Given a Õ(T (n,m)) time algorithm for
Positive Betweenness Centrality in directed (resp., undi-
rected) graphs, there is a Õ(T (n,m)) time algorithm for
Diameter in directed (resp., undirected) graphs.

Proof. Let (G = (V,E), w) be the input instance of
Diameter. Consider first the directed case (see also Figure
3). Let D be an integer in [1, (n − 1)M]. Construct an
auxiliary weighted graph (G′, w′) consisting of a copy of
(G,w) plus a dummy node b and dummy edges vb and bv
of weight D/2 for any v ∈ V 7. Observe that any pair of
nodes s, t ∈ V is connected by a path of length D using b.
By performing a binary search onD and solving each time
the resulting instance of Positive Betweenness Centrality
on b, we determine the largest value D′ of D such that the
answer is YES (i.e., BC(b) > 0). The output value of the
diameter is D′.

The running time of the algorithm is Õ((m+ T (n+
1, 2n+m)) log(nM)) = Õ(T (n,m)). Let (s∗, t∗) be a
witness pair for the diameter D∗. In any execution where
D∗ ≥ D, there exists a shortest s∗-t∗ path using node
b and hence the answer is YES. In any other execution

7In order to avoid fractional edge weights, it is sufficient to multiply
edge weights by a factor 2.

9

Figure 3 (Left) Reduction from Diameter to Positive Betweenness Centrality in directed graphs. Gray edges have
weight D/2, where D is a guess of the diameter. (Middle) Reduction from Positive Betweenness Centrality to
Diameter in directed graphs. Here D̃ is a proper upper bound on the diameter. (Right) Reduction from the Negative
Triangle instance of Figure 2 to All-Nodes Positive Betweenness Centrality in directed graphs (partially drawn). Gray
edges have weight 3Q. One has BC(3B) > 0 and BC(0B) = 0 since node 3 does not belong to a negative triangle
while node 0 does it.

0

1

2

b

2 3

3

4

b

1

2

bA

1A

2A

bB

1B

2B

2 3

3 4

0 0

D̃+1-3 D̃+1-2

D̃+1-4 0

3B

2B

1B

0B

3I

2I

1I

0I 0J

1J

2J

3J

0K

1K

2K

3K 3L

2L

1L

0L2Q-8

2Q+2

2Q
+4

2
Q

+6

2Q-8

2Q
+4

(where D∗ < D), any shortest s-t path avoiding b has
length at most D∗ ≤ D−1while passing through b would
cost at least D (thus the answer is NO). The correctness
of the algorithm follows.

For the undirected case, we use the same auxiliary
weighted graph, but without edge directions (and leaving
one copy of parallel edges). The algorithm and its analysis
are analogous to the directed case.

LEMMA 4.2. Given a Õ(T (n,m,M)) time algorithm for
Diameter in directed (resp., undirected) graphs, there is a
Õ(T (n,m,M)) time algorithm for Positive Betweenness
Centrality in directed (resp., undirected) graphs.

Proof. Let (G,w, b) be the input instance of Positive
Betweenness Centrality. Observe that the answer is YES
iff there exists a shortest path of the form s, b, t.

Let us consider the directed case first (see also Figure
3). By adding a dummy node r and dummy edges vr
and rv of weight M for any v ∈ V − {b}, we can
assume that the diameter of G is at most D̃ = 3M
(w.l.o.g., b has at least one in-neighbor and one out-
neighbor). Note that we did not introduce new paths of
the form s, b, t. Furthermore, the new graph has n + 1
nodes, m+ 2n edges, and maximum weight M . Hence a
Õ(T (n,m,M)) time algorithm for the modified instance
implies the same running time for the original one.

We construct an instance (G′, w′) of Diameter as
follows. Initially G′ = G. We add two copies A and
B of V . Let vA be the copy of v ∈ V and define vB
analogously for B. For every v ∈ V , we add edges vAv
and vvB of weight D̃ + 1 − w(vb) and D̃ + 1 − w(bv),
respectively. If edges vb or bv are missing (including
the case v = b), we set the weight of the corresponding
edges vAv and vvB , respectively, to 0. Observe that edge
weights are O(M).

In this graph we compute the diameter D∗ and output
YES to the input Positive Betweenness Centrality instance

iff D∗ ≥ 2D̃ + 2. The running time of the algorithm
is Õ(m + T (O(n), O(m), O(M))) = Õ(T (n,m,M)).
Consider a witness pair s∗, t∗ for the value of the diameter.
Since edges of type vAv and vvB have positive weight,
we can assume w.l.o.g. that s∗ = sA ∈ A and t∗ =
tB ∈ B. If both edges sb and bt are missing, one has
D∗ = dG(s, t) ≤ D̃. If exactly one of the mentioned
edges is missing, say bt, one has D∗ = D̃+ 1−w(sb) +
dG(s, t) ≤ 2D̃+1. Finally, if both edges are present, one
has D∗ = 2(D̃+1)−w(sb)−w(bt)+dG(s, t) ≤ 2D̃+2,
where equality holds iff s, b, t is a shortest path. In
particular, if there exists a shortest path of the mentioned
type, D∗ = 2D̃ + 2 and otherwise D∗ ≤ 2D̃ + 1. The
correctness follows.

By simply removing edge directions in the above
construction, one obtains the claim in the undirected case.

We can exploit the above equivalence to derive (indi-
rectly) the equivalence between Diameter and Reach Cen-
trality in both directed and undirected graphs (recall that
we showed this equivalence only in directed graphs).

LEMMA 4.3. Given a Õ(T (n,m)) time algorithm for
Positive Betweenness Centrality in directed (resp., undi-
rected) graphs, there is a Õ(T (n,m)) time algorithm for
Reach Centrality in directed (resp., undirected) graphs.

Proof. Let (G,w, b) be the input instance of Reach Cen-
trality. We show how to determine whether RC(b) ≥ K
for a given parameter K in Õ(T (n,m)) time. The value
of RC(b) can then be determined via binary search with
an extra factor O(log(nM)) = Õ(1) in the running time.

Let us consider the directed case first. We compute
the shortest path distances from and to b in G. Next we
construct an auxiliary weighted graph (G′, w′) as follows.
We let G′ initially contain a copy of G − {b} = G[V −
{b}], plus an isolated node b. Next, for any v ∈ V − {b},
we add an edge vb of weight d(v, b) iff d(v, b) ≥ K .

Symmetrically, we add an edge bv of weight d(b, v) iff
d(b, v) ≥ K .

We solve the Positive Betweenness Centrality in-
stance (G′, w′, b) and output that RC(b) ≥ K iff the
answer is YES. The running time of the algorithm is
Õ(m + T (n,m + 2n)) = Õ(T (n,m)). Let us prove its
correctness. Suppose that RC(b) ≥ K and let (s, t) be a
witness pair of that. Then s, b, t is a shortest s-t path in
G′ and therefore the answer to the Positive Betweenness
Centrality instance is YES. Vice versa, suppose that the
answer to the Positive Betweenness Centrality instance is
YES, i.e. there exists a shortest s-t path passing through
b. This implies that there exists a shortest path of the form
s′, b, t′. Observe that the shortest paths not involving node
b are the same in G and G′. Therefore there exists a short-
est s′-t′ path in G′ passing through b. Since by construc-
tion dG(s′, b), dG(b, t′) ≥ K , the pair (s′, t′) witnesses
that RC(b) ≥ K .

The claim in the undirected case follows from the
same reduction, but removing edge directions (and leav-
ing only one copy of parallel edges).

Another interesting observation about Positive Be-
tweenness Centrality is that although solving it for a sin-
gle node b is equivalent to Diameter under subcubic re-
ductions, the all-nodes version of the problem (where one
wants to determine whether BC(b) > 0 for all nodes b) is
actually at least as hard as APSP.

LEMMA 4.4. Given a Õ(T (n,m,M)) time algorithm
for All-Nodes Positive Betweenness Centrality in directed
(or undirected) graphs, there is a Õ(T (n,m,M)) time
algorithm for Negative Triangle.

Proof. Let (G,w) be the input instance of Negative Tri-
angle. Consider first the directed case (see also Figure
3). We create a directed weighted graph (G′, w′) as fol-
lows. Graph G′ contains five copies I , J , K , L and B of
the node set V . With the usual notation vX is the copy
of node v ∈ V in set X . Let Q = Θ(M) be a suf-
ficiently large integer. For every edge uv ∈ E we add
the edges uIvJ , uJvK , uKvL to G′ and set their weight
to 2Q+w(uv). We also add edges uIuB and uBuL for
every node u in G and set the weight of these edges to
3Q.

The algorithm solves the All-Nodes Positive Be-
tweenness Centrality problem on (G′, w′) in time
Õ(T (n,m,M)), and outputs YES to the input Negative
Triangle instance iff BC(uB) > 0 for some uB ∈ B. To
show correctness, observe that the only path through uB

is from uI to uL and it has weight 6Q, while every path
of type uI , vJ , wK , uL corresponds to a triangle {u, v, w}
in G and the weight of the path equals the weight of the
triangle plus 6Q. The claim follows.

The same construction, without edge directions,
proves the claim for undirected graphs.

COROLLARY 4.1. Given a truly subcubic approximation
algorithm for All-Nodes Reach/Betweennees Centrality,
there exists a truly subcubic algorithm for APSP.

4.2 A PTAS for Betweenness Centrality. In this sec-
tion we prove the subcubic equivalence between Approx-
imate Betweenness Centrality (for any constant approxi-
mation factor α > 1) and Diameter.

THEOREM 4.2. Diameter and Approximate Betweenness
Centrality are equivalent under subcubic Monte-Carlo
reductions.

Similarly to the case of Reach Centrality, it is not hard
to see that a truly subcubic α-approximation algorithm
for Betweenness Centrality provides a truly subcubic
algorithm for Positive Betweenness Centrality (hence for
Diameter via Theorem 4.1).

We next show that a truly subcubic algorithm for
Diameter implies a truly subcubic PTAS for Betweenness
Centrality, i.e. an algorithm that computes a (1 + ε)
approximation of the betweenness centrality of a given
node for any given constant ε > 0. Our PTAS is Monte-
Carlo: it provides the desired approximation w.h.p.

Let (G,w, b) be the considered instance of Between-
ness Centrality, and define B∗ = BC(b). Observe
that, under the assumption that shortest paths are unique,
BCs,t(b) ∈ {0, 1} and therefore B∗ ∈ {0, . . . , (n −
1)(n−2)}. Given s, t ∈ V −{b} such that BCs,t(b) = 1,
we call (s, t) a witness pair, s a witness source, and t a
witness target (of BC(b)).

Let also Bmed ∈ [0, (n − 1)(n − 2)] be a integer
parameter to be fixed later. Our PTAS is based on two
different algorithms: one for B∗ ≤ Bmed and the other
for B∗ > Bmed.

4.2.1 An exact algorithm for small B∗. Let us start
with the algorithm for small B∗. Recall that a witness
pair (s, t) satisfies BCs,t(b) = 1. A crucial observation is
that the number of witness pairs is equal to B∗ in case of
unique shortest paths.

It is convenient to define a generalization of Be-
tweenness Centrality, where we consider only some pairs
(s, t). For S, T ⊆ V − {b}, we define BCS,T (b) :=∑

(s,t)∈S×T BCs,t(b). The (S, T)-Betweenness Central-
ity problem is to compute BCS,T (b). The Positive (S, T)-
Betweenness Centrality problem is to determine whether
BCS,T (b) > 0. We use the shortcuts BCs,T (b) =
BC{s},T (b) and BCS,t(b) = BCS,{t}(b). Our first in-
gredient is a reduction of that problem to Diameter.

LEMMA 4.5. Given a Õ(T (n,m)) time algorithm for
Diameter in directed (resp., undirected) graphs, there
exists a Õ(T (n,m)) time algorithm for Positive (S, T)-
Betweenness Centrality in directed (resp., undirected)
graphs.

11

Proof. We use a construction similar to the one in the
proof of Lemma 4.2. Let (G,w, b, S, T) be the considered
instance of Positive (S, T)-Betweenness Centrality. We
start with the directed case, the undirected one being
analogous. Let us construct a directed weighted graph
(G′, w′). Graph G′ contains a copy of G. Furthermore,
it contains a copy of S and a copy of T . Let vS be the
copy of node v in S, and define vT analogously. Let
K := 2 + A, where A is the maximum distance of type
d(s, b) and d(b, t), with s ∈ S and t ∈ T . For each
s ∈ S and t ∈ T , we add edges sSs and ttT of weight
K − d(s, b) and K − d(b, t), respectively. Observe that
the latter weights are lower bounded by 2. We also add
two nodes r′ and r′′, with an edge r′r′′ of weight 2. We
add edges vr′ and r′v for every v ∈ V ∪ S of weight
K − 1. Symmetrically, we add edges vr′′ and r′′v for
every v ∈ V ∪ T of weight K − 1. We also add edges
vr′ of weight K − 1 for every v ∈ T . We compute the
diameter D∗ of (G′, w′), and output YES iff D∗ < 2K .

The running time of the algorithm is Õ(m +
T (O(n), O(m))) = Õ(T (n,m)). Let us prove its cor-
rectness. The distance from any node v ∈ V ∪T∪{r′, r′′}
to any node w ∈ V ∪ S ∪ T ∪ {r′, r′′} is at most
2(K − 2). Consider next any node s ∈ S. Its distance
to any node in G ∪ {r′, r′′} is also at most 2(K − 2).
It remains to consider the distance from s to any t ∈ T .
Any path using r′ or r′′ (or both) has length at least 2K .
The shortest path avoiding r′ and r′′ has length precisely
2K − d(s, b) − d(b, t) + d(s, t) ≤ 2K , where the equal-
ity holds iff b belongs to some shortest s-t path. We
can conclude that the diameter is smaller than 2K iff b
is along some shortest s-t path with s ∈ S and t ∈ T ,
i.e., iff the answer to the input instance of Positive (S, T)-
Betweenness Centrality is YES.

The construction for the undirected case is similar,
where we remove edge directions and also remove the
edges of type vr′ with v ∈ T (those edges were needed
only to guarantee that distances from T to S are smaller
than 2K , while this property should not always hold in the
undirected case). The running time remains Õ(T (n,m)).
Analogously to the directed case, it is not hard to prove
that pairwise distances are always smaller than 2K ex-
cluding possibly the distance between some s ∈ S and
t ∈ T which is equal to 2K iff b belongs to some shortest
s-t path. The correctness follows.

We will exploit the following recursive algorithm for
(S, T)-Betweenness Centrality.

LEMMA 4.6. Given a Õ(T (n,m)) time algorithm for
Diameter in directed (resp., undirected) graphs, there is a
Õ(W · T (n,m)) time algorithm for (S, T)-Betweenness
Centrality, where W is the number of pairs (s, t) ∈ S×T
such that BCs,t(b) = 1.

Proof. We describe a recursive algorithm with the

claimed running time, given a Õ(T (n,m)) time algorithm
for Positive (S, T)-Betweenness Centrality. The claim
follows from Lemma 4.5.

The recursive algorithm works as follows. It initially
solve the corresponding Positive (S, T)-Betweenness in-
stance. If the answer is NO, the algorithm outputs 0. Oth-
erwise, if |S| = |T | = 1, the algorithm outputs 1. Other-
wise, the algorithm partitions arbitrarily S into two sub-
sets S1 and S2 of roughly the same cardinality, and it splits
similarly T into T1 and T2. Then the algorithm solves re-
cursively the sub-problems induces by the pairs (Si, Tj),
i, j ∈ {1, 2}, and outputs the sum of the four obtained
values.

The correctness of the algorithm is obvious. Con-
cerning its running time, consider the recursion tree.
Let us call a subproblem whose corresponding Positive
(S, T)-Betweenness Centrality instance is a YES/NO in-
stance a YES/NO subproblem. Observe that, excluding
the root problem, any NO subproblem must have at least
one sibling YES subproblem in the recursion tree. Fur-
thermore, each sub-problem has at most 4 children in the
recursion tree. Therefore, if the root subproblem is a YES
subproblem, the total number of subproblems is at most 4
times the number of YES subproblems. Note also that the
number of leaf YES subproblems is equal to W , and that
each YES subproblem must have at least one leaf YES
subproblem among its descendants. Finally, the depth of
the recursion tree is O(log(|S|+ |T |)) = O(log n). Thus
the number of subproblems is Õ(W). The claim on the
running time follows.

We are now ready to present our algorithm for small
B∗.

LEMMA 4.7. Given an instance (G,w, b) of Betweenness
Centrality, a parameter Bmed, and an algorithm for
Diameter of running time Õ(T (n,m)). There is an
Õ(BmedT (n,m)) time algorithm which either outputs
B∗ = BC(b) or answers NO in which case B∗ > Bmed.

Proof. Consider the recursive algorithm from Lemma
4.6. We run that algorithm with S = T = V − {b}.
Furthermore, we keep track of the number W of leaf YES
sub-problems found so far. If W > Bmed at any point, we
halt the recursive algorithm and output NO. Otherwise,
we output the value W returned by the root call of the
recursive algorithm.

The correctness of the algorithm follows immediately
since the number of leaf YES subproblems in the original
(non-truncated) algorithm equals B∗. An easy adaptation
of the running time analysis in Lemma 4.6 shows that the
running time is as in the claim.

4.2.2 A Monte-Carlo PTAS for large B∗. We next
assume that B∗ > Bmed, and we present an algorithm

for this case. In order to lighten the notation, we next
drop b (which is clear from the context). Recall that
a node w is a witness source (resp., witness target) if
BCw,V > 0 (resp., BCV,w > 0). At high level, our
algorithm is based on the computation of the contribution
BCs,V to BC of a random sample of candidate witness
sources s. Then we exploit Chernoff’s bound to prove that
the approximation factor is small w.h.p. One technical
difficulty here is that some witness sources might give a
very large contribution to BC, which is problematic since
we need concentrated results. In order to circumvent this
problem, we first sample a random subset of candidate
witness targets to identify the problematic witness sources
(which are considered separately).

In more detail, we sample a random subset T of
pmed · n nodes, where pmed = C logn√

Bmed
and C is a

sufficiently large constant. We compute all the shortest
paths ending in T , and use them to derive BCs,T for all
s ∈ V . We partition V into sets Slarge and Ssmall, where
s ∈ V belongs to Slarge iff BCs,T ≥ C logn. Then we
sample a random subset Rsmall of pmed|Ssmall| nodes in
Ssmall, and compute BCs,V for all s ∈ Rsmall. Finally,
we output the estimate

B̃ =
1

pmed
(
∑

s∈Slarge

BCs,T +
∑

s∈Rsmall

BCs,V).

It is easy to see that the running time of the algo-
rithm is Õ(nm√

Bmed
). It is also not hard to see that

E[1
pmed

∑
s∈Slarge

BCs,T] =
∑

s∈Slarge
BCs,V and

E[1
pmed

∑
s∈Rsmall

BCs,V] =
∑

s∈Ssmall
BCs,V . There-

fore, E[B̃] = B∗. The following lemma shows that B̃ is
concentrated around its mean.

LEMMA 4.8. W.h.p. B̃ ∈ [(1 − 2ε)B∗, (1 + 2ε)B∗],
where ε > 0 tends to zero as C tends to +∞.

Proof. We start by showing that w.h.p., for any s ∈ V , if
s ∈ Slarge then BCs,V ≥

√
Bmed/(1+ε), and otherwise

BCs,V ≤
√
Bmed/(1 − ε). Define B′ = BCs,T and

B = BCs,V . Note that E[B′] = C log n√
Bmed

B. Note also that
B′ = BCs,T =

∑
t∈V Xs,t, where Xs,t = 0 if t /∈ T

and Xs,t = BCs,t otherwise. Since the variables Xs,t are
negatively correlated, we can apply Chernoff’s bound to
BCs,T . In particular, conditioning on B <

√
Bmed

1+ε , one
obtains

Pr[B′ ≥ C logn =

√
Bmed

B
E[B′]]

≤
(

e(
√
Bmed/B)−1

(
√
Bmed/B)

√
Bmed/B

) C log n√
Bmed

B

≤
(
eε/(1+ε)

1 + ε

)C logn

.

Above we used the fact that function xe1−x is increasing
for x ∈ [0, 1

1+ε] (and strictly smaller than 1 in the same
range). Similarly, conditioning on the event that B >√

Bmed

1−ε , one obtains E[B′] = C logn√
Bmed

B ≥ C logn
1−ε and

Pr[B′ < C log n =

√
Bmed

B
E[B′]]

≤ Pr[B′ ≤ (1− ε)E[B′]]

≤ e−
ε2E[B′]

2 ≤ e−
ε2C log n
2(1−ε) .

The claim follows from the union bound for C large
enough.

Next assume that the mentioned high probability
event happens for all s ∈ V . Define B∗

large =∑
s∈Slarge

BCs,V and B∗
small =

∑
s∈Ssmall

BCs,V .
Clearly B∗ = B∗

large + B∗
small. Define also

B̃large := 1
pmed

∑
s∈Slarge

BCs,T and B̃small :=
1

pmed

∑
s∈Rsmall

BCs,V , so that B̃ = B̃large + B̃small.
Consider any s ∈ Slarge, and define B′ = BCs,T

and B = BCs,V . Recall that by assumption B ≥
√
Bmed

1+ε

and observe that E[B′] = pmedB ≥ C log n
1+ε . Then, by

Chernoff’s bound,

Pr[|B′ − E[B′]| ≥ εE[B′]]

≤ 2e−
ε2

3 E[B′] ≤ 2e−
ε2

3(1+ε)C logn.

Since E[B̃large] = 1
pmed

[
∑

s∈Slarge
BCs,T] = B∗

large,
we can conclude that w.h.p. B̃large ∈ [(1−ε)B∗

large, (1+
ε)B∗

large].
Consider next B̃small. Define B′ = pmedB̃small =∑

s∈Rsmall
BCs,V . Observe that E[B′] = pmedB∗

small.
Furthermore B′ is the sum of independent random vari-
ables each one of value at most

√
Bmed

1−ε by the assumption
on Ssmall. Therefore, by Chernoff’s bound,

Pr[B′ ≥ E[B′] + εpmedB
∗]

≤

⎛

⎜⎝
e

εB∗
B∗

small

(εB∗

B∗
small

+ 1)
εB∗

B∗
small

+1

⎞

⎟⎠

(1−ε)C log nB∗
small

Bmed

.

Assuming B∗
small ≥ εBmed/2 and observing that B∗ ≥

B∗
small, one obtains

Pr[B′ ≥ E[B′] + εpmedB
∗]

≤
(

eε

(1 + ε)1+ε

) (1−ε)εC log n
2

.

13

Otherwise B∗
small < εBmed/2 ≤ εB∗/2 and thus

Pr[B′ ≥ E[B′] + εpmedB
∗]

≤

⎛

⎝ eε

(1 + εB∗

B∗
small

)
B∗

small
B∗ +ε

⎞

⎠

(1−ε)C log nB∗
Bmed

≤
(e
3

)ε(1−ε)C logn
.

Similarly

Pr[B′ ≤ E[B′]− εpmedB
∗]

≤ e
− 1

2 (
εB∗

B∗
small

)2
pmedB∗

small√
Bmed/(1−ε)

= e
− (1−ε)ε2

2
(B∗)2

B∗
small

C log n
Bmed

≤ e−
(1−ε)ε2

2 C logn.

Therefore w.h.p. B̃small ∈ [B∗
small−εB∗, B∗

small+εB∗].
Altogether, w.h.p. one has

(1 − 2ε)B∗ ≤ (1− ε)B∗
large +B∗

small − εB∗ ≤ B̃

≤ (1 + ε)B∗
large +B∗

small + εB∗ ≤ (1 + 2ε)B∗.

The following lemma summarizes the above discus-
sion.

LEMMA 4.9. Given an instance (G,w, b) of Between-
ness Centrality with BC(b) = B∗ ≥ Bmed, there is an
Õ(nm√

Bmed
) time algorithm that returns a (1 + ε) approxi-

mation of B∗ w.h.p.

Combining the algorithms for small and large B∗, we
obtain the following result.

LEMMA 4.10. Given a truly subcubic algorithm for Di-
ameter, there exists a truly subcubic Monte-Carlo PTAS
for Betweenness Centrality.

Proof. Let Õ(n3−δ) be the running time of the given
Diameter algorithm, for some constant δ > 0. From
Lemmas 4.7 and 4.9, we can use it to compute w.h.p. a
(1 + ε) approximation of the betweenness centrality of a
given node in time Õ(Bmedn3−δ + n3

√
Bmed

). Choosing
Bmed = n2δ/3 gives a truly subcubic running time in
Õ(n3−δ/3).

Theorem 4.2 follows directly from Lemma 4.10.

4.3 Reductions based on SETH. We are able to show
that, assuming the Strong Exponential Time Hypothesis
(SETH) [33], a subquadratic algorithm for Positive Be-
tweenness Centrality does not exist even in sparse graphs.
We recall that SETH claims that CNF-SAT on n variables

cannot be solved in time O((2 − δ)n) for any constant
δ > 0. By the same observation as before, one obtains as
a corollary a lower bound on the running time of any ap-
proximation algorithm for Betweenness/Reach Centrality.

THEOREM 4.3. Suppose that there is an O(m2−ε) time
algorithm, for any constant ε > 0, that solves Positive
Betweenness Centrality in directed or undirected graphs
with edge weights in {1, 2}. Then SETH is false.

Proof. Let F be a CNF-SAT formula on n variables.
Our goal is to show that we can determine whether F is
satisfiable in O∗(2(1−δ)n) time for some constant δ > 08.
Using the sparsification lemma of [33] (as, e.g., in [10]),
we can assume w.l.o.g. that F contains O(n) clauses.

Let us consider the undirected case first (see also
Figure 4). We partition the variables into two sets A
and B of (roughly) n/2 variables each, and create a node
for each partial assignment of the variables in A and B,
respectively. We also add a node for each clause c, and
add one edge of weight 1 between each clause c and any
partial assignment φ of A or B that does not satisfy any
literal of c (including the special case that c does not
contain any variable in A or B). We also add two nodes
xA and xB , and add one edge of weight 1 between them
and any node in A and B, respectively. Finally we add a
node b, and add one edge of weight 2 between b and any
assignment of A and B.

We claim that F is satisfiable iff BC(b) > 0.
Observe that the distance between any clause node c
and any other node is at most 4, while any path passing
through b would cost at least 5. Similarly, the distance
between any two assignment of A or of B is at most 2,
so the corresponding shortest paths do not use b. Given
an assignment φA of A and an assignment φB of B, there
exists a φA-φB path of length 2 (hence BCφA,φB (b) = 0)
iff there exists a clause c that is not satisfied by φA nor
by φB . Otherwise (i.e., φA and φB together satisfy F),
φA, b,φB is a a shortest such path (hence BC(b) > 0).
The graph has O(2n/2n) edges, and the conclusion of the
lemma follows.

In the directed case we can use a similar construction,
without nodes xA and xB , and orienting the edges from
the assignments of A to the clause nodes and to b, and
from the latter nodes to the assignments of B. The
algorithm and its analysis are analogous to the undirected
case.

COROLLARY 4.2. Suppose that there is an O(m2−ε)
time α-approximation algorithm for Betweenness Cen-
trality or Reach Centrality, for any constant ε > 0 and
any finite α (possibly depending on m). Then SETH is
false.

8The O∗ notation suppresses polynomial factors.

Figure 4 Reduction from CNF-SAT to Positive Betweenness Centrality (left) and Reach Centrality (right) in undirected
graphs for the CNF-SAT formula c1∧ c2 ∧ c3∧ c4 = (X ∨Y ∨Z)∧ (Z ∨Y)∧ (X ∨Y ∨Q)∧ (X ∨Z ∨Q). The set of
variables are A = {X,Y } and B = {Z,Q}. Node AFF corresponds to the partial assignment (X,Y) = (F, F) and
similarly for the other nodes. Bold edges have weight 2, all other edges have weight 1. The shortest paths AFF , r, BTT

on the left and AFF , xA, r, xB , BTT on the right witness that (X,Y, Z,Q) = (F, F, T, T) is a satisfying assignment.

AFF ATF AFT ATT

c1 c2 c4c3

BFF BTF BFT BTT

xA

xB

r

AFF ATF AFT ATT

c1 c2 c4c3

BFF BTF BFT BTT

xA

xB

r

For Reach Centrality we can also show an approxi-
mation lower bound for unweighted undirected graphs.

THEOREM 4.4. Suppose there is a O(m2−ε)-time (2 −
ε)-approximation algorithm for Reach Centrality in undi-
rected unweighted graphs, for some constant ε > 0. Then
SETH is false.

Proof. Similarly to the proof of Theorem 4.3, we can
start with a CNF-SAT formula F containing n variables
and m = O(n) clauses [33]. We will show how to
construct an instance (G, b) of Reach Centrality on an
unweighted undirected graph G = (V,E) with |V | =
O(2n/2 + m) nodes and |E| = O(2n/2m) edges, such
that RC(b) = 2 if F is satisfiable and RC(b) = 1
otherwise. The generation of the graph from the formula
takes O(2n/2m) time and therefore if we could compute
a (2 − ε) approximation of RC(b) in O∗(|E|2−ε) time,
for some ε > 0, we would be able to solve CNF-SAT in
O∗(2(1−ε/2)n) time (which would refute SETH).

Similarly to the proof of Theorem 4.3, we partition
the variables into two subsets A and B of (roughly)
n/2 variables each, and create a node for each partial
assignment of the variables in A and B. We also create
a node c for each clause c, and connect c to each partial
assignment that does not satisfy any literal in c. We also
add nodes xA and xB , and add edges between them and
any node in A and B, respectively. Finally, we add a node
b, and connect it to xA and xB (note that the final part of
the construction deviates from Theorem 4.3).

To show correctness, note that b is on the shortest path
between xA and xB and therefore RC(b) ≥ 1. Second,
note that b cannot be on the shortest path between a clause
node c and another node in G, and therefore RC(b)= 2 if

and only if b is on the shortest path between an assignment
φA of A and an assignment φB of B. But a shortest path
between φA and φB goes through b if and only if for every
clause node c either φAc is not an edge or φBc is not an
edge, and by definition of these edges it implies that for
every clause c, either φA or φB satisfies c (i.e. φA and φB

induce a satisfying assignment of F). The claim follows.

5 Conclusions and Open Problems
There are many interesting problems that we left open.
The main one is probably whether Diameter and APSP are
equivalent under subcubic reductions. By our reductions,
on one hand a positive answer would indicate that truly
subcubic algorithms for Reach Centrality and for Approx-
imate Betweenness Centrality are unlikely to exist. On the
other hand, a negative answer would give truly subcubic
algorithms for the latter problems as well.

We have shown that Reach Centrality can be solved
in Õ(Mnω) time in directed graphs, improving on the
previous best algorithm based on APSP. Similar running
times are known for Diameter and Radius [13]. To the
best of our knowledge, it is open whether a Õ(Mnω)
time algorithm exists also for Median and Betweenness
Centrality in directed graphs.

We proved that a subquadratic 2−ε approximation al-
gorithm for Reach Centrality in sparse graphs is unlikely
to exist. In [45] an analogous result is proved for Diam-
eter. It would be interesting to show similar negative re-
sults for Radius, Betweenness Centrality and Median (or
find faster approximation algorithms in sparse graphs for
those problems).

References

15

[1] A. Abboud and V. V. Williams. Popular conjectures imply
strong lower bounds for dynamic problems. FOCS, 2014.

[2] A. Abboud, V. V. Williams, and O. Weimann. Conse-
quences of faster alignment of sequences. In ICALP (1),
pages 39–51, 2014.

[3] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.
Fast estimation of diameter and shortest paths (without
matrix multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999.

[4] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail.
Approximating betweenness centrality. In WAW, pages
124–137, 2007.

[5] P. Berman and S. P. Kasiviswanathan. Faster approxima-
tion of distances in graphs. In WADS, pages 541–552,
2007.

[6] U. Brandes. A faster algorithm for betweenness centrality.
Journal of Mathematical Sociology, 25(2):163–177, 2001.

[7] U. Brandes and C. Pich. Centrality estimation in large
networks. International Journal of Bifurcation and Chaos,
17(7):2303–2318, 2007.

[8] T. M. Chan. More algorithms for all-pairs shortest paths
in weighted graphs. SIAM J. Comput., 39(5):2075–2089,
2010.

[9] C.-L. Chang. Deterministic sublinear-time approxima-
tions for metric 1-median selection. Inf. Process. Lett.,
113(8), 2013.

[10] S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. E.
Tarjan, and V. V. Williams. Better approximation algo-
rithms for the graph diameter. In SODA, pages 1041–1052,
2014.

[11] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based
technologies for intelligence analysis. Communications of
the ACM, 47(3):45–47, 2004.

[12] D. Coppersmith and S. Winograd. Matrix multiplication
via arithmetic progressions. J. Symbolic Computation,
9(3):251–280, 1990.

[13] M. Cygan, H. N. Gabow, and P. Sankowski. Algorithmic
applications of Baur-Strassen’s theorem: Shortest cycles,
diameter and matchings. In FOCS, pages 531–540, 2012.

[14] A. Davie and A. J. Stothers. Improved bound for com-
plexity of matrix multiplication. Proceedings of the Royal
Society of Edinburgh, Section: A Mathematics, 143:351–
369, 4 2013.

[15] A. Del Sol, H. Fujihashi, and P. O’Meara. Topology of
small-world networks of protein- protein complex struc-
tures. Bioinformatics, 21(8):1311–1315, 2005.

[16] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[17] D. Eppstein and J. Wang. Fast approximation of centrality.
J. Graph Algorithms Appl., 8:39–45, 2004.

[18] M. L. Fredman. New bounds on the complexity of the
shortest path problem. SIAM J. Comput., 5(1):83–89,
1976.

[19] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms.
J. ACM, 34(3):596–615, 1987.

[20] L. Freeman. A set of measures of centrality based upon
betweenness. Sociometry, 40:35–41, 1977.

[21] A. Gajentaan and M. Overmars. On a class of o(n2) prob-

lems in computational geometry. Computational Geome-
try, 5(3):165–185, 1995.

[22] F. L. Gall. Powers of tensors and fast matrix multiplica-
tion. In International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’14, Kobe, Japan, July 23-25,
2014, pages 296–303, 2014.

[23] R. Geisberger, P. Sanders, and D. Schultes. Better approx-
imation of betweenness centrality. In ALENEX, pages 90–
100, 2008.

[24] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach for
A*: Efficient point-to-point shortest path algorithms. In
ALENEX, pages 129–143, 2006.

[25] A. V. Goldberg, H. Kaplan, and R. F. F. Werneck. Better
landmarks within reach. In WEA, pages 38–51, 2007.

[26] O. Goldreich and D. Ron. Approximating average param-
eters of graphs. Random Struct. Algorithms, 32(4):473–
493, 2008.

[27] F. Grandoni and V. Vassilevska Williams. Improved dis-
tance sensitivity oracles via fast single-source replacement
paths. In FOCS, pages 748–757, 2012.

[28] R. J. Gutman. Reach-based routing: A new approach to
shortest path algorithms optimized for road networks. In
ALENEX/ANALC, pages 100–111, 2004.

[29] P. Hage and F. Harary. Eccentricity and centrality in
networks. Social Networks, 17:57–63, 1995.

[30] S. L. Hakimi. Optimum locations of switching centers and
the absolute centers and medians of a graph. Operations
research, 12(3):450–459, 1964.

[31] Y. Han and T. Takaoka. An O(n3 log log n/ log2 n) time
algorithm for all pairs shortest paths. In SWAT, pages 131–
141, 2012.

[32] X. Huang and V. Y. Pan. Fast rectangular matrix multi-
plication and applications. J. Complexity, 14(2):257–299,
1998.

[33] R. Impagliazzo, R. Paturi, and F. Zane. Which problems
have strongly exponential complexity? J. Comput. Syst.
Sci., 63(4):512–530, 2001.

[34] P. Indyk. Sublinear time algorithms for metric space
problems. In STOC, pages 428–434, 1999.

[35] H. Jeong, S. Mason, A. Barabási, and Z. Oltvai. Lethality
and centrality in protein networks. Nature, 411:41–42,
2001.

[36] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks. J. ACM, 24(1):1–13, 1977.

[37] V. Krebs. Mapping networks of terrorist cells. Connec-
tions, 24(3):43–52, 2002.

[38] F. Liljeros, C. Edling, L. Amaral, H. Stanley, and Y. Aberg.
The web of human sexual contacts. Nature, 411:907–908,
2001.

[39] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching
is as easy as matrix inversion. Combinatorica, 7(1):105–
113, 1987.

[40] M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E,
69(2):26–113, 2004.

[41] S. Pettie. A new approach to all-pairs shortest paths on
real-weighted graphs. Theor. Comput. Sci., 312(1):47–74,
2004.

[42] S. Pettie and V. Ramachandran. A shortest path algorithm

for real-weighted undirected graphs. SIAM J. Comput.,
34(6):1398–1431, 2005.

[43] J. W. Pinney and D. R. Westhead. Betweenness-based de-
composition methods for social and biological networks.
In Interdisciplinary Statistics and Bioinformatics, pages
87–90, 2006.

[44] M. Pǎtraşcu. Towards polynomial lower bounds for dy-
namic problems. In STOC, pages 603–610, 2010.

[45] L. Roditty and V. Vassilevska Williams. Fast approxi-
mation algorithms for the diameter and radius of sparse
graphs. In STOC, pages 515–524, 2013.

[46] L. Roditty and U. Zwick. Replacement paths and k
simple shortest paths in unweighted directed graphs. ACM
Transactions on Algorithms, 8(4):33, 2012.

[47] G. Sabidussi. The centrality index of a graph. Psychome-
tirka, 31:581–606, 1966.

[48] D. Schultes and P. Sanders. Dynamic highway-node
routing. In WEA, pages 66–79, 2007.

[49] A. Shoshan and U. Zwick. All pairs shortest paths in
undirected graphs with integer weights. In FOCS, pages
605–615, 1999.

[50] M. Thorup. Undirected single source shortest path in
linear time. In FOCS, pages 12–21, 1997.

[51] V. Vassilevska Williams. Faster replacement paths. In
SODA, pages 1337–1346, 2011.

[52] V. Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In STOC, pages 887–898, 2012.

[53] V. Vassilevska Williams and R. Williams. Subcubic equiv-
alences between path, matrix and triangle problems. In
FOCS, pages 645–654, 2010.

[54] O. Weimann and R. Yuster. Replacement paths and
distance sensitivity oracles via fast matrix multiplication.
ACM Transactions on Algorithms, 9(2):14, 2013.

[55] R. Williams. Faster all-pairs shortest paths via circuit
complexity. In STOC, 2014.

[56] U. Zwick. All pairs shortest paths in weighted directed
graphs − exact and almost exact algorithms. In FOCS,
pages 310–319, 1998.

[57] U. Zwick. All pairs shortest paths using bridging sets
and rectangular matrix multiplication. J. ACM, 49(3):289–
317, 2002.

17

