
ar
X

iv
:1

90
3.

08
24

7v
5

 [
cs

.C
C

]
 1

4
O

ct
 2

02
0

The Average-Case Complexity of Counting Cliques

in Erdős-Rényi Hypergraphs

Enric Boix-Adserà∗ Matthew Brennan† Guy Bresler‡

October 15, 2020

Abstract

We consider the problem of counting k-cliques in s-uniform Erdős-Rényi hypergraphs G(n, c, s)
with edge density c and show that its fine-grained average-case complexity can be based on its
worst-case complexity. We give a worst-case to average-case reduction for counting k-cliques
on worst-case hypergraphs given a blackbox solving the problem on G(n, c, s) with low error
probability. Our approach is closely related to [Goldreich and Rothblum, FOCS18], which
showed a worst-case to average-case reduction for counting cliques for an efficiently-sampleable
distribution on graphs.

Our reduction has the following implications:

• Dense Erdős-Rényi graphs and hypergraphs: Counting k-cliques on G(n, c, s) with k and
c constant matches its worst-case time complexity up to a polylog(n) factor. Assuming
randomized ETH, it takes nΩ(k) time to count k-cliques in G(n, c, s) if k and c are constant.

• Sparse Erdős-Rényi graphs and hypergraphs: When c = Θ(n−α), we give several algo-
rithms exploiting the sparsity of G(n, c, s) that are faster than the best known worst-case
algorithms. Complementing this, based on a fine-grained worst-case assumption, our re-
duction implies a different average-case phase diagram for each fixed α depicting a tradeoff
between a runtime lower bound and k. Surprisingly, in the hypergraph case (s ≥ 3), these
lower bounds are tight against our algorithms exactly when c is above the Erdős-Rényi
k-clique percolation threshold.

Our reduction is the first worst-case to average-case reduction for a problem over Erdős-Rényi
hypergraphs and is the first mapping from a worst-case problem to an average-case problem with
a different fine-grained complexity that we are aware of. We also give a variant of our worst-case
to average-case reduction for computing the parity of the k-clique count that requires a milder
assumption on the error probability of the blackbox solving the problem on G(n, c, s).

∗Massachusetts Institute of Technology. Department of EECS. Email: eboix@mit.edu.
†Massachusetts Institute of Technology. Department of EECS. Email: brennanm@mit.edu.
‡Massachusetts Institute of Technology. Department of EECS. Email: guy@mit.edu.

i

http://arxiv.org/abs/1903.08247v5

1 Introduction

We consider the average-case complexity of counting k-cliques in s-uniform Erdős-Rényi hypergraphs
G(n, c, s), where every s-subset of the n vertices is a hyperedge independently with probability c.
Our main result is a reduction for counting k-cliques on worst-case hypergraphs given a blackbox al-
gorithm solving the problem on G(n, c, s) with low error probability. Our approach is closely related
to the recent work [GR18], which showed a worst-case to average-case reduction for counting cliques
for a particular efficiently-samplable distribution on graphs. Our reduction yields two different sets
of average-case lower bounds for counting k-cliques in graphs sampled from the natural distribution
G(n, c, s) in the dense and sparse cases of c = Θ(1) and c = Θ(n−α), with tradeoffs between runtime
and c. We also show that these average-case lower bounds often match algorithmic upper bounds.

The complexity of clique problems on Erdős-Rényi random graphs has become a central topic
in average-case complexity, discrete probability and high-dimensional statistics. A body of work
has analyzed algorithms for finding large cliques in Erdős-Rényi graphs1 [Kuc95; AKS98; FK00;
McS01; FR10; AV11; DGP14; DM15; CX16], and hardness results have been shown for greedy
algorithms [Kar76; GM75; Jer92; McD84; Pit82], local algorithms [GS14; CE15; RV17], query
models [Fei+18], bounded-depth circuits [Ros08], monotone circuits [Ros10], low-degree sum of
squares (SOS) relaxations [Bar+16], statistical query algorithms [Fel+13], and resolution [Ats+18].
The hardness of clique problems on Erdős-Rényi graphs has been used as an average-case assumption
in cryptography [JP00] and to show information-computation gaps in a variety of statistical problems
[BR13; KZ14; Che15; HWX15; MW15; BBH18; BBH19; BB19].

All of the above lower bounds for clique problems on Erdős-Rényi random graphs are against
restricted classes of algorithms. One reason for this is that there are general obstacles to basing
average-case complexity on worst-case complexity. For example, natural approaches to polynomial-
time worst-case to average-case reductions for NP-complete problems fail unless coNP ⊆ NP/poly
[FF93; BT06b; BT06a]. The objective of this work is to show that this worst-case characterization
of average-case complexity is possible in a fine-grained sense for the natural problem of counting
k-cliques in s-uniform Erdős-Rényi hypergraphs G(n, c, s) with edge density c.

A motivating recent work by Goldreich and Rothblum [GR18] also considered worst-case to
average-case reductions for k-clique counting. They provided such a reduction mapping to an
efficiently sampleable distribution on graphs with a high min-entropy of Ω̃(n2). In contrast to
[GR18], our objectives are to: (1) map precisely to the natural distribution G(n, c, s) for different
edge densities c, including c = Θ(1) and the sparse case c = Θ(n−α); and (2) to characterize the
tradeoff between the time-complexity of counting k-cliques in G(n, c, s) and the sparsity parameter
α. Achieving this requires new ingredients for the self-reducibility of counting k-cliques as a low-
degree polynomial and a tight analysis of random biased binary expansions over Fp with finite
Fourier analysis.

However, our techniques also come at the cost of requiring a low error probability (1/polylog(n)
in the dense case and 1/poly(n) in the sparse case) for the average-case blackbox solving k-clique
counting on G(n, c, s). This is in contrast to [GR18], where a very high error probability of 1 −
1/polylog(n) is tolerated. It remains an interesting open problem to extend our results for G(n, c, s)
to tolerate higher error blackboxes. This error tolerance and open problem are discussed further
in Sections 2.2 and 6, and how our techniques relate to those in [GR18] is discussed in Sections
1.2 and 3. As a step towards increasing the allowed blackbox error, we also give a variant of our
reduction for computing the parity of the k-clique count that only requires a constant bound on
the error probability (for each fixed k) of the blackbox algorithm solving the problem on G(n, c, s)

1In both ordinary Erdős-Rényi graphs and the planted clique model.

1

when c = 1/2. We now give an overview of our contributions.

1.1 Overview of Main Results

We provide two complementary main results on the fine-grained average-case complexity of counting
k-cliques in G(n, c, s). The precise formulations of the problems we consider are in Section 2.1.

Worst-case to average-case reduction. We give a worst-case to average-case reduction from
counting k-cliques in worst-case s-uniform hypergraphs to counting k-cliques in hypergraphs drawn
from G(n, c, s). The key guarantees of this reduction are summarized in the following simplified
version of our main theorem.

Theorem 1.1 (Simplified Main Result). If 2 ≤ s ≤ k are constant integers and c = c(n) satis-

fies 0 < c ≤ 1 − Ω(1), then there is a parameter Υ# = c−(
k
s)(log n)O(1) such that the following

holds. If there is a randomized algorithm counting k-cliques in time O(nt) with error probability less
than 1/Υ# on hypergraphs drawn from G(n, c, s), then there is a randomized algorithm counting
k-cliques on worst-case s-uniform hypergraphs with error probability less than 1/3 running in time
O
(

Υ# · nmax{t,s}
)

.

We discuss the necessity of the error tolerance and the multiplicative slowdown in our worst-
case to average-case reduction in Section 2.2. This result has a number of consequences for basing
the average-case fine-grained complexity of k-clique counting over Erdős-Rényi hypergraphs on its
worst-case complexity, which we now overview.

Counting k-cliques in worst-case hypergraphs is known to take nΩ(k) time for randomized algo-
rithms assuming the randomized Exponential Time Hypothesis (rETH)2 if k does not grow with
n [Che+06; Cal+08]. The best known worst-case algorithms up to subpolynomial factors are the
O
(

nω⌈k/3⌉
)

time algorithm of [NP85] in the graph case of s = 2 and exhaustive O(nk) time search
on worst-case hypergraphs with s ≥ 3. Here, ω ≤ 2.373 denotes the matrix multiplication constant.
Our reduction is the first worst-case to average-case reduction to Erdős-Rényi hypergraphs. It has
different implications for the cases of dense and sparse hypergraphs because of the factor Υ#, as
described next.

1. Dense Erdős-Rényi graphs and hypergraphs. When k and c are constant, our reduction con-
structs an efficient k-clique counting algorithm that succeeds on a worst-case input hypergraph
with high probability, using polylog(n) queries to an average-case oracle that correctly counts
k-cliques on a 1 − 1/polylog(n) fraction of Erdős-Rényi hypergraphs drawn from G(n, c, s).
This essentially shows that k-clique counting in the worst-case matches that on dense Erdős-
Rényi hypergraphs. More precisely, k-clique counting on G(n, c, s) with k, c and s constant
must take Ω̃

(

nω⌊k/3⌋
)

time when s = 2 and Ω̃(nk) time when s ≥ 3, unless there are faster
worst-case algorithms. Furthermore, our reduction shows that it is rETH-hard to count k-
cliques in no(k) time on G(n, c, s) with k, c and s constant.

2. Sparse Erdős-Rényi graphs and hypergraphs. Our reduction also applies with a different multi-
plicative slowdown and error tolerance to the sparse case of c = Θ(n−α), where the fine-grained
complexity of k-clique counting on G(n, c, s) is very different than on worst-case inputs. Our

reduction implies fine-grained lower bounds of Ω̃
(

nω⌈k/3⌉−α(k2)
)

when s = 2 and Ω̃
(

nk−α(ks)
)

when s ≥ 3 for inputs drawn from G(n, c, s), unless there are faster worst-case algorithms.

2rETH asserts that any randomized algorithm takes at least 2cn time to solve 3-SAT in the worst-case, for some
constant c > 0.

2

We remark that in the hypergraph case of s ≥ 3, this lower bound matches the expectation of
the quantity being counted, the number of k-cliques in G(n, c, s), up to polylog(n) factors.3

Precise statements of our results can be found in Section 2.2. For simplicity, our results should be
interpreted as applying to algorithms that succeed with probability 1 − (log n)−ω(1) in the dense
case and 1− n−ω(1) in the sparse case.

We also give a second worst-case to average-case reduction for computing the parity of the
number of k-cliques which has a weaker requirement of 1−Θk,s(1) on the error probability for the
blackbox solving the problem on G(n, c, s) in the dense case of c = 1/2. We provide an overview of
our multi-step worst-case to average-case reduction in Section 1.2. The steps are described in detail
in Section 3.

Algorithms for k-clique counting on G(n, c, s). We also analyze several natural algorithms for
counting k-cliques in sparse Erdős-Rényi hypergraphs. These include an extension of the natural
greedy algorithm mentioned previously from k-clique to counting k-cliques, a modification to this
algorithm using the matrix multiplication step of [NP85] and an iterative algorithm achieving nearly
identical guarantees. These algorithms count k-cliques in G(n, c, s) when c = Θ(n−α) with several
different runtimes, the best of which are as follows:

• Õ
(

nk+1−α(ks)
)

if s ≥ 3 and k < τ + 1;

• Õ
(

nτ+2−α(τ+1
s)
)

if s ≥ 3 and τ + 1 ≤ k ≤ κ+ 1; and

• Õ
(

nω⌈k/3⌉+ω−ωα(⌈k/3⌉2)
)

if s = 2 and k ≤ κ+ 1.

Here, τ and κ are the largest positive integers satisfying that α
(τ
s−1

)

< 1 and α
(κ
s−1

)

< s. The
thresholds κ and τ have natural interpretations as roughly the clique number and most frequent
clique size in the graph G(n, c, s), respectively. Throughout, we restrict our attention to k with
k ≤ κ+ 1 since the probability that the largest clique in G has size ω(G) > κ+ 1 is 1/poly(n).

The threshold τ + 1 also has a natural interpretation as the k-clique percolation threshold
[DPV05; PDV07; DGM08], which roughly corresponds to the largest value of k at which a local
search algorithm can explore all the cliques in the hypergraph starting from any given clique. In
particular, in the graph case of s = 2, τ + 1 is the largest integer k such that α < 1

k−1 , which is
exactly the k-clique percolation threshold described below. Given a hypergraph G, define two k-
cliques of G to be adjacent if they share (k−1) of their k vertices. This induces a hypergraph Gk on
the set of k-cliques. For graphs G drawn from G(n, c), [DPV05] introduced the k-clique percolation

threshold of c = 1
k−1 · n

− 1
k−1 , above which a giant component emerges in Gk. This threshold and

extensions were rigorously established in [BR09]. Following the same heuristic as in [DPV05], our
threshold τ + 1 is a natural extension of the k-clique percolation threshold to the hypergraph case
of s ≥ 3.

Comparing our upper and lower bounds. A comparison of our algorithmic guarantees and
average-case lower bounds based on the best known worst-case algorithms for counting k-cliques is
shown in Figure 1.

3For the sub-class of algorithms that enumerate k-cliques one by one, the k-clique count is a trivial lower bound
on the runtime. Our general lower bound matches this heuristic lower bound.

3

Graphs (s = 2)

feasible

infeasible

open

ωk
3

− α
(

k
2

)

ωk
3
−

ωα
9

(k
2

)

k

logn T

ω(G)
k

logn T

k-clique percolation ω(G)

Hypergraphs (s ≥ 3)

feasible

infeasible

open

k
−
α
(
k
s

)

τ + 1− α
(

τ+1
s

)

Figure 1: Comparison of our algorithms and average-case lower bounds for counting k-cliques in sparse
Erdős-Rényi Hypergraphs G(n, c, s) with c = Θ(n−α). Green denotes runtimes T feasible for each k, blue
denotes T infeasible given that the best known worst-case algorithms are optimal and gray denotes T for
which the complexity of counting k-cliques is open after this work. The left plot shows the graph case of
s = 2 and the right plot shows the hypergraph case of s ≥ 3. For simplicity, all quantities shown are up to
constant Ok,α(1) additive error.

1. Graph Case (s = 2). In the graph case, our lower and upper bounds have the same form and
show that the exponent in the optimal running time is ωk

3 −Cα
(k
2

)

+Ok,α(1) where ω
9 ≤ C ≤ 1

as long as k ≤ κ+1 = 2α−1+1. As shown in Figure 1, our upper and lower bounds approach
each other for k small relative to κ+ 1.

2. Hypergraph Case (s ≥ 3). In the hypergraph case of s ≥ 3, the exponents in our lower
and upper bounds are nearly identical at k − α

(

k
s

)

+ Ok,α(1) up to the k-clique percolation
threshold. After this threshold, our lower bounds slowly deteriorate relative to our algorithms
until they become trivial at the clique number of G by k = κ+ 1.

Because we consider sparse Erdős-Rényi hypergraphs, for each n, k, and s we actually have an
entire family of problems parametrized by the edge probability c and the behavior changes as a
function of c; this is the first worst-to-average-case hardness result we are aware of for which the
complexity of the same problem over worst-case versus average-case inputs is completely different
and can be sharply characterized over the whole range of c starting from the same assumption.
It is surprising that our worst-case to average-case reduction techniques – which range from the
self-reducibility of polynomials to random binary expansions – together yield tight lower bounds
matching our algorithms in the hypergraph case.

Two interesting problems left open by our work are to show average-case lower bounds with an
improved constant C in the graph case and to show tight average-case lower bounds beyond the
k-clique percolation threshold in the case s ≥ 3. These, other open problems and some extensions
of our methods are discussed in Section 6.

1.2 Overview of Reduction Techniques

For clarity of exposition, in this section we will restrict our discussion to the graph case s = 2,
as well as the case of constant k. A key step of our worst-case to average-case reduction uses
the random self-reducibility of multivariate low-degree polynomials – i.e., evaluating a polynomial
on any worst-case input can be efficiently reduced to evaluating it on several random inputs. This
result follows from a line of work [Lip89; FF93; Gem+91; GS92] that provides a method to efficiently
compute a polynomial P : FN → F of degree d ≤ |F|/20 on any worst-case input x ∈ F

N , given an

4

oracle P̃ : FN → F that agrees with P on a 1
2 +

1
poly(N) fraction of inputs. Thus, for any low-degree

polynomial over a large enough finite field, evaluating the polynomial on a random element in the
finite field is roughly as hard as evaluating the polynomial on any adversarially chosen input.

Random self-reducibility for counting k-cliques. With the random self-reducibility of poly-
nomials in mind, a natural approach is to express the number of k-cliques in a graph as a low-degree
polynomial of the n× n adjacency matrix A

P (A) =
∑

S⊂[n]
|S|=k

(

∏

i<j∈S

Aij

)

.

This polynomial has been used in a number of papers, including by Goldreich and Rothblum [GR18]
to construct a distribution on dense graphs for which counting k-cliques is provably hard on average.
However, their techniques are primarily focused on the error probability requirement for the average-
case blackbox. As a result, the distribution they obtain is far from Erdős-Rényi and their approach
does not yield tight bounds for sparse graphs.

The significant obstacle that arises in applying the random self-reducibility of P is that one
needs to work over a large enough finite field Fp, so evaluating P on worst-case graph inputs in

{0, 1}(n2) only reduces to evaluating P on uniformly random inputs in F
(n2)
p . In order to further

reduce to evaluating P on graphs, given a random input A ∈ F
(n2)
p [GR18] uses several gadgets

(including replacing vertices by independent sets and taking disjoint unions of graphs) in order to
create a larger unweighted random graph A′ whose k-clique count is equal to k! ·P (A) (mod p) for
appropriate p. However, any nontrivial gadget-based reduction seems to have little hope of arriving
at something close to the Erdős-Rényi distribution, because gadgets inherently create non-uniform
structure.

Reducing to k-partite graphs. We instead consider a different polynomial for graphs on nk
vertices with nk × nk adjacency matrix A,

P ′(A) =
∑

v1∈[n]

∑

v2∈[2n]\[n]

· · ·
∑

vk∈[kn]\[(k−1)n]





∏

1≤i<j≤k

Avivj



 .

The polynomial P ′ correctly counts the number of k-cliques if A is k-partite with vertex k-partition
[n] ⊔ ([2n] \ [n]) ⊔ · · · ⊔ ([kn] \ [(k − 1)n]). We first reduce clique-counting in the worst case to
computing P ′ in the worst case; this is a simple step, because it is a purely worst-case reduction.
Next, we construct a recursive counting procedure that reduces evaluating P ′ on Erdős-Rényi graphs
to counting k-cliques in Erdős-Rényi graphs. Therefore, it suffices to prove that if evaluating P ′ is
hard in the worst case, then evaluating P ′ on Erdős-Rényi graphs is also hard.

Applying the Chinese Remainder theorem as well as the random self-reducibility of polynomials,

computing P ′ on worst-case inputs in {0, 1}(nk
2) reduces to computing P ′ on several uniformly

random inputs in F
(nk

2)
p , for several different primes p each on the order of Θ(log n). The main

question is: how can one evaluate P ′ on inputs X ∼ Unif[F
(nk

2)
p] using an algorithm that evaluates

P ′ on G(n, c, 2) Erdős-Rényi graphs (i.e., inputs Y ∼ Ber(c)⊗(
nk
2))?

5

Eliminating weights with random sparse binary expansions. We solve this by decompos-

ing the random weighted graph X ∼ Unif[F
(nk

2)
p] into a weighted sum of graphs Y (0), . . . , Y (t) ∈

{0, 1}(nk
2) such that each Y (i) is close to Erdős-Rényi G(n, c, 2). Specifically, this additive decompo-

sition satisfies X ≡ ∑t
i=0 2

iY (i) (mod p), i.e., that we can write X as a binary expansion modulo
p of Erdős-Rényi graphs. Importantly, in Section 4 we derive near-optimal bounds on t and prove
that we can take t to be quite small, growing only as poly(c−1(1 − c)−1 log(p)). This technique
seems likely to have applications elsewhere. For the unbiased case of c = 1/2, a version of this
binary expansions technique appeared previously in [GR17].

Now, using the binary expansion decomposition of X, we algebraically manipulate P ′ as follows:

P ′(X) =
∑

v1∈[n]

∑

v2∈[2n]\[n]

· · ·
∑

vk∈[kn]\[(k−1)n]

∏

1≤i<j≤k





∑

l∈{0,...,t}

2l · Y (l)
vivj





=
∑

f∈{0,...,t}(
k
2)





∏

1≤i≤j≤k

2fij





×





∑

v1∈[n]

∑

v2∈[2n]\[n]

· · ·
∑

vk∈[kn]\[(k−1)n]

∏

1≤i<j≤k

Y
(fij)
vivj





=
∑

f∈{0,...,t}(
k
2)





∏

1≤i≤j≤k

2fij



P ′
(

Y (f)
)

.

Here Y (f) is the nk-vertex graph with entries given by Y
(fāb̄)
ab for 1 ≤ a < b ≤ nk, where ā = ⌈a/n⌉

and b̄ = ⌈b/n⌉. We thus reduce the computation of P ′(X) to the computation of a weighted sum of

poly(c−1(1−c)−1 log(n))(
k
2) different evaluations of P ′ at graphs close in total variation to G(n, c, 2).

This concludes our reduction.4

We remark that an important difference between our reduction and the reduction in [GR18] is
the number of and structure of the calls to the average-case blackbox. Our reduction requires many
successful calls to the blackbox in order to obtain a single correct evaluation of the polynomial
P ′(A), which is where our low error probability requirement comes from. The gadgets in [GR18] are
specifically designed to only require a single successful call to obtain a single correct evaluation of
P (A). Thus even given a blackbox with a constant error probability, the Berkelamp-Welch algorithm
can recover P (A) in the case of [GR18].

We also give a different worst-case to average-case reduction for determining the parity of the
number of k-cliques in Erdős-Rényi hypergraphs, as discussed in Sections 2.2 and 3.

1.3 Related Work on Worst-Case to Average-Case Reductions

The random self-reducibility of low-degree polynomials serves as the basis for several worst-case to
average-case reductions found in the literature. One of the first applications of this method was

4If we had instead worked with P , then this argument would fail. The argument uses the k-partiteness structure

of P ′ as follows: for every pair of vertices a, b ∈ [nk] and f ∈ {0, . . . , t}(
k
2
), the term Y

(fij)

ab appearing in the sum is
uniquely determined by a ∈ [ik] \ [(i− 1)k] and b ∈ [jk] \ [(j − 1)k]. So given f we can define a graph Y (f) uniquely.

On the other hand, running the same argument with the polynomial P , the term Y
(fij)

ab for many different i, j would
appear in the sum, and there is no way to uniquely define a graph Y (f).

6

to prove that the permanent is hard to evaluate on random inputs, even with polynomially-small
probability of success, unless P#P = BPP [Sud97; CPS99]. (Under the slightly stronger assumption
that P#P 6= AM, and with different techniques, [FL92] proved that computing the permanent on
large finite fields is hard even with exponentially small success probability.) Recently, [Bal+17]
used the polynomial random self-reducibility result in the fine-grained setting in order to construct
polynomials that are hard to evaluate on most inputs, assuming fine-grained hardness conjectures
for problems such as 3-SUM, Orthogonal-Vectors, and/or All-Pairs-Shortest-Paths. The
random self-reducibility of polynomials was also used by Gamarnik [Gam18] in order to prove that
exactly computing the partition function of the Sherrington-Kirkpatrick model in statistical physics
is hard on average.

If a problem is random self-reducible, then random instances of the problem are essentially as
hard as worst-case instances, and therefore one may generate a hard instance of the problem by
simply generating a random instance. Because of this, random self-reducibility plays an important
role in cryptography: it allows one to base cryptographic security on random instances of a problem,
which can generally be generated efficiently. A prominent example of a random-self reducible
problem with applications to cryptography is the problem of finding a short vector in a lattice.
In a seminal paper, Ajtai [Ajt96] gave a worst-case to average-case reduction for this short-vector
problem. His ideas were subsequently applied to prove the average-case hardness of the Learning
with Errors (LWE) problem, which underlies lattice cryptography [Ajt96; Reg09]. A good survey
covering worst-case to average-case reductions in lattice cryptography is [Reg].

There are known restrictions on problems that are self-reducible. For example, non-adaptive
worst-case to average-case reductions for NP-complete problems fail unless coNP ⊆ NP/poly [FF93;
BT06b; BT06a].

1.4 Notation and Preliminaries

A s-uniform hypergraph G = (V (G), E(G)) consists of a vertex set V (G) and a hyperedge set
E(G) ⊆

(V (G)
s

)

. A k-clique C in G is a subset of vertices C ⊂ V (G) of size |C| = k such that all

of the possible hyperedges between the vertices are present in the hypergraph:
(

C
s

)

⊆ E(G). We
write clk(G) to denote the set of k-cliques of the hypergraph G. One samples from the Erdős-Rényi
distribution G(n, c, s) by independently including each of the

(

n
s

)

hyperedges with probability c.
We denote the law of a random variable X by L(X). We use T (A,n) to denote the worst-case

run-time of an algorithm A on inputs of size parametrized by n. We work in the Word RAM model
of computation, where the words have O(log n) bits. All algorithms in this paper are randomized,
and each (possibly biased) coin flip incurs constant computational cost.

2 Problem Formulations and Average-Case Lower Bounds

2.1 Clique Problems and Worst-Case Fine-Grained Conjectures

In this section, we formally define the problems we consider and the worst-case fine-grained com-
plexity conjectures off of which our average-case lower bounds are based. We focus on the following
computational problems.

Definition 2.1. #(k, s)-clique denotes the problem of counting the number of k-cliques in an
s-uniform hypergraph G.

Definition 2.2. Parity-(k, s)-clique denotes the problem of counting the number of k-cliques up
to parity in an s-uniform hypergraph G.

7

Definition 2.3. Decide-(k, s)-clique denotes the problem of deciding whether or not an s-uniform
hypergraph G contains a k-clique.

Both #(k, s)-clique and Decide-(k, s)-clique are fundamental problems that have long been
studied in computational complexity theory and are conjectured to be computationally hard in the
worst-case setting. When k is allowed to be an unbounded input to the problem, Decide-(k, s)-
clique is known to be NP-complete [Kar72] and #(k, s)-clique is known to be #P-complete
[Val79]. In this work, we consider the fine-grained complexity of these problems, where k either can
be viewed as a constant or a very slow-growing parameter compared to the number n of vertices
of the hypergraph. In this context, Parity-(k, s)-clique can be interpreted as an intermediate
problem between the other two clique problems that we consider. The worst-case reduction from
Parity-(k, s)-clique to #(k, s)-clique is immediate. As we show in Appendix A, in the worst-
case setting, Decide-(k, s)-clique also reduces to Parity-(k, s)-clique with a multiplicative
overhead of O(k2k) time.

When k is a constant, the trivial brute-force search algorithms for these problems are efficient in
the sense that they take polynomial time. However, these algorithms do not remain efficient under
the lens of fine-grained complexity since brute-force search requires Θ(nk) time, which can grow
significantly as k grows. In the hypergraph case of s ≥ 3, no algorithm taking time O(nk−ǫ) on any
of these problems is known, including for Decide-(k, s)-clique [Yus06]. In the graph case of s = 2,
the fastest known algorithms for all of these problems take Θ(nω⌈k/3⌉) time, where 2 ≤ ω < 2.4 is
the fast matrix multiplication constant [IR78; NP85]. Since this is the state of the art, one may
conjecture that Decide-(k, s)-clique and #(k, s)-clique take nΩ(k) time in the worst case.

Supporting this conjecture, Razborov [Raz85] proves that monotone circuits require Ω̃(nk) op-
erations to solve Decide-(k, 2)-clique in the case of constant k. Monotone circuit lower bounds
are also known in the case when k = k(n) grows with n [AB87; AM05]. In [DF95], Decide-(k, 2)-
clique is shown to be W[1]-hard. In other words, this shows that if Decide-(k, 2)-clique is
fixed-parameter tractable – admits an algorithm taking time f(k) · poly(n) – then any algorithm
in the parametrized complexity class W[1] is also fixed-parameter-tractable. This provides further
evidence that Decide-(k, 2)-clique is intractable for large k. Finally, [Che+06] shows that solving
Decide-(k, 2)-clique in no(k) time is ETH-hard for constant k5. We therefore conjecture that the
k-clique problems take nΩ(k) time on worst-case inputs when k is constant, as formalized below.

Conjecture 2.4 (Worst-case hardness of #(k, s)-clique). Let k be constant. Any randomized
algorithm A for #(k, s)-clique with error probability less than 1/3 takes time at least nΩ(k) in the
worst case for hypergraphs on n vertices.

Conjecture 2.5 (Worst-case hardness of Parity-(k, s)-clique). Let k be constant. Any random-
ized algorithm A for Parity-(k, s)-clique with error probability less than 1/3 takes time at least
nΩ(k) in the worst case for hypergraphs on n vertices.

Conjecture 2.6 (Worst-case hardness of Decide-(k, s)-clique). Let k be constant. Any random-
ized algorithm A for Decide-(k, s)-clique with error probability less than 1/3 takes time at least
nΩ(k) in the worst case for hypergraphs on n vertices.

The conjectures are listed in order of increasing strength. Since Conjecture 2.6 is implied by
rETH, they all follow from rETH. We also formulate a stronger version of the clique-counting

5These hardness results also apply to Decide-(k, s)-clique for s ≥ 3 since there is a reduction from Decide-

(k, 2)-clique to Decide-(k, s)-clique in ns time. The reduction proceeds by starting with a graph G and construct-
ing an s-uniform hypergraph G′ that contains a s-hyperedge for every s-clique in G. The k-cliques of G and G′ are
in bijection. This construction also reduces #(k, 2)-clique to #(k, s)-clique.

8

hardness conjecture, which asserts that the current best known algorithms for k-clique counting are
optimal.

Conjecture 2.7 (Strong worst-case hardness of #(k, s)-clique). Let k be constant. Any random-
ized algorithm A for #(k, s)-clique with error probability less than 1/3 takes time Ω̃(nω⌈k/3⌉) in
the worst case if s = 2 and Ω̃(nk) in the worst case if s ≥ 3.

2.2 Average-Case Lower Bounds for Counting k-Cliques in G(n, c, s)

Our first main result is a worst-case to average-case reduction solving either #(k, s)-clique or
Parity-(k, s)-clique on worst-case hypergraphs given a blackbox solving the problem on most
Erdős-Rényi hypergraphs drawn from G(n, c, s). We discuss this error tolerance over sampling
Erdős-Rényi hypergraphs as well as the multiplicative overhead in our reduction below. These
results show that solving the k-clique problems on Erdős-Rényi hypergraphs G(n, c, s) is as hard as
solving them on worst-case hypergraphs, for certain choices of k, c and s. Therefore the worst-case
hardness assumptions, Conjectures 2.4, 2.5 and 2.7, imply average-case hardness on Erdős-Rényi
hypergraphs for #(k, s)-clique and Parity-(k, s)-clique.

Theorem 2.8 (Worst-case to average-case reduction for #(k, s)-clique). There is an absolute
constant C > 0 such that if we define

Υ#(n, c, s, k) ,
(

C(c−1(1− c)−1)(s log k + s log log n)(log n)
)(ks)

then the following statement holds. Let A be a randomized algorithm for #(k, s)-clique with error
probability less than 1/Υ# on hypergraphs drawn from G(n, c, s). Then there exists an algorithm B
for #(k, s)-clique that has error probability less than 1/3 on any hypergraph, such that

T (B,n) ≤ (log n) ·Υ# · (T (A,nk) + (nk)s) ,

where T (A, ℓ) denotes the runtime of algorithm A on ℓ-vertex hypergraphs.

For Parity-(k, s)-clique we also give an alternative reduction with an improved reduction
time and error tolerance in the dense case when c = 1/2.

Theorem 2.9 (Worst-case to average-case reduction for Parity-(k, s)-clique). We have that:

1. There is an absolute constant C > 0 such that if we define

ΥP,1(n, c, s, k) ,

(

C(c−1(1− c)−1)(s log k)

(

s log n+

(

k

s

)

log log

(

k

s

)))(ks)

then the following statement holds. Let A be a randomized algorithm for Parity-(k, s)-clique

with error probability less than 1/ΥP,1 on hypergraphs drawn from G(n, c, s). Then there exists
an algorithm B for Parity-(k, s)-clique that has error probability less than 1/3 on any
hypergraph, such that

T (B,n) ≤ ΥP,1 · (T (A,nk) + (nk)s)

2. There is an absolute constant C > 0 such that if we define

ΥP,2(s, k) , (Cs log k)(
k
s)

9

then the following statement holds. Let A be a randomized algorithm for Parity-(k, s)-clique

with error probability less than 1/ΥP,2 on hypergraphs drawn from G(n, 1/2, s). Then there
exists an algorithm B for Parity-(k, s)-clique that has error probability less than 1/3 on
any hypergraph, such that

T (B,n) ≤ ΥP,2 · (T (A,nk) + (nk)s)

Our worst-case to average-case reductions yield the following fine-grained average-case lower
bounds for k-clique counting and parity on Erdős-Rényi hypergraphs based on Conjectures 2.4 and
2.7. We separate these lower bounds into the two cases of dense and sparse Erdős-Rényi hypergraphs.
We remark that, for all constants k, an error probability of less than (log n)−ω(1) suffices in the dense
case and error probability less than n−ω(1) suffices in the sparse case.

Corollary 2.10 (Average-case hardness of #(k, s)-clique on dense G(n, c, s)). If k, c, ǫ > 0 are
constant, then we have that

1. Assuming Conjecture 2.4, then any algorithm A for #(k, s)-clique that has error probability

less than (log n)−(
k
s)−ǫ on Erdős-Rényi hypergraphs drawn from G(n, c, s) must have runtime

at least T (A,n) ≥ nΩ(k).

2. Assuming Conjecture 2.7, then any algorithm A for #(k, s)-clique that has error probability

less than (log n)−(
k
s)−ǫ on Erdős-Rényi hypergraphs drawn from G(n, c, s) must have runtime

at least T (A,n) ≥ Ω̃
(

nω⌈k/3⌉
)

if s = 2 and T (A,n) ≥ Ω̃(nk) if s ≥ 3.

Corollary 2.11 (Average-case hardness of #(k, s)-clique on sparse G(n, c, s)). Let k, α, ǫ > 0 be
constants and c = Θ(n−α). Assuming Conjecture 2.7, then any algorithm A for #(k, s)-clique

that has error probability less than n−α(ks)−ǫ on Erdős-Rényi hypergraphs drawn from G(n, c, s) must

have runtime at least T (A,n) ≥ Ω̃
(

nω⌈k/3⌉−α(ks)
)

if s = 2 and T (A,n) ≥ Ω̃
(

nk−α(ks)
)

if s ≥ 3.

We remark that Conjecture 2.4 implies there is a constant C > 0 such that a version of Corollary
2.11 holds with the weaker conclusion T (A,n) ≥ nΩ(k) holds for all α ≤ C

(k
s

)

. For Parity-(k, s)-
clique, we consider here the implications of Theorem 2.9 only for c = 1/2, since this is the setting
in which we obtain substantially different lower bounds than for #(k, s)-clique. As shown, an
error probability of o(1) on G(n, 1/2, s) hypergraphs suffices for our reduction to succeed.

Corollary 2.12 (Average-case hardness of Parity-(k, s)-clique on G(n, 1/2, s)). Let k be con-
stant. Assuming Conjecture 2.5, there is a small enough constant ǫ , ǫ(k, s) such that if any algo-
rithm A for Parity-(k, s)-clique has error less than ǫ on G(n, 1/2, s) then A must have runtime
at least T (A,n) ≥ nΩ(k).

We remark on one subtlety of our setup in the sparse case. Especially in our algorithms section,

we generally restrict our attention to c = Θ(n−α) satisfying α ≤ k
(k
s

)−1
= s

(k
s−1

)−1
, which is

necessary for the expected number of k-cliques in G(n, c, s) to not tend to zero. However, even
when this expectation is decaying, the problem #(k, s)-clique as we formulate it is still nontrivial.
The simple algorithm that always outputs zero fails with a polynomially small probability that does
not appear to meet the 1/Υ# requirement in our worst-case to average-case reduction. A simple

analysis of this error probability can be found in Lemma 5.1. Note that even when α > s
(k
s−1

)−1
,

greedy-random-sampling and its derivative algorithms in Section 5 still has guarantees and
succeeds with probability 1−n−ω(1). We now discuss the multiplicative overhead and error tolerance
in our worst-case to average-case reduction for #(k, s)-clique.

10

Discussion of the Multiplicative Slowdown Υ# In the sparse case of c = Θ(n−α), our algo-
rithmic upper bounds in Section 5 imply lower bounds on the multiplicative overhead factor Υ#

in Theorem 2.8. In the hypergraph case of s ≥ 3 and below the k-clique percolation threshold, it

must follow that the overhead is at least Υ# = Ω̃
(

nα(ks)
)

= Ω̃
(

c−(
k
s)
)

. Otherwise, our algorithms

combined with our worst-case to average-case reduction would contradict Conjecture 2.7. Up to
polylog(n) factors, this exactly matches the Υ# from our reduction. In the graph case of s = 2, it

similarly must follow that the overhead is at least Υ# = Ω̃
(

n
ωα
9 (ks)

)

= Ω̃
(

c−
ω
9 (

k
s)
)

to not contradict

Conjecture 2.7. This matches the Υ# from our reduction up to a constant factor in the exponent.

Discussion of the Error Tolerance 1/Υ# Notice that our worst-case to average-case reduc-
tions in Theorems 2.8 and 2.9 require that the error of the average-case blackbox on Erdős-Rényi
hypergraphs go to zero as k goes to infinity. This error tolerance requirement is unavoidable. When
k = ω(log n) in the dense Erdős-Rényi graph case of G(n, 1/2), there is a k-clique with at most
(n
k

)

2−(
k
2) = o(1) probability by a union bound on k-subsets of vertices. So in this regime clique-

counting on G(n, 1/2) with constant error probability is not hard: the algorithm that always outputs
zero achieves o(1) average-case error.

If k , 3 log2 n, then the probability of a k-clique on G(n, 1/2) is less than
(

n
k

)

2−(
k
2) ≤ 2−k2/6.

So average-case k-clique counting is not hard with error more than 2−k2/6. On the other hand, our
#(k, 2)-clique reduction works with average-case error less than 1/Υ# = 2−Ω(k2 log logn). And our

Parity-(k, 2)-clique reduction is more lenient, requiring error only less than 2−Ω(k2 log log logn).
Thus, the error bounds required by our reductions are quite close to the 2−k2/6 error bound that is
absolutely necessary for any reduction in this regime.

In the regime where k = O(1) is constant and on G(n, 1/2), our Parity-(k, 2)-clique reduction
only requires a small constant probability of error and our #(k, 2)-clique reduction requires less
than a 1/polylog(n) probability of error. We leave it as an intriguing open problem whether the
error tolerance of our reductions can be improved in this regime.

Finally, we remark that the error tolerance of the reduction must depend on c. The probability
that a G(n, c) graph contains a k-clique is less than (nc(k−1)/2)k. For example, if c = 1/n then the
probability that there exists a k-clique is less than n−Ω(k2). As a result, no worst-case to average-case
reduction can tolerate average-case error more than n−O(k2) on G(n, 1/n) graphs. And therefore our
reductions for #(k, 2)-clique and for Parity-(k, 2)-clique are close to optimal when c = 1/n,
because our error tolerance scales as n−O(k2 log logn).

3 Worst-Case to Average-Case Reduction for G(n, c, s)

In this section, we give our main worst-case to average-case reduction that transforms a blackbox
solving #(k, s)-clique on G(n, c, s) into a blackbox solving #(k, s)-clique on a worst-case input
hypergraph. This also yields a worst-case to average-case reduction for Parity-(k, s)-clique and
proves Theorems 2.8 and 2.9. The reduction involves the following five main steps, the details of
which are in Sections 3.1 to 3.5.

1. Reduce #(k, s)-clique and Parity-(k, s)-clique on general worst-case hypergraphs to the
worst-case problems with inputs that are k-partite hypergraphs with k parts of equal size.

2. Reduce the worst-case problem on k-partite hypergraphs to the problem of computing a low-
degree polynomial Pn,k,s on N , N(n, k, s) variables over a small finite field F.

11

3. Reduce the problem of computing Pn,k,s on worst-case inputs to computing Pn,k,s on random
inputs in F

N .

4. Reduce the problem of computing Pn,k,s on random inputs in F
N to computing Pn,k,s on

random inputs in {0, 1}N . This corresponds to #(k, s)-clique and Parity-(k, s)-clique on
k-partite Erdős-Rényi hypergraphs.

5. Reduce the resulting average-case variants of #(k, s)-clique and Parity-(k, s)-clique on
k-partite Erdős-Rényi hypergraphs to non-k-partite Erdős-Rényi hypergraphs.

These steps are combined in Section 3.6 to complete the proofs of Theorems 2.8 and 2.9. Before
proceeding to our worst-case to average-case reduction, we establish some definitions and notation,
and also give pseudocode for the counting reduction in Figure 2 – the parity reduction is similar.

The intermediate steps of our reduction crucially make use of k-partite hypergraphs with k parts
of equal size, defined below.

Definition 3.1 (k-Partite Hypergraphs). Given a s-uniform hypergraph G on nk vertices with
vertex set V (G) = [n]× [k], define the vertex labelling

L : (i, j) ∈ [n]× [k] 7→ j ∈ [k]

If for all e = {u1, . . . , us} ∈ E(G), the labels L(u1), L(u2), . . . , L(us) are distinct, then we say that
G is k-partite with k parts of equal size n.

In our reduction, it suffices to consider only k-partite hypergraphs with k parts of equal size.
For ease of notation, our k-partite hypergraphs will always have nk vertices and vertex set [n]× [k].
In particular, the edge set of a k-partite s-uniform hypergraph is an arbitrary subset of

E(G) ⊆ {{u1, . . . , us} ⊂ V (G) : L(u1), . . . , L(us) are distinct}

Taking edge indicators yields that the k-partite hypergraphs on nk vertices we consider are in
bijection with {0, 1}N , where N , N(n, k, s) =

(

k
s

)

ns is this size of this set of permitted hyperedges.
Thus we will refer to elements x ∈ {0, 1}N and k-partite s-uniform hypergraphs on nk vertices
interchangeably. This definition also extends to Erdős-Rényi hypergraphs.

Definition 3.2 (k-Partite Erdős-Rényi Hypergraphs). The k-partite s-uniform Erdős-Rényi hy-
pergraph G(nk, c, s, k) is a distribution over hypergraphs on nk vertices with vertex set V (G) =
[n] × [k]. A sample from G(nk, c, s, k) is obtained by independently including hyperedge each e =
{u1, . . . , us} ∈ E(G) with probability c for all e with L(u1), L(u2), . . . , L(us) distinct.

Viewing the hypergraphs as elements of G(nk, c, s, k) as a distribution on {0, 1}N , it follows that
G(nk, c, s, k) corresponds to the product distribution Ber(c)⊗N .

3.1 Worst-Case Reduction to k-Partite Hypergraphs

In the following lemma, we prove that the worst-case complexity of #(k, s)-clique and Parity-

(k, s)-clique are nearly unaffected when we restrict the inputs to be worst-case k-partite hyper-
graphs. This step is important, because the special structure of k-partite hypergraphs will simplify
future steps in our reduction.

Lemma 3.3. Let A be an algorithm for #(k, s)-clique, such that A has error probability less than
1/3 for any k-partite hypergraph G on nk vertices. Then, there is an algorithm B for #(k, s)-clique

with error probability less than 1/3 on any hypergraph G satisfying that T (B,n) ≤ T (A,n)+O(ksns).
Furthermore, the same result holds for Parity-(k, s)-clique in place of #(k, s)-clique.

12

Algorithm To-ER-#(G, k,A, c)

Inputs: s-uniform hypergraph G with vertex set [n], parameters k, c, algorithm A for #(k, s)-
clique on Erdős-Rényi hypergraphs with density c.

1. Construct an s-uniform hypergraph G′ on vertex set [n]× [k] by defining

E(G′) =
{

{(v1, t1), (v2, t2), . . . , (vs, ts)}

: {v1, . . . , vs} ∈ E(G) and
1≤v1<v2<···<vs≤n

1≤t1<t2<···<ts≤k

}

.

Since G′ is k-partite, view it as an indicator vector of edges G′ ∈ {0, 1}N for N :=
N(n, k, s) =

(k
s

)

ns.

2. Find the first T primes 12
(k
s

)

< p1 < · · · < pT such that
∏T

i=1 pi > nk.

3. Define L : (a, b) ∈ [n]× [k] 7→ b ∈ [k], and

Pn,k,s(x) =
∑

{u1,...,uk}∈V (G′)
L(ui)=i ∀i

∏

S⊆[k]
|S|=s

xuS

For each 1 ≤ t ≤ T , compute Pn,k,s(G
′) (mod pt), as follows:

(1) Use the procedure of [GS92] in order to reduce the computation of Pn,k,s(G
′) (mod pt)

to the computation of Pn,k,s on M = 12
(k
s

)

distinct inputs x1, . . . , xM ∼ Unif[FN
pt].

(2) For each 1 ≤ m ≤M , compute Pn,k,s(xm) (mod pt) as follows:

(i) Use the rejection sampling procedure of Lemma 4.4 in order to sample
(Y (0), . . . , Y (B)) close to (Ber(c)⊗N)⊗B in total variation distance, such that xm ≡
∑B

b=0 2
b · Y (b) (mod pt). It suffices to take B = Θ(c−1(1− c)−1s(log n)(log pt)).

(ii) For each function a :
(

[k]
s

)

→ {0, . . . , B}, define Y
(a)
S = Y a(L(S)) for all S ∈ [N] ⊂

([n]
s

)

. Note that for each a, the corresponding Y (a) is approximately distributed
as Ber(c)⊗N . Use algorithm A and the recursive counting procedure of Lemma
3.10 in order to compute Pn,k,s(Y

(a)) for each a.

(iii) Set Pn,k,s(G
′)←∑

a:([k]s)→{0,...,B}
2|a|1 · Pn,k,s(Y

(a)).

4. Since 0 ≤ Pn,k,s(G
′) ≤ nk, use Chinese remaindering and the computations of Pn,k,s(G

′)
(mod pi) in order to calculate and output Pn,k,s(G

′).

Figure 2: Reduction To-ER-# for showing computational lower bounds for average-case #(k, s)-clique

on Erdős-Rényi G(n, c, s) hypergraphs based on the worst-case hardness of #(k, s)-clique.

Proof. Let G be an s-uniform hypergraph on n vertices. Construct the s-uniform hypergraph G′

13

on the vertex set V (G′) = [n]× [k] with edge set

E(G′) =
{

{(v1, t1), (v2, t2), . . . , (vs, ts)} : {v1, . . . , vs} ∈ E(G) and
1≤v1<v2<···<vs≤n

1≤t1<t2<···<ts≤k

}

The hypergraph G′ can be constructed in O(ksns) time. Note that G′ is k-partite with the vertex
partition L : (i, j) ∈ [n]× [k] 7→ j ∈ [k]. There is also a bijective correspondence between k-cliques
in G′ and k-cliques in G given by

{v1, v2, . . . , vk} 7→ {(v1, 1), (v2, 2), . . . , (vk, k)}

where v1 < v2 < · · · < vk. Thus, the k-partite s-uniform hypergraph G′ on nk vertices has exactly
the same number of k-cliques as G. It suffices to run A on G′ and to return its output.

A corollary to Lemma 3.3 is that any worst-case hardness for #(k, s)-clique and Parity-

(k, s)-clique on general s-uniform hypergraphs immediately transfers to the k-partite case. For
instance, the lower bounds of Conjectures 2.4, 2.5, and 2.7 imply corresponding lower bounds in
the k-partite case. Going forward in our worst-case to average-case reduction, we may restrict our
attention to k-partite hypergraphs without loss of generality.

3.2 Counting k-Cliques as a Low-Degree Polynomial

A key step in our worst-case to average-case reduction is to express the number of k-cliques as a
low-degree polynomial in the adjacency matrix. As mentioned in the introduction, a similar step
– but without the k-partiteness constraint – appears in the worst-case to average-case reduction of
Goldreich and Rothblum [GR18].

Let E ⊂
(V (G)

s

)

be the set of possible hyperedges that respect the k-partition: i.e., E = {A ∈
(

V (G)
s

)

: |L(A)| = s}. Let N , N(n, k, s) = |E| and identify E with [N] through a bijection
π : [N] → E . To simplify the notation, we will omit the map π in the proof, and simply treat [N]
and E as the same set. Thus, each x ∈ {0, 1}N corresponds to a k-partite hypergraph where xA
is the indicator that A ∈ E is an edge in the hypergraph. The number of k-cliques of a k-partite
hypergraph x ∈ {0, 1}N is a degree-D polynomial Pn,k,s : {0, 1}N → Z where D , D(k, s) =

(k
s

)

:

Pn,k,s(x) =
∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏

S⊂[k]
|S|=s

xuS
(1)

For any finite field F, this equation defines Pn,k,s as a polynomial over that finite field. For clarity,
we write this polynomial over F as Pn,k,s,F : FN → F. Observe that for any hypergraph x ∈ {0, 1}N ,
we have that

Pn,k,s,F(x) = Pn,k,s(x) (mod char(F))

where char(F) is the characteristic of the finite field. We now reduce computing #(k, s)-clique

and Parity-(k, s)-clique on a k-partite hypergraph x ∈ {0, 1}N to computing Pn,k,s,F(x) for
appropriate finite fields F. This is formalized in the following two propositions.

Proposition 3.4. Let x ∈ {0, 1}N denote a s-uniform hypergraph that is k-partite with vertex
labelling L. Let p1, p2, . . . , pt be t distinct primes, such that

∏

i pi > nk. Then, solving #(k, s)-
clique reduces to computing Pn,k,s,Fpi

(x) for all i ∈ [t], plus O(k log n) additive computational
overhead. Moreover, computing Pn,k,s,Fpi

(x) for all i ∈ [t] reduces to computing #(k, s)-clique,
plus O(tk log n) computational overhead.

14

Proof. Note that Pn,k,s(x) ≤ nk since there are at most nk cliques in the hypergraph. So the
claim follows from the Chinese Remainder Theorem and the fact that for any i ∈ [t], it holds that
Pn,k,s,Fpi

(x) ≡ Pn,k,s(x) (mod pi).

Proposition 3.5. Let F be a finite field of characteristic 2. Let x ∈ {0, 1}N be a s-uniform
hypergraph that is k-partite with vertex labelling L. Then solving Parity-(k, s)-clique for x is
equivalent to computing Pn,k,s,F(x).

Proof. This is immediate from Pn,k,s,F(x) ≡ Pn,k,s(x) (mod char(F)).

3.3 Random Self-Reducibility: Reducing to Random Inputs in FN

Expressing the number and parity of cliques as low-degree polynomials allows us to perform a key
step in the reduction: because polynomials over finite fields are random self-reducible, we can reduce
computing Pn,k,s,F on worst-case inputs to computing Pn,k,s,F on several uniformly random inputs
in F

N .
The following well-known lemma states the random self-reducibility of low-degree polynomials.

The lemma first appeared in [GS92]. We follow the proof of [Bal+17] in order to present the lemma
with explicit guarantees on the running time of the reduction.

Lemma 3.6 (Theorem 4 of [GS92]). Let F be a finite field with |F| = q elements. Let N,D > 0.
Suppose 9 < D < q/12. Let f : FN → F be a polynomial of degree at most D. If there is an
algorithm A running in time T (A,N) such that

Px∼Unif[FN][A(x) = f(x)] > 2/3,

then there is an algorithm B running in time O((N +D)D2 log2 q+ T (A,N) ·D) such that for any
x ∈ F

N , it holds that P[B(x) = f(x)] > 2/3.

For completeness, we provide a proof of this lemma in Appendix B. Lemma 3.6 implies that if
we can efficiently compute Pn,k,s,F on at least a 2/3 fraction of randomly chosen inputs in F

N , then
we can efficiently compute the polynomial Pn,k,s,F over a worst-case input in F

N .

3.4 Reduction to Evaluating the Polynomial on G(nk, c, s, k)

So far, we have reduced worst-case clique-counting over unweighted hypergraphs to the average-
case problem of computing Pn,k,s,F over k-partite hypergraphs with random edge weights in F.
It remains to reduce from computing Pn,k,s,F on inputs x ∼ Unif

[

F
N
]

to random hypergraphs,
which correspond to x ∼ Unif

[

{0, 1}N
]

. Since {0, 1}N is an exponentially small subset of F
N if

|F| > 2, the random weighted and unweighted hypergraph problems are very different. In this
section, we carry out this reduction using two different arguments for Parity-(k, s)-clique and
#(k, s)-clique. The latter reduction is based on the total variation convergence of random binary
expansion modulo p to Unif[Fp] and related algorithmic corollaries from Section 4.

We first present the reduction that will be applied in the case of Parity-(k, s)-clique. Recall
D =

(k
s

)

is the degree of Pn,k,s. The following lemma will be used only for the Parity-(k, s)-clique

case:

Lemma 3.7. Let p be prime and t ≥ 1. Suppose A is an algorithm that computes Pn,k,s,Fp(y)

with error probability less than δ , δ(n) for y ∼ Unif
[

F
N
p

]

in time T (A,n). Then there is an

algorithm B that computes Pn,k,s,Fpt
(x) with error probability less than tD · δ for x ∼ Unif

[

F
N
pt

]

in

time T (B,n) = O
(

Nt4(log p)3 + tD · T (A,n)
)

.

15

Proof. We give a reduction computing Pn,k,s,Fpt
(x) where x ∼ Unif

[

F
N
pt

]

given blackbox access to

A. Let β be such that β, βp, βp2 , . . . , βpt−1 ∈ Fpt forms a normal basis for Fpt over Fp. Now for each
i ∈ [N], compute the basis expansion

xi = x
(0)
i β + x

(1)
i βp + · · · + x

(t−1)
i βpt−1

.

One can find a generator for a normal basis β ∈ Fpt in time O((t2 + log p)(t log p)2) by Bach et

al. [BDS93]. Computing x(0), . . . , x(t−1) then takes time O(Nt3(log p)3) because N applications of
Gaussian elimination each take at most O(t3) operations over Fp.

6 Note that since x is uniformly

distributed and β, βp, . . . , βpt−1
form a basis, it follows that x(0), x(1), . . . , x(t−1) are distributed i.i.d

according to Unif
[

F
N
p

]

.

Given a coloring of the hyperedges b : [N] → {0, 1, . . . , t− 1}, define x(b) ∈ F
N
p as x

(b)
i = x

(b(i))
i

for all i ∈ [N]. Observe that for any fixed coloring b, the vector x(b) is uniform in F
N
p .

In our proof, for every map a :
(

[k]
s

)

→ {0, 1, . . . , t − 1}, we construct a coloring a ◦ L : [N] →
{0, . . . , t− 1} of the hyperedges [N] using the k-partiteness of the hypergraph. Given a hyperedge
W = {w1, . . . , ws} ∈ E = [N], we have that L(W) ∈

([k]
s

)

by the k-partiteness of the hypergraph,

and hence the color (a ◦ L)(W) , a(L(W)) is well-defined. As above, for any fixed a, the vector
x(a◦L) is uniform in F

N
p .

We now manipulate Pn,k,s,Fpt
. First we write each entry xuS

in the normal basis, and then we
redistribute terms to write Pn,k,s,Fpt

as a weighted sum of clique-counts modulo p:

Pn,k,s,Fpt
(x) =

∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

xuS

=
∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

(

t−1
∑

i=0

x(i)uS
βpi

)

=
∑

a:([k]s)→{0,...,t−1}









∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏

S∈([k]s)

(

x(a(S))uS
βpa(S)

)









=
∑

a:([k]s)→{0,...,t−1}







∏

S∈([k]s)

βpa(S)















∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏

S∈([k]s)

x(a(S))uS









=
∑

a:([k]s)→{0,...,t−1}







∏

S∈([k]s)

βpa(S)






Pn,k,s,Fp

(

x(a◦L)
)

Since x(a◦L) ∼ Unif
[

F
N
p

]

for each fixed map a, computing Pn,k,s,Fpt
(x) reduces to evaluating Pn,k,s,Fp

on tD uniformly random inputs in F
N
p and outputting a weighted sum of the evaluations. The error

probability is bounded by a union bound.

6For a good survey on normal bases, we recommend [Gao93].

16

We now give the reduction to evaluating Pn,k,s on random hypergraphs drawn from G(nk, c, s, k)
in the case of #(k, s)-clique. One of the main lemmas driving the reduction is the following.

Lemma 3.8. There is an absolute constant K such that the following holds. For any ǫ > 0,
c ∈ (0, 1), prime p > 2, and t ≥ K · c−1(1 − c)−1 log(p/ǫ2) log p, there is an O(pt log(p/ǫ))-
time algorithm that, given x ∈ [p], samples random variables X0, . . . ,Xt−1 ∈ {0, 1} satisfying
∑t−1

i=0 2
i · Xi ≡ x (mod p) almost surely. Moreover, if x is chosen uniformly at random from [p]

then dTV (L(X1, . . . ,Xt),Ber(c)
⊗t) ≤ ǫ.

The proof of Lemma 3.8 is deferred to Section 4. It is a central ingredient in the #(k, s)-clique

reduction and will be used through the following lemma.

Lemma 3.9. Let p be prime and let c = c(n), γ = γ(n) ∈ (0, 1). Suppose that A is an algorithm
that computes Pn,k,s,Fp(y) with error probability less than δ , δ(n) when y ∈ {0, 1}N is drawn from
G(nk, c, s, k). Then, for some t = O(c−1(1 − c)−1 log(Np/γ) log p), there is an algorithm B that
evaluates Pn,k,s,Fp(x) with error probability at most γ + tD · δ when x ∼ Unif

[

F
N
p

]

in time upper

bounded by T (B,n) = O
(

Npt log(Np/γ) + tD · T (A,n)
)

.

Proof. We give a reduction computing Pn,k,s,Fp(x) where x ∼ Unif
[

F
N
p

]

given blackbox access to
A. We first handle the case in which p > 2. For each j ∈ [N], apply the algorithm from Lemma 3.8

to sample x
(0)
j , x

(1)
j , . . . , x

(t−1)
j ∈ {0, 1} satisfying

dTV

(

L(x(0)j , . . . , x
(t−1)
j),Ber(c)⊗t

)

≤ ǫ , γ/N and

t−1
∑

i=0

2ix
(i)
j ≡ xj (mod p)

By Lemma 3.8, we may choose t = O(c−1(1 − c)−1 log(Np/γ) log p) and this sampling can be
carried out in O(Npt log(Np/γ)) time. By the total variation bound, for each j we may couple

(x
(0)
j , . . . , x

(t−1)
j) with (Z

(0)
j , . . . , Z

(t−1)
j) ∼ Ber(c)⊗k, so that P[x

(i)
j = Z

(i)
j ∀i, j] ≥ 1− γ. Moreover,

x
(i)
j is independent of x

(k)
l whenever j 6= l, so we may choose the Z so that Z

(i)
j is independent of

Z
(k)
l whenever j 6= l.

As in the proof of Lemma 3.7, given any coloring b : [N]→ {0, . . . , t−1}, we define Z(b) ∈ {0, 1}N
by Z

(b)
j = Z

(b(j))
j , for all j ∈ [N]. We also note that for any fixed b, the entries Z

(b)
1 , . . . , Z

(b)
N are

independent and distributed as Ber(c). Therefore,

Z(b) ∼ G(nk, c, s, k)

Now compute the following quantity, writing each entry of Z as a binary expansion and redistributing
terms similarly to the calculations in Lemma 3.7. We are working in Fp so the equalities hold modulo
p:

P̃n,k,s,Fp(Z) ,
∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

(

t−1
∑

i=0

2i · Z(i)
uS

)

=
∑

a:([k]s)→{0,...,t−1}









∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏

S∈([k]s)

(

2a(S) · Z(a(S))
uS

)









17

=
∑

a:([k]s)→{0,...,t−1}







∏

S∈([k]s)

2a(S)















∑

{u1,...,uk}⊂V (G)
∀i L(ui)=i

∏

S∈([k]s)

Z(a(S))
uS









=
∑

a:([k]s)→{0,...,t−1}







∏

S∈([k]s)

2a(S)






Pn,k,s,Fp(Z

(a◦L)).

We may use algorithm A to evaluate the tD values of Pn,k,s,Fp(Z
(a◦L)), with probability < tD · δ of

any error (by a union bound). Computing P̃n,k,s,Fp(Z) reduces to computing a weighted sum over

the tD evaluations. Conditioned on the event that x
(i)
j = Z

(i)
j ∀i, j, then Pn,k,s,Fp(x) = P̃n,k,s,Fp(Z),

because

Pn,k,s,Fp(x) =
∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

xuS

=
∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

(

t−1
∑

i=0

2i · x(i)uS

)

=
∑

{u1,...,uk}⊂V (G)
∀j L(uj)=j

∏

S∈([k]s)

(

t−1
∑

i=0

2i · Z(i)
uS

)

= P̃n,k,s,Fp(Z).

Since P[x
(i)
j = Z

(i)
j ∀i, j] ≥ 1− γ, by a union bound with the error in calculation we have computed

Pn,k,s,Fp(x) with probability of error ≤ γ + tD · δ. The claim follows for the case p > 2.
If p = 2, then the proof is almost identical, except that since 2 ≡ 0 (mod 2), we may no longer

use the result on random binary expansions of Lemma 3.8. In this case, for each j ∈ [N] we sample

x
(0)
j , . . . , x

(t−1)
j ∈ {0, 1}N such that each dTV(L(x(0)j , . . . , x

(t−1)
j),Ber(c)⊗t) ≤ ǫ , γ/N , and so that

t−1
∑

i=0

x
(i)
j = xj (mod p).

By Lemma 4.5 (deferred but analogous to Lemma 3.8), we may choose t = O(c−1(1−c)−1 log(N/γ)),

and we may sample in time O(Nt log(N/γ)). Again, we couple the x
(i)
j variables with variables

Z
(i)
j ∼ Ber(c) such that the event E that x

(i)
j = Z

(i)
j for all i, j has probability P[E] ≥ 1 − γ and

such that Z
(i)
j is independent of Z

(k)
l whenever j 6= l. By a similar, and simpler, calculation to the

one for the case p > 2, we have that P̃n,k,s,F2(Z) = Pn,k,s,F2(x) conditioned on E, where

P̃n,k,s,F2(Z) ,
∑

a:([k]s)→{0,...,t−1}

Pn,k,s,F2(Z
(a◦L)).

This can be calculated using the algorithm A similarly to the p > 2 case, because each Z(a◦L) is
distributed as G(nk, c, s, k).

18

3.5 Reduction to Counting k-Cliques in G(n, c, s)

So far, we have reduced Parity-(k, s)-clique and #(k, s)-clique for worst-case input hypergraphs
to average-case inputs drawn from the k-partite Erdős-Rényi distribution G(nk, c, s, k). We now
carry out the final step of the reduction, showing that Parity-(k, s)-clique and #(k, s)-clique

on inputs drawn from G(nk, c, s, k) reduce to inputs drawn from the non-k-partite Erdős-Rényi
distribution G(n, c, s). Recall that a hypergraph G drawn from G(nk, c, s, k) has vertex set V (G) =
[n]× [k] and vertex partition given by the labels L : (i, j) ∈ [n]× [k] 7→ j ∈ [k].

Lemma 3.10. Let δ = δ(n) ∈ (0, 1) be a non-increasing function of n and let c = c(n) ∈ (0, 1).
Suppose that A is a randomized algorithm for #(k, s)-clique such that for any n, A has error
probability less than δ(n) on hypergraphs drawn from G(n, c, s) in T (A,n) time. Then there exists
an algorithm B solving #(k, s)-clique that has error probability less than 2k · δ(n) on hypergraphs
drawn from G(nk, c, s, k) and that runs in T (B,n) = O

(

2k · T (A,nk) + ksns + s2k32k log2(nk)
)

time.

Proof. It suffices to count the number of k-cliques in G ∼ G(nk, c, s, k) given blackbox access to
A. Construct the hypergraph H over the same vertex set V (H) = [n]× [k] by starting with G and
adding every edge e = {v1, v2, . . . , vs} ∈

(

[n]×[k]
s

)

satisfying the condition |{L(v1), . . . , L(vs)}| < s
independently with probability c. In other words, independently add each edge to G containing
two vertices from the same part of G. It follows that H is distributed according to G(nk, c, s).
More generally, for every S ⊂ [k], HS is distributed according to G(|L−1(S)|, c, s) where HS is the
restriction of H to the vertices L−1(S) ⊂ V (H) with labels in S. Note that H can be constructed
in O(ksns) time.

Now observe that for each S 6= ∅, it holds that n ≤ |L−1(S)| ≤ nk and the algorithm A succeeds
on each HS with probability at least 1− δ(n). By a union bound, we may compute the number of
k-cliques |clk(HS)| in HS for all S ⊂ [k] with error probability less than 2k ·δ(n). Note that this can
be done in O

(

2k · T (A,nk)
)

time. From these counts |clk(HS)|, we now to inductively compute

td , |{S ∈ clk(H) : |L(S)| = d}|

for each d ∈ [k]. Note that t0 = 0 in the base case d = 0. Given t0, t1, . . . , td, the next count td+1

can be expressed by inclusion-exclusion as

td+1 =
∑

T⊂[k],|T |=d+1

|{S ∈ clk(H) : L(S) = T}|

=
∑

T⊂[k],|T |=d+1



|clk(HT)| −
d
∑

i=0

∑

U⊂T,|U |=i

|{S ∈ clk(H) : L(S) = U}|





=





∑

T⊂[k],|T |=d+1

|clk(HT)|



−
d
∑

i=0

(

k − i

d+ 1− i

)

|{S ∈ clk(H) : |L(S)| = i}|

=
∑

T⊂[k],|T |=d+1

|clk(HT)| −
d
∑

i=0

(

k − i

d+ 1− i

)

ti

After O(k2k) operations, this recursion yields the number of k-cliques tk = |{S ∈ clk(H) : |L(S)| =
k}| = |clk(G)| in the original k-partite hypergraph G. The sizes of the integers manipulated are
always at most max(2k

(

nk
s

)

), so each arithmetic operation takes O((ks log(nk))2) time.

19

Repeating the same proof over F2 yields an analogue of Lemma 3.10 for Parity-(k, s)-clique,
as stated below.

Lemma 3.11. Lemma 3.10 holds when #(k, s)-clique is replaced by Parity-(k, s)-clique.

3.6 Proofs of Theorems 2.8 and 2.9

We now combine Steps 1-5 formally in order to prove Theorems 2.8 and 2.9.

Proof of Theorem 2.8. Our goal is to construct an algorithm B solving #(k, s)-clique with error
probability < 1/3 on any s-uniform hypergraph x. We are given an algorithm A that solves #(k, s)-
clique with probability of error < 1/Υ# on hypergraphs drawn from G(n, c, s). We will construct
the following intermediate algorithms in our reduction:

• Algorithm A0 that solves #(k, s)-clique with error probability < 1/3 for any worst-case
k-partite hypergraph.

• Algorithm A1(x, p) that computes Pn,k,s,Fp(x) for any x ∈ F
N
p and for any prime p such that

12
(k
s

)

< p < 10 log nk, with worst-case error probability < 1/3.

• Algorithm A2(y, p) for primes 12
(k
s

)

< p < 10 log nk computing Pn,k,s,Fp(y) on inputs y ∼
Unif[FN

p] with error probability < 1/3.

• Algorithm A3(z) that computes Pn,k,s(z) on inputs z ∼ G(nk, c, s, k) with error probability
< δ. (The required value of δ will be determined later on.)

We construct algorithm B from A0, A0 from A1, A2 from A3, and A3 from A.

1. Reduce to computing #(k, s)-clique for k-partite hypergraphs. We use Lemma 3.3 to con-
struct B from A0, such that B runs in time

T (B,n) = T (A0, n) +O((nk)s).

2. Reduce to computing Pn,k,s,Fp on worst-case inputs. We use Proposition 3.4 to construct A0

from A1 such that A0 runs in time

T (A0, n) ≤ O(T (A1, n) · log nk + (log nk)2).

The algorithm A0 starts by using a sieve to find the first T primes 12
(k
s

)

< p1 < · · · < pT such that
∏T

i=1 pi > nk. Notice that pT ≤ 10 log nk, so this step takes time O((log nk)2). Then, given a k-
partite hypergraph x ∈ {0, 1}N , the algorithm A0 computes Pn,k,s(x) by computing Pn,k,s,Fpi

(x) for

all pi, boosting the error of A1 by repetition and majority vote. Since T = O((log nk)/(log log nk)),
we only need to repeat O(log log nk) times per prime; this yields a total slowdown factor of O(log nk).
Once we have computed Pn,k,s(x), we recall that it is equal to the number of k-cliques in x.

3. Reduce to computing Pn,k,s,Fp on random inputs in F
N
p . We use Lemma 3.6 to construct A1

from A2 such that A1 runs in time

T (A1, n) = O((N +D)D2 log2 p+D · T (A2, n))

= O(ns

(

k

s

)3

log2 log nk +

(

k

s

)

· T (A2, n)).

20

4. Reduce to computing Pn,k,s on random inputs in {0, 1}N . We use Lemma 3.9 to construct A2

from A3 such that A2 runs in time

T (A2, n) = O(Npt log(Np) + t(
k
s) · T (A3, n)),

for some t = O(c−1(1 − c)−1s(log n)(log p)). For this step, we require the error probability δ of

algorithm A3(z) on inputs z ∼ G(nk, c, s, k) to be at most 1/(4tD) = 1/(4t(
k
s)).

5. Reduce to computing #(k, s)-clique for G(n, c, s) hypergraphs. We use Lemma 3.10 to
construct A3 from A such that A3 runs in time

T (A3, n) = O((nk)s + s2k32k log(nk) + 2k · T (A,nk)),

and such that A3 has error probability at most δ < 2k/Υ#.

As in the theorem statement, let Υ#(n, c, s, k) , (C(c−1(1− c)−1)s(log n)(log k+ log log n))(
k
s),

where C > 0 is a large constant to be determined. If we take C large enough, then 4t(
k
s) · 2k ≤ Υ#.

In this case, the error δ of A3 will be at most 1/(4t(
k
s)), which is what we needed for the fourth

step. Putting the runtime bounds together,

T (B,n) = O
(

(nk)s + (log nk)2

+ (log nk) ·
(

nstk

(

k

s

)3

(log n)2 +

(

k

s

)

· (4t)(ks) · (T (A,nk) + (nk)s)
))

= O
(

nsk3
(

k

s

)3

(c−1(1− c)−1)(log k + log log n) log4 n

+ (log n) ·Υ# · (T (A,nk) + (nk)s)
)

,

if we choose C > 0 large enough. Hence, the second term dominates and

T (B,n) = O((log n) ·Υ# · (T (A,nk) + (nk)s)),

as
(

k
s

)

≥ 3 without loss of generality.

Proof of Theorem 2.9. The proof of item 1 of Theorem 2.9 is analogous to the proof of Theorem
2.8, except that it does not use the Chinese remainder theorem. Moreover, special care is needed in
order to ensure that the field F over which we compute the polynomial Pn,k,s,F in the intermediate
steps is large enough that we may use the random self-reducibility of polynomials.

Our goal is to construct an algorithm B that solves Parity-(k, s)-clique with error probability
< 1/3 on any s-uniform hypergraph x. We are given an algorithm A that solves Parity-(k, s)-
clique with probability of error < 1/ΥP,1 on hypergraphs drawn from G(n, c, s). We will construct
the following intermediate algorithms in our reduction:

• Algorithm A0 that solves Parity-(k, s)-clique with error probability < 1/3 for any worst-
case k-partite hypergraph.

• Algorithm A1(w) that computes Pn,k,s,F2κ
(w) on inputs w ∼ Unif[FN

2κ] for κ = ⌈log2(12
(k
s

)

)⌉,
with error probability < 1/3.

• Algorithm A2(y) that computes Pn,k,s,F2(y) on inputs y ∼ Unif[FN
2] with error probability

< δ2. (The required value of δ2 will be determined later on.)

21

• Algorithm A3(z) that computes Pn,k,s,F2(z) on inputs z ∼ G(nk, c, s, k) with error probability
< δ3. (The required value of δ3 will be determined later on.)

We construct algorithm B from A0, A0 from A1, A2 from A3, and A3 from A.

1. Reduce to computing Parity-(k, s)-clique for k-partite hypergraphs. We use Lemma 3.3 to
construct B from A0, such that B runs in time

T (B,n) = T (A0, n) +O((nk)s).

2. Reduce to computing Pn,k,s,F2κ
on random inputs in F

N
2κ. Note that by Proposition 3.5 if

we can compute Pn,k,s,F2κ
for worst-case inputs, then we can solve Parity-(k, s)-clique. We use

Lemma 3.6 to construct A0 from A1 such that A0 runs in time

T (A0, n) = O(κ2(N +D)D2 +D · T (A1, n)) = O(ns

(

k

s

)2

κ2 +

(

k

s

)

· T (A1, n))

3. Reduce to computing Pn,k,s,F2 on random inputs in F
N
2 . We use Lemma 3.7 to construct A1

from A2 such that A1 runs in time

T (A1, n) ≤ O(Nκ4 + κ(
k
s) · T (A2, n)),

and has error probability at most δ2 · κ(
k
s) on random inputs w ∼ Unif[FN

2κ]. Thus, A2 must have

error probability at most δ2 < 1/(3κ(
k
s)) on random inputs in y ∼ Unif[FN

2] for this step of the
reduction to work.

4. Reduce to computing Pn,k,s,F2 on random inputs in {0, 1}N . We use Lemma 3.9 to construct
A2 from A3 such that A2 runs in time

T (A2, n) = O(Nt log(N/γ) + t(
k
s) · T (A3, n)),

for some t = O(c−1(1 − c)−1(s log(n) + log(1/γ))). The error probability of A2 on random inputs

z ∼ G(nk, c, s, k) will be at most δ2 < δ3 · t(
k
s) + γ. Since we require error probability at most

δ2 ≤ 1/(3κ(
k
s)) of algorithm A2(z) on inputs z ∼ G(nk, c, s, k), we set γ = 1/(10κ(

k
s)) and require

δ3 ≤ 1/(10(tκ)(
k
s)), which is sufficient. For this choice of γ, we have t = O(c−1(1 − c)−1(s log(n) +

(k
s

)

log log
(k
s

)

)).
5. Reduce to computing Parity-(k, s)-clique for G(n, c, s) hypergraphs. We use Lemma 3.11

to construct A3 from A such that A3 runs in time

T (A3, n) = O((nk)s + s2k32k log(nk) + 2k · T (A,nk)),

and such that A3 has error probability at most δ3 < 2k/ΥP,1.

As in the theorem statement, let

ΥP,1(n, c, s, k) ,

(

C(c−1(1− c)−1)s(log k)

(

s log n+

(

k

s

)(

log log

(

k

s

))))(ks)

for some large enough constant C.

22

If we take C large enough, then (κt)(
k
s) ≤ 1

10 · 2−k · ΥP,1, as desired. In this case, the error of
A0 on uniformly random inputs will be at most 1/3, which is what we needed. Putting the runtime
bounds together,

T (B,n) = O
(

ns

(

k

s

)2

log2 κ+ ns

(

k

s

)2

κ(
k
s)t log

(

nsκ(
k
s)
)

+ ns

(

k

s

)2

κ4 +

(

k

s

)

· (4κt)(ks) · (T (A,nk) + (nk)s)
)

= O(ns

(

k

s

)2

(tkκ(
k
s) log2 κ+ κ4) + ΥP,1 · (T (A,nk) + (nk)s)),

if we choose C > 0 large enough. Since
(k
s

)

≥ 3 without loss of generality, the second term dominates
and

T (B,n) = O(ΥP,1 · (T (A,nk) + (nk)s)).

For item 2 of the theorem, we restrict the inputs to come from G(n, 1/2, s), and we achieve a
better error tolerance because algorithm A3 is the same as A2. This means that we may skip step 4

of the proof of item 1. In particular, we only need δ3 = δ2 ≤ 1/(3κ(
k
s)). So algorithm A only needs

to have error < 1/ΥP,2, for ΥP,2(k, s) , (Cs log k)(
k
s). It is not hard to see that, skipping step 4,

the algorithm B that we construct takes time T (B,n) = O(ΥP,2 · (T (A,nk) + (nk)s)).

4 Random Binary Expansions Modulo p

In this section, we consider the distributions of random binary expansions of the form

Zt · 2t + Zt−1 · 2t−1 + · · · + Z0 (mod p)

for some prime p and independent, possibly biased, Bernoulli random variables Zi ∈ {0, 1}. We
show that for t polylogarithmic in p, these distributions become close to uniformly distributed over
Fp, more or less regardless of the biases of the Zi. This is then used to go in the other direction,
producing approximately independent Bernoulli variables that are the binary expansion of a number
with a given residue. The special case of this argument in which the Bernoulli variables are unbiased
has already appeared in an earlier work by Goldreich and Rothblum [GR17]. In that case, the proof
of correctness is much simpler, because the Fourier-analytic tools used below can be avoided.

For p > 2, the main result of the section is the following slightly more general restatement of
Lemma 3.8. It implies that we can efficiently sample biased binary expansions, conditioned on the
expansion being equivalent to some x modulo p.

Lemma 4.1 (Restatement of Lemma 3.8). There is an absolute constant K such that the following
holds. Let p > 2 be prime, t ≥ K · c−1(1 − c)−1 log(p/ǫ2) log p, c ≤ q0, q1, . . . , qt ≤ 1 − c for some
c ∈ (0, 1/2] and ǫ > 0. Let Zi ∼ Ber(qi) be independent. Then there is an O(pt log(p/ǫ))-time
algorithm that given x ∈ [p] samples X0, . . . ,Xt ∈ {0, 1} satisfying

∑t
i=0 2

i ·Xi ≡ x (mod p) almost
surely. Moreover, if x is chosen uniformly in [p], then dTV(L(X0, . . . ,Xt),L(Z0, . . . , Zt)) ≤ ǫ.

Our argument uses finite Fourier analysis on Fp. Given a function f : Fp → R, define its Fourier

transform to be f̂ : Fp → C, where f̂(t) =
∑p−1

x=0 f(x)ω
tx and ω = e2πi/p. In this section, we endow

Fp with the total ordering of {0, 1, . . . , p−1} as elements of Z. Given a set S, let 2S = {2s : s ∈ S}.
We begin with a simple claim showing that sufficiently long geometric progressions with ratio 2 in
Fp contain a middle residue modulo p.

23

Claim 4.2. Suppose that a1, . . . , ak ∈ Fp is a sequence with a1 6= 0 and ai+1 = 2ai for each
1 ≤ i ≤ k − 1. Then if k ≥ 1 + log2(p/3), there is some j with p

3 ≤ aj ≤ 2p
3 .

Proof. Let S = {x ∈ Fp : x < p/3} and T = {x ∈ Fp : x > 2p/3}. Observe that 2S ∩ T = ∅ and
S ∩ 2T = ∅, which implies that there is no i such that ai and ai+1 are both in S and T . Therefore
if (a1, a2, . . . , ak) contains elements of both S and T , there must be some j with aj ∈ (S ∪ T)C and
the claim follows. It thus suffices to shows that (a1, a2, . . . , ak) cannot be entirely contained in one
of S or T . First consider the case that it is contained in S. Define the sequence (a′1, a

′
2, . . . , a

′
k) of

integers by a′i+1 = 2a′i for each 1 ≤ i ≤ k − 1 and a′1 ∈ [1, p/3) is such that a′1 ≡ a1 (mod p). It
follows that a′i ≡ ai (mod p) for each i and a′k ≥ 2k−1 ≥ p/3. Now consider the smallest j with
a′j > p/3. Then p/3 ≥ a′j−1 = a′j/2 by the minimality of j, and p/3 ≤ aj ≤ 2p/3 which is a
contradiction. If the sequence is contained in T , then (−a1,−a2, . . . ,−ak) is contained in S and
applying the same argument to this sequence proves the claim.

We now bound the total variation between the distribution of random binary expansions modulo
p and the uniform distribution. In Appendix C, we show Lemma 4.3 is tight assuming there are
infinitely-many Mersenne primes.

Lemma 4.3. There is an absolute constant K > 0 such that the following holds. Let p > 2
be a prime, let c, ǫ ∈ (0, 1/2] be arbitrary and suppose that c ≤ q0, q1, . . . , qt ≤ 1 − c. Then if t ≥
K ·c−1(1−c)−1 log(p/ǫ2) log p and Zi ∼ Ber(qi) are independent, the distribution of S =

∑t
i=0 Zi ·2i

(mod p) is within ǫ total variation distance of the uniform distribution on Fp.

Proof. Let f : Fp → R be the probability mass function of
∑t

i=0 2
iZi (mod p). By definition, we

have that

f(x) =
∑

z∈{0,1}t+1

(

t
∏

i=0

qzii (1− qi)
1−zi

)

1

{

t
∑

i=0

zi · 2i ≡ x (mod p)

}

Now observe that f̂(s) is given by

f̂(s) =

p−1
∑

x=0

f(x)ωsx =

t
∏

i=0

(

1− qi + qi · ω2i·s
)

The last equality follows directly from expanding the product and the definition of f(x). Note
that the constant function 1 has Fourier transform p · 1{s=0}. By Cauchy-Schwarz and Parseval’s
theorem, we have that

4 · dTV (L(S),Unif[Fp])
2 = ‖f − p−1 · 1‖21 ≤ p · ‖f − p−1 · 1‖22 = ‖f̂ − 1{s=0}‖22

=
∑

s 6=0

t
∏

i=0

∣

∣

∣1− qi + qi · ω2i·s
∣

∣

∣

2

where L(S) denotes the law of S. Note that |1 − q + q · ωa| ≤ 1 by the triangle inequality for all
a ∈ Fp and q ∈ (0, 1). Furthermore, if a ∈ Fp is such that p/3 ≤ a ≤ 2p/3 and q ∈ [c, 1 − c], then
we have that

|1− q + q · ωa|2 = (1− q)2 + q2 + 2q(1− q) cos(2πa/p)

= 1− 2q(1 − q) (1− cos(2πa/p))

≤ 1− 2c(1 − c) (1− cos(4π/3))

= 1− 3c(1 − c)

24

since cos(x) is maximized at the endpoints on the interval x ∈ [2π/3, 4π/3] and q(1−q) is minimized
at the endpoints on the interval [c, 1 − c]. Now suppose that t is such that

t ≥
⌈

log(4ǫ2/p)

log(1− 3c(1 − c))

⌉

· ⌈1 + log2(p/3)⌉ = Θ
(

c−1(1− c)−1 log(p/ǫ2) log p
)

Fix some s ∈ Fp with s 6= 0. By Claim 4.2, any ⌈1 + log2(p/3)⌉ consecutive terms of the sequence
s, 2s, . . . , 2ts ∈ Fp contain an element between p/3 and 2p/3. Therefore this sequence contains at

least m =
⌈

log(4ǫ2/p)
log(1−3c(1−c))

⌉

such terms, which implies that

t
∏

i=0

∣

∣

∣1− qi + qi · ω2i·s
∣

∣

∣

2
≤ (1− 3c(1 − c))m ≤ 4ǫ2

p

by the inequality above and the fact that each term in this product is at most 1. Since this holds
for each s 6= 0, it now follows that

4 · dTV (L(S),Unif[Fp])
2 ≤

∑

s 6=0

t
∏

i=0

∣

∣

∣1− qi + qi · ω2i·s
∣

∣

∣

2
< 4ǫ2

and thus dTV (L(S),Unif[Fp]) < ǫ, proving the lemma.

Using the lemma, we can sample (Z0, . . . , Zt) conditioned on S ≡ x (mod p):

Lemma 4.4. Let p > 2 be prime. Suppose that c ≤ q1, q2, . . . , qt ≤ 1 − c for some c ∈ (0, 1/2] and
that Zi ∼ Ber(qi) are independent. Let Y =

∑t
i=0 Zi · 2i and for each x ∈ Fp, let Yx ∼ L(Y |Y ≡ x

(mod p)). Consider YR, where R is chosen uniformly at random with R ∼ Unif[Fp]. If S = Y
(mod p) and ∆ = dTV (L(S),Unif[Fp]) < p−1, then it holds that

1. Given x ∈ Fp, we may sample L(Yx) within δ total variation distance in O
(

t log(1/δ)
p−1−∆

)

time.

2. dTV(L(Y),L(YR)) ≤ ∆.

Proof. Note that the x → Yx defines a Markov transition sending S → Y and R → YR. The
data-processing inequality yields dTV(L(Y),L(YR)) ≤ dTV(L(S),L(R)) = ∆, implying the second
item.

The second item can be achieved by rejection sampling from the distribution L(Y) until receiving
an element congruent to x modulo p or reaching the cutoff of

m =

⌈

log δ

log(1− p−1 +∆)

⌉

= O

(

log(1/δ)

p−1 −∆

)

rounds. Each sample from L(Y) can be obtained in O(t) by sampling Z0, Z1, . . . , Zt and forming
the number Y with binary digits Zt, Zt−1, . . . , Z0. If we receive a sample by the mth round, then it
is exactly sampled from the conditional distribution L(Yx) = L(Y |Y ≡ x (mod p)). Therefore the
total variation between the output of this algorithm and L(Yx) is upper bounded by the probability
that the rejection sampling scheme fails to output a sample. Now note that the probability that a
sample is output in a single round is

P[S = x] ≥ p−1 − dTV (L(S),Unif[Fp]) = p−1 −∆

25

by the definition of total variation. By the independence of sampling in different rounds, the
probability that no sample is output is at most

(1− P[S = x])m ≤
(

1− p−1 +∆
)m ≤ δ

which completes the proof of the first item.

Lemma 4.1 now follows by combining Lemmas 4.3 and 4.4:

Proof of Lemma 4.1. Let ǫ′ = ǫ/(2p). Given x, we approximately sample Yx up to ǫ′ total variation
error as in Lemma 4.4. Then we return the (X0, . . . ,Xt) which are uniquely determined by Yx =
∑t

i=0 2
iXi.

We prove correctness of the algorithm. Yx ≡ x (mod p) by construction. And by Lemma 4.3,
when t ≥ K·c−1(1−c)−1 log(p/ǫ2) log p for a large enough constant K, we have dTV (L(S),Unif[Fp]) ≤
ǫ′. So by the first item of Lemma 4.4, we may sample from L(Yx) within ǫ′ total variation distance in
O(pt log(p/ǫ)) time. Finally, by the second item of Lemma 4.4 we also have dTV (L(Y),L(YR)) ≤ ǫ′

if x = R ∼ Unif[Fp] is chosen uniformly at random in [p]. So overall, we have

dTV (L(X0, . . . ,Xt),L(Z0, . . . , Zt)) ≤ dTV (L(YR),L(Y)) + ǫ′ ≤ 2ǫ′ ≤ ǫ

which concludes the proof of the lemma.

We conclude with a sampling result analogous to Lemma 4.1, but for p = 2.

Lemma 4.5. There is a constant K > 0 such that the following holds. Let ǫ > 0, t ≥ Kc−1(1 −
c)−1 log(1/ǫ), and c ≤ q0, q1, . . . , qt ≤ 1 − c for some c ∈ (0, 1/2]. And let Zi ∼ Ber(qi) be inde-
pendent. Given a random variable R ∼ Unif[F2], in O(t log(1/ǫ)) time one may sample X0, . . . ,Xt

supported on {0, 1}, such that R =
∑t

i=0Xi (mod 2) and dTV(L(X0, . . . ,Xt),L(Z0, . . . , Zt)) < ǫ.

Proof. By induction on t, one may show that

P

[

t
∑

i=0

Zi ≡ 0 (mod 2)

]

=
1

2
−
∏t

i=0(1− 2qi)

2

If t satisfies the lower bound t ≥ ⌈log(ǫ/2)/ log(|1 − 2c|)⌉ + 1 = Ω(c−1(1 − c)−1 log(1/ǫ)), it holds
that dTV(L(

∑t
i=0 Zi),L(R)) ≤ ǫ/2. Sample the distribution

X ∼ L
(

Z
∣

∣

∣

t
∑

i=0

Zi ≡ R (mod 2)

)

within ǫ/2 total variation distance by rejection sampling. This takes O(t log(1/ǫ)) time, because it
consists of at most O(log(1/ǫ)) rounds of sampling fresh copies of Zi ∼ Ber(qi) for all i ∈ {0, . . . , t}
and checking if

∑t
i=0 Zi = R. By triangle inequality, it suffices to show that dTV(L(X),L(Z)) ≤ ǫ/2.

This is true by data processing inequality, since R is uniform and hence is within ǫ/2 total variation
distance of

∑t
i=0 Zi (mod 2).

26

5 Algorithms for Counting k-Cliques in G(n, c, s)

In this section, we consider several natural algorithms for counting k-cliques in G(n, c, s) with
c = Θ(n−α) for some α ∈ (0, 1). The main objective of this section is to show that, when k and s
are constant, these algorithms all run faster than all known algorithms for #(k, s)-clique on worst-
case hypergraphs and nearly match the lower bounds from our reduction for certain k, c and s. This
demonstrates that the average-case complexity of #(k, s)-clique on Erdős-Rényi hypergraphs is
intrinsically different from its worst-case complexity. As discussed in Section 2.2, this also shows
the necessity of a slowdown term comparable to Υ# in our worst-case to average-case reduction for
#(k, s)-clique. We begin with a randomized sampling-based algorithm for counting k-cliques in
G(n, c, s), extending well-known greedy heuristics for finding k-cliques in random graphs. We then
present an improvement to this algorithm in the graph case and a deterministic alternative.

5.1 Greedy Random Sampling

In this section, we consider a natural greedy algorithm greedy-random-sampling for counting
k-cliques in a s-uniform hypergraph G ∼ G(n, c, s) with c = Θ(n−α). Given a subset of vertices
A ⊆ [n] of G, define cnG(A) to be

cnG(A) = {v ∈ V (G)\A : B ∪ {v} ∈ E(G) for all (s− 1)-subsets B ⊆ A}

or, in other words, the set of common neighbors of A. The algorithm greedy-random-sampling

maintains a set S of k-subsets of [n] and for T iterations does the following:

1. Sample distinct starting vertices v1, v2, . . . , vs−1 uniformly at random and proceed to sample
the remaining vertices vs, vs+1, . . . , vk iteratively so that vi+1 is chosen uniformly at random
from cnG(v1, v2, . . . , vi) if it is nonempty.

2. If k vertices {v1, v2, . . . , vk} are chosen then add {v1, v2, . . . , vk} to S if it is not already in S.

This algorithm is an extension of the classical greedy algorithm for finding log2 n sized cliques in
G(n, 1/2) in [Kar76; GM75], the Metropolis process examined in [Jer92] and the greedy procedure
solving k-clique on G(n, c) with c = Θ

(

n−2/(k−1)
)

discussed by Rossman in [Ros16]. These and
other natural polynomial time search algorithms fail to find cliques of size (1+ǫ) log2 n in G(n, 1/2),
even though its clique number is approximately 2 log2 n with high probability [McD84; Pit82].
Our algorithm greedy-random-sampling extends this greedy algorithm to count k-cliques in
G(n, c, s). In our analysis, we will see a phase transition in the behavior of this algorithm at k = τ
for some τ smaller than the clique number of G(n, c, s). This is analogous to the breakdown of the
natural greedy algorithm at cliques of size log2 n on G(n, 1/2).

Before analyzing greedy-random-sampling, we state a simple classical lemma counting the
number of k-cliques in G(n, c, s). This lemma follows from linearity of expectation and Markov’s
inequality. Its proof is included in Appendix D for completeness.

Lemma 5.1. For fixed α ∈ (0, 1) and s, let κ ≥ s be the largest positive integer satisfying α
(κ
s−1

)

< s.

If G ∼ G(n, c, s) where c = O(n−α), then E[|clk(G)|] =
(n
k

)

c(
k
s) and ω(G) ≤ κ+1+ t with probability

at least 1−O
(

n−αt(1−s−1)(κ+2
s−1)

)

for any fixed nonnegative integer t.

In particular, this implies that the clique number of G(n, c, s) is typically at most (s!α−1)
1

s−1+s−
1. In the graph case of s = 2, this simplifies to 1+2α−1. In the next subsection, we give upper bounds
on the number of iterations T causing all k-cliques in G to end up in S and analyze the runtime of

27

the algorithm. The subsequent subsection improves the runtime of greedy-random-sampling for
graphs when s = 2 through a matrix multiplication post-processing step. The last subsection gives
an alternative deterministic algorithm with a similar performance to greedy-random-sampling.

5.2 Sample Complexity and Runtime of Greedy Random Sampling

In this section, we analyze the runtime of greedy-random-sampling and give upper bounds on
the number of iterations T needed for the algorithm to terminate with S = clk(G). The dynamic
set S needs to support search and insertion of k-cliques. Consider labelling the vertices of G with
elements of [n] and storing the elements of S in a balanced binary search tree sorted according to
the lexicographic order on [n]k. Search and insertion can each be carried out in O(log |clk(G)|) =
O(k log n) time. It follows that each iteration of greedy-random-sampling therefore takes O(n+
k log n) = O(n) time as long as k = O(1). Outputting |S| in greedy-random-sampling therefore
yields a O(nT) time algorithm for #(k, s)-clique on G(n, c, s) that succeeds with high probability.

The following theorem provides upper bounds on the minimum number of iterations T needed
for this algorithm to terminate with S = clk(G) and therefore solve #(k, s)-clique. Its proof is
deferred to Appendix E.

Theorem 5.2. Let k and s be constants and c = Θ(n−α) for some α ∈ (0, 1). Let τ be the largest
integer satisfying α

(

τ
s−1

)

< 1 and suppose that

T ≥
{

2nτ+1c(
τ+1
s)(log n)3(k−τ)(1+ǫ) if k ≥ τ + 1

2nkc(
k
s)(log n)1+ǫ if k < τ + 1

for some ǫ > 0. Then greedy-random-sampling run with T iterations terminates with S =
clk(G) with probability 1−n−ω(1) over the random bits of the algorithm greedy-random-sampling

and with probability 1− n−ω(1) over the choice of random hypergraph G ∼ G(n, c, s).

Implementing S as a balanced binary search tree and outputting |S| in greedy-random-

sampling yields the following algorithmic upper bounds for #(k, s)-clique with inputs sampled
from G(n, c, s).

Corollary 5.3. Suppose that k and s are constants and c = Θ(n−α) for some α ∈ (0, 1). Let τ be
the largest integer satisfying α

(τ
s−1

)

< 1. Then it follows that

1. If k ≥ τ + 1, there is an Õ
(

nτ+2−α(τ+1
s)
)

time randomized algorithm solving #(k, s)-clique

on inputs sampled from G(n, c, s) with probability at least 1− n−ω(1).

2. If k < τ +1, there is an Õ
(

nk+1−α(ks)
)

time randomized algorithm solving #(k, s)-clique on

inputs sampled from G(n, c, s) with probability at least 1− n−ω(1).

By Lemma 5.1, the hypergraph G ∼ G(n, c, s) has clique number ω(G) ≤ κ+2 with probability
1 − 1/poly(n) if where κ ≥ s is the largest positive integer satisfying α

(κ
s−1

)

< s. In particular,
when k > κ + 2 in the theorem above, the algorithm outputting zero succeeds with probability
1−1/poly(n) and #(k, s)-clique is trivial. For there to typically be a nonzero number of k-cliques

in G(n, c, s), it should hold that 0 < α ≤ s
(k−1
s−1

)−1
. In the graph case of s = 2, this simplifies to

the familiar condition that 0 < α ≤ 2
k−1 . We also remark that when k < τ + 1, the runtime of this

algorithm is an Õ(n) factor off from the expectation of the quantity being counted, the number of
k-cliques in G ∼ G(n, c, s).

28

5.3 Post-Processing with Matrix Multiplication

In this section, we improve the runtime of greedy-random-sampling as an algorithm for #(k, s)-
clique in the graph case of s = 2. The improvement comes from the matrix multiplication step of
Nes̆etr̆il and Poljak from their O

(

nω⌊k/3⌋+(k (mod 3))
)

time worst-case algorithm for #(k, 2)-clique

[NP85]. Our improved runtime for the algorithm greedy-random-sampling is stated in the
following theorem.

Theorem 5.4. Suppose that k > 2 is a fixed positive integer and c = Θ(n−α) where 0 < α ≤ 2
k−1

is also fixed. Then there is a randomized algorithm solving #(k, 2)-clique on inputs sampled from

G(n, c) with probability 1− n−ω(1) that runs in Õ
(

nω⌈k/3⌉+ω−ωα(⌈k/3⌉2)
)

time.

Proof. Label the vertices of an input graph G ∼ G(n, c) with the elements of [n]. Consider the
following application of greedy-random-sampling with post-processing:

1. Run greedy-random-sampling to compute the two sets of cliques S1 = cl⌊k/3⌋(G) and
S2 = cl⌈k/3⌉(G) with the number of iterations T as given in Theorem 5.2.

2. Construct the matrix M1 ∈ {0, 1}|S1|×|S1| with rows and columns indexed by the elements of
S1 such that (M1)A,B = 1 for A,B ∈ S1 if A ∪ B forms a clique of G and all labels in A are
strictly less than all labels in B.

3. Construct the matrix M2 ∈ {0, 1}|S1|×|S2| with rows indexed by the elements of S1 and columns
indexed by the elements of S2 such that (M2)A,B = 1 for A ∈ S1 and B ∈ S2 under the same
rule that A ∪ B forms a clique of G and all labels in A are strictly less than all labels in B.
Construct the matrix M3 with rows and columns indexed by S2 analogously.

4. Compute the matrix product

MP =







M2
1 if k ≡ 0 (mod 3)

M1M2 if k ≡ 1 (mod 3)
M2M3 if k ≡ 2 (mod 3)

5. Output the sum of entries
∑

(A,B)∈S

(MP)A,B

where S is the support of M1 if k ≡ 0 (mod 3) and S is the support of M2 if k 6≡ 0 (mod 3).

We will show that this algorithm solves #(k, 2)-clique with probability 1 − n−ω(1) when k ≡ 1
(mod 3). The cases when k ≡ 0, 2 (mod 3) follow from a nearly identical argument. By Theorem
5.2, the first step applying greedy-random-sampling succeeds with probability 1−n−ω(1). Note
that (MP)A,B counts the number of ⌊k/3⌋-cliques C in G such that the labels of C are strictly
greater than those of A and less than those of B and such that A∪C and C ∪B are both cliques. If
it further holds that (M2)A,B = 1, then A∪B is a clique and A∪B∪C is also clique. Therefore the
sum output by the algorithm exactly counts the number of triples (A,B,C) such that A∪B∪C is a
clique, |A| = |C| = ⌊k/3⌋, |B| = ⌈k/3⌉ and the labels of C are greater than those of A and less than
those of B. Observe that any clique C ∈ clk(G) is counted in this sum exactly once by the triple
(A,B,C) where A consists of the lowest ⌊k/3⌋ labels in C, B consists of the highest ⌈k/3⌉ labels
in C and C contains the remaining vertices of C. Therefore this algorithm solves #(k, 2)-clique as
long as Step 1 succeeds.

29

It suffices to analyze the additional runtime incurred by this post-processing. Observe that the
number of cliques output by a call to greedy-random-sampling with T iterations is at most T . Also
note that if α ≤ 2

k−1 , then τ ≥ ⌊k2⌋ − 1. If k ≥ 3, then it follows that τ + 1 ≥ ⌊k2⌋ ≥ ⌈k3⌉. It follows

by Theorem 5.2 that max{|S1|, |S2|} = Õ
(

n⌈k/3⌉+1−α(⌈k/3⌉s)
)

. Note that computing the matrix MP

takes Õ (max{|S1|, |S2|}ω) = Õ
(

nω⌈k/3⌉+ω−ωα(⌈k/3⌉2)
)

time. Now observe that all other steps of the

algorithm run in Õ
(

n2⌈k/3⌉−2α(⌈k/3⌉s)
)

time, which completes the proof of the theorem since the

matrix multiplication constant satisfies ω ≥ 2.

We remark that for simplicity, we have ignored minor improvements in the runtime that can be
achieved by more carefully analyzing Step 4 in terms of rectangular matrix multiplication constants
if k 6= 0 (mod 3). Note that the proof above implicitly used a weak large deviations bound on
|clk(G)|. More precisely, it used the fact that if greedy-random-sampling with T iterations
succeeds, then |clk(G)| ≤ T . Theorem 5.2 thus implies that |clk(G)| is upper bounded by the
minimal settings of T in the theorem statement with probability 1− n−ω(1) over G ∼ G(n, c, s).

When k ≤ τ + 1, these upper bounds are a polylog(n) factor from the expectation of |clk(G)|.
While this was sufficient in the proof of Theorem 5.4, stronger upper bounds will be needed in the
next subsection to analyze our deterministic iterative algorithm. The upper tails of |clk(G)| and
more generally of the counts of small subhypergraphs in G(n, c, s) have been studied extensively
in the literature. We refer to [Vu01; JR02; JOR04; DK12] for a survey of the area and recent
results. Given a hypergraph H, let N(n,m,H) denote the largest number of copies of H that can
be constructed in an s-uniform hypergraph with at most n vertices and m hyperedges. Define the
quantity

MH(n, c) = max

{

m ≤
(

n

s

)

: N(n,m,H ′) ≤ n|V (H′)|c|E(H′)| for all H ′ ⊆ H

}

The following large deviations result from [DPR10] generalizes a graph large deviations bound from
[JOR04] to hypergraphs to obtain the following result.

Theorem 5.5 (Theorem 4.1 from [DPR10]). For every s-uniform hypergraph H and every fixed
ǫ > 0, there is a constant C(ǫ,H) such that for all n ≥ |V (H)| and c ∈ (0, 1), it holds that

P [XH ≥ (1 + ǫ)E[XH]] ≤ exp (−C(ǫ,H) ·MH(n, c))

where XH is the number of copies of H in G ∼ G(n, c, s).

Proposition 4.3 in [DPR10] shows that if H is a d-regular s-uniform hypergraph and c ≥ n−s/d

then MH(n, c) = Θ(nscd). This implies that

P

[

|clk(G)| ≥ (1 + ǫ)

(

n

k

)

c(
k
s)
]

≤ exp
(

−C ′(ǫ) · nsc(
k−1
s−1)

)

as long as c ≥ n−s!(k−s)!/(k−1)!. This provides strong bounds on the upper tails of |clk(G)| that will
be useful in the next subsection.

5.4 Deterministic Iterative Algorithm for Counting in G(n, c, s)

In this section, we present an alternative deterministic algorithm it-gen-cliques achieving a sim-
ilar runtime to greedy-random-sampling. Although they have very different analyses, the algo-
rithm it-gen-cliques can be viewed as a deterministic analogue of greedy-random-sampling.

30

Both are constructing cliques one vertex at a time. The algorithm it-gen-cliques takes in cutoffs
Cs−1, Cs, . . . , Ck and generates sets Ss−1, Ss, . . . , Sk as follows:

1. Initialize Ss−1 to be the set of all (s− 1)-subsets of [n].

2. Given the set Si, for each vertex v ∈ [n], iterate through all subsets A ∈ Si and add A ∪ {v}
to Si+1 if A∪ {v} is a clique and v is larger than the labels of all of the vertices in A. Stop if
ever |Si+1| ≥ Ci+1.

3. Stop once Sk has been generated and output Sk.

Suppose that Ct are chosen to be any high probability upper bounds on the number of t-cliques in
G ∼ G(n, c, s) such as the bounds in Theorem 5.5. Then we have the following guarantees for the
algorithm it-gen-cliques.

Theorem 5.6. Suppose that k and s are constants and c = Θ(n−α) for some α ∈ (0, 1). Let τ be the

largest integer satisfying α
(τ
s−1

)

< 1 and Ct = 2ntc(
t
s) for each s ≤ t ≤ k. Then it-gen-cliques

with the cutoffs Ct outputs Sk = clk(G) with probability 1− n−ω(1) where

1. The runtime of it-gen-cliques is O
(

nτ+2−α(τ+1
s)
)

if k ≥ τ + 2.

2. The runtime of it-gen-cliques is O
(

nk−α(k−1
s)
)

if k < τ + 2.

Proof. We first show that Sk = clk(G) with probability 1−n−ω(1) in the algorithm it-gen-cliques.
By a union bound and Theorem 5.5, it follows that |clt(G)| < Ct for each s ≤ t ≤ k with probability
at least 1 − (k − s + 1)n−ω(1). The following simple induction argument shows that St = clt(G)
for each s − 1 ≤ t ≤ k conditioned on this event. Note that cls−1(G) is by definition the set of
all (s − 1)-subsets of [n] and thus Ss−1 = cls−1(G). If St = clt(G), then each (t + 1)-clique C of
G is added exactly once to St+1 as A ∪ {v} where v is the vertex of C with the largest label and
A = C\{v} ∈ clt(G) are the remaining vertices. Now note that the runtime of it-gen-cliques is

O

(

k−1
∑

t=s−1

nCt

)

= O

(

max
s−1≤t≤k−1

(nCt)

)

=







O
(

nτ+2−α(τ+1
s)
)

if k ≥ τ + 2

O
(

nk−α(k−1
s)
)

if k < τ + 2

since k = O(1). To see the second inequality, note that logn(Ct+1/Ct) = 1− α
(t
s−1

)

. This implies
that Ct+1 > Ct if t ≤ τ and Ct is maximized on s ≤ t ≤ k when t = τ +1. This completes the proof
of the theorem.

We remark that in the case of k < τ +1, it-gen-cliques attains a small runtime improvement
over greedy-random-sampling. However, the algorithm greedy-random-sampling can be
modified to match this runtime up to a polylog(n) factor by instead generating the (k−1)-cliques of
G and applying the last step of it-gen-cliques to generate the k-cliques of G. We also remark that
it-gen-cliques can also be used instead of greedy-random-sampling in Step 1 of the algorithm

in Theorem 5.4, yielding a nearly identical runtime of Õ
(

nω⌈k/3⌉−ωα(⌈k/3⌉−1
2)

)

for #(k, 2)-clique

on inputs sampled from G(n, c).

6 Extensions and Open Problems

In this section, we outline several extensions of our methods and problems left open after our work.

31

Improved Average-Case Lower Bounds. A natural question is if tight average-case lower
bounds for #(k, s)-clique can be shown above the k-clique percolation threshold when s ≥ 3 and
if the constant C in the exponent of our lower bounds for the graph case of s = 2 can be improved
from 1 to ω/9.

Raising Error Tolerance for Average-Case Hardness. A natural question is if the error
tolerance of the worst-case to average-case reductions in Theorems 2.8 and 2.9 can be increased. We
remarked in the introduction that for certain choices of k, the error tolerance cannot be significantly
increased – for example, when k = 3 log2 n, the trivial algorithm that outputs 0 on any graph has
subpolynomial error on graphs drawn from G(n, 1/2), but is useless for reductions from worst-case
graphs. Nevertheless, for other regimes of k, such as when k = O(1) is constant, counting k-cliques
with error probability less than 1/4 on graphs drawn from G(n, 1/2) appears to be nontrivial. It
is an open problem to prove hardness for such a regime. In general, one could hope to understand
the tight tradeoffs between computation time, error tolerance, k, c, and s for k-clique-counting on
G(n, c, s).

Hardness of Approximating Clique Counts. Another interesting question is if it is hard to
approximate the k-clique counts, within some additive error ǫ, of hypergraphs drawn from G(n, c, s).

Since the number of k-cliques in G(n, c, s) concentrates around the mean µ ≈ c(
k
s)nk with standard

deviation σ, one would have to choose ǫ≪ σ for approximation to be hard.

Inhomogeneous Erdős-Rényi Hypergraphs. Consider an inhomogeneous Erdős-Rényi hy-
pergraph model, where each hyperedge e is independently chosen to be in the hypergraph with
probability c(e). Also suppose that we may bound c(e) uniformly away from 0 and 1 (that is,
c(e) ∈ [c, 1− c] for all possible hyperedges e and for some constant c). We would like to prove that
#(k, s)-clique and Parity-(k, s)-clique are hard on average for inhomogeneous Erdős-Rényi hy-
pergraphs. Unfortunately, this does not follow directly from our proof techniques because step 5 in
the proof of Theorems 2.8 and 2.9 breaks down due to the inhomogeneity of the model. Nevertheless,
steps 1-4 still hold, and therefore we can show that #(k, s)-clique and Parity-(k, s)-clique are
average-case hard for k-partite inhomogeneous Erdős-Rényi hypergraphs – when only the edges e
that respect the k-partition are chosen to be in the hypergraph with inhomogeneous edge-dependent
probability c(e) ∈ [c, 1− c].

General Subgraph Counts. Given a hypergraph H on k vertices, let H-counting be the
problem of counting the number of occurrences (as an induced subgraph) of H in a hypergraph G.
Can one show that H-counting in the worst case reduces to H-counting in the average case on
Erdős-Rényi hypergraphs?

Our reduction (Theorem 2.8) applies to the special case when H is a clique. Unfortunately, the
proof of Theorem 2.8 breaks down when counting general hypergraphs. First, the reductions to
and from k-partite hypergraphs (steps 1 and 5) no longer work, because H contains non-edges, and
therefore there may be a copy of H that contains more than one vertex in a given k-partition. In
order to remedy this, we could consider the modification H-counting′ of the H-counting problem
that respects k-partite structure, by only counting the copies of H in a k-partite hypergraph G,
such that the k vertices of the copy of H lie in the k different parts of the vertex partition of G.
For this modified problem, the strategy of our reduction still fails – this time at Step 4, because the
polynomial that counts copies of H in G is not homogeneous. Indeed, for clique-counting, Step 4

32

of the reduction uses the fact that the variables of the clique-counting polynomial can be split up
into

(k
s

)

groups, such that each monomial contained exactly one variable from each group.

References

[AB87] Noga Alon and Ravi B Boppana. “The monotone circuit complexity of Boolean func-
tions”. In: Combinatorica 7.1 (1987), pp. 1–22.

[Ajt96] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. ACM. 1996, pp. 99–
108.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. “Finding a large hidden clique in
a random graph”. In: Random Structures and Algorithms 13.3-4 (1998), pp. 457–466.

[AM05] Kazuyuki Amano and Akira Maruoka. “A superpolynomial lower bound for a circuit
computing the clique function with at most (1/6) log log n negation gates”. In: SIAM
Journal on Computing 35.1 (2005), pp. 201–216.

[Ats+18] Albert Atserias, Ilario Bonacina, Susanna F de Rezende, Massimo Lauria, Jakob Nord-
ström, and Alexander Razborov. “Clique is hard on average for regular resolution”. In:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
ACM. 2018, pp. 866–877.

[AV11] Brendan PW Ames and Stephen A Vavasis. “Nuclear norm minimization for the planted
clique and biclique problems”. In: Mathematical programming 129.1 (2011), pp. 69–89.

[Bal+17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. “Average-
case fine-grained hardness”. In: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing. ACM. 2017, pp. 483–496.

[Bar+16] Boaz Barak, Samuel B Hopkins, Jonathan Kelner, Pravesh Kothari, Ankur Moitra,
and Aaron Potechin. “A nearly tight sum-of-squares lower bound for the planted clique
problem”. In: Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Sym-
posium on. IEEE. 2016, pp. 428–437.

[BB19] Matthew Brennan and Guy Bresler. “Optimal Average-Case Reductions to Sparse PCA:
From Weak Assumptions to Strong Hardness”. In: arXiv preprint arXiv:1902.07380
(2019).

[BBH18] Matthew Brennan, Guy Bresler, and Wasim Huleihel. “Reducibility and Computational
Lower Bounds for Problems with Planted Sparse Structure”. In: Conference On Learning
Theory. 2018, pp. 48–166.

[BBH19] Matthew Brennan, Guy Bresler, and Wasim Huleihel. “Universality of Computational
Lower Bounds for Submatrix Detection”. In: arXiv preprint arXiv:1902.06916 (2019).

[BDS93] Eric Bach, James Driscoll, and Jeffrey Shallit. “Factor refinement”. In: Journal of Al-
gorithms 15.2 (1993), pp. 199–222.

[BR09] Béla Bollobás and Oliver Riordan. “Clique percolation”. In: Random Structures & Al-
gorithms 35.3 (2009), pp. 294–322.

[BR13] Quentin Berthet and Philippe Rigollet. “Complexity Theoretic Lower Bounds for Sparse
Principal Component Detection.” In: COLT. 2013, pp. 1046–1066.

33

[BT06a] Andrej Bogdanov and Luca Trevisan. “Average-case complexity”. In: Foundations and
Trends® in Theoretical Computer Science 2.1 (2006), pp. 1–106.

[BT06b] Andrej Bogdanov and Luca Trevisan. “On worst-case to average-case reductions for NP
problems”. In: SIAM Journal on Computing 36.4 (2006), pp. 1119–1159.

[Cal+08] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. “The
complexity of unique k-SAT: An isolation lemma for k-CNFs”. In: Journal of Computer
and System Sciences 74.3 (2008), pp. 386–393.

[CE15] Amin Coja-Oghlan and Charilaos Efthymiou. “On independent sets in random graphs”.
In: Random Structures & Algorithms 47.3 (2015), pp. 436–486.

[Che+06] Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. “Strong computational lower
bounds via parameterized complexity”. In: Journal of Computer and System Sciences
72.8 (2006), pp. 1346–1367.

[Che15] Yudong Chen. “Incoherence-optimal matrix completion”. In: IEEE Transactions on In-
formation Theory 61.5 (2015), pp. 2909–2923.

[CPS99] Jin-Yi Cai, Aduri Pavan, and D Sivakumar. “On the hardness of permanent”. In: Annual
Symposium on Theoretical Aspects of Computer Science. Springer. 1999, pp. 90–99.

[CX16] Yudong Chen and Jiaming Xu. “Statistical-computational tradeoffs in planted problems
and submatrix localization with a growing number of clusters and submatrices”. In:
Journal of Machine Learning Research 17.27 (2016), pp. 1–57.

[DF95] Rod G Downey and Michael R Fellows. “Fixed-parameter tractability and complete-
ness II: On completeness for W [1]”. In: Theoretical Computer Science 141.1-2 (1995),
pp. 109–131.

[DGM08] Sergey N Dorogovtsev, Alexander V Goltsev, and José FF Mendes. “Critical phenomena
in complex networks”. In: Reviews of Modern Physics 80.4 (2008), p. 1275.

[DGP14] Yael Dekel, Ori Gurel-Gurevich, and Yuval Peres. “Finding hidden cliques in linear
time with high probability”. In: Combinatorics, Probability and Computing 23.1 (2014),
pp. 29–49.

[DK12] Robert DeMarco and Jeff Kahn. “Tight upper tail bounds for cliques”. In: Random
Structures & Algorithms 41.4 (2012), pp. 469–487.

[DM15] Yash Deshpande and Andrea Montanari. “Finding hidden cliques of size
√

N/e in nearly
linear time”. In: Foundations of Computational Mathematics 15.4 (2015), pp. 1069–1128.

[DPR10] Andrzej Dudek, Joanna Polcyn, and Andrzej Ruciński. “Subhypergraph counts in ex-
tremal and random hypergraphs and the fractional q-independence”. In: Journal of
combinatorial optimization 19.2 (2010), pp. 184–199.

[DPV05] Imre Derényi, Gergely Palla, and Tamás Vicsek. “Clique percolation in random net-
works”. In: Physical review letters 94.16 (2005), p. 160202.

[Fei+18] Uriel Feige, David Gamarnik, Joe Neeman, Miklós Z Rácz, and Prasad Tetali. “Finding
cliques using few probes”. In: arXiv preprint arXiv:1809.06950 (2018).

[Fel+13] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao. “Sta-
tistical algorithms and a lower bound for detecting planted cliques”. In: Proceedings of
the forty-fifth annual ACM symposium on Theory of computing. ACM. 2013, pp. 655–
664.

34

[FF93] Joan Feigenbaum and Lance Fortnow. “Random-self-reducibility of complete sets”. In:
SIAM Journal on Computing 22.5 (1993), pp. 994–1005.

[FK00] Uriel Feige and Robert Krauthgamer. “Finding and certifying a large hidden clique in
a semirandom graph”. In: Random Structures and Algorithms 16.2 (2000), pp. 195–208.

[FL92] Uriel Feige and Carsten Lund. “On the hardness of computing the permanent of random
matrices”. In: Proceedings of the twenty-fourth annual ACM symposium on Theory of
computing. ACM. 1992, pp. 643–654.

[FR10] Uriel Feige and Dorit Ron. “Finding hidden cliques in linear time”. In: 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of
Algorithms (AofA’10). Discrete Mathematics and Theoretical Computer Science. 2010,
pp. 189–204.

[Gam18] David Gamarnik. “Computing the partition function of the Sherrington-Kirkpatrick
model is hard on average”. In: arXiv preprint arXiv:1810.05907 (2018).

[Gao93] Shuhong Gao. “Normal Bases over Finite Fields”. In: Doctoral thesis, Waterloo (1993).

[Gem+91] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson.
“Self-testing/correcting for polynomials and for approximate functions”. In: Proceed-
ings of the twenty-third annual ACM symposium on Theory of computing. ACM. 1991,
pp. 33–42.

[GM75] Geoffrey R Grimmett and Colin JH McDiarmid. “On colouring random graphs”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 77. 2. Cambridge
University Press. 1975, pp. 313–324.

[GR17] Oded Goldreich and Guy N Rothblum. “Worst-case to Average-case reductions for sub-
classes of P”. In: 2017.

[GR18] Oded Goldreich and Guy Rothblum. “Counting t-cliques: Worst-case to average-case re-
ductions and Direct interactive proof systems”. In: 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE. 2018, pp. 77–88.

[GS14] David Gamarnik and Madhu Sudan. “Limits of local algorithms over sparse random
graphs”. In: Proceedings of the 5th conference on Innovations in theoretical computer
science. ACM. 2014, pp. 369–376.

[GS92] Peter Gemmell and Madhu Sudan. “Highly resilient correctors for polynomials”. In: Inf.
Process. Lett. 43.4 (1992), pp. 169–174.

[HWX15] Bruce E Hajek, Yihong Wu, and Jiaming Xu. “Computational Lower Bounds for Com-
munity Detection on Random Graphs.” In: COLT. 2015, pp. 899–928.

[IR78] Alon Itai and Michael Rodeh. “Finding a minimum circuit in a graph”. In: SIAM Journal
on Computing 7.4 (1978), pp. 413–423.

[Jer92] Mark Jerrum. “Large cliques elude the Metropolis process”. In: Random Structures &
Algorithms 3.4 (1992), pp. 347–359.

[JOR04] Svante Janson, Krzysztof Oleszkiewicz, and Andrzej Ruciński. “Upper tails for subgraph
counts in random graphs”. In: Israel Journal of Mathematics 142.1 (2004), pp. 61–92.

[JP00] Ari Juels and Marcus Peinado. “Hiding cliques for cryptographic security”. In: Designs,
Codes and Cryptography 20.3 (2000), pp. 269–280.

[JR02] Svante Janson and Andrzej Ruciński. “The infamous upper tail”. In: Random Structures
& Algorithms 20.3 (2002), pp. 317–342.

35

[Kar72] Richard M Karp. “Reducibility among combinatorial problems”. In: Complexity of com-
puter computations. Springer, 1972, pp. 85–103.

[Kar76] Richard M Karp. “Probabilistic analysis of some combinatorial search problems”. In:
Algorithms and Complexity: New Directions and Recent Results. Academic Press. 1976.

[Kuc95] Luděk Kučera. “Expected complexity of graph partitioning problems”. In: Discrete Ap-
plied Mathematics 57.2-3 (1995), pp. 193–212.

[KZ14] Pascal Koiran and Anastasios Zouzias. “Hidden cliques and the certification of the re-
stricted isometry property”. In: IEEE Transactions on Information Theory 60.8 (2014),
pp. 4999–5006.

[Lip89] Richard J Lipton. “New Directions In Testing.” In: Distributed Computing and Cryp-
tography 2 (1989), pp. 191–202.

[McD84] Colin McDiarmid. “Colouring random graphs”. In: Annals of Operations Research 1.3
(1984), pp. 183–200.

[McS01] Frank McSherry. “Spectral partitioning of random graphs”. In: Foundations of Com-
puter Science, 2001. Proceedings. 42nd IEEE Symposium on. IEEE. 2001, pp. 529–537.

[Mul54] David E Muller. “Application of Boolean algebra to switching circuit design and to
error detection”. In: Transactions of the IRE professional group on electronic computers
3 (1954), pp. 6–12.

[MW15] Zongming Ma and Yihong Wu. “Computational barriers in minimax submatrix detec-
tion”. In: The Annals of Statistics 43.3 (2015), pp. 1089–1116.

[NP85] Jaroslav Nesetril and Svatopluk Poljak. “On the complexity of the subgraph problem”.
In: Commentationes Mathematicae Universitatis Carolinae 26.2 (1985), pp. 415–419.

[PDV07] Gergely Palla, Imre Derényi, and Tamás Vicsek. “The critical point of k-Clique per-
colation in the Erdős–Rényi graph”. In: Journal of Statistical Physics 128.1-2 (2007),
pp. 219–227.

[Pit82] B Pittel. “On the probable behaviour of some algorithms for finding the stability num-
ber of a graph”. In: Mathematical Proceedings of the Cambridge Philosophical Society.
Vol. 92. 3. Cambridge University Press. 1982, pp. 511–526.

[Raz85] Alexander A Razborov. “Lower bounds for the monotone complexity of some Boolean
functions”. In: Soviet Math. Dokl. Vol. 31. 1985, pp. 354–357.

[Reg] Oded Regev. “The learning with errors problem”. In: ().

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography”.
In: Journal of the ACM (JACM) 56.6 (2009), p. 34.

[Ros08] Benjamin Rossman. “On the constant-depth complexity of k-clique”. In: Proceedings of
the fortieth annual ACM symposium on Theory of computing. ACM. 2008, pp. 721–730.

[Ros10] Benjamin Rossman. “The monotone complexity of k-clique on random graphs”. In:
2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE. 2010,
pp. 193–201.

[Ros16] Benjamin Rossman. Lower bounds for subgraph isomorphism. 2016.

[RV17] Mustazee Rahman and Balint Virag. “Local algorithms for independent sets are half-
optimal”. In: The Annals of Probability 45.3 (2017), pp. 1543–1577.

36

[Sud97] Madhu Sudan. “Decoding of Reed Solomon codes beyond the error-correction bound”.
In: Journal of complexity 13.1 (1997), pp. 180–193.

[Val79] Leslie G Valiant. “The Complexity of Enumeration and Reliability Problems”. In: SIAM
Journal on Computing 8.3 (1979), p. 410.

[Vu01] Van H Vu. “A large deviation result on the number of small subgraphs of a random
graph”. In: Combinatorics, Probability and Computing 10.1 (2001), pp. 79–94.

[Yus06] Raphael Yuster. “Finding and counting cliques and independent sets in r-uniform hy-
pergraphs”. In: Information Processing Letters 99.4 (2006), pp. 130–134.

A Reduction from Decide-(k, s)-clique to Parity-(k, s)-clique

The following is a precise statement and proof of the reduction from Decide-(k, s)-clique to
Parity-(k, s)-clique claimed in Section 2.1.

Lemma A.1. Given an algorithm A for Parity-(k, s)-clique with error probability < 1/3 on any
s-uniform hypergraph G, there is an algorithm B that runs in time O(k2k|A|) and solves Decide-

(k, s)-clique with error < 1/3 on any s-uniform hypergraph G.

Proof. Let clk(G) denote the set of k-cliques in hypergraph G = (V,E). Consider the polynomial

PG(xV) =
∑

S∈clk(G)

∏

v∈S

xv (mod 2),

over the finite field F2. If G has a k-clique at vertices S ⊂ V , then PG is nonzero, because
PG(1S) = 1. If G has no k-clique, then PG is zero. Therefore, deciding whether G has a k-clique
reduces to testing whether or not PG is identically zero. PG is of degree at most k, so if PG is nonzero
on at least one input, then it is nonzero on at least a 2−k fraction of inputs. One way to see this
is that if we evaluate PG at all points a ∈ {0, 1}m, the result is a non-zero Reed-Muller codeword
in RM(k,m). Since the distance of the RM(k,m) code is 2m−k, and the block-length is 2m, the
claim follows [Mul54]. We therefore evaluate PG at c · 2k independent random inputs for some large
enough c > 0, accept if any of the evaluations returns 1, and reject if all of the evaluations return 0.
Each evaluation corresponds to calculating Parity-(k, s)-clique on a hypergraph G′ formed from
G by removing each vertex independently with probability 1/2. As usual, we boost the error of A
by running the algorithm O(k) times for each evaluation, and using the majority vote.

B Proof of Lemma 3.6

We restate and prove Lemma 3.6.

Lemma B.1 (Theorem 4 of [GS92]). Let F be a finite field with |F| = q elements. Let N,D > 0.
Suppose 9 < D < q/12. Let f : FN → F be a polynomial of degree at most D. If there is an
algorithm A running in time T (A,N) such that

Px∼Unif[FN][A(x) = f(x)] > 2/3,

then there is an algorithm B running in time O((N +D)D2 log2 q+ T (A,N) ·D) such that for any
x ∈ F

N ,
P[B(x) = f(x)] > 2/3.

37

Proof. Our proof of the lemma is based off of the proof that appears in [Bal+17]. The only difference
is that in [Bal+17], the lemma is stated only for finite fields whose size is a prime. Suppose we

wish to calculate f(x) for x ∈ F
N . In order to do this, choose y1, y2

i.i.d∼ Unif[FN], and define
the polynomial g(t) = x + ty1 + t2y2 where t ∈ F. We evaluate A(g(t)) at m different values
t1, . . . , tm ∈ F. This takes O(mND log2 q+m ·T (A,N)) time. Suppose that we have the guarantee
that at most (m − 2D)/2 of these evaluations are incorrect. Then, since f(g(t)) is a univariate
polynomial of degree at most 2D, we may use Berlekamp-Welch to recover f(g(0)) = A(x) in
O(m3) arithmetic operations over F, each of which takes O(log2 q) time. Since g(ti) and g(tj) are
pairwise independent and uniform in F

N for any distinct ti, tj 6= 0, by the second-moment method,
with probability > 2/3, at most (m − 2D)/2 evaluations of A(g(t)) will be incorrect if we take
m = 12D.

C Tightness of Bounds in Section 4

In this appendix, we briefly discuss the tightness of the bounds on t in Lemma 4.3 and how the
case of c = 1/2 differs from c 6= 1/2. Note that if qi = 1/2 for each i, then

∑t
i=0 Zi · 2i is uniformly

distributed on {0, 1, . . . , 2t+1 − 1}. It follows that

dTV (L(S),Unif[Fp]) =
∑

x∈Fp

∣

∣p−1 − P[S = x]
∣

∣

+
=

a(p − a)

2t+1p
≤ p

2t+1

if 0 ≤ a ≤ p− 1 is such that 2t+1 ≡ a (mod p). Here, | · |+ denotes |x|+ = max(x, 0). Therefore S is
within total variation of 1/poly(p) of Unif[Fp] if t = Ω(log p). However, note that for c constant and
ǫ = 1/poly(p), our lemma requires that t = Ω(log2 p). This raises the question: is the additional
factor of log p necessary or an artifact of our analysis? We answer this question with an example
suggesting that the extra log p factor is in fact necessary and that the case c = 1/2 is special.

Suppose that p is a Mersenne prime with p = 2r − 1 for some prime r and for simplicity, take
qi = 1/3 for each i. Observe by the triangle inequality that

∣

∣

∣
f̂(1)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∑

x∈Fp

(

f(x)− p−1
)

· ωx

∣

∣

∣

∣

∣

∣

≤
∥

∥f − p−1 · 1
∥

∥

1
= 2 · dTV (L(S),Unif[Fp])

Now suppose that t = ar − 1 for some positive integer a. As shown in the lemma, we have

∣

∣

∣f̂(1)
∣

∣

∣

2
=

t
∏

i=0

∣

∣

∣

∣

2

3
+

1

3
· ω2i

∣

∣

∣

∣

2

=

[

r−1
∏

i=0

(

5

9
+

4

9
· cos

(

2π

p
· 2i
))

]a

where the second equality is due to the fact that the sequence 2i has period r modulo p. Now
observe that since 5

9 + 4
9 · cos(x) ≥ e−x2

, we have that

r−1
∏

i=0

(

5

9
+

4

9
· cos

(

2π

p
· 2i
))

≥ exp

(

−4π2

p2

r−1
∑

i=0

22i

)

= exp

(

−4π2

p2
· 2

2r − 1

3

)

= Ω(1)

which implies that a should be Ω(r) for f̂(1) to be polynomially small in p. Thus the extra log p
factor is necessary in this case and our analysis is tight. Note that in the special case of c = 1/2,
the factors in the expressions for f̂(s) are of the form 1

2 +
1
2 · ω2i·s which can be arbitrarily close to

zero. We remark that the construction, as stated, relies on there being infinitely many Mersenne
primes. However, it seems to suggest that the extra log p factor is necessary. Furthermore, similar
examples can be produced with p that are not Mersenne, as long as the order of 2 modulo p is
relatively small.

38

D Clique Counts in Sparse Erdős-Rényi Hypergraphs

We prove the following classical lemma from Section 5.1.

Lemma D.1. For fixed α ∈ (0, 1) and s, let κ ≥ s be the largest positive integer satisfying α
(

κ
s−1

)

<

s. If G ∼ G(n, c, s) where c = O(n−α), then E[|clk(G)|] =
(n
k

)

c(
k
s) and ω(G) ≤ κ + 1 + t with

probability at least 1−O
(

n−αt(1−s−1)(κ+2
s−1)

)

for any fixed nonnegative integer t.

Proof. Let C > 0 be such that c ≤ Cn−α for sufficiently large n. For any given set {v1, v2, . . . , vk}
of k vertices in [n], the probability that all hyperedges are present among {v1, v2, . . . , vk} and thus

these vertices form a k-clique in G is c(
k
s). Linearity of expectation implies that the expected number

of k-cliques is E[|clk(G)|] =
(

n
k

)

c(
k
s). Now consider taking k = κ+ 2 + t and note that

E[|clk(G)|] =
(

n

k

)

c(
k
s)

≤ nkc(
k
s) ≤ C(ks) · exp

((

1− α

s

(

k − 1

s− 1

))

k log n

)

≤ C(ks) · exp
((

1− α

s

(

κ+ 1

s− 1

))

k log n− α

s
· t
(

κ+ 1

s− 2

)

k log n

)

≤ C(ks)n−αt(1−s−1)(κ+2
s−1)

since k ≥ κ + 2 and
(κ+1+t

s−1

)

≥
(κ+1
s−1

)

+ t
(κ+1
s−2

)

by iteratively applying Pascal’s identity. Observe

that κ = O(1) and thus C(ks) = O(1). Now by Markov’s inequality, it follows that P[ω(G) ≥ k] =
P[|clk(G)| ≥ 1] ≤ E[|clk(G)|], completing the proof of the lemma.

E Analysis of Greedy Random Sampling

This section is devoted to proving Theorem 5.2, which is restated below for convenience.

Theorem E.1. Let k and s be constants and c = Θ(n−α) for some α ∈ (0, 1). Let τ be the largest
integer satisfying α

(

τ
s−1

)

< 1 and suppose that

T ≥
{

2nτ+1c(
τ+1
s)(log n)3(k−τ)(1+ǫ) if k ≥ τ + 1

2nkc(
k
s)(log n)1+ǫ if k < τ + 1

for some ǫ > 0. Then greedy-random-sampling run with T iterations terminates with S =
clk(G) with probability 1−n−ω(1) over the random bits of the algorithm greedy-random-sampling

and with probability 1− n−ω(1) over the choice of random hypergraph G ∼ G(n, c, s).

Proof. We first consider the case where k ≥ τ +1. Fix some ǫ > 0 and let v = (v1, v2, . . . , vk) be an
ordered tuple of distinct vertices in [n]. Define the random variable

Zv = n(n− 1) · · · (n− s+ 2)

k−1
∏

i=s−1

|cnG(v1, v2, . . . , vi)|

The key property of Zv is that, in each iteration of greedy-random-sampling, the probability
that the k vertices v1, v2, . . . , vk are chosen in that order is exactly 1/Zv . The proof of this theorem

39

will proceed by establishing upper bounds on Zv that hold for all k-cliques v with high probability
over the randomness of G, which will yield a bound on the number of iterations T needed to exhaust
all such k-cliques in G.

Consider the following event over the sampling G ∼ G(n, c, s)

Av =
{

Zv ≥ 2nτ+1c(
τ+1
s)(log n)3(k−1−τ)(1+ǫ) and {v1, v2, . . . , vk} ∈ clk(G)

}

We now proceed to bound the probability of Av through simple Chernoff and union bounds over G.
In the next part of the argument, we condition on the event that {v1, v2, . . . , vk} forms a clique in
G. For each i ∈ {s − 1, s, . . . , k − 1}, let Yv,i be the number of common neighbors of v1, v2, . . . , vi

in V (G)\{v1, v2, . . . , vk}. Note that Yv,i ∼ Bin
(

n− k, c(
i

s−1)
)

and that |cnG(v1, v2, . . . , vi)| =
k − i+ Yv,i. The standard Chernoff bound for the binomial distribution implies that for all δi > 0,

P

[

|cnG(v1, v2, . . . , vi)| ≥ k − i+ (1 + δi)(n− k)c(
i

s−1)
]

≤ exp

(

− δ2i
2 + δi

· (n− k)c(
i

s−1)
)

Now define κi to be

κi = (n− k)−1c−(
i

s−1) · (log n)1+ǫ

for each i ∈ {s−1, s, . . . , k−1}. Let δi =
√
κi if i ≤ τ and δi = κi if i > τ . Note that for sufficiently

large n, δi < 1 if i ≤ τ and δi ≥ 1 if i > τ . These choices of δi ensure that the Chernoff upper
bounds above are each at most exp

(

−1
3(log n)

1+ǫ
)

for each i. A union bound implies that with
probability at least 1− k exp

(

−1
3(log n)

1+ǫ
)

, it holds that

|cnG(v1, v2, . . . , vi)| < k − i+ (1 + δi)(n− k)c(
i

s−1) < (1 + 2δi)(n− k)c(
i

s−1)

for all i and sufficiently large n. Here, we used the fact that δi(n − k)c(
i

s−1) = ω(1) for all i by

construction and k = O(1). Observe that (1 + 2δi)(n − k)c(
i

s−1) ≤ 3(log n)1+ǫ for all i ≥ τ + 1.
These inequalities imply that

logZv < log ns−1 +

τ
∑

i=s−1

log
(

(1 + 2δi)(n− k)c(
i

s−1)
)

+ 3(k − 1− τ)(1 + ǫ) log log n

< log nτ+1 + (log c)
τ
∑

i=s−1

(

i

s− 1

)

+

τ
∑

i=s−1

log(1 + 2δi) + 3(k − 1− τ)(1 + ǫ) log log n

≤ log
(

nτ+1c(
τ+1
s)
)

+ 3(k − 1− τ)(1 + ǫ) log log n+ 2
τ
∑

i=s−1

δi

≤ log
(

nτ+1c(
τ+1
s)
)

+ 3(k − 1− τ)(1 + ǫ) log log n+ o(1)

The last inequality holds since τ = O(1) and since δi . (log n)
1
2
+ ǫ

2n− 1
2
+ 1

2
α(τ

s−1) = o(1) for all i ≤ τ
because of the definition that α

(

τ
s−1

)

< 1. In summary, we have shown that for sufficiently large n

P

[

Zv ≥ 2nτ+1c(
τ+1
s)(log n)3(k−1−τ)(1+ǫ)

∣

∣

∣ {v1, v2, . . . , vk} ∈ clk(G)
]

≤ k exp

(

−1

3
(log n)1+ǫ

)

= n−ω(1)

40

for any k-tuple of vertices v = (v1, v2, . . . , vk). Since P [{v1, v2, . . . , vk} ∈ clk(G)] = c(
k
s), we have

that P[Av] ≤ c(
k
s)n−ω(1) = n−ω(1) for each k-tuple v. Now consider the event

B =
{

Zv < 2nτ+1c(
τ+1
s)(log n)3(k−1−τ)(1+ǫ) for all v

such that {v1, v2, . . . , vk} ∈ clk(G)
}

Note that B =
⋃

k-tuples v Av and a union bound implies that P[B] ≥ 1−∑v P[Av] ≥ 1−nk ·n−ω(1) =

1− n−ω(1) since there are fewer than nk k-tuples v.
We now show that as long as B holds over the random choice of G, then the algorithm

greedy-random-sampling terminates with S = clk(G) with probability 1 − n−ω(1) over the
random bits of greedy-random-sampling, which completes the proof of the lemma in the case
k > τ + 1. In the next part of the argument, we consider G conditioned on the event B. Fix some
ordering v = (v1, v2, . . . , vk) of some k-clique C = {v1, v2, . . . , vk} in G. Recall that in any one of
the T iterations of greedy-random-sampling, the probability that the k vertices v1, v2, . . . , vk
are chosen in that order is exactly 1/Zv. Since the T iterations of greedy-random-sampling are
independent, we have that

P [v is never chosen in a round] =

(

1− 1

Zv

)T

≤ exp

(

− T

Zv

)

= n−ω(1)

since T is chosen so that T ≥ Zv(log n)
3(1+ǫ) for all k-tuples v, given the event B. Since there

are at most nk possible v, a union bound implies that every such v is chosen in a round of
greedy-random-sampling with probability at least 1−nk ·n−ω(1) = 1−n−ω(1) over the random
bits of the algorithm. In this case, S = clk(G) after the T rounds of greedy-random-sampling.
This completes the proof of the theorem in the case k ≥ τ + 1.

We now handle the case k < τ + 1 through a nearly identical argument. Define κi as in the
previous case and set δi =

√
κi for all i ∈ {s − 1, s, . . . , k − 1}. By the same argument, for each

k-tuple v we have with probability 1− n−ω(1) over the choice of G that

logZv < log ns−1 +
k−1
∑

i=s−1

log
(

(1 + 2δi)(n− k)c(
i

s−1)
)

< log nk + (log c)
k−1
∑

i=s−1

(

i

s− 1

)

+ 2
k−1
∑

i=s−1

δi

= log
(

nkc(
k
s)
)

+ o(1)

where again δi . (log n)
1
2
+ ǫ

2n− 1
2
+ 1

2
α(τ

s−1) = o(1) for all i ≤ k − 1 < τ . Define the event

B′ =
{

Zv < 2nkc(
k
s)(log n)1+ǫ for all v such that {v1, v2, . . . , vk} ∈ clk(G)

}

Note that T is such that T ≥ Zv(log n)
1+ǫ for all v if B′ holds. Now repeating the rest of the argu-

ment from the k ≥ τ +1 case shows that P[B′] ≥ 1−n−ω(1) and that greedy-random-sampling

terminates with S = clk(G) with probability 1 − n−ω(1) over its random bits if G is such that B′

holds. This completes the proof of the theorem.

41

	1 Introduction
	1.1 Overview of Main Results
	1.2 Overview of Reduction Techniques
	1.3 Related Work on Worst-Case to Average-Case Reductions
	1.4 Notation and Preliminaries

	2 Problem Formulations and Average-Case Lower Bounds
	2.1 Clique Problems and Worst-Case Fine-Grained Conjectures
	2.2 Average-Case Lower Bounds for Counting k-Cliques in G(n, c, s)

	3 Worst-Case to Average-Case Reduction for G(n, c, s)
	3.1 Worst-Case Reduction to k-Partite Hypergraphs
	3.2 Counting k-Cliques as a Low-Degree Polynomial
	3.3 Random Self-Reducibility: Reducing to Random Inputs in FN
	3.4 Reduction to Evaluating the Polynomial on G(nk,c,s,k)
	3.5 Reduction to Counting k-Cliques in G(n,c,s)
	3.6 Proofs of Theorems 2.8 and 2.9

	4 Random Binary Expansions Modulo p
	5 Algorithms for Counting k-Cliques in G(n, c, s)
	5.1 Greedy Random Sampling
	5.2 Sample Complexity and Runtime of Greedy Random Sampling
	5.3 Post-Processing with Matrix Multiplication
	5.4 Deterministic Iterative Algorithm for Counting in G(n, c, s)

	6 Extensions and Open Problems
	A Reduction from Decide-(k,s)-clique to Parity-(k,s)-clique
	B Proof of Lemma 3.6
	C Tightness of Bounds in Section 4
	D Clique Counts in Sparse Erdos-Rényi Hypergraphs
	E Analysis of Greedy Random Sampling

