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Abstract
We show how to solve all-pairs shortest paths on n nodes in deter-
ministic n3/2Ω(

√
logn) time, and how to count the pairs of orthogo-

nal vectors among n 0-1 vectors in d = c logn dimensions in deter-
ministic n2−1/O(logc) time. These running times essentially match
the best known randomized algorithms of (Williams, STOC’14)
and (Abboud, Williams, and Yu, SODA 2015) respectively, and
the ability to count was open even for randomized algorithms. By
reductions, these two results yield faster deterministic algorithms
for many other problems. Our techniques can also be used to de-
terministically count k-SAT assignments on n variable formulas in
2n−n/O(k) time, roughly matching the best known running times for
detecting satisfiability and resolving an open problem of Santhanam
(2013).

A key to our constructions is an efficient way to determinis-
tically simulate certain probabilistic polynomials critical to the al-
gorithms of prior work, carefully applying small-biased sets and
modulus-amplifying polynomials.

1 Introduction

We investigate a recently introduced method for randomized
algorithm design that was inspired by lower bound tech-
niques in low-depth circuit complexity. The polynomial
method in circuit complexity is a general strategy for proving
circuit lower bounds, by (a) modeling low-complexity func-
tions approximately with low-degree polynomials, then (b)
proving that certain simple functions do not have low-degree
polynomial approximations. A generation of papers (for in-
stance [Raz87, Smo87, Yao90, BT94, BRS91, ABFR94,
NS94, PS94, Bei95, KS12]) have proved circuit complexity
lower bounds in this generic way.

In most cases, the approximations computed by these
polynomials are a worst-case notion: for every possible
input, a random choice of a low-degree polynomial (from
some efficiently computable distribution) correctly computes
the desired function, with high probability. This notion
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of probabilistic polynomial has been recently applied to
algorithm design in the following sense:

• Start with an algorithm whose worst-case running time
is constrained by a subprocedure that is executed many
times on different inputs. (For example, if one is
searching for a pair of strings with some property P,
a redundant subprocedure might be the property test for
P. Another example would be a matrix multiplication
algorithm which computes many inner products on
different pairs of vectors.)
• Next, give a way to model this subprocedure with a low-

complexity circuit.
• Finally, randomly convert that low-complexity circuit

into a sparse polynomial (via the polynomial method),
and use the algebraic structure of the polynomial to
speed up the repeated execution of the subprocedure.
(Multiple random conversions may be needed, to in-
crease the probability of success.)

This approach has led to faster randomized algorithms
for solving several fundamental problems: all-pairs shortest
paths (and therefore min-plus convolution, minimum weight
triangle, minimum cycle, second shortest paths, replacement
paths, etc.) [Wil14b], finding a pair of disjoint vectors in a
collection (and therefore computing partial match queries
in batch, computing the longest common substring with
wildcards, evaluating DNFs on many chosen assignments,
etc.) [Wil14a, AWY15], and (recently) computing Hamming
distance queries in batch as well [AW15].

A fundamental characteristic of the polynomial method
is its reliance on probability and approximation: for the
method to work, it is necessary that the polynomial repre-
sentations are random/approximate. For example, represent-
ing the OR function on n bits exactly requires Ω(2n) mono-
mials and degree Ω(n) over any fixed field, but probabilis-
tic and approximate representations can be much more suc-
cinct over finite fields, requiring only O(poly(n)) monomials
and degree O(1) to achieve less than 1% probability of er-
ror [Raz87, Smo87]. Such a sparse representation is simply
impossible to achieve deterministically/exactly.

Therefore it is somewhat surprising that, in this paper,
we strongly derandomize almost all of the algorithms of
prior work: the running times of our deterministic algorithms



essentially match those of the randomized ones. To do this,
we show how the applications of probabilistic polynomials in
the previous algorithms can be avoided, by deterministically
and efficiently constructing algebraic counterparts to these
polynomials. In some cases (for example, in APSP) we rely
on the structure of the underlying problem in order to achieve
the derandomization.

1.1 Deterministic All-Pairs Shortest Paths

In the all-pairs shortest paths (APSP) problem, we are given
an n-node graph with arbitrary integer edge weights, and
wish to compute a representation of the shortest paths be-
tween all pairs of nodes in the graph. It is well-known (see
for example Seidel [Sei95]) that such a representation can be
represented with O(n2 logn) bits, in the form of a successor
matrix. (Alternatively, we may wish to compute the short-
est distances between every pair of nodes; our algorithm can
solve both problems.) As is typical, we work over the real
RAM model which has two kinds of registers: “real regis-
ters” holding elements of R, and “word registers” holding
(logn)-bit words, where additions and comparisons of two
real registers take unit time and arbitrary operations on two
word registers can be done in unit time.

Decades of work on the dense case of APSP (such
as [Flo62, War62, Fre75, Dob90, Tak91, Han04, Tak04,
Zwi04, Cha05, Han06, Cha07, HT12]) yielded only
log2−o(1) n factor improvements over the well-known O(n3)-
time solution, until recently, Williams [Wil14b] showed that
APSP can be solved in n3/2Ω(

√
logn) time with a Monte Carlo

algorithm. The paper [Wil14b] also proved that there is some
δ > 0 such that APSP can be solved in O(n3/2(logn)δ

) time
deterministically, using a deterministic polynomial transfor-
mation due to Beigel and Tarui [BT94]. However, the value
of δ was left undetermined; straightforward calculation indi-
cates that δ ≤ 1/4. In this paper, we design a deterministic
algorithm that runs in roughly the same time as the random-
ized algorithm:

THEOREM 1.1. APSP on n-node weighted graphs can be
solved in n3/2Ω(

√
logn) time deterministically.

1.2 Deterministic Orthogonal Vectors and Applications

We can also derandomize algorithms for another category
of problems that have been successfully attacked with the
polynomial method.

In the BATCH PARTIAL MATCH problem, we are given
a database D of n points in {0,1}d and a set Q of n queries
in {0,1,?}d ; we wish to find for all q ∈ Q a point x ∈ D that
matches all the non-star characters in q (or, report that no x
exists). Equivalently, in BATCH BOOLEAN ORTHOGONAL
VECTORS, the database D is a set of vectors from {0,1}d

and Q is a set of vectors in {0,1}d ; we wish to determine for
all q ∈ Q if there is a v ∈D such that 〈q,v〉= 0. Yet another
equivalent problem is BATCH SUBSET QUERIES: given a
database D of n subsets of [d] and n queries Q which are
subsets of [d], determine for all S ∈ Q if there is a T ∈ D
such that S ⊆ T . These problems capture extremely basic
yet difficult aspects of search, and have a long history (see
[Riv74] and Section 6.5 of [Knu73]).

In the LONGEST COMMON SUBSTRING WITH WILD-
CARDS problem, we are given two strings S,T ∈ (Σ∪{?})n;
we wish to find the longest string over Σ that matches both a
contiguous substring of S and a contiguous substring of T in
the non-star characters.

In the DNF BATCHED EVALUATION problem, we are
given a DNF formula F with d variables and t terms, and
v different assignments; we wish to evaluate F on all v
assignments.

It was shown by Abboud, Williams, and Yu [AWY15]
that the difficulties in solving all the above problems stem
from an apparently much simpler problem:

DEFINITION 1.1. (BOOLEAN ORTHOGONAL VECTORS)
Given n vectors in {0,1}c logn, are there distinct
u,v ∈ {0,1}c logn such that 〈u,v〉= 0 (over the integers)?

The problem can be easily solved in O(cn2 logn) time,
or in O(nc+1) time; it cannot be solved in n1.999 time for
all constants c ≥ 1, unless the Strong Exponential Time
Hypothesis is false [Wil04, WY14]. Abboud, Williams
and Yu [AWY15] showed that BOOLEAN ORTHOGONAL
VECTORS can in fact be solved in n2−1/O(logc) time with a
Monte Carlo algorithm, using the probabilistic polynomial
method. This algorithm was used to derive faster algorithms
for all aforementioned problems. We derandomize their
algorithm, and in fact derive a stronger result: we can count
the number of solutions in essentially the same running time.

THEOREM 1.2. Given n vectors in {0,1}c logn for any c ≤
2o(logn/ log logn), the number of distinct u,v ∈ {0,1}c logn such
that 〈u,v〉= 0 can be counted in n2−1/O(logc) time determin-
istically.

Applying the reductions of Abboud, Williams, and
Yu [AWY15], we immediately obtain:

COROLLARY 1.1. The following problems can be solved
deterministically:

• BATCH BOOLEAN ORTHOGONAL VECTORS, BATCH
PARTIAL MATCH, and BATCH SUBSET QUERIES in
n2−1/O(logc) time for d = c logn with c≤ 2o(logn/ log logn).
• LONGEST COMMON SUBSTRING WITH WILDCARDS

in n2/2Ω(
√

logn) time.



• DNF BATCHED EVALUATION in v ·t1−1/O(logc) time for
t ≤ v and d = c log t with c≤ 2o(log t/ log log t).

The fact that we can count solutions (and not just detect
them) permits some new applications. For example:

COROLLARY 1.2. The number of satisfying assignments to
a CNF formula with cn clauses and n variables can be
computed in 2n−n/O(logc) time deterministically for any c ≤
2o(n/ logn).

THEOREM 1.3. Let k ≥ 3 be a constant. The number of
satisfying assignments to a k-CNF formula with n variables
can be computed in 2n−n/O(k) time deterministically for any
constant k.

The theorem resolves an open problem posed by Rahul
Santhanam [HPSW13], who was motivated by the question
of whether algorithms for counting k-SAT solutions could be
made as competitive as algorithms for k-SAT. Impagliazzo,
Matthews, and Paturi [IMP12] gave Las Vegas randomized
algorithms for counting CNF-SAT with n variables and
cn clauses in 2n−n/O(logc) time, and for counting k-SAT
in 2n−n/O(k) time. The best general deterministic k-SAT
algorithms we could find in the literature are Dubois [Dub91]
and Zhang [Zha96] who count solutions to k-SAT instances
in 2n−n/O(2k) time. This is much worse than our bound (the
running time converges to 2n much faster).

1.3 Counting High-Dimensional Dominances in Sub-
quadratic Time

Given a set of red vectors and a set of blue vectors in Rd ,
a RED-BLUE DOMINATING PAIR is a pair of red and blue
vectors (r,b) such that r[i]< b[i] for all coordinates i.

Impagliazzo et al. [ILPS14] gave an n2−1/poly(c) time al-
gorithm for detecting or counting red-blue dominating pairs
for n vectors in Rc logn; the runtime was subsequently refined
to n2−1/O(c log2 c) by Chan [Cha15]. For dimensions greater
than poly(logn) this yields no improvement over exhaus-
tively trying all pairs. On the other end of the dimensionality
spectrum, an elegant algorithm of Matoušek [Mat91] can be
used to enumerate all dominating pairs in d ≤ n dimensions
in O(n(3+ω)/2) ≤ O(n2.69) time. For very high dimensions,
this method improves on O(n2d) time substantially. It is pos-
sible to make Matoušek’s time bound sensitive to d by using
rectangular matrix multiplication, but the method inherently
requires Ω(n2) time even for the detection or counting prob-
lem.

We can extend our method for counting orthogonal pairs
of vectors to counting dominating pairs in high dimensions,
noticeably faster than enumerating them:

THEOREM 1.4. For all d ≤ 2c
√

logn for a sufficiently small
constant c, we can deterministically count the number of
RED-BLUE DOMINATING PAIRS for n vectors in Rd in
n2/2Ω(

√
logn) time.

2 The Main Polynomial Construction: SUM of ORs

The key to our new algorithms is a succinct deterministic
algebraic expression for the following function, which is re-
peatedly computed (with different parameters) in straightfor-
ward algorithms for all of the problems mentioned in this
paper. Let d1,d2 be positive integers. Define the function
SUM-ORd1,d2 : {0,1}d1·d2 →{0, . . . ,d1} as

SUM-ORd1,d2(x1,1, . . . ,x1,d2 , . . . . . . ,xd1,1, . . . ,xd1,d2)

:=
d1

∑
i=1

(
d2∨
j=1

xi, j

)
.

That is, SUM-ORd1,d2 computes d1 ORs on d2 disjoint
inputs, and returns the number of ORs that are true.

The following theorem states that we can determinis-
tically produce a “somewhat short” multilinear polynomial
simulating SUM-ORd1,d2 .

THEOREM 2.1. Let d1,d2 be positive integers such that
10log(d1 · d2) < d2. There are integers ` = 5log(d1 · d2),
M≤ poly(d1,d2), and a polynomial Pd1,d2 in d1 ·d2 variables
over Z with m ≤

(d2
2`

)
· poly(d1 · d2) monomials, such that

for all ~x ∈ {0,1}d1d2 , SUM-ORd1,d2(~x) equals the nearest
integer to (Pd1,d2(~x) mod 2`)/M. Furthermore, Pd1,d2 can be

constructed in poly(d1) ·
(d2+1

`

)2
time.

For a concrete example of the theorem (which will also
be useful in the case of APSP), let d := d1 = d2. Then
Theorem 2.1 says:

COROLLARY 2.1. (OF THEOREM 2.1) In 2O(log2 d) time,
we can build a polynomial Pd,d over Z simulating
SUM-ORd,d (in the above sense) with only 2O(log2 d) mono-
mials.

In comparison, a deterministic polynomial exactly rep-
resenting SUM-ORd,d over Z requires Ω(2d) monomials (in-
deed, the OR function requires this many). The construction
of Theorem 2.1 uses two mathematical ingredients, which
we now introduce and motivate.

Small-bias sets. The Razborov–Smolensky [Raz87,
Smo87] probabilistic polynomial for OR boils down to the
following observation: for any non-zero vector v ∈ {0,1}n,
if r ∈ {0,1}n is a uniform random vector,

Pr
r
[〈v,r〉= 0 over F2] = 1/2.



This “random XOR” fact is frequently utilized in complexity
theory (cf. Arora and Barak [AB09]). We would like to
substitute the uniform random choice of r with deterministic
choices. Trying all possible vectors r isn’t efficient, however,
since the sample space of possible vectors has size 2n. Our
first observation is that the sample space can be reduced
considerably while achieving a similar property, using ε-
biased sets:

DEFINITION 2.1. (NAOR AND NAOR [NN93]) Let
ε ∈ (0,1/2). A set S ⊆ {0,1}n of n-dimensional vec-
tors is ε-biased if for all non-zero v ∈ {0,1}n,

Pr
w∈S

[〈v,w〉= 0 over F2] ∈ (1/2− ε,1/2+ ε).

By the above observation, the set S= {0,1}n is 0-biased.
An ε-biased set of small cardinality can be used to “simu-
late” the behavior of a uniform random XOR. Several deter-
ministic constructions of ε-biased sets are known; for con-
creteness, let us cite a particular one with good dependence
on n and ε:

THEOREM 2.2. (ALON et al. [AGHP92]) For every posi-
tive integer n and ε ∈ (0,1/2), there is an ε-biased set Sn,ε ⊆
{0,1}n of cardinality Õ(n2/ε2), constructible in poly(n/ε)
time.

Modulus-amplifying polynomials. Small-bias sets let
us substitute a completely random vector in a mod-2 inner
product with an enumeration over a polynomial-sized set
of vectors. Our second ingredient aids this enumeration:
it is a special univariate polynomial F̀ (x) of degree 2`− 1
(for a parameter `) that, given an integer a which is odd,
F̀ (a) equals 1 mod 2`, else F̀ (a) equals 0 mod 2`. This
polynomial F̀ lets us tally up a collection of “modulo 2”
sums over Z, by computing F̀ (A1) + · · ·+ F̀ (Ak) where
the Ai are various sums to be computed modulo 2. Such
polynomials are called modulus-amplifying [Yao90], and
were critical in both the proof of Toda’s theorem [Tod91]
(that the polynomial hierarchy is contained in P#P) and a
famous depth-reduction theorem for ACC0 circuits [BT94].

THEOREM 2.3. (BEIGEL AND TARUI [BT94]) For every
positive integer `, the degree 2`−1 polynomial

F̀ (y) = 1− (1− y)`
`−1

∑
j=0

(
`+ j−1

j

)
y j(2.1)

has the property that for all y ∈ Z,
• if y mod 2 = 1 then F̀ (y) mod 2` = 1, and
• if y mod 2 = 0 then F̀ (y) mod 2` = 0.

In what follows, we will also use the fact that

F̀ (0) = 1− (1−0)`
`−1

∑
j=0

(
`+ j−1

j

)
0 j = 0.(2.2)

The SUM-OR polynomial. We are now prepared to
prove Theorem 2.1.

Proof of Theorem 2.1. Let S⊆{0,1}d2 be a 1/(4d1)-biased
set; Theorem 2.2 guarantees that S can be constructed in
poly(d1 ·d2) time and that |S| ≤ Õ((d1 ·d2)

2). Set M := |S|/2
and ` := 5log(d1 ·d2). Define

Pd1,d2(x1,1, . . . ,x1,d2 , . . . . . . ,xd1,1, . . . ,xd1,d2)

:=
d1

∑
i=1

∑
v∈S

F̀

(
d2

∑
j=1

v[ j] · xi, j

)
,

where F̀ (x) is the modulus-amplifying polynomial of (2.1)
guaranteed by Theorem 2.3.

Let us first describe how to construct Pd1,d2 efficiently.

Let Gi = F̀
(

∑
d2
j=1 v[ j] · xi, j

)
. Each Gi has d2 variables and

degree 2`−1. Notice that without loss of generality, we can
make each Gi a multilinear polynomial of the same degree,
since x2

i = xi over {0,1}. Therefore the total number of
monomials in each Gi can be upper-bounded by

mi =
2`−1

∑
j=0

(
d2

j

)
≤ O

((
d2

2`−1

))
,

where the above inequality holds when 2`−1 < d2/2.
Producing a multilinear version of each Gi can

be done in Õ
((d2+1

`

)2)
time, as follows. First, ex-

pand s j =
(

∑
d2
j=1 v[ j] · xi, j

) j
for j = 0, . . . , ` and s`+1 =(

1−∑
d2
j=1 v[ j] · xi, j

)`
into a multilinear sum of products,

each of which can be produced in Õ
((d2+1

`

))
time. Then,

multiply s`+1 and s j for j = 0, . . . , `− 1, and each of these

products can be done in Õ
((d2+1

`

)2)
time. (Computing

the coefficients
(`+ j−1

j

)
can easily be done in poly(`) ≤

poly(log(d1 · d2)) time.) Finally, since Pd1,d2 is just a sum
of O(d3

1 ·d2
2) Gi’s, the total number of monomials in Pd1,d2 is

O
(

d3
1d2

2 ·
( d2

2`−1

))
.

Now we argue for the correctness of Pd1,d2 . For all
i = 1, . . . ,d1,
• If

∨d2
j=1 xi, j is true, then the vector (xi,1, . . . ,xi,d2) is non-

zero. Since S is ε-biased,

Pr
v∈S

[
d2

∑
j=1

v[ j] · xi, j = 1 over F2

]
∈ (1/2− ε,1/2+ ε).

Since F̀ is modulus-amplifying, it follows that

Yi := ∑
v∈S

F̀

(
d2

∑
j=1

v[ j] · xi, j

)



is congruent to an integer in the interval
((1/2− ε)|S|,(1/2+ ε)|S|), modulo 2`.

• On the other hand, if
∨d2

j=1 xi, j is false, then since
F̀ (0) = 0 (by (2.2)) we have

Yi = ∑
v∈S

F̀

(
d2

∑
j=1

v[ j] · xi, j

)
= 0.

For notational simplicity, let K = SUM-ORd1,d2(~x). It
follows from the above that, for all~x∈{0,1}d1·d2 , Pd1,d2(~x)=
∑

d1
i=1 Yi modulo 2` is congruent to an integer in the interval

((1/2− ε)|S| ·K, (1/2+ ε)|S| ·K).

Since ε = 1/(4d1) and 0≤ SUM-ORd1,d2(~x)≤ d1, the above
interval is contained in the interval

((1/2)|S|(K−1/2), (1/2)|S|(K +1/2)) .

Observe that 2` = (d1 ·d2)
5 > d1 · |S|. It follows that

(Pd1,d2(~x) mod 2`)
M

∈ (K−1/2, K +1/2) .

(Note that the statement is trivially true in the special case
when K = SUM-ORd1,d2(~x) = 0, i.e.,~x = 0.) �

3 A Deterministic APSP Algorithm

Our first application of the SUM-OR polynomial of Theo-
rem 2.1 is to solve all-pairs shortest paths deterministically.
We will use the polynomial simulating SUM-OR to evalu-
ate an extension of the SUM-OR function on many pairs of
points efficiently. The SUM-OR evaluation algorithm is then
used to efficiently compute min-plus matrix multiplication,
which is sufficient (and necessary) for solving APSP.

This approach is somewhat different from Williams’
randomized APSP algorithm [Wil14b], which worked with
expressions more complicated than SUM-OR, and reduced
those expressions to polynomials over F2. The fact that
APSP can be efficiently reduced to SUM-OR evaluation is
interesting in its own right.

Given vectors ~x,~y ∈ {0,1}m, let ~x ∗~y ∈ {0,1}m denote
their element-wise product.

COROLLARY 3.1. Given sets X ,Y ⊆ {0,1}d2
with |X | =

|Y |= n, SUM-ORd,d(~x∗~y) can be computed for every~x ∈ X
and ~y ∈ Y in n2 · poly(logn) deterministic time when d ≤
2c
√

logn, for some fixed constant c > 0.

Since this proof follows the pattern of prior work fairly
closely, we give only a sketch.

Proof. (Sketch) Let d ≤ 2O(
√

logn), and X ,Y ⊆ {0,1}d2
, with

|X | = |Y | = n. By Theorem 2.1, it suffices to evaluate
the polynomial Pd,d(~x ∗~y) with m ≤

( d
O(logd)

)
· poly(d) ≤

2O(log2 d) monomials over the ring Z/(2`Z), on all~x ∈ X and
~y ∈ Y , where `= O(logd).

Williams [Wil14b] proves that, given any polynomial
P(~x,~y) in 2d2 variables and m≤ n0.1 monomials over a field
F, we can evaluate P on all~x∈ X and~y∈Y in n2 ·poly(logn)
arithmetic operations, by reducing the problem to evaluating
P on an n×m and m× n rectangular matrix multiplication
over F. There is a minor complication in applying this
result, because we need to evaluate Pd,d(~x∗~y) over Z/(2`Z),
which is not a field. However, by inspection there is a
fixed c0 ≥ 1 such that, for all ~x,~y ∈ {0,1}d2

, Pd,d(~x ∗~y) ∈
[−dc0 logd ,dc0 logd ]. Therefore, without loss of generality it
suffices to compute the value of Pd,d on all (~x,~y) pairs over a
prime field Fp, where p ∈ [2c0 log2 d ,21+c0 log2 d ]. The rest of
the computations (the remainders modulo 2`, and divisions
by M) can then be computed over Z in poly(logd) time, for
each (~x,~y) pair.

Hence the SUM-OR evaluation problem can be reduced
to the multiplication of an n× 2O(log2 d) and an 2O(log2 d)× n
matrix over Fp, where each entry requires O(log2 d) bits.
For c > 0 sufficiently small, setting d := 2c

√
logn implies

that m ≤ n0.1. By known results on rectangular matrix
multiplication [Cop82] over fields, we can multiply an n×
n0.1 and n0.1×n matrix over Fp in n2 ·poly(logn) time. �

Our APSP algorithm reduces APSP to the above
SUM-OR evaluation problem of Corollary 3.1.

Reminder of Theorem 1.1 APSP on n-node weighted
graphs can be solved in n3/2Ω(

√
logn) time deterministi-

cally.

Proof. Let A,B ∈ Rn×n. Recall that the min-plus matrix
multiplication of A and B is the n×n matrix

(A?B)[i, j] := min
k=1,...,n

(A[i,k]+B[k, j]) .

First, it is well-known ([Mun71, FM71, AHU74]) that a
T (n)-time algorithm for min-plus matrix multiplication im-
plies an O(T (n))-time algorithm for APSP. Furthermore, it
is also easy to see ([Fre75]) that if the min-plus matrix prod-
uct of n×d and d×n matrices (with d ≤ n) is computable in
T ′(n) time, then the min-plus matrix product of n×n matri-
ces can be computed in O

( n
d ·T

′(n)
)

time, by simply parti-
tioning the given n×n matrices into n/d matrix products of
dimensions n×d and d×n.

We show how to efficiently reduce the min-plus product
of an n× d matrix A and a d × n matrix B to the SUM-
OR evaluation problem of Corollary 3.1. Let c > 0 be



the constant guaranteed in Corollary 3.1; our reduction
will yield an n2 · poly(logn) time algorithm for min-plus
matrix product of n×2(c/4)

√
logn and 2(c/4)

√
logn×n matrices;

by the previous paragraph, it will follow that APSP is in
O(n3/2(c/4)

√
logn) time.

Set d := 2(c/4)
√

logn. Fix an index q∈ [logd].1 It suffices
to describe how to compute, for every pair i, j ∈ [n], the q-
th bit of the index ki, j ∈ [d] that minimizes A[i,k] +B[k, j].
(From this, we can compute all logd bits of ki, j for all i, j,
and recover the min-plus matrix product.) We call this q-th
bit cq

i j in the following.
Our reduction to SUM-OR evaluation requires some

precomputation. Let Kq be the set of all indices in [d] having
their q-th bit equal to 1. For k,k′ ∈ [d], let Lk,k′ be the sorted
list of 2n elements containing A[i,k]−A[i,k′] for all i ∈ [n]
and B[k′, j]−B[k, j] for all j∈ [n]. These lists are computable
in O(d2 ·n logn) time. Let r(i)k,k′ be the rank of A[i,k]−A[i,k′]

in Lk,k′ , and let s( j)
k,k′ be the rank of B[k′, j]−B[k, j] in Lk,k′ .

By Fredman’s trick [Fre75] that A[i,k] + B[k, j] >
A[i,k′] + B[k′, j] implies A[i,k]− A[i,k′] > B[k′, j]− B[k, j],
we have

(¬cq
i j) =

∧
k∈Kq

∨
k′∈[d]

[r(i)k,k′ > s( j)
k,k′ ],

where [P] outputs 1 if property P is true, and 0 otherwise.
Hence it suffices to compute the above AND of ORs of
comparisons, over all i, j ∈ [n].

We will use a SUM-OR evaluation to compute some
of the cq

i, j’s, and use a counting argument to directly com-

pute the rest. Let D := 2(3c/4)
√

logn, and observe that
d · D = 2c

√
logn. The key idea is to compare rank val-

ues with multiples of n/D, which partition [2n] into O(D)
“buckets”—this idea is inspired by Matoušek’s dominance
algorithm [Mat91], which will play a role again later in Sec-
tion 6 (the observation that APSP is related to solving multi-
ple dominance problems was noted, e.g., in [Cha05]). More
precisely, for each ` ∈ [2 ·D], define the Boolean values

x(i)k,k′,` = [r(i)k,k′ > `n/D] and y( j)
k,k′,` = [s( j)

k,k′ ≤ `n/D].

Observe that all x(i)k,k′,` and y( j)
k,k′,` can be computed in O(n ·D ·

d2) time. We then compute for all i, j

eq
i, j = ∑

k∈Kq

 ∨
k′∈[d],`∈[D]

(x(i)k,k′,`∧ y( j)
k,k′,`)

 .

Since d · D = 2c
√

logn, the ORs of eq
i, j are over 2c

√
logn

variables. The outer sum is over |Kq| ≤ d ≤ 2(c/5)
√

logn ORs.

1[m] denotes {1, . . . ,m}.

Therefore eq
i, j can be computed in n2 ·poly(logn) time for all

i, j ∈ [n], by applying Corollary 3.1.

Let (i, j) ∈ [n]2. Call the pair (i, j) bad if r(i)k,k′ and

s( j)
k,k′ both lie in a common interval ((`− 1)n/D, `n/D] for

some k,k′ ∈ [d], ` ∈ [2 ·D]. If (i, j) is not bad, then note
that (¬cq

i, j) = 1 ⇐⇒ eq
i, j = |Kq|, so our computation of eq

i, j
decides the bit cq

i, j for all not-bad pairs (i, j).

Now we consider the bad pairs. Each bad pair (i, j)
can be specified by choosing k,k′ (specifying Lk,k′ ), then
choosing ` ∈ [2 ·D] and two numbers in the interval ((`−
1)n/D, `n/D]. Hence the number of bad pairs is at most
O(d2 ·D · (n/D)2)≤ O(d2n2/D). Enumerating over all such
choices, we can compute cq

i, j for each bad pair (i, j) by
directly computing mink(A[i,k] +B[k, j]), in O(d) time per
pair. Hence the bad pairs can be enumerated in O(d3n2/D)
time.

Therefore for d = 2(c/4)
√

logn, the bad pairs can be
enumerated in O(n2) time by our choice of D. It follows that
we can compute the min-plus product of the n× d matrix
A and d× n matrix B in n2 · poly(logn) deterministic time.
From the above discussion, it follows that APSP can be
solved in n3/2Ω(

√
logn) deterministic time. �

4 A Deterministic Orthogonal Vectors Algorithm

We now turn to derandomizing the algorithms of Abboud,
Williams, and Yu [AWY15]. An algorithm for BOOLEAN
ORTHOGONAL VECTORS can be directly derived from the
following theorem:

THEOREM 4.1. For every positive c≤ 2o(logn/ log logn), there
is a constant k ≥ 1 such that for s = n1/(k logc) the following
holds. Let S = {u1, . . . ,us} and T = {v1, . . . ,vs} be two sets
of (c logn)-dimensional Boolean vectors. The number of
ui ∈ S and v j ∈ T such that 〈u,v〉= 0 can be computed by a
multilinear polynomial Qs(u1, . . . ,us,v1, . . . ,vs) in s2 · c logn
variables and O(n0.1) monomials, over Z. Furthermore, the
polynomial Qs can be constructed in time O(n0.2+1/Ω(logc)).

Proof. Let S = {u1, . . . ,us} and T = {v1, . . . ,vs}. We wish to
sum, over all s2 pairs of vectors ui and v j from S and T , the
value of

∨
k(ui[k] · v j[k]); this will exactly count the number

of non-orthogonal pairs (ui,v j). The function we wish to
compute is precisely

SUM-ORs2,c logn(u1 ∗ v1,u1 ∗ v2, . . . ,u1 ∗ vs, . . .

. . . ,us ∗ v1,us ∗ v2, . . . ,us ∗ vs),

where u∗ v ∈ {0,1}c logn is the component-wise product of u
and v. By Theorem 2.1, this function is computable with a
polynomial Ps2,c logn with a number of monomials equal to

m≤
(

2c logn
O(logs+ log logn)

)
·poly(s2 · c logn),



and Ps2,c logn can be constructed in poly(s) ·
( 2c logn+1

O(logs+log logn)

)2

time.
Setting s = n1/(k logc) for a fixed and sufficiently large

constant k, the number of monomials is at most

poly(n1/(k logc), logn) ·
(

2c logn
10((logn)/(k logc)+ log logn)

)

≤ nO(1)/(k logc) ·

(
2ec logn

10logn
k logc

) 10logn
k logc

,

due to c≤ 2o(logn/ log logn), and the inequality
(n

K

)
≤ (en/K)K .

Finally, the above quantity is less than

nO(1)/(k logc) · (ck logc)10(logn)/(k logc)

≤ nO(1)/(k logc) ·n10log(ck logc)/(k logc)

≤ nO(1)/(k logc) ·n10/k+(logk)/(k logc)+(log logc)/(k logc)

≤ k ·n0.1,

for sufficiently large constant k. �

Armed with Theorem 4.1, the orthogonal pairs counting
algorithm follows from previous arguments.

Reminder of Theorem 1.2 Given n vectors in {0,1}c logn

for any c ≤ 2o(logn/ log logn), the number of distinct u,v ∈
{0,1}c logn such that 〈u,v〉= 0 can be counted in n2−1/O(logc)

time deterministically.

Proof. (Sketch) Analogous to [AWY15]. We partition the
set of n vectors into O(n/s) groups of at most s vectors
each. Theorem 4.1 constructs a polynomial Qs in O(n0.1)
monomials such that, for any pair of groups, we can count the
number of orthogonal pairs among the pair of groups with
a single evaluation to Qs. Therefore the counting problem
reduces to evaluation of Qs on all O(n2/s2) pairs of groups.
As in the proof of Corollary 3.1, this evaluation of Qs can
be computed using a multiplication of an n/s× n0.1 and
n0.1×n/s matrix, where s = n1/O(logc).

By inspection, the value of Qs over all Boolean inputs is
always an integer in the range [d−c0(logs+logd),dc0(logs+logd)],
for a sufficiently large constant c0 > 0. Therefore, our matrix
multiplication can be performed over a field of characteristic
greater than dc0(logs+logd), analogously to the proof of Corol-
lary 3.1. By known results [Cop82], the matrix multiplica-
tion takes (n2/s2) ·poly(logd, logn)≤ n2−1/O(logc) time, and
recovering the number of orthogonal pairs from the resulting
matrix entries can be done efficiently. �

5 Counting SAT Assignments Deterministically

The ability to count the number of orthogonal pairs yields
some new applications, such as faster deterministic algo-
rithms for counting satisfying assignments to CNF formulas.

Reminder of Corollary 1.2 The number of satisfying as-
signments to a CNF formula with cn clauses and n variables
can be computed in 2n−n/O(logc) time deterministically for
c≤ 2o(n/ logn).

Proof. (Sketch) A simple reduction of Williams [Wil04]
takes a CNF F with cn clauses and n variables and produces
an orthogonal vectors instance with O(2n/2) vectors in 2+
cn dimensions, such that the number of orthogonal pairs
equals the number of satisfying assignments to F . The
result then follows from the orthogonal vectors algorithm
(Theorem 1.2). �

We cite the next consequence as a “theorem” rather than
a “corollary”, as it does not immediately follow from the
counting algorithm for orthogonal vectors.

Reminder of Theorem 1.3 The number of satisfying assign-
ments to a k-CNF formula on n variables can be computed
in 2n−n/O(k) time deterministically for any constant k.

Proof. Given a k-CNF formula F on n variables and m
clauses, let {C1, . . . ,Cm} be its set of clauses, and let #(F)
denote its number of satisfying assignments. Note that m ≤
O(nk), without loss of generality.

Instead of reducing to the orthogonal vectors problem
(in which the clause width k is lost in the reduction) we work
directly with F . In particular, we consider the following ex-
pression which counts the number of falsifying assignments
(2n−#(F)):

∑
a1,...,an∈{0,1}

(
m∨

i=1

pi(a1, . . . ,an)

)
,(5.3)

where the ∨ is an OR outputting 0 or 1, and pi is a function
such that

p(a1, . . . ,an) = 0 if (a1, . . . ,an) satisfies Ci

p(a1, . . . ,an) = 1 if (a1, . . . ,an) does not satisfy Ci.

Since Ci has at most k literals, each pi can easily be
defined as a polynomial of degree at most k. For example,
if Ci = {x1,¬x2,x3} then pi(x1, . . . ,xn) = (1−x1)x2(1−x3).

Let δ ∈ (0,1) be a parameter, and define the (1− δ )n-
variate expression

P(x1, . . . ,xn(1−δ )) := ∑
a1,...,aδn∈{0,1}

m∨
i=1

pi(a1, . . . ,an).(5.4)

Then it is clear that

∑
b1,...,bn−δn∈{0,1}

P(b1, . . . ,bn(1−δ ))

= ∑
a1,...,an∈{0,1}

m∨
i=1

pi(a1, . . . ,an).



So to compute #(F), it suffices to evaluate P(x1, . . . ,xn(1−δ ))

on all 2n(1−δ ) Boolean assignments.
Set ` := 5(δn+ logm), and ε := 1/(4 ·2δn). Let Sm,ε ⊆

{0,1}m be an ε-biased set of size Õ(m2/ε2) (from Theo-
rem 2.2), and let F̀ (x) be a modulus-amplifying polynomial
of degree ` (from Theorem 2.3). By Theorem 2.1, comput-
ing the expression P(x1, . . . ,xn(1−δ )) of (5.4) on a Boolean
assignment is equivalent to computing the polynomial

∑
a1,..,aδn∈{0,1}

∑
~r∈Sm,ε

F̀

(
m

∑
i=1

ri · pi(x1, . . . ,xn(1−δ ),a1, . . . ,aδn)

)
.

(5.5)

For every vector~r =(r1, . . . ,rm)∈ Sm,ε , each term F̀ (∑m
i=1 ri ·

pi(x1, . . . ,xn(1−δ ),a1, . . . ,aδn)) can be written as a mul-
tilinear polynomial in n(1 − δ ) variables, of degree at
most (2`− 1) · k. Therefore we can expand the expres-
sion 5.5 into a sum of monomials, in time no more than
O?
(

2δn · |Sm,ε | ·∑(2`−1)·k
i=0

(n(1−δ )
i

))
.2 When

(2`−1) · k < n(1−δ )/2,(5.6)

the time for converting (5.5) into a sum of monomials is at
most

O?

(
2δn · |Sm,ε | ·

(
n

(2`−1) · k

))
.

This time bound can be achieved by “slowly” producing
(5.5): inside of each F̀ , we compute the powers of sums
by multiplying one factor at a time (no repeated squaring).

Since it is now a sum of monomials, we can now evalu-
ate the polynomial of (5.5) on all 2n−δn Boolean assignments
to its variables in only O?(2n(1−δ )) time, using a simple
divide-and-conquer strategy (cf. [Wil11]) or Yates’ dynamic
programming algorithm (cf. [BHK09], Section 2.2). There-
fore we can count the number of satisfying assignments to F
in time

O?

(
2n(1−δ )+2δn · |Sm,ε | ·

(
n(1−δ )

(2`−1) · k

))
≤ O?

(
2n(1−δ )+m223δn ·

(
n(1−δ )

10(δn+ logm) · k

))
.

Supposing δ := 1/(ck) for some sufficiently large constant
c > 1, inequality 5.6 holds, and the running time is upper
bounded by O?(2n(1−1/(ck))). In particular, the running time
for constructing the (n− δn)-variate polynomial (modulo
poly(n,m) factors) is at most

22n/(ck) ·
(

n(1−1/(ck))
10n/c+10k logm

)
.

2The O? notation omits poly(n) factors from the running time.

Letting c = 30, the above is at most

2n/(15k) ·
(

n(1−1/(30k))
n/3+10k logm

)
< 2n/(15k)+.919n,

which is less than 2n(1−1/(30k)) for all k ≥ 2. (Note we have
made little attempt to optimize c.) �

6 A Dominance Counting Algorithm

In the last section, we show how to count dominances in
dimensions up to 2c

√
logn in subquadratic time. In particular,

we give a subquadratic-time reduction from RED-BLUE
DOMINATING PAIR with “short” n red and blue vectors in
Rd to BOOLEAN ORTHOGONAL VECTORS with n vectors
that are “somewhat short”:

THEOREM 6.1. If counting BOOLEAN ORTHOGONAL
VECTORS with n vectors in d dimensions is in T (n,d)
time, then for any given s ≤ n, counting RED-BLUE
DOMINATING PAIRS with n red and blue vectors in Rd

is in O(n2d2/s + T (n,2 + ds)) time. In particular, the
reduction maps a RED-BLUE DOMINATING PAIR instance
to a BOOLEAN ORTHOGONAL VECTORS instance with n
Boolean vectors in 2+ds dimensions.

Proof. For each i ∈ [d], sort the 2n numbers in coordinate
i from all red and blue vectors in O(n logn) time. Replace
these numbers with their ranks in sorted order, using the
ordering red < blue to break ties. Let this ordered list of
coordinates be Li. Partition Li into s contiguous “buckets”
with O(n/s) elements in each bucket. We count two disjoint
kinds of dominating pairs:

1. First we count dominating pairs of vectors (r,b) with
a coordinate i such that r[i] and b[i] are in the same bucket
of Li. These pairs can be counted in O(n · d · (n/s) · d) =
O(n2d2/s) time, by enumerating all n red vectors r′, all d
coordinates i′, and all blue vectors b′ in the bucket defined
by r′ and i′, then computing directly if b′ dominates r′. Note
we can store the list of all pairs found to avoid overcounting.

2. Second, we count dominating pairs (r,b) such that
for all coordinates i, r[i] and b[i] appear in different buckets.
Here we can follow a similar strategy as in an algorithm by
Matoušek [Mat91] (who reduced a similar case to matrix
multiplication). For those (r,b) pairs, we can replace their
coordinates in [2n] with the indices of the buckets they
appear in, which are numbers in [s]. Then we can reduce
to counting orthogonal pairs of Boolean vectors, but in
dimension 2 + d · s instead: for each coordinate i ∈ [d] of
each red vector r, replace r[i] with the standard basis vector
e j ∈ {0,1}s, where j is the index of the bucket of Li that
contains r[i]. For each blue vector b and coordinate i, replace
b[i] with the 0-1 vector ∑k≥ j′ ek of length s, where j′ is the
index of the bucket of Li that contains b[i]. Finally, append



two more coordinates onto each vector: append 1,0 to the
red vectors, and 0,1 to the blue vectors.

We claim that the number of orthogonal pairs in this in-
stance of 2 + d · s dimensions equals the number of dom-
inating pairs of this second kind; this follows because
〈e j,∑k≥ j′ ek〉 = 0 (over the integers) if and only if j < j′ —
this corresponds to the case where r[i] is in a strictly smaller
bucket than b[i]. �

Setting s to balance the factors of n2d2/s and T (n,2+
ds), we obtain a new time bound for counting dominances in
high dimensions:

Reminder of Theorem 1.4 For all d ≤ 2c
√

logn for a
sufficiently small constant c, we can deterministically count
the number of RED-BLUE DOMINATING PAIRS for n vectors
in Rd in n2/2Ω(

√
logn) time.

Proof. Applying the algorithm for counting orthogonal vec-
tors of Theorem 1.2 to the reduction of Theorem 6.1, we ob-
tain an algorithm for counting dominances that runs in time

O
(

n2d2/s+n2−1/O(log(ds/(logn))
)
.

Setting s := 23c
√

logn for d ≤ 2c
√

logn, we obtain the claimed
bound. �

7 Conclusion

We have shown that randomness is not essential to the recent
algorithmic applications of the polynomial method, despite
the fact that randomness and/or approximation are necessary
in circuit lower bound proofs via the polynomial method. Let
us highlight a few interesting further directions.
• In our construction of the SUM-OR polynomial (The-

orem 2.1), we composed the output of the OR func-
tion with a univariate polynomial F̀ of degree 2`− 1.
This led to a polynomial with about

(d2
2`

)
monomi-

als. Is there a sparser polynomial representation for
SUM-OR? Such a polynomial would yield even faster
algorithms, since in our applications we only care about
the number of monomials in the polynomial.
• We have derandomized all algorithms of [Wil14b,

AWY15, Wil14a]. In recent work [AW15], new prob-
abilistic polynomials yield a subquadratic time algo-
rithm for a nearest neighbor problem: for any constant
c, given n red and blue Boolean vectors in c logn dimen-
sions, the closest red-blue pair in the Hamming met-
ric can be computed in n2−1/O(c log2 c) randomized time.
However, the new polynomial construction is very dif-
ferent from Razborov-Smolensky, and we do not know
how to derandomize it. Computing Hamming closest
pairs in deterministic subquadratic time looks like a
challenging open problem.

• Our algorithm for counting dominances in high dimen-
sions also has applications to solving NP-hard prob-
lems: by a reduction of Impagliazzo, Paturi, and Schei-
der [IPS13] (Corollary 4.2), it follows that we can
also count solutions to arbitrary 0-1 integer linear pro-
grams of up to 2o(

√
n) linear inequalities in 2n−Ω(

√
n)

time. Consider the following generalization: allow real-
valued “weights” wi on the coordinates of u’s and v’s,
and for a threshold value t ∈ R, count the number of
pairs (u,v) such that(

∑
k

wk · [u[k]≤ v[k]]

)
> t.

The ability to count “weighted thresholds of domi-
nances” in subquadratic time would yield a faster algo-
rithm for counting satisfying assignments to depth-two
threshold circuits, which would (likely) imply depth-
two circuit lower bounds [Wil14c].
Acknowledgments. We thank Rahul Santhanam,

Huacheng Yu, and the anonymous referees for helpful
comments and discussions.
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