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ABSTRACT
We present a new framework for designing worst-case to average-

case reductions. For a large class of problems, it provides an explicit

transformation of algorithms running in time𝑇 that are only correct

on a small (subconstant) fraction of their inputs into algorithms

running in time 𝑂 (𝑇 ) that are correct on all inputs.
Using our framework, we obtain such efficient worst-case to

average-case reductions for fundamental problems in a variety of

computational models; namely, algorithms for matrix multiplica-

tion, streaming algorithms for the online matrix-vector multiplica-

tion problem, and static data structures for all linear problems as

well as for the multivariate polynomial evaluation problem.

Our techniques crucially rely on additive combinatorics. In par-

ticular, we show a local correction lemma that relies on a new

probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa

lemma.

CCS CONCEPTS
• Theory of computation → Problems, reductions and com-
pleteness; Cell probe models and lower bounds.
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1 INTRODUCTION
Worst-case to average-case reductions provide a method for trans-

forming algorithms that can only solve a problem for a fraction of

the inputs into algorithms that can solve the problem for all inputs.
For instance, consider one of the most fundamental algorithmic

problems: matrix multiplication. Suppose we have an average-case

algorithm ALG that can correctly compute the product𝐴 ·𝐵 on an 𝛼-

fraction of matrices𝐴, 𝐵 ∈ F𝑛×𝑛 ; that is, Pr[ALG(𝐴, 𝐵) = 𝐴 ·𝐵] ≥ 𝛼 .

Is it possible to use ALG to obtain an algorithm that computes 𝐴 · 𝐵
for all input matrices? A worst-case to average-case reduction will

give a positive answer to this question, boosting the success rate 𝛼
to 1, without incurring significant overhead. Of course, the same

question can be asked with respect to any other computational

problem.

In this paper, we study such reductions for average-case algo-

rithms where the success rate 𝛼 could be very small, such as in

the %1 regime, and even when 𝛼 tends to zero rapidly (i.e., for

algorithms that are only correct on a vanishing fraction of their

inputs). There are two natural perspectives in which we can view

such reductions. On the one hand, they can provide a proof that a

problem retains its hardness even in the average case. On the other

hand, they provide a paradigm for designing worst-case algorithms,

by first constructing algorithms that are only required to succeed

on a small fraction of their inputs, and then using the reduction to

obtain algorithms that are correct on all inputs.

Background and context. The study of the average-case complex-

ity originates in the work of Levin [31], and followup works such as

[8]. A long line of works established various barriers to designing

worst-case to average-case reductions for NP-complete problems

(see, e.g., [25, 26] and references therein). We refer the reader to the

classical surveys by Impagliazzo [24], Bogdanov and Trevisan [11],

and Goldreich [20] on this topic.

On the positive side, Lipton [32] proved that the matrix perma-

nent problem admits a polynomial-time worst-case to average-case

reduction. Ajtai [1] designed worst-case to average-case reduc-

tions for certain lattice problems, which led to constructions of effi-

cient cryptographic primitives from worst-case assumptions [2, 35].

Other number-theoretic problems in cryptography have been long

known to admit such reductions due to random self-reducibility:

the discrete logarithm problem, the RSA problem, and the quadratic

residuosity problem (see, e.g., [37]). For the matrix multiplication
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problem, there is a weak reduction that requires the average-case al-

gorithm to succeed with very high probability 3/4 (see Section 2.1).

There are also known worst-case to average-case reductions for

many problems that are not thought to be in NP [5, 18, 38].

Recently, the study of fine-grained complexity [39] of algorith-

mic problems sparked interest in designing efficient worst-case to
average-case reductions for such problems as orthogonal vectors,

3SUM, online matrix-vector multiplication, 𝑘-clique, and others.

Such reductions are motivated by fine-grained cryptographic ap-

plications. A large body of work is devoted to establishing fine-

grained worst-case to average-case reductions for the 𝑘-clique

problem, orthogonal vectors, 3SUM, and various algebraic prob-

lems, as well as building certain cryptographic primitives from

them [6, 7, 12, 16, 21, 30]. Since there are no known construc-

tions of one-way functions and public-key cryptography from

well-established fine-grained assumptions, the question of con-

structing efficient worst-case to average-case reductions for other

fine-grained problems still attracts much attention.

1.1 Our Contribution
We design a framework for showing explicit worst-case to average-

case reductions, and we use it to obtain reductions for fundamental

problems in a variety of computational models. Informally, we

show that if a problem has an algorithm that runs in time 𝑇 and

succeeds on 𝛼-fraction of its inputs (even for sub-constant success

rate 𝛼), then there exists a worst-case algorithm for this problem,

which runs in time𝑂 (𝑇 ). We design such reductions for the matrix

multiplication problem in the setting of algorithms, for the online

matrix-vector multiplication problem in the streaming setting, for

all linear problems in the setting of static data structures, and for

the problem of multivariate polynomial evaluation. We describe

these results in detail below.

1.1.1 Algorithms forMatrixMultiplication. Recall that in thematrix

multiplication problem, the goal is simply to compute the product

of two given matrices 𝐴, 𝐵 ∈ F𝑛×𝑛 . A long line of research, cul-

minating in the work of Alman and Vassilevska Williams [3], led

to matrix multiplication algorithms performing 𝑂 (𝑛2.37286) opera-
tions. We present a worst-case to average-case reduction for the

matrix multiplication problem over prime fields. Namely, we show

that if there exists a (randomized) algorithm that, given two ma-

trices 𝐴, 𝐵 ∈ F𝑛×𝑛 , runs in time 𝑇 (𝑛) and correctly computes their

product for a small fraction of all possible inputs, then there exists

a (randomized) algorithm that runs in 𝑂 (𝑇 (𝑛)) time and outputs

the correct answer for all inputs. Formally, we have the following

theorem.

Theorem 1. Let F = F𝑝 be a prime field, 𝑛 ∈ N, and 𝛼 B 𝛼 (𝑛) ∈
(0, 1]. Suppose that there exists an algorithm ALG that, on input two
matrices 𝐴, 𝐵 ∈ F𝑛×𝑛 runs in time 𝑇 (𝑛) and satisfies

Pr[ALG(𝐴, 𝐵) = 𝐴 · 𝐵] ≥ 𝛼 ,

where the probability is taken over the random inputs 𝐴, 𝐵 ∈ F𝑛×𝑛
and the randomness of ALG.

• If |F| ≤ 2/𝛼 , then there exists a randomized algorithm ALG′

that for every input 𝐴, 𝐵 ∈ F𝑛×𝑛 and 𝛿 > 0, runs in time

exp(𝑂 (log5 (1/𝛼)))
𝛿

·𝑇 (𝑛) and outputs 𝐴𝐵 with probability at least
1 − 𝛿 .

• If |F| ≥ 2/𝛼 , then there exists a randomized algorithm ALG′ that
for every input𝐴, 𝐵 ∈ F𝑛×𝑛 and 𝛿 > 0, runs in time𝑂 ( 1

𝛿 ·𝛼4
·𝑇 (𝑛))

and outputs 𝐴𝐵 with probability at least 1 − 𝛿 .

For example, if we have an algorithm that succeeds on 𝛼 fraction

of the inputs for 𝛼 > exp(− 6

√
log(𝑛)) in time 𝑇 (𝑛) = 𝑛𝑐 , then we

get an algorithm that works for all inputs and runs in time 𝑛𝑐+𝑜 (1) .
In particular, if we have an 𝑛2+𝑜 (1) algorithm that succeeds on

𝛼 > exp(− 6

√
log(𝑛)) fraction of the inputs, then there is a worst

case algorithm with running time 𝑛2+𝑜 (1) .

1.1.2 Data Structures for All Linear Problems. The class of linear
problems plays a central role throughout computer science and

mathematics, yielding a myriad of applications both in theory and

practice. Our next contribution gives worst-case to average-case re-

ductions for static data structures for all linear problems. Recall that
a linear problem 𝐿𝐴 over a field F is defined by a matrix𝐴 ∈ F𝑚×𝑛

.
1

An input to the problem is a vector 𝑣 ∈ F𝑛 , which is preprocessed

into 𝑠 memory cells. Then, given a query 𝑖 ∈ [𝑚], the goal is to
output ⟨𝐴𝑖 , 𝑣⟩, where 𝐴𝑖 is the 𝑖’th row of 𝐴, by probing at most 𝑡

of the memory cells, where 𝑡 is called the query time.

Note that the trivial solutions for data structure problems are to

either: (i) store only 𝑠 = 𝑛 memory cells containing the input 𝑣 , and

for each query 𝑖 ∈ [𝑚], read 𝑣 entirely and compute the answer

in query time 𝑡 = 𝑛; or (ii) use 𝑠 =𝑚 memory cells, where the 𝑖’th

cell contains the answer to the query 𝑖 ∈ [𝑚], thus allowing for

query time 𝑡 = 1. In a typical application, the number of queries

𝑚 = poly(𝑛) ≫ 𝑛, and a data structure is efficient if it uses space

𝑠 = 𝑂 (𝑛) (or 𝑠 ≪𝑚) and has query time 𝑡 = poly(log(𝑛)) (or 𝑡 = 𝑛𝜀

for a small constant 𝜀 > 0). Note that the two trivial solutions do

not lead to such efficient data structures for𝑚 ≫ 𝑛.

We consider randomized data structures, where both the pre-

processing stage and the query stage use randomness, and are

expected to output the correct answer with high probability (over

the randomness of both stages). In average-case randomized data

structures, the success rate of the algorithm is taken over both the

inner randomness and the random input, whereas in worst-case

randomized data structure, the success rate is taken only over the

inner randomness of the algorithm (i.e., the algorithm succeeds

with high probability on all inputs).
We present a worst-case to average-case reduction showing that

if there exists a data structure DS that uses 𝑠 memory cells, has

query time 𝑡 , and success rate such that for a small fraction of inputs

the data structure answers all queries correctly, then there exists

another data structure DS′ that uses 4𝑠 memory cells, has query

time 4𝑡 , and success rate such that for all inputs the data structure
answers all queries correctly with high probability.

Theorem 2. Let F = F𝑝 be a prime field, 𝛼 B 𝛼 (𝑛) ∈ (0, 1],
𝑛,𝑚 ∈ N, and a matrix 𝐴 ∈ F𝑚×𝑛 . Denote by 𝐿𝐴 the linear problem
of outputting ⟨𝐴𝑖 , 𝑥⟩ on input 𝑥 ∈ F𝑛 and query 𝑖 ∈ [𝑚]. Suppose

1
Formally, 𝐿𝐴 is defined by an infinite sequence of matrices (𝐴𝑛)𝑛≥1 , where 𝐴𝑛 ∈
F𝑚×𝑛

for𝑚 =𝑚 (𝑛) .
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that 2

𝐿𝐴 ∈ DS


pt: 𝑝

mu: 𝑠

qt: 𝑡

sr: Pr𝑥∈F𝑛 [DS𝑥 (𝑖) = ⟨𝐴𝑖 , 𝑥 ⟩ ∀𝑖 ∈ [𝑚] ] ≥ 𝛼

 .
Then for every 𝛿 > 0,

𝐿𝐴 ∈ DS


pt: 𝑝 + exp(log4 (1/𝛼)) · poly log(1/𝛿) · poly(𝑛)
mu: 4𝑠 +𝑂 (log4 (1/𝛼) log(𝑛))
qt: 4𝑡 +𝑂 (log4 (1/𝛼) log(𝑛))
sr: ∀𝑥 ∈ F𝑛 Pr[DS′𝑥 (𝑖) = ⟨𝐴𝑖 , 𝑥 ⟩ ∀𝑖 ∈ [𝑚] ] ≥ 1 − 𝛿

 .
We stress that in the average-case data structure we start with,

the probability is taken over a random input (as well as the inner

randomness of the algorithm), whereas in the worst-case data struc-

ture that we obtain, with high probably the algorithm is successful

on all inputs.
The reduction above shows that for any linear problem 𝐿𝐴 , if

a data structure succeeds on an arbitrary small constant 𝛼 > 0

fraction of the inputs, then we can obtain a data structure that

succeeds on all inputs with parameters that essentially differ only

by a constant multiplicative factor, and the query complexity 𝑡

translates into query complexity 4𝑡 +𝑂 (log(𝑛)).
We note that the 𝑂 (log4 (1/𝛼) log(𝑛)) overhead in the space

complexity of the constructed data structure is caused by storing

𝑂 (log4 (1/𝛼)) numbers from [𝑛]. In particular, if the word size

of the data structure is 𝑤 ≥ log(𝑛), then the space complexity

of the resulting data structure is 4𝑠 + 𝑂 (log4 (1/𝛼)). Similarly, in

this case the query complexity of the resulting data structure is

4𝑡 +𝑂 (log4 (1/𝛼)).
Note that for any non-trivial data structure problem, a data

structure must use at least Ω(𝑛) memory cells (only to store a rep-

resentation of the input). Therefore, even for 𝛼 as small as 𝛼 = 2
−𝑛𝜂

for a small constant 𝜂 > 0, the overhead in the space complexity

is negligible. For typical query times of data structures, such as

𝑡 = poly(log(𝑛)) and 𝑡 = 𝑛𝜀 , the overhead in the query time is

negligible even for 𝛼 = 1/poly(𝑛) and 𝛼 = 2
−𝑛𝜂

, respectively.

1.1.3 Online Matrix-Vector Multiplication. Next we turn to the

core data structure problem in fine-grained complexity, the online

matrix-vector multiplication problem (OMV). In the data structure

variant of this streaming problem, one needs to preprocess a matrix

𝑀 ∈ F𝑛×𝑛 , such that given a query vector 𝑣 ∈ F𝑛 , one can quickly

compute𝑀𝑣 . The study of OMV (over the Boolean semiring) and its

applications to fine-grained complexity originates from [22], and

[13, 29] give surprising upper bounds for the problem. Over finite

fields, [15, 19] give lower bounds for OMV, and [14] proves lower

bounds for a related vector-matrix-vector multiplication problem.

We prove an efficient worst-case to average-case reduction for OMV

over prime fields. A concurrent and independent work [23] studies

worst-case to average-case reductions for OMV over the Boolean

semiring and their applications.

Note that OMV is, in fact, not a linear problem, because for a

query 𝑣 the output is not a single field element, but rather a vector

𝑀𝑣 ∈ F𝑛 . Moreover, the average case condition only guarantees

success with probability taken over both the matrix𝑀 as well as the

2
In our notation for data structures, pt stands for pre-processing time, mu stands for

memory used, qt stands for query time, and sr stands for success rate.

vector 𝑣 . Nevertheless, we can exploit the fact that each coordinate

of the correct output is a linear function in the entries of 𝑀 , and

extend our techniques to the more involved setting of OMV.

Theorem 3. Let F = F𝑝 be a prime field, 𝑛 ∈ N, and 𝛼 B 𝛼 (𝑛) ∈
(0, 1]. Consider the matrix-vector multiplication problem 𝑂𝑀𝑉F for
dimension 𝑛, and suppose that for some 𝛼 > 0 it holds that

𝑂𝑀𝑉F ∈ DS


pt: 𝑝

mu: 𝑠

qt: 𝑡

sr: Pr𝑀,𝑣 [DS𝑀 (𝑣) = 𝑀𝑣 ] ≥ 𝛼

 .
Then for every 𝛿 > 0,

𝑂𝑀𝑉F ∈ DS


pt: 4𝑝 + exp(log4 (1/𝛼)) · poly log(1/𝛿) · poly(𝑛)
mu: 4𝑠 +𝑂 (log4 (1/𝛼)𝑛) +𝑂 (𝑛2)
qt: (4𝑡 + 𝑛) · poly(1/𝛼) · poly log(1/𝛿)
sr: ∀𝑀, 𝑣 : Pr[DS𝑀 (𝑣) = 𝑀𝑣 ] ≥ 1 − 𝛿

 .
We stress that in the assumed data structure, the success rate

asserts that for a random input 𝑀 and query 𝑣 , the data structure
produces the correct answer with (an arbitrary small) probability

𝛼 > 0, where the probability is over (i) the random input𝑀 (ii) ran-

dom query 𝑣 (iii) and the randomness of the preprocessing and the

query phases of the data structure. On the other hand, the conclu-

sion holds for worst case inputs and queries. That is, for every input

𝑀 and query 𝑣 , the obtained data structure produces the correct

answer with high probability, where the probability is only over the

randomness used in the preprocessing stage and the query phase

of the data structure (i.e., with high probability we can compute all
of the inputs).

To understand the parameters of the reduction, note that in the

the OMV problem with 𝑛 × 𝑛 matrices, the preprocessing must be

at least 𝑛2, as this is the size of the input matrix, and the query

time must be at least 𝑛, as information-theoretically we need to

output 𝑛 field elements. Our worst-case to average-case reduction

is essentially optimal in these parameters for a constant 𝛼 , as a

weak data structure that uses 𝑠 memory cells and query time 𝑡 is

translated into a data structure that works for all inputs and all

queries using space 4𝑠 +𝑂 (𝑛2) and query time 4𝑡 +𝑂 (𝑛) = 𝑂 (𝑡).
In fact, even for 𝛼 as small as 𝛼 = 1/𝑛𝑜 (1) , the space complexity is

increased by at most 𝑂 (𝑛2), and the query time is multiplied by at

most 𝑛𝑜 (1) .

1.1.4 Worst-Case to Weak-Average-Case Reductions. In the follow-

ing, we discuss how to obtain worst-case algorithms starting from

a very weak, but natural, notion of average-case reductions that

we discuss next.

Recall that in the standard definition of average-case data struc-

tures, the algorithm preprocesses its input and is then required to

correctly answer all queries for an 𝛼-fraction of all possible inputs.

However, in many cases (such as in the online matrix-vector mul-

tiplication problem), we only have an average-case guarantee on

both inputs and queries. In this setting, we should first ask what is

a natural notion of an average-case condition.

A strong requirement for an average-case algorithm in this case

is to correctly answer all queries for at least 𝛼-fraction of the inputs.

However, it is desirable to only require the algorithm to correctly

answer on an average input and query. That is, a weak average-case
data structure for computing a function 𝑓 : F𝑛 × [𝑚] → F with
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success rate 𝛼 > 0 receives an input 𝑥 ∈ F𝑛 , which is preprocessed

into 𝑠 memory cells. Then, given a query 𝑖 ∈ [𝑚], the data structure
DS𝑥 (𝑖) outputs𝑦 ∈ F𝑛′ such that Pr𝑥 ∈F𝑛,𝑖∈[𝑚] [DS𝑥 (𝑖) = 𝑓 (𝑥, 𝑖)] ≥
𝛼 .

The challenge in this setting is that the errors may be distributed

between both the inputs and the queries. On one extreme, the error

is concentrated on selected inputs, and then the data structure

computes all queries correctly for 𝛼-fraction of the inputs. On the

other extreme, the error is spread over all inputs, and then the data

structure may only answer 𝛼-fraction of the queries on any inputs.

Of course, the error could be distributed anywhere in between these

extremes.

While we showed that every linear problem has an efficient

worst-case to average-case reduction, not all linear (and non-linear)

problems admit a worst-case to weak-average-case reductions (de-
tails of this part can be found in the full version of the paper [4,

Section 6.3]). Nevertheless, we overcome this limitation for certain

problems of interest.

One of the most-studied problems in static data structures is

the polynomial evaluation problem [17, 27, 28]. Here, one needs

to preprocess a degree-𝑑 polynomial 𝑞 : F𝑚 → F into 𝑠 memory

cells, and then for a query 𝑥 ∈ F𝑚 , quickly compute 𝑞(𝑥). We study

the problem of evaluating a low degree polynomial in the regime

where the average-case data structure might only succeed on a

small 𝛼 fraction of the queries (outside of the unique decoding

regime, see discussion below). We show that we can use such an

average-case data structure to obtain a worst-case data structure

that can compute 𝑞 on any 𝑥 ∈ F𝑚 .

Theorem 4. Let F = F𝑝 be a prime field, 𝛼 B 𝛼 (𝑛) ∈ (0, 1],
and let𝑚,𝑑 ∈ N be parameters. Consider the problem RMF,m,d of
evaluating polynomials of the form 𝑞 : F𝑚 → F of total degree 𝑑 (i.e.,
the problem of evaluating the Reed-Muller encoding of block length
𝑛 =

(𝑚+𝑑
𝑑

)
).

Suppose that

RMF,m,d ∈ DS


pt: 𝑝

mu: 𝑠

qt: 𝑡

sr: Pr𝑞,𝑥 [DS𝑞 (𝑥) ] ≥ 𝛼

 .

Then

RMF,m,d ∈ DS


pt: 𝑝 + exp(log4 (1/𝛼)) · poly(𝑛)
mu: 4𝑠 +𝑂 (log4 (1/𝛼) log(𝑛))
qt: 𝑂 ( |F |2 · 𝑡 + |F | log4 (1/𝛼) + |F | log(𝑛))
sr: ∀𝑞, 𝑥 : Pr[DS𝑞 (𝑥) = 𝑞 (𝑥) ] > 1 −𝑂

(√
𝑑
|F|

)
 .

Here, similarly to Theorem 3, the assumed data structure suc-

ceeds only for a small fraction of inputs and queries, while in the

conclusion the data structure succeeds with high probability on

every input and every query.
As for the effect of the reduction on the parameters, we see

that for any 𝛼 > 1/poly(𝑛) the preprocessing time changes only

by an additive poly(𝑛), the space complexity changes from 𝑠 to

4𝑠 + poly(log(𝑛)), and the query time changes from 𝑡 to 𝑂 ( |F|2 ·
𝑡 + |F| · poly log(𝑛)). In the data structure setting, the number of

queries is usually polynomial in input length. Thus, in a typical

setting of parameters for RMF,m,d, the field size is |F| = poly(log𝑛),
and, therefore, the blow-up of |F|2 is not critical.

A coding-theoretic perspective. For small values of average-case

rate 𝛼 > 0, the polynomial evaluation problem can be cast as list
decoding with preprocessing, by viewing the outputs of the query

phase of the data structure as a function ℎ : F𝑚 → F that agrees
with the input polynomial 𝑞 : F𝑚 → F on some small fraction of

the queries, and the goal is to recover 𝑞 from ℎ.

Indeed, note that for a small 𝛼 > 0, if a function ℎ : F𝑚 → F
agrees with some unknown low-degree polynomial 𝑞 on 𝛼 fraction

of the inputs, then there are potentially𝑂 (1/𝛼) possible low-degree
polynomials that are equally close to ℎ. Hence, without preprocess-

ing it is impossible to recover the original polynomial 𝑞. However,

in the data structure settings, we can use the preprocessing to ob-

tain an auxiliary structural information that would later allow us

to transition from the list decoding regime to the unique decoding

regime, and in turn, compute the values of the correct polynomial 𝑞

with high probability (see more details in Section 2.4).

1.2 Open Problems
Our work leaves many natural open problems, such as obtaining

reductions for various natural problems in other computational

models (e.g., communication complexity, property testing, PAC

learning, and beyond). However, for brevity, we would like to focus

on and highlight one direction that we find particularly promising.

In Theorem 2, we design worst-case to average-case reductions

for linear problems in the setting of static data structures. An im-

mediate and alluring question is whether our local correction via

additive combinatorics framework can also be used to show worst-

case to average-case reductions for all linear problems for both

circuits and uniform algorithms. We observe that using similar

techniques as in Theorem 2, our framework can be used to show

that given an efficient average-case circuit or uniform algorithm

and an efficient verifier for the problem, one can indeed design an

explicit efficient worst-case circuit or uniform algorithm. A natural

open problem here is to eliminate the assumption about the verifier

and answer the aforementioned question to the affirmative.

2 TECHNICAL OVERVIEW
We provide an overview of the main ideas and techniques that

we use to obtain our results. For concreteness, we illustrate our

techniques by first focusing on the matrix multiplication problem.

We start in Section 2.1, where we explain the challenge and

discuss why the naive approach fails. In Section 2.2 we present

the technical components that lie at the heart of this work: local
correction lemmas via additive combinatorics. Equipped with these

technical tools, in Section 2.3 we present themain ideas in our worst-

case to average-case reduction for matrix multiplication. Finally, in

Section 2.4 we briefly discuss how to obtain the rest of our main

results.

2.1 The Challenge: Low-Agreement Regime
Recall that in the matrix multiplication problem we are given two

matrices 𝐴, 𝐵 ∈ F𝑛 , and the goal is to compute their matrix product

𝐴 · 𝐵. For simplicity of the exposition, unless specified otherwise,

in this overview we restrict our attention to the field F2, and to

constant values of the success rate parameter 𝛼 > 0 of average-case

algorithms.
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We would like to show that if there is an average-case algorithm
ALG that can compute matrix multiplication for an 𝛼-fraction of

all pairs of matrices 𝐴, 𝐵 ∈ F𝑛 in time 𝑇 (𝑛), then there is a worst-
case randomized algorithm ALG′

that runs in time 𝑂 (𝑇 (𝑛)) and
computes 𝐴 · 𝐵 with high probability for every pair of matrices 𝐴

and 𝐵.

We start with the elementary case where the average-case guar-

antee is in the high-agreement regime, i.e., where the algorithm

succeeds on, say, 99% of the inputs; that is,

Pr

𝐴,𝐵∈F𝑛×𝑛
[ALG(𝐴, 𝐵) = 𝐴 · 𝐵] ≥ 𝛼 , (1)

for 𝛼 = 0.99. In this case, a folklore local correction procedure (see,

e.g., [10]) will yield a worst-case algorithm that succeeds with high

probability on all inputs. We next describe this procedure.

Given an average-case algorithm ALG satisfying Eq. (1) with

𝛼 = 0.99, consider the worst-case algorithm ALG′
that receives any

two matrices 𝐴, 𝐵 ∈ F𝑛×𝑛 and first samples uniformly at random

two matrices 𝑅, 𝑆 ∈ F𝑛×𝑛 . Next, writing 𝐴 = 𝑅 + (𝐴 − 𝑅) and
𝐵 = 𝑆 + (𝐵 − 𝑆), the algorithm ALG′

computes

𝑀 = ALG(𝑅, 𝑆)+ALG(𝐴−𝑅, 𝑆)+ALG(𝑅, 𝐵−𝑆)+ALG(𝐴−𝑅, 𝐵−𝑆) .
(2)

Denote by𝑋 the set of matrix pairs (𝐴, 𝐵) for whichALG(𝐴, 𝐵) =
𝐴 ·𝐵, and recall that by Eq. (1) the density of 𝑋 is 0.99. Note that: (a)

the matrices 𝑅,𝐴−𝑅, 𝑆 , and 𝐵−𝑆 are uniformly distributed, and (b)

if the pairs (𝑅, 𝑆), (𝐴−𝑅, 𝑆), (𝑅, 𝐵 −𝑆), and (𝐴−𝑅, 𝐵 −𝑆) are in the

set 𝑋 , then by Eq. (2) we have𝑀 = 𝐴 · 𝐵, and the algorithm ALG′

computes the multiplication correctly. Hence, by a union bound we

have Pr[𝑀 = 𝐴𝐵] ≥ 1 − 4 · 0.01 > 0.9 for all matrices 𝐴, 𝐵 ∈ F𝑛×𝑛 .
Of course, the error probability can be further reduced by repeating

the procedure and ruling by majority.

Unfortunately, this argument breaks when the average-case guar-

antee is weaker; namely, in the low-agreement regime, where the
algorithm succeeds on, say, only 1% of the inputs. Here, when trying

to self-correct as above, the vast majority of random choices would

lead to a wrong output, and so at a first glace, the self-correction

approach may seem completely hopeless.
3

Nevertheless, using more involved tools from additive combi-

natorics such as a probabilistic version of the quasi-polynomial

Bogolyubov-Ruzsa lemma that we show, as well as tools such as

small-biased sample spaces and the Goldreich-Levin algorithm, we

can construct different local correction procedures that work in the

low-agreement regime. We proceed to describe our framework for

local correction using the aforementioned tools.

2.2 Local Correction via Additive
Combinatorics

Additive combinatorics studies approximate notions of algebraic

structures via the perspective of combinatorics, number theory,

harmonic analysis and ergodic theory. Most importantly for us, it

3
Indeed, consider the counterexample where the average-case algorithm ALG(𝐴, 𝐵)
outputs𝐴 · 𝐵 in case the first element of𝐴 is 0 and returns the zero matrix in case the

first element of𝐴 is 1. Note that in this case Pr𝐴,𝐵∈F𝑛×𝑛 [ALG(𝐴, 𝐵) = 𝐴 · 𝐵 ] ≥ 1/2,
yet no decomposition of 𝐴 =

∑
𝑖 𝐴𝑖 and 𝐵 =

∑
𝑖 𝐵𝑖 as described above could self-

correct matrix multiplication where the first element of 𝐴 is 1. Indeed, any such

composition would have an𝐴𝑖 with the first element 1, where ALG(𝐴𝑖 , 𝐵 𝑗 ) fails.

provides tools for transitioning between algebraic and combinato-

rial notions of approximate subgroups with only a small loss in the

underlying parameters (see surveys [33, 34]).

The starting point of our approach for local correction is a fun-

damental result in additive combinatorics, known as Bogolyubov’s
lemma, which shows that the 4-ary sumset of any dense set in F𝑛

2

contains a large linear subspace. More accurately, recall that the

sumset of a set 𝑋 is defined as 𝑋 +𝑋 = {𝑥1 + 𝑥2 : 𝑥1, 𝑥2 ∈ 𝑋 }, and
similarly 4𝑋 = {𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 : 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝑋 }. These quan-
tities can be thought of as quantifying a combinatorial analogue

of an approximate subgroup. Bogolyubov’s lemma states that for

any subset 𝑋 ⊆ F𝑛
2
of density |𝑋 |/2𝑛 ≥ 𝛼 , there exists a subspace

𝑉 ⊆ 4𝑋 of dimension at least 𝑛 − 𝛼−2.
We will show that statements of the above form can be used

towards obtaining a far stronger local correction paradigm than

the one outlined in Section 2.1. To see the initial intuition, con-

sider an average-case algorithm that is guaranteed to correctly

compute 𝛼-fraction of the inputs, and denote by 𝑋 the set of these

correctly computed inputs. Then |𝑋 |/2𝑛 ≥ 𝛼 , and Bogolyubov’s

lemma shows that there exists a large subspace 𝑉 such that every

𝑣 ∈ 𝑉 can be expressed as a sum of four elements in 𝑋 , each of

which can be computed correctly by the average-case algorithm.

The approach above suggests a paradigm for local correction,

however, there are several non-trivial problems in implementing

this idea. For starters, how could we handle inputs that lay outside
of the subspace 𝑉 ? To name a few others: how can we amplify the

success probability in the low-agreement regime? How do we algo-

rithmically obtain the decomposition? Can we handle finite fields

beyond F𝑛
2
? How do we handle average-case where the success rate

𝛼 is sub-constant?

Indeed, for our worst-case to average-case reductions, we will

need local correction lemmas with stronger structural properties

than those admitted by Bogolyubov’s lemma, as well as new ideas

for each one of the settings. In the following, we discuss the main

hurdles for the foregoing approach and the tools that are needed

to overcome them, leading to our main technical tool, which is a

probabilistic version of the quasi-polynomial Bogolyubov-Ruzsa

lemma that we obtain. Then, we present our framework for local

correction using these techniques. Finally, in Sections 2.3 and 2.4

we show the additional ideas that are necessary for applying the

local correction lemmas in the settings of matrix multiplication,

online matrix-vector multiplication, and data structures.

A probabilistic Bogolyubov lemma. An immediate problem

with the aforementioned local correction scheme is that while

Bogolyubov’s lemma asserts that there exists a decomposition of

each input into a sum of four elements in 𝑋 , it does not tell us how

to obtain this decomposition.

Toward this end, we further show that each vector 𝑣 ∈ 𝑉 has

many “representations” as a sum of four elements from 𝑋 . This

way, for any 𝑣 ∈ 𝑉 we can efficiently sample a representation

𝑣 = 𝑥1+𝑥2+𝑥3+𝑥4, where each 𝑥𝑖 ∈ 𝑋 . More accurately, let𝑋 ⊆ F𝑛
2

be a set of density 𝛼 , let 𝑅 = {𝑟 ∈ F𝑛 \ {0} :
��
1̂𝑋 (𝑟 )

�� ≥ 𝛼3/2}, and
let 𝑉 = {𝑣 ∈ F𝑛 : ⟨𝑣, 𝑟 ⟩ = 0 ∀𝑟 ∈ 𝑅} be a linear subspace defined by

𝑅. Then |𝑅 | ≤ 1/𝛼2 and for all 𝑣 ∈ 𝑉 it holds that

Pr

𝑥1,𝑥2,𝑥3
[𝑥1, 𝑥2, 𝑥3, 𝑣 − 𝑥1 − 𝑥2 − 𝑥3 ∈ 𝑋 ] ≥ 𝛼5 .
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Sparse-shift subspace decomposition. The probabilistic Bo-

golyubov lemma allows us to locally correct inputs inside the

subspace 𝑉 ⊆ 4𝑋 . However, we need to be able to handle any

vector in the field. Towards that end, we show an algebraic lemma

that allows us to decompose each element of the field into a sum of

an element 𝑣 in the subspace 𝑉 and a sparse shift-vector 𝑠 . More

accurately, let 𝑅 ⊆ F𝑛 \ {®0} and 𝑉 = {𝑣 ∈ F𝑛 : ⟨𝑣, 𝑟 ⟩ = 0 ∀𝑟 ∈ 𝑅}.
We show that there exists a collection of 𝑡 ≤ |𝑅 | vectors

𝐵 = {𝑏1, . . . , 𝑏𝑡 }, 𝑏𝑖 ∈ F𝑛 and indices 𝑘1, . . . , 𝑘𝑡 ∈ [𝑛] such that

span(𝐵) = span(𝑅) and every vector 𝑦 ∈ F𝑛 can be written as

𝑦 = 𝑣 + 𝑠 , where 𝑣 ∈ 𝑉 and 𝑠 =
∑𝑡

𝑗=1 𝑐 𝑗 · ®𝑒𝑘 𝑗
for 𝑐 𝑗 =

〈
𝑦,𝑏 𝑗

〉
and

®𝑒𝑘 𝑗
is a unit vector.

We stress that the sparsity of the decomposition is essential to

our applications, as we cannot locally correct the shift part of the

decomposition, and instead we need to compute it explicitly. We

remark that for matrix multiplication we can obtain a stronger

guarantee by dealing with matrices outside of the subspace 𝑉 via a

low-rank random matrix shifts (see Section 2.3).

Subspace computation via the Goldreich-Levin lemma. In order to

perform local correction using additive combinatorics machinery

as above while maintaining computational efficiency, we need to

be able to compute the aforementioned basis 𝑏1, . . . , 𝑏𝑡 ∈ F𝑛 and

indices 𝑘1, . . . , 𝑘𝑡 ∈ [𝑛] efficiently. We note that, in essence, this

problem reduces to learning the heavy Fourier coefficients of the

set 𝑋 . Thus, using ideas from [9] and an extension of the Goldreich-

Levin algorithm to arbitrary finite fields, we can perform the latter

in a computationally efficient way.

Probabilistic quasi-polynomial Bogolyubov-Ruzsa lemma. The
main weakness of Bogolyubov’s lemma is that the co-dimension

of the subspace that it admits is polynomial in 1/𝛼 , where 𝛼 is the

success rate of the average-case algorithm. While this dependency

on 𝛼 allows us to locally correct in the 1% agreement regime, it

becomes degenerate when 𝛼 tends to 0 rapidly.

A natural first step towards overcoming this barrier is to use a

seminal result due to Sanders [36], known as the quasi-polynomial
Bogolyubov-Ruzsa lemma, which shows the existence of a subspace

whose co-dimension’s dependency on 1/𝛼 is exponentially better.

That is, the lemma shows that for a set 𝑋 ⊆ F𝑛
2
of size 𝛼 · |F2 |𝑛 ,

where 𝛼 ∈ (0, 1], there exists a subspace 𝑉 ⊆ F𝑛
2
of dimension

dim(𝑉 ) ≥ 𝑛 − 𝑂 (log4 (1/𝛼)) such that 𝑉 ⊆ 4𝑋 . However, as in

the case of Bogolyubov’s lemma, we have the problem that the

statement is only existential.
We thus prove a probabilistic version of the quasi-polynomial

Bogolyubov-Ruzsa lemma (see the full version [4]) over any field

F = F𝑝 , which asserts that for an 𝛼-dense set 𝑋 ⊆ F𝑛 , there exists
a subspace 𝑉 ⊆ F𝑛 of dimension dim(𝑉 ) ≥ 𝑛 −𝑂 (log4 (1/𝛼)) such
that for all 𝑣 ∈ 𝑉 it holds that

Pr

𝑥1,𝑥2,𝑥3∈F𝑛
[𝑥1, 𝑥2 ∈ 𝐴, 𝑥3, 𝑥4 ∈ −𝐴] ≥ Ω(𝛼5) ,

where 𝑥4 = 𝑣 − 𝑥1 − 𝑥2 − 𝑥3. Furthermore, by combining the tech-

niques above, we show that given a query access to the set 𝑋 , there

is an algorithm that runs in time exp(log4 (1/𝛼)) · poly log(1/𝛿) ·
poly(𝑛) and with probability 1−𝛿 computes a set of vectors 𝑅 ⊆ F𝑛
such that 𝑉 = {𝑣 ∈ F𝑛 : ⟨𝑣, 𝑟 ⟩ = 0 ∀𝑟 ∈ 𝑅}.

We are grateful to Tom Sanders for providing us with the ar-

gument for showing this lemma, and we provide the proof in [4,

Appendix A].

Our local correction lemma. We are now ready to provide an

informal statement of our local correction lemma, which builds

on the machinery above, and in particular, on the probabilistic

quasi-polynomial Bogolyubov-Ruzsa lemma.

Loosely speaking, our local correction allows us to decompose

any vector 𝑦 ∈ F𝑛 as a linear combination of the form

𝑦 = 𝑥1 + 𝑥2 − (𝑥3 + 𝑥4) + 𝑠 ,

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝑋 and 𝑠 ∈ F𝑛 is a sparse vector.

Lemma 2.1 (informally stated, see [4, Lemma 3.4]). For a field
F = F𝑝 and 𝛼-dense set 𝑋 ⊆ F𝑛 , there exists 𝑡 ≤ 1/𝛼2 vectors
𝑏1, . . . , 𝑏𝑡 ∈ F𝑛

2
and indices 𝑘1, . . . , 𝑘𝑡 ∈ [𝑛] satisfying the following.

Given a vector 𝑦 ∈ F𝑛
2
, let 𝑠 =

∑𝑡
𝑗=1

〈
𝑦,𝑏 𝑗

〉
· ®𝑒𝑘 𝑗

we have

Pr

𝑥1,𝑥2,𝑥3∈F𝑛
[𝑥1, 𝑥2 ∈ 𝑋, 𝑥3, 𝑥4 ∈ −𝑋 ] ≥ Ω(𝛼5) ,

where 𝑥4 = 𝑦 − 𝑠 − 𝑥1 − 𝑥2 − 𝑥3.
Furthermore, given an oracle that computes 1𝑋 (𝑥) with probability

at least 2/3, there exists an algorithm that makes exp(log4 (1/𝛼)) ·
poly log(1/𝛿) · poly(𝑛) oracle calls and field operations, and with
probability at least 1 − 𝛿 outputs 𝑏1, . . . , 𝑏𝑡 and 𝑘1, . . . , 𝑘𝑡 .

The aforementioned local correction lemmas lie at the heart of

our average-case to worst-case reductions, which we discuss next.

2.3 Illustrating Example: Matrix Multiplication
We present a high-level overview of our reductions for matrix

multiplication, which illustrates the key ideas that go into the proof.

Let ALG be an average-case algorithm that can compute matrix

multiplication for an 𝛼-fraction of all pairs of matrices 𝐴, 𝐵 ∈ F𝑛 in

time 𝑇 (𝑛). We use the average-case algorithm ALG to construct a

worst-case randomized algorithm ALG′
that runs in time 𝑂 (𝑇 (𝑛))

and computes 𝐴 · 𝐵 with high probability for every pair of matrices

𝐴 and 𝐵. For simplicity of the exposition, in this overview we make

the following assumptions: (1) the algorithm ALG is deterministic,
(2) the input is a pair (𝐴, 𝐵) such that 𝐴 is a matrix satisfying

Pr𝐵′ [ALG(𝐴, 𝐵′) = 𝐴 · 𝐵′] ≥ 𝛼 , (3) the success rate 𝛼 is a constant,

and (4) the field F is F2.
We start by noting two simple facts. First, given the algorithm’s

(potentially wrong) output ALG(𝐴, 𝐵), we can efficiently check

whether the computation is correct using Freivalds’ algorithm. Sec-

ond, denoting by 𝑋 = {𝐵′ ∈ F𝑛×𝑛
2

: ALG(𝐴, 𝐵′) = 𝐴 · 𝐵′} the set
of “good” matrices, we have that if 𝐵 ∈ 𝑋 , then the average-case

algorithm correctly outputs ALG(𝐴, 𝐵) = 𝐴 · 𝐵. Hence, the main

challenge is in dealing with the case that 𝐵 ∉ 𝑋 , in which we need

to locally correct the value of the multiplication.

Local correction via Bogolyubov’s lemma. The first idea is to re-
duce the problem to the case where the set of goodmatrices contains

a large subspace, and hence admits local correction, as discussed

in Section 2.2. Specifically, by the probabilistic Bogolyubov lemma,

given 𝑋 we can choose a subspace 𝑉 ⊆ F𝑛×𝑛
2

of matrices, where

dim(𝑉 ) ≥ 𝑛2 − 1/𝛼2, such that for any 𝐵′ ∈ 𝑉 , if we sample
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𝑀1, 𝑀2, 𝑀3 uniformly at random, then

Pr[𝑀1, 𝑀2, 𝑀3, 𝑀4 ∈ 𝑋 ] ≥ 𝛼5 , where𝑀4 = 𝐵′ −𝑀1 −𝑀2 −𝑀3 .

Note that if the matrices𝑀1, 𝑀2, 𝑀3, 𝑀4 produced by our sampling

are all in the set of good matrices 𝑋 , then we can self-correct the

value of ALG(𝐴, 𝐵′) by evaluating {ALG(𝐴,𝑀𝑖 )}𝑖∈[4] and comput-

ing the linear combination

4∑
𝑖=1

ALG(𝐴,𝑀𝑖 ) =
4∑

𝑖=1

𝐴 ·𝑀𝑖 = 𝐴 · (
4∑

𝑖=1

𝑀𝑖 ) = 𝐴 · 𝐵′ .

Note that this event is only guaranteed to occur with probability

𝛼5, which is far smaller than 1/2. Nevertheless, since we can verify

the computation using Freivalds’ algorithm, we can boost this prob-

ability to be arbitrarily close to 1 by repeating the random sampling

step 𝑂 (1/𝛼5) times, each time computing

∑
4

𝑖=1 ALG(𝐴,𝑀𝑖 ) and
verifying if the obtained result is indeed correct using Freivalds’

algorithm. Therefore, if 𝐵 belongs to the (unknown) subspace 𝑉 ,

then the algorithm described above indeed computes 𝐴 · 𝐵 with

high probability in time 𝑂 (𝑇 (𝑛)/poly(𝛼)) = 𝑂 (𝑇 (𝑛)).
However, the approach above does not work for matrices 𝐵 that

do not lie in the subspace𝑉 described above. To deal with this case,

our next goal is to “shift” the matrix into the subspace 𝑉 using

low-rank random shifts, which can then be computed efficiently

and used for local correction. We describe this procedure next.

Low-rank randommatrix shifts. We start bymaking the following

key observation: if we have an arbitrary matrix 𝐴, and a matrix

𝐵 ∈ F𝑛×𝑛 of rank 𝑘 , then their product𝐴𝐵 can be computed in time

𝑂 (𝑘𝑛2), given a rank-𝑘 decomposition of 𝐵. Details follow.

To see this, suppose that the first 𝑘 columns of 𝐵 denoted by

(𝐵𝑖 )𝑘𝑖=1, are linearly independent, and for each of the remaining

𝑛 − 𝑘 columns (𝐵 𝑗 )𝑛𝑗=𝑘+1, we know the linear combination 𝐵 𝑗 =∑𝑘
𝑖=1 𝑑𝑖, 𝑗 ·𝐵𝑖 for some coefficients𝑑𝑖, 𝑗 ∈ F. We can first multiply𝐴 by

each of the 𝑘 linearly independent columns of 𝐵. Then, to compute

the remaining columns, for each 𝑖 = 1, . . . , 𝑘 let𝐶𝑖 = 𝐴·𝐵𝑖 be the 𝑖’th
column of the matrix 𝐶 = 𝐴𝐵, and observe that if 𝐵 𝑗 =

∑𝑘
𝑖=1 𝑑𝑖, 𝑗𝐵𝑖 ,

then 𝐶 𝑗 = 𝐴 · 𝐵 𝑗 = 𝐴 · (∑𝑘
𝑖=1 𝑑𝑖, 𝑗𝐵𝑖 ) =

∑𝑘
𝑖=1 𝑑𝑖, 𝑗 ·𝐶𝑖 , which can be

computed in 𝑂 (𝑘𝑛) time for each 𝑗 . Therefore the total running

time of multiplying 𝐴 by 𝐵 is 𝑂 (𝑘𝑛2).
We are now ready to describe our method for shifting the matri-

ces into the subspace 𝑉 using low-rank matrices, capitalizing on

the observation above. Given the matrix 𝐵 (that is, possibly, not in

𝑉 ), we sample a random matrix 𝑅𝐵 ∈ F𝑛×𝑛 of rank 2𝑘 by randomly

choosing 2𝑘 columns and filling them with uniformly random field

elements. Note that with high probability these 2𝑘 columns are lin-

early independent. Then, we let the rest of the columns be random

linear combinations of the first 2𝑘 columns we chose. We observe

that if dim(𝑉 ) = 𝑛 − 𝑘 , then

Pr[𝐵 + 𝑅𝐵 ∈ 𝑉 ] ≥ 1

2|F|𝑘
.

If indeed 𝐵 + 𝑅𝐵 ∈ 𝑉 , then we can compute 𝐴 · (𝐵 + 𝑅𝐵) using the
procedure discussed above, by writing 𝐵 +𝑅𝐵 as a sum of 4 random

matrices 𝐵 + 𝑅𝐵 = 𝑀1 + 𝑀2 + 𝑀3 + 𝑀4, applying ALG(𝐴,𝑀𝑖 ) for
each 𝑖 = 1...4, and using Freivalds’ algorithm to efficiently check if

the produced output is correct or not.

Note that since we have a lower bound on the probability that

𝐵 +𝑅𝐵 belongs to the desired subspace, we have an upper bound on

the expected number of attempts required until this event occurs.

When we obtain such low-rank matrix shifts, which we verify using

Freivalds’ algorithm, we proceed by computing 𝐴 · 𝑅𝐵 . Since 𝑅𝐵 is

a matrix of rank at most 2𝑘 , the total running time of this will be

𝑂 (𝑘𝑛2). Finally, we return
ALG(𝐴, 𝐵 + 𝑅𝐵) −𝐴 · 𝑅𝐵 ,

which indeed produces the correct answer assuming that

ALG(𝐴, 𝐵 + 𝑅𝐵) is correct.

Remark 2.2. The discussion above made the simplifying assumption
that the inputs we are getting are pairs (𝐴, 𝐵) such that 𝐴 is a matrix
satisfying Pr𝐵′ [ALG(𝐴, 𝐵′) = 𝐴 · 𝐵′] ≥ 𝛼 . The actual proof require
also handling the inputs for which the matrix 𝐴 does not satisfy this
requirement, which is done using similar ideas by applying the local
correction procedure first to 𝐴 and then to 𝐵.

2.4 Beyond Matrix Multiplication
We conclude the technical overview by briefly sketching some of the

key ideas in the rest of our worst-case to average-case reductions,

building on the local correction lemmas outlined in Section 2.2.

Below we assume that all data structures are deterministic, but by

standard techniques this assumption is without loss of generality.

We start with the simplest setting, and then proceed to the more

involved ones.

Worst-case to average-case reductions for all linear data structure
problems. The setting here is the closest to that of matrix multi-

plication. Let DS𝐴 be an average-case data structure for a linear

problem defined by 𝐴, where we preprocess an input vector 𝑥 and

the answer to query 𝑖 is ⟨𝐴𝑖 , 𝑥⟩, and 𝐴𝑖 is the i’th row of 𝐴.

Given a vector 𝑦 ∈ F𝑛 , we use our local correction lemma to

obtain a decomposition of the form 𝑦 = 𝑥1 + 𝑥2 − (𝑥3 + 𝑥4) + 𝑣 ,

where 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝑋 (i.e., on which 𝐷𝑆𝑥 𝑗
(𝑖) =

〈
𝐴𝑖 , 𝑥 𝑗

〉
for all 𝑖)

and a sparse shift vector 𝑣 =
∑𝑡

𝑗=1

〈
𝑦,𝑏 𝑗

〉
· ®𝑒𝑘 𝑗

. We then preprocess

each of the 𝑥 𝑗 ’s by applying 𝐷𝑆𝐴 to it, and we also compute ⟨𝐴𝑖 , 𝑣⟩
efficiently by using its sparse representation. The idea is that by

the linearity of the problem, we can locally correct according to∑
4

𝑗=1 𝐷𝑆𝑥 𝑗
(𝑖) + ⟨𝐴𝑖 , 𝑣⟩.

It is important to note that, unlike in the setting of matrix mul-

tiplication, we cannot use the random low-rank matrix shifts, nor

Freivald’s algorithm for verification. However, this is where we rely

on the sparse subspace decomposition to shift the input into the

subspace 𝑉 implied by the quasi-polynomial Bogolyubov-Ruzsa

lemma. In addition, instead of relying on Freivalds’ algorithm for

verification, here we use the guarantee about the correctness of

computation in the subspace 𝑉 together with the sparsity of the

shift vector, which allows us to correct its corresponding contribu-

tion via explicit computation. See details in [4, Section 6.1].

Online matrix-vector multiplication (OMV).. The online setting of
the OMV problem poses several additional challenges. Recall that in

the average-case reductions above, the input is a vector 𝑥 ∈ F𝑛
2
, each

query is a coordinate 𝑖 ∈ [𝑛], and the matrix 𝑀 ∈ F𝑛×𝑛
2

is a hard-

coded parameter. In the OMV problem, thematrix𝑀 is the input, the
vector 𝑥 is the query, and answer to a query is not a scalar but rather
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a vector. Hence we need to use a two-step local correction where

we first decompose the matrix and then decompose the vector.

Observe that we can use our additive combinatorics mechanism to

preprocess thematrix𝑀 and get a description of the subspace𝑉 that

it asserts, as well as the formula that is required to compute the shift

vector 𝑠 given 𝑥 , but the problem is that here we cannot preprocess

𝑥 , as it arrives online. Thus, in the query phase, when the algorithm

receives 𝑥 , we want to find the decomposition 𝑥 = 𝑥1+𝑥2+𝑥3+𝑥4+𝑠 .
We then compute the shift vector 𝑠 , and then sample 𝑥𝑖 ’s whose

sum is 𝑥 − 𝑠 . However this leaves us with the task of checking that

all of the 𝑥𝑖 ’s are computed correctly. To this end, we rely on a

generalization of small-bias sample spaces to finite fields in order to

obtain an efficient verification procedure. See details in [4, Section

5].

Weak-average-case reductions. As discussed in the introduction,

in the setting of weak-average-case we cannot expect a reduction

for all linear problems. In turn, this leads to substantially different

techniques. We concentrate on the multivariate polynomial eval-

uation problem. Here, we are given a polynomial 𝑝 : F𝑚 → F of
degree 𝑑 , where for simplicity, in this overview we fix the parame-

ters 𝑑 = log(𝑛), |F| = poly(log(𝑛)), and𝑚 = log(𝑛)/log log(𝑛), so
that we encode 𝑛 field elements using a codeword of length poly(𝑛),
and the distance is 1 − 𝑑𝑚/|F| > 0.99. The polynomial is given as

input by its 𝑛 = 𝑑𝑚 coefficients, the queries are of the form 𝑥 ∈ F𝑚 ,

and the goal is to output 𝑝 (𝑥). The key difficulty here, is that for

small values of the average-case rate 𝛼 > 0, we need to be able to

deal with the list decoding regime (see discussion in Section 1.1.4).

The first step is to rely on our additive combinatorics local cor-

rection tools similarly as in the OMV reduction. Here the idea is

to preprocess the polynomial 𝑝 and obtain a decomposition of the

form 𝑝 = 𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑠 , where again 𝑠 is a sparse shift-vector.
We then construct a data structure for each 𝑝𝑖 . However, since we

cannot process the queries 𝑥 ∈ F𝑚 , we are left with the task of

locally correcting the noisy polynomials {𝑝𝑖 }. If a polynomial 𝑝𝑖 is

only slightly corrupted (i.e., within the unique decoding regime),

we can easily locally correct it without using any preprocessing.

However, we also need to deal with noisy polynomials 𝑝𝑖 in the list
decoding regime in which only 𝛼-fraction of the points are evaluated
correctly, for an arbitrarily small 𝛼 .

We overcome the difficulty above by capitalizing the prepro-

cessing power of the data structure. Namely, we will show how to

boost the success probability from the list-decoding regime to the

unique-decoding regime, in which case we can perfectly correct the

polynomial via the local correction of the Reed–Muller code. The

key idea is that by the generalized Johnson bound, there is only a

list of 𝑂 (1) codewords that agree with the average-case data struc-

ture on at least 𝛼/2-fraction of the points. We thus fix a reference

point 𝑤 ∈ F𝑚 and explicitly compute the correct value of 𝑝𝑖 (𝑤).
Next, we sample a random point 𝑟 and query the points of line ℓ𝑥,𝑤
incident to 𝑟 and the reference point 𝑧. Then, we consider the list

(of size 𝑂 (1)) of all low-degree univariate polynomials that agree

with the queried points on ℓ𝑥,𝑤 , and trim the list by removing each

polynomial that does not agree on the reference point. Using the

sampling properties of lines in multivariate polynomials, we can

show that answering accordingly to the remaining polynomials in

the list would yield the right value with high probability.
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