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Abstract

We present a new way to encode weighted sums into unweighted pairwise constraints, ob-
taining the following results.

• Define the k-SUM problem to be: given n integers in [−n2k, n2k] are there k which sum
to zero? (It is well known that the same problem over arbitrary integers is equivalent to
the above definition, by linear-time randomized reductions.) We prove that this definition
of k-SUM remains W[1]-hard, and is in fact W[1]-complete: k-SUM can be reduced to
f(k) · no(1) instances of k-Clique.

• The maximum node-weighted k-Clique and node-weighted k-dominating set problems can
be reduced to no(1) instances of the unweighted k-Clique and k-dominating set problems,
respectively. This implies a strong equivalence between the time complexities of the node
weighted problems and the unweighted problems: any polynomial improvement on one
would imply an improvement for the other.

• A triangle of weight 0 in a node weighted graph with m edges can be deterministically
found in m1.41 time.

1 Introduction

One of the most basic problems over integers, studied in geometry, cryptography, and combinatorics,
is k-SUM, the parameterized version of the classical NP-complete problem SUBSET-SUM.

Definition 1.1 (k-SUM). The (k,M)-SUM problem is to determine, given n integers x1, . . . , xn ∈
[0,M ] and a target integer t ∈ [0,M ], if there exists a subset S ⊆ [n] of size |S| = k such that
∑

i∈S xi = t.1 We define k-SUM , (k, n2k)-SUM.

Our definition of k-SUM is justified via the following known proposition:

Proposition 1.1. Every instance S of (k,M)-SUM can be randomly reduced in O(kn logM) time
to an instance S′ of k-SUM as defined above.

That is, there is an efficient randomized reduction from k-SUM over arbitrary integers, which
we call k-SUM-Z, to our definition of k-SUM (Appendix B). Furthermore, we show in Appendix B
that this reduction can be made deterministic under standard hardness assumptions.
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A classical meet-in-the-middle algorithm solves k-SUM in Õ(n⌈k/2⌉) time and it has been a
longstanding open problem to obtain an O(n⌈k/2⌉−ε) algorithm for any integer k ≥ 3 and constant
ε > 0. Logarithmic improvements are known for the k = 3 case [BDP08, GP14] (that is, the famous
3-SUM problem). The k-SUM conjecture [Pat10, AL13] states that k-SUM requires n⌈k/2⌉−o(1) time
and is known to imply tight lower bounds for many problems in computational geometry [GO95,
HB96, BHP01] (and many more) and has recently been used to show conditional lower bounds
for discrete problems as well [Pat10, VW09, JV13, AW14]. A matching Ω(n⌈k/2⌉) lower bound for
k-SUM was shown for a restricted model of computation called k-linear decision trees (LDTs) [Eri95,
AC05], although it was recently shown that depth O(nk/2

√
log n) suffices for (2k−2)-LDTs [GP14].

It is also known that if there is an unbounded function s : N → N such that for infinitely many k,
k-SUM is in nk/s(k), then the Exponential Time Hypothesis is false [PW10].

Despite intensive research on this simple problem, our understanding is still lacking in many
ways, one of which is from the viewpoint of parameterized complexity. In their seminal work on
parameterized intractability, Downey and Fellows [DF92, DF95] proved that k-SUM-Z is W[1]-hard
and is contained inW[P ]. The even simpler Perfect Code problem was conjectured to lie between the
classes W[1] and W[2] [DF95] until Cesati proved it was W[1]-complete in 2002 [Ces02]. Classifying
k-SUM-Z within a finite level of theW-hierarchy was open until in 2007, when Buss and Islam [BI07]
proved that k-SUM-Z ∈ W[3].

The primary contribution of this work is a novel and generic way to efficiently convert prob-
lems concerning sums of numbers into problems on unweighted pairwise constraints. We call this
technique “Losing weight by gaining edges” and report several interesting applications of it. One
application is a new parameterized reduction from k-SUM to k-Clique and therefore the resolution
of the parameterized complexity of k-SUM (for numbers in [−n2k, n2k]). Under standard lower
bound hypotheses, we also obtain a deterministic reduction from k-SUM-Z to k-Clique as well.

Theorem 1.2. k-SUM is W[1]-complete.

The significance of showing W[1]-hardness for a problem is well known (as it rules out FPT
algorithms). The significance of showing that a problem is in W[1] is less obvious, so let us provide
some motivation. First, although W[1]-complete problems are probably not FPT, prominent prob-
lems in W[1] (such as k-Clique) can still be solved substantially faster than exhaustive search over
all
(n
k

)

subsets [NP85]. In contrast, analogous problems in W[2] (such as k-Dominating Set) do not
have such algorithms unless CNF Satisfiability is in 2δn time for some δ < 1 [PW10], which is a
major open problem in exact algorithms. Therefore, understanding which parameterized problems
lie in W[1] is closely related to understanding which problems can be solved faster than exhaustive
search. Second, showing that a problem is in W[1] rather than W[3] means that it can be expressed
in an apparently weaker logic than before, with fewer quantifiers [FG06]. That is, putting a problem
in W[1] decreases the descriptive complexity of the problem.

Theorem 1.2 has applications to parameterized complexity, yielding a new characterization of
the class W[1] as the problems FPT-reducible to k-SUM. Since k-SUM is quite different in nature
from the previously known W[1]-complete problems, we are able to put other such “intermediate”
problems in W[1], including weighted graph problems and problems with application to coding
theory such as Weight Distribution [CP12].

To show that k-SUM ∈ W[1], we prove a very tight reduction from k-SUM to k-Clique. Given
an instance of k-SUM on n numbers, we generate f(k) · no(1) instances of k-Clique on n node
graphs, such that one of these graphs contains a k-clique if and only if our k-SUM instance has
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a solution. This implies that any algorithm for k-Clique running in time O(nc) for some c ≥ 2
yields an algorithm for k-SUM running in time nc+o(1). Hence, the k-SUM conjecture implies an
n⌈k/2⌉−o(1) lower bound for k-Clique as well.

Generalizing our ideas further, we are able to prove surprising consequences regarding other
weighted problems.

Removing node weights. Two fundamental graph problems are k-Clique and k-Dominating Set.
Natural extensions of these problems allow the input graph to have weights on its nodes. The prob-
lem can then be to find a k-clique or a k-dominating set of minimum or maximum sum of node
weights (the min and max versions), or to find a k-clique or a k-dominating set with total weight
exactly 0 (the exact version, defined below).

Definition 1.3 (The Node-Weight k-Clique-Sum Problem). For integers k,M > 0, the (k,M)-NW-
CLIQUE problem is to determine, given a graph G, a node-weight function w : V (G) → [0,M ], and a
target weight t ∈ [0,M ], if there is a set S of k nodes which form a clique such that

∑

v∈S w(v) = t.
We define the Node-Weight k-Clique-Sum problem as (k, n2k)-NW-CLIQUE.

Definition 1.4 (Node-Weight k-Dominating-Set-Sum). For an integer k > 0, the Node-Weight k-
Dominating-Set-Sum problem is to determine, given a graph G, a node-weight function w : V (G) →
[0, n2k], and a target weight t ∈ [0, n2k], if there is a set S of k nodes which form a dominating set
such that

∑

v∈S w(v) = t.

These additional node weights increase the expressibility of the problem and allow us to capture
more applications. How much harder are these node weighted versions compared to the unweighted
versions? By weight scaling arguments, one can show that the “exact” version is harder than the
max and min versions, in the sense that any algorithm for “exact” implies an algorithm for max or
min with only a logarithmic overhead [NvLvdZ12] (and Theorem 3.3 in [VW09]). But how much
harder is (for example) Node-Weight k-Clique-Sum than the case where there are no weights at
all?

For k divisible by 3, the best k-Clique algorithms reduce the problem to 3-Clique on nk/3

nodes, then use an O(nω) time algorithm for triangle detection [IR77] for a running time of
O(nωk/3) [NP85]. This reduction to the k = 3 case works for the node weighted case as well;
combined with the recent nω+o(1) algorithms for node weighted triangle (3-clique) problems [CL09,
VW09], we obtain nωk/3+o(1) running times for node weighted k-clique problems. The best k-
Dominating Set algorithms reduce the problem to a rectangular matrix multiplication of matrices
of dimensions nk/2 × n and n × nk/2 and run in time nk+o(1) [EG04]. These algorithms allow us
to find all k-dominating sets in the graph and therefore can also solve the node weighted versions
without extra cost.

Therefore, the state of the art algorithms for k-Clique and k-Dominating Set suggest that adding
node weights does not make the problems much harder. Is that due to our current algorithms for
the unweighted problems, or is there a deeper connection? Using the “Losing weight by gaining
edges” ideas, we show that the node weighted versions of k-Clique and k-Dominating Set (and,
in fact, any problem that allows us to implement certain “pairwise constraints”) are essentially
“equivalent” to the unweighted versions.

Theorem 1.5. If k-Clique on n node and m edge graphs can be solved in time T (n,m, k), then
Node-Weight k-Clique-Sum on n node and m edge graphs can be solved in time no(1) ·T (kn, k2m,k).
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If k-Dominating Set on n node graphs can be solved in time T (n, k), then Node-Weight k-Dominating-
Set on n node graphs can be solved in time no(1) · T (k2n, k).

Interestingly, Theorem 1.5 yields a short and simple nω+o(1) algorithm for the node-weighted
triangle problems, while a series of papers were required to recently conclude the same upper
bound using different techniques [VW06, VWY06, CL09, VW09]. Moreover, unlike the previous
techniques, our approach extends to k > 3 and applies to more problems like k-Dominating Set.

Applying the result of Theorem 1.5 to the O(m
2ω
ω+1 ) triangle detection algorithm of Alon, Yuster

and Zwick [AYZ97], we obtain a deterministic algorithm for Node-Weight Triangle-Sum in sparse
graphs, improving the previous nω+o(1) upper bound [VW09] and matching the running time of the
best randomized algorithm [VW09].

Corollary 1.1. Node-Weight Triangle-Sum can be solved deterministically in m1.41+o(1) time.

1.1 Overview of the Proofs

Let us give some intuition for Theorem 1.2. Both the containment in W[1] and the hardness for W[1]
require new technical ideas. Downey and Fellows [DF92, DF95] proved that k-SUM-Z is W[1]-hard
by a reduction requiring fairly large numbers: they are exponential in n, but can still be generated
in an FPT way. To prove that k-SUM is W[1]-hard even when the numbers are only exponential in
k log n, we need a much more efficient encoding of k-Clique instances. We apply some machinery
from additive combinatorics, namely a construction of large sets of integers avoiding trivial solutions
to the linear equation

∑k−1
i=1 xi = (k − 1)xk [O’B11]. These sets allow us to efficiently “pack” a

k-Clique instance into a (
(k
2

)

+ k)-SUM instance on small numbers.
Proving that k-SUM is in W[1] takes several technical steps. We provide a parameterized

reduction from k-SUM on n numbers to only f(k) · no(1) graphs on O(kn) nodes, such that some
graph has a k-clique if and only if the original n numbers have a k-SUM. To efficiently reduce
from numbers to graphs, we first reduce the numbers to an analogous problem on vectors. We
define an intermediate problem (k,M)-VECTOR-SUM, in which one is given a list of n vectors from
{−kM, . . . , 0, . . . , kM}d, and is asked to determine if there are k vectors which sum to the all-zero
vector. We give an FPT reduction from k-SUM to (k,M)-VECTOR-SUM where M and d are “small”
(such that Md is approximately equal to the original weights of the k-SUM instance). Next, we
“push” the weights in these vectors onto the edges of a graph connecting the vectors, where the
edge weights are much smaller than the original numbers: we reduce from (k,M)-VECTOR-SUM to
edge-weighted k-clique-sum using a polynomial “squaring trick” which creates a graph with “small”
edge weights, closely related in size to M . Finally, we reduce from the weighted problem to the
unweighted version of the problem by brute-forcing all feasible weight combinations on the edges; as
the edge weights are small, this creates f(k) ·no(1) unweighted k-Clique instances for some function
f .

Combining all these steps into one, one can view our approach as follows. We enumerate
over all

(

k
2

)

-tuples of numbers t = (αi,j)i,j∈[k] such that
∑

i,j αi,j = 0 where αi,j ∈ [−M,M ] for
M = f(k) ·poly log n, and for each such tuple t we generate an instance of the unweighted problem.
In this instance, two nodes are allowed to both be a part of our final solution (e.g. there is an edge
between them in the k-clique case) if and only if some expression on the weights of the objects vi
and vj evaluates to F (w(vi), w(vj)) = αi,j. The formulas are defined, via the “squaring trick”, in

such a way that there are k nodes satisfying these
(

k
2

)

equations for some
(

k
2

)

-tuple t if and only if
the sum of the weights of these k nodes is 0.
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To implement our approach for k-Dominating Set we follow similar steps, except that we cannot
implement the constraints on having a certain pair of objects in our solution by removing the edge
between them anymore, since this does not prevent them from being in a feasible k-dominating
set. This can be done, however, by adding extra nodes X to the graph such that the inclusion of
pairs of nodes vi, vj in the solution S that do not satisfy our equations, F (w(vi), w(vj)) 6= αi,j, will
prevent S from dominating all the nodes in X.

1.2 Related Work

There has been recent work in relating the complexity of k-SUM and variations of k-Clique for the
specific case of k = 3. Pǎtraşcu [Pat10] shows a tight reduction from 3-SUM to listing 3-cliques; a
reduction from listing 3-cliques to 3-SUM is given by Jafargholi and Viola [JV13]. Vassilevska and
Williams [VW09] consider the exact edge-weight 3-clique problem and give a tight reduction from
3-SUM. For the case of k > 3, less is known, as the techniques used for the case of k = 3 do not
seem to generalize easily. Abboud and Lewi [AL13] give reductions between k-SUM and various
exact edge-weighted graph problems where the goal is to find an instance of a specific subgraph
whose edge weights sum to 0.

2 Preliminaries

For i < j ∈ Z, define [i, j] , {i, . . . , j}. As shorthand, we define [n] , [1, n]. For a vector v ∈ Z
d,

we denote by v[j] the value in the jth coordinate of v. We let 0 denote the all zeros vector. The
default domain and range of a function is N.

We define the k-Clique problem as follows.

Definition 2.1 (The k-Clique Problem). For integers k, n,m > 0, the k-clique problem is to
determine, given a graph G, if there is a size-k subset S ⊆ [n] such that S is a clique in G.

The following problems are referred to in Corollary 3.2. They are simply the unparameterized
versions of k-SUM and Exact Edge-Weight k-Clique, respectively.

Definition 2.2 (The Subset-SUM Problem). The Subset-SUM problem is to determine, given a
set of integers x1, . . . , xn, t, if there exists a subset S ⊆ [n] such that

∑

i∈S xi = t.

Definition 2.3 (The Exact Edge-Weight Clique Problem). For integers n,m,M > 0, the Exact
Edge-Weight k-Clique problem is to determine, given an instance of a graph G on n vertices and
m edges, a weight function w : E(G) → [−M,M ], if there exists a set of nodes which form a clique
with total weight 0.

3 From Numbers to Edges

Our results begin by showing how to reduce k-SUM to k-Clique. To do this, we first give a new
reduction from k-SUM to k-Vector-Sum on n vectors in Cd for a set C which is relatively small
compared to the numbers in the original instance. From k-Vector-Sum, we give a reduction to
Edge-Weight k-Clique-Sum with small weights. Then, we can brute-force all possibilities for the
(

k
2

)

edge weights for k-SUM and reduce to the (unweighted) k-Clique problem. Altogether, we
conclude that k-SUM is in W[1].

5



3.1 Reducing k-SUM to k-Vector-Sum

We present a generic way to map numbers into vectors over small numbers such that the k-sums
are preserved. We define the k-Vector-Sum problem as follows.

Definition 3.1 (The k-Vector-Sum Problem). For integers k, n,M, d > 0, the k-vector-sum prob-
lem (k,M)-VECTOR-SUM is to determine, given vectors v1, . . . ,vn, t ∈ [0, kM ]d, if there is a size-k
subset S ⊆ [n] such that

∑

i∈S vi = t.

Note that the problem was considered by Bhattacharyya et al. [BIW+11] and also by Cattaneo
and Perdrix [CP12].

Lemma 3.1. Let k, p, d, s,M ∈ N satisfy k < p, pd ≥ kM + 1, and s = (k + 1)d−1. There
is a collection of mappings f1, . . . , fs : [0,M ] × [0, kM ] → [−kp, kp]d, each computable in time
O(poly logM + kd), such that for all numbers x1, . . . , xk ∈ [0,M ] and targets t ∈ [0, kM ],

k
∑

j=1

xj = t ⇔ ∃ i ∈ [s] such that
k
∑

j=1

fi(xj , t) = 0.

Proof. For x ∈ [0, kM ], define vx ∈ [0, p− 1]d to be the representation of x in base p—that is, let
vx[1], . . . ,vx[d] ∈ [0, p− 1] be unique integers such that x = vx[1] · p0 + · · ·+vx[d] · pd−1. Note that
pd > kM .

For every (d − 1)-tuple of numbers γ = (c1, . . . , cd−1) ∈ [0, k]d−1 and a number t ∈ [0, kM ],
define the vector τ γ to be such that

τ γ [j] =











vt[1] + c1 · p, if j = 1

vt[j]− cj−1 + cj · p, if 2 ≤ j ≤ d− 1

vt[d]− cd−1, if j = d

Intuitively, each tuple γ represents a possible choice of the “carries” obtained in each component
when computing the sum of their corresponding base-p numbers, and τ γ corresponds to the target
vector in this base-p representation. Note that there are at most s = (k + 1)d−1 such vectors. We
arbitrarily number these vectors as t1, . . . , ts, and for all i ∈ [s] we define the mapping

fi(x, t) = k · vx − ti.

Consider a set of k numbers S = {x1, . . . , xk} ⊆ [0,M ]. We claim that
∑k

j=1 xj = t if and

only if there exists some i ∈ [s] such that
∑k

j=1 fi(xj , t) = 0. First observe that for any vectors

u1, . . . ,uk, t ∈ Z
d,
∑k

j=1(k · uj − t) = 0 if and only if
∑k

j=1 uj = t. It suffices to show that
∑k

j=1 xj = t if and only if there exists some γ ∈ [0, k]d−1 such that
∑k

j=1 vxj
= τ γ .

For the first direction, t =
∑k

i=1 xi. We can write this equation in base-p representation as

d−1
∑

j=0

vt[j + 1] · pj =
k
∑

i=1





d−1
∑

j=0

vxi
[j + 1] · pj



 =

d−1
∑

j=0

(

k
∑

i=1

vxi
[j + 1]

)

· pj .

Therefore,
∑k

i=1 vxi
[1] ∈ [0, k(p−1)] = vt[1]+c1 ·p for some c1 ∈ [0, k], c1+

∑k
i=1 vxi

[2] = c2 ·p+vt[2]

for some c2 ∈ [0, k], and so on. Finally, cd−1 +
∑k

i=1 vxi
[d] = vt[d]. Letting γ = (c1, . . . , cd−1) ∈

[0, k]d−1, these equations imply exactly that
∑k

i=1 vxi
= τ γ .
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For the other direction, suppose
∑k

i=1 vxi
= τ γ where γ = (c1, . . . , cd−1) ∈ [0, k]d−1. Again,

converting from base-p representation we obtain
∑k

i=1 xi =
∑d−1

j=0

(

∑k
i=1 vxi

[j + 1]
)

· pj, and using

the definition of τ γ we can write the sum of the variables in S as

k
∑

i=1

xi = (vt[1] + c1 · p1) +
(

k
∑

i=1

vxi
[1]

)

· p1 + · · ·+
(

k
∑

i=1

vxi
[d]

)

· pd−1

= vt[1] + (vt[2] + c2 · p1) · p1 + · · ·+
(

k
∑

i=1

vxi
[d]

)

· pd−1

= · · · = vt[1] + vt[2] · p1 + · · ·+ vt[d] · pd−1 = t,

which completes the proof.

Corollary 3.1. Let k, p, d,M, n > 0 be integers with k < p and pd ≥ kM + 1. k-SUM on n
integers in the range [0,M ] can be reduced to O(kd) instances of (k, p − 1)-VECTOR-SUM on n vectors
in [0, p − 1]d.

3.2 Reducing to k-Clique

Here, we consider a generalization of the k-SUM problem—namely, the Node-Weight k-Clique-
Sum problem. We give a reduction from Node-Weight k-Clique-Sum to Edge-Weight k-Clique-Sum
(defined below), where the new edge weights are much smaller than the original node weights. We
then show how to reduce to many instances of the unweighted version of the problem, where each
instance corresponds to a possible setting of edge weights. Then, we give an application of this
general reduction to the Node-Weight k-Clique-Sum problem.

Definition 3.2 (The Edge-Weight k-Clique-Sum Problem). For integers k,M > 0, the edge-weight
k-clique-sum problem (k,M)-EW-CLIQUE is to determine, given a graph G, an edge-weight function
w : E(G) → [0,M ], and a target weight t ∈ [0,M ], if there is a set S of k nodes which form a clique
such that

∑

(u,v)∈S w(u, v) = t.

Lemma 3.2. Let k, p, d,M > 0 be integers such that k < p and pd ≥ kM + 1, and let M ′ =
O(k3dp2). The (k,M)-NW-CLIQUE problem can be deterministically reduced to O(kd) instances of
(k,M ′)-EW-CLIQUE in time O(kd · n2 · poly logM).

Thinking of p+ d as “small”, but poly(p, d) ≈ kM as “large”, we get a substantial reduction in
the weights of the problem by “spreading” the node weights over the edges.

Proof. Let G = (V,E) be a graph with a node weight function w : V → [0,M ] and a target
number t ∈ [0, kM ]. Recall the mappings fi : [0,M ] × ×[0, kM ] → [−kp, kp]d for i ∈ [s] from
Lemma 3.1, which maps numbers from [0,M ] into a collection of s = O(kd) length-d vectors with
entries in [−kp, kp]. We translate the node-weight vector problem into an edge-weight problem via a
“squaring trick,” as follows. For each i ∈ [s], we define an edge weight function wi : E → [−M ′,M ′].
For (u, v) ∈ E, let u = fi(w(u), t) and v = fi(w(v), t), and define

wi(u, v) ,

d
∑

j=1

(

u[j]2 + v[j]2 + 2(k − 1)u[j] · v[j]
)

.
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Note that for M ′ = O(kdp2), wi(u, v) ∈ [−M ′,M ′]. We show that there is a k-clique in (G,w) of
node-weight t if and only if for some i ∈ [s], the edge-weighted graph (G,wi) contains a k-clique of
edge-weight 0. First, observe that for any k vectors v1, . . . ,vk ∈ Z

d,

k
∑

i=1

vi = 0 ⇐⇒
d
∑

j=1

(

k
∑

i=1

vi[j]

)2

= 0.

Consider a set S = {u1, . . . , uk} ⊆ V that forms a k-clique in G. For any i ∈ [s] and ua, ub ∈ S,
let ua = fi(w(ua), t) and ub = fi(w(ub), t). Then, the edge-weight of S in (G,wi) is

∑

1≤a<b≤k

wi(ua, ub) = (k − 1)

k
∑

a=1

d
∑

j=1

ua[j]
2 + 2(k − 1)

∑

1≤a<b≤k

d
∑

j=1

ua[j] · ub[j].

Since the sum is evaluated over all pairs a, b ∈ [k] where a < b, the above quantity is equal to

(k − 1) ·
d
∑

j=1

(

∑

u∈S
fi(w(u), t)[j]

)2

.

Therefore, for all i ∈ [s], the edge-weight of S in (G,wi) equals 0 if and only if the sum of the
vectors

∑

u∈S fi(w(u), t) equals 0. And, by the properties of the mappings fi from Lemma 3.1, the
latter occurs for some i ∈ [s] if and only if the node-weight of S in (G,w),

∑

u∈S w(u), is equal to
t, as desired.

We observe that in the graphs produced by the above reduction, all k-cliques have non-negative
weight. Therefore, Lemma 3.2 can also be viewed as a reduction to the “minimum-weight” k-Clique
problem with edge weights, where the edge sum is minimized.

Finally, small weights on edges can simply be eliminated using a brute-force step.

Lemma 3.3. For all integers k,M > 0, there is an O(M(k2) · n2) time reduction from the problem

(k,M)-EW-CLIQUE to O(M(k2)) instances of k-Clique on n nodes and m ·
(k
2

)

edges.

Proof. Let G = (V,E) be an edge-weighted graph with weight function w : E → [−M,M ]. For all
possible

(

k
2

)

-tuples α = (α1,2, α1,3, . . . , αk−1,k) of integers from [−M,M ] such that
∑

i<j αi,j = 0, we
make a k-partite graph Gα with |V | nodes in each part—that is, V (Gα) = {(v, i) | i ∈ [k], v ∈ V }.
We put an edge in Gα between node (u, i) and node (v, j) if and only if i < j, (u, v) ∈ E, and

w(u, v) = αi,j . Observe that O(M(k2)) graphs Gα are generated. We claim that G has a k-clique of
weight 0 if and only if at least one of the unweighted graphs Gα contains a k-clique.

For the first direction, assume that for some α = (α1,2, α1,3, . . . , αk−1,k), the graph Gα contains a
k-clique. Then, by the k-partite construction, it must have the form {(v1, 1), . . . , (vk, k)} ⊆ V (Gα).
Now let S = {v1, . . . , vk} ⊆ V and note that by the construction of Gα, S must form a k-clique
in G with weight equal to

∑

i<j αi,j = 0. For the other direction, assume {u1, . . . , uk} ⊆ V is a

k-clique in G of weight 0, then consider the
(k
2

)

-tuple α = (w(u1, u2), w(u1, u3), . . . , w(uk−1, uk)).
Then, by definition, Gα contains the k-clique {(u1, 1), . . . , (uk, k)}.
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3.3 k-SUM is in W[1]

Using the above lemmas, we can efficiently reduce k-SUM to k-Clique. Consider a k-SUM instance
(S, t) where S = {x1, . . . , xn} ⊆ [0,M ] and t ∈ [0, kM ] with M = n2k. Let G = (V,E) be a
node-weighted clique on n nodes V = {v1, . . . , vn} with weight function w : V → [0,M ] such that
w(vi) = xi for all i ∈ [n]. Clearly, (S, t) has a k-SUM solution if and only if the instance (G,w, t)
of (k,M)-NW-CLIQUE has a solution.

Set d = ⌈log n/ log log n⌉ and p = ⌈log4k n⌉, so that pd ≥ (n)4k > kM . Using Lemma 3.2
the instance (G,w, t) of (k,M)-NW-CLIQUE can be reduced to O(kd) = O(nlog k/ log logn) instances
of (k,M ′)-EW-CLIQUE, where M ′ = O(k3 · log8k+1 n/ log log n). Then, using Lemma 3.3, we can

generate g(n, k) = O(n
log k

log log n · k3k2 log8k2+k n) graphs on n nodes and O(n2) edges such that some
graph has a k-Clique if and only if the original k-SUM instance has a solution.

For constant k, note that g(n, k) = no(1), and hence:

Theorem 3.3. For any c > 2, if k-Clique can be solved in time O(nc), then k-SUM can be solved
in time nc+o(1).

Furthermore, we remark that by applying the above reduction from k-SUM to k-Clique to the
respective unparameterized versions of these problems, we obtain a reduction from Subset-SUM on
arbitrary weights to Exact Edge-Weight Clique with small edge weights.

Corollary 3.2. For any ε > 0, Subset-SUM on n numbers in [−2O(n), 2O(n)] can be reduced to 2εn

instances of Exact Edge-Weight Clique on n nodes with edge weights are in [−nO(1/ε), nO(1/ε)].

Note that Subset-SUM on n numbers in [−2O(n), 2O(n)] is as hard as the general case of
Subset-SUM (by Lemma B.1), and the fastest known algorithm for Subset-SUM on n numbers
runs in time O(2n/2). The unweighted Max-Clique problem, which asks for the largest clique in
a graph on n nodes, can be solved in time O(2n/4) [Rob01]. Corollary 3.2 shows that even when
the edge weights are small, the edge-weighted version of Max-Clique requires time Ω(2n/2) unless
Subset-SUM can be solved faster.

An FPT Reduction. We show how to make the reduction fixed-parameter tractable. We can
modify the oracle reduction for k-Clique above to get a many-one reduction to k-Clique if we simply
take the disjoint union of the g(n, k) k-Clique instances as a single k-Clique instance. The resulting
graph has n ·g(n, k) nodes, O(n2 ·g(n, k)) edges, and has a k-clique if and only if one of the original
graphs has a k-Clique. Then, we make the following standard argument to appropriately bound
g(n, k) via case analysis. If k < ⌈log log n⌉, then g(n, k) ≤ no(1) · 2f(k)·poly(k). If k ≥ ⌈log log n⌉,
then since n ≤ 22

k

, we have that g(n, k) ≤ 22
k+f(k)·poly(k). Therefore, g(n, k) ≤ no(1) ·h(k) for some

computable h : N → N, and we have shown the following:

Lemma 3.4. k-SUM is in W[1].

In Appendix B, we show how to obtain a randomized FPT reduction from the k-SUM problem
over the integers to k-Clique, and how under plausible circuit lower bound assumptions, we can
derandomize this reduction to show that k-SUM over the integers is in W[1]. This yields the first
half of Theorem 1.2 (and we show the remainder, that k-SUM is W[1]-hard, in the next section).
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3.4 Node-Weight k-Clique-Sum

The reduction of Section 3.3 shows that the Node-Weight k-Clique-Sum problem can be reduced
to no(1) instances of k-Clique, when k is a fixed constant. We observe that if the input graph has
m edges, then the graphs generated by the reduction have no more than k2m edges. Therefore, we
have a tight reduction from node-weight clique to k-Clique.

This concludes the proof of the first half of Theorem 1.5 referencing k-Clique. We defer the
proof of the second half of Theorem 1.5 concerning k-Dominating Set to Appendix C.

4 From k-Clique to k-SUM

In this section, we give a new reduction from k-clique to k-SUM in which the numbers generated are
all in the interval [−n2k, n2k]. This proves that k-SUM is in fact W[1]-hard. We can view the result
as an alternate proof for the W[1]-hardness of k-SUM without use of the Perfect Code problem, as
done by Downey and Fellows [DF92]. The reduction is given from k-Clique to k-Vector-Sum (recall
Definition 3.1), and then from k-Vector-Sum to k-SUM.

Lemma 4.1. For an integer k > 1, k-Clique on n nodes and m edges reduces to an instance of
(k +

(

k
2

)

, k · n1+o(1))-VECTOR-SUM deterministically in time O(n2).

Proof. Given a graph G = (V,E) we reduce an instance of k-Clique to an instance of k-Vector-Sum.
First, we construct a k-sum-free set D ⊆ [Q] of size n, where Q can be bounded by n1+o(1), and
uniquely associate each vertex v ∈ V with an element qv ∈ D. By Lemma A.1, the set D can be
constructed in time poly(n).

Let {e1, . . . , ed} be the standard basis of Rd. Let T = Q(k − 1) + 1, d = k2 + k + 1, and define
j ·ei to be the length-d vector (1-indexed) with entry i consisting of the value j and all other entries
being 0. We define a mapping η : (V × [k]) ∪ (E × [k]× [k]) → [0, T ]d from the vertices and edges
of the graph to length-d vectors over [0, T ]. For each vertex v ∈ V and i ∈ [k], define

η(v, i) , (T − (k − 1)qv) · ei + ed

and for each edge e = (u, v) ∈ E and i, j ∈ [k] with i < j, define

η(e, i, j) , qu · ei + qv · ej + ek·i+j.

Define the target vector t = k · ed + (
∑k

i=1 T · ei) + (
∑

i,j∈[k],i<j ek·i+j). Then, there is a k-clique in
the instance G of k-Clique on n nodes and m edges if and only if there is a solution to the instance
I = ({η(v, i) | v ∈ V, i ∈ [k]} ∪ {η(e, i, j) | e ∈ E, i, j ∈ [k], i < j}, t) of (k +

(k
2

)

, T )-VECTOR-SUM.
We now show correctness of the reduction. First, assume S = {u1, . . . , uk} ⊆ V forms a k-clique

in G. Let E(S) be the set of edges between vertices in S. We claim the set

A = {η(uj , j) | uj ∈ S} ∪ {η(e, i, j) | e = (ui, uj) ∈ E(S), i < j},

with |A| = k+
(

k
2

)

, is a solution to the instance I. To see this, consider
∑

v∈A v =
∑

uj∈S η(uj , j)+
∑

e=(ui,uj)∈E(S) η(e, i, j) and note that it equals

k
∑

j=1

(

(T − (k − 1)qvj ) · ej + ed
)

+

k
∑

j=1

(k − 1)qvj · ej +
∑

i,j∈[k],i<j

ek·i+j = t.
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For the other direction, consider some subset of vectors A ⊆ {η(v, i) | v ∈ V, i ∈ [k]}∪{η(e, i, j) |
e ∈ E, i, j ∈ [k], i 6= j} of size k +

(k
2

)

for which the sum z =
∑

v∈A v equals the target vector
t. Let AV ⊆ V × [k] represent the set of pairs (u, i) for u ∈ V and i ∈ [k] such that η(u, i) ∈ A.
Similarly, let AE ⊆ E × [k] × [k] represent the set of triples (e, i, j) for e ∈ E and i, j ∈ [k] such
that η(e, i, j) ∈ A.

Recall that t[d] = k and therefore by the definition of the mapping η from vertices to vectors,
|AV | must equal k. Since |A| = |AV |+ |AE |, it follows that |AE | =

(k
2

)

. Moreover, for all i, j ∈ [k]
with i < j, since we defined t[k · i + j] = 1, there is exactly one triple in AE of the form (e, i, j).
This implies that for every j ∈ [k], there is at least one pair (u, j) ∈ AV , for otherwise z[j] would
be the sum of only (k− 1) numbers from D ⊆ [Q], and since t[j] = T > Q(k− 1), this sum cannot
equal t[j]. Note that |AV | = k, and so for each j ∈ [k] there is exactly one pair (u, j) ∈ AV . Denote
this vertex u by uj .

For each j ∈ [k], let e1, . . . , ek−1 be the k − 1 edges in E such that for each i ∈ [k − 1],
either (ei, y, j) ∈ AE or (ei, j, y) ∈ AE for some y ∈ [k]. If the former holds, then let ei = (x, vi)
and if the latter holds, let ei = (vi, x) for some x, vi ∈ V . We claim that for i ∈ [k − 1], vi
must be identical to uj. To see this, note that by the definition of the vectors, for all j ∈ [k],

z[j] = η(uj , j)[j] +
∑k−1

i=1 η(ei, i, j)[j] = T − (k − 1)quj
+
∑k−1

i=1 qvi , and since z[j] = t[j] = T , it

must be the case that
∑k−1

i=1 qvi = (k− 1)quj
. Then, since D is k-sum-free, this implies that uj = vi

for all i ∈ [k − 1], which concludes the claim.
Therefore, the vectors in AV correspond to k vertices V (A) ⊆ V and the vectors in AE corre-

spond to
(k
2

)

edges E(A) ⊆ E such that precisely k − 1 edges are incident to each vertex in V (A).
Thus, each edge must be incident to two vertices in V (A), and so the vertices in V (A) along with
the edges in E(A) form a k-clique in G.

The following lemma gives a simple reduction from k-Vector-Sum to k-SUM, by the usual trick
of converting from vectors to integers (via a Freiman isomorphism of order k).

Lemma 4.2. (k,M)-VECTOR-SUM can be reduced to k-SUM on n integers in the range [0, (kM+1)d]
in O(n logM) time.

Proof. Let p = kM +1. Let v1, . . . ,vn be the n vectors of a k-Vector-Sum instance with target t.
For each vector vi = 〈vi[j]〉d−1

j=0 , define the integer xi ,
∑d−1

j=0 vi[j] · pj , and define t =
∑d−1

j=0 tj · pj .
Then the k-SUM instance ({xi}i∈[n], t) has a solution if and only if the k-Vector-Sum instance
({vi}i∈[n], t) has a solution. For correctness, let S = {i1, . . . , ik} be a set of k indices. Then,
∑

i∈S xi =
∑

i∈S
∑ℓ−1

j=0 vi[j] · pj. By switching the order of the summations, we have that this

quantity is
∑ℓ−1

j=0

∑

i∈S vi[j] · pj. Since
∑

i∈S vi[j] ∈ [0, p − 1], we conclude by the uniqueness of
the representation of t that tj =

∑

i∈S vi[j] for all integers j ∈ [0, d− 1]. Hence, the k-Vector-Sum
instance has a solution described by the index set S as well. For the other direction, if tj =
∑

i∈S vi[j] for all j ∈ [0, d − 1], then
∑d−1

j=0 tj · pj =
∑d−1

j=0

∑

i∈S vi[j] · pj. The left side is equal
to t and, by a switch of the order of summations, the right side is equal to

∑

i∈S xi. Therefore,
t =

∑

i∈S xi and so the k-SUM instance has a solution described by the index set S, as desired.

We remark that in some cases, the proof can be changed slightly to yield smaller numbers in the
k-SUM instance produced by the reduction. In particular, when reducing k-Clique to k-Vector-Sum,
only the numbers in the first k coordinates can be as large as k ·n1+o(1) while the numbers in the last
k2+1 coordinates are bounded by k, and therefore, when reducing to (k +

(

k
2

)

,M)-SUM on kn+
(

k
2

)

m
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numbers, the numbers generated can be bounded by M = kd ·(kn1+o(1))k ·kk2+1 = O(k2k
2 ·nk+o(k)).

In other words, we have reduced k-Clique to k′-SUM with numbers in the range
[

−n
√
k′ , n

√
k′
]

,

where k′ = k +
(k
2

)

.

The composition of Lemma 4.1 and Lemma 4.2 yields an FPT reduction, and we have obtained:

Lemma 4.3. k-SUM is W[1]-hard.

This concludes the proof of Theorem 1.2.
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A Additional Preliminaries

We review some useful combinatorial results that are needed in Section 4.

Definition A.1 ((n, k)-perfect hash function family). For integers n, k, s > 0, a set of functions
F = {fi}i∈[s] where fi : [n] → [k] is a (n, k)-perfect hash function family of size s if and only if for
every size-k subset S ⊆ [n], there exists some fi ∈ F such that ∪j∈Sfi(j) = [k].

Proposition A.1 (cf. [NSS95, Theorem 3]). An (n, k)-perfect hash function family of size ek ·
kO(1) log n can be constructed deterministically in time kO(k) · poly(n).

Lemma A.1. For any ε > 0, there exists a c > 0 such that a k-sum-free set S of size n with
S ⊂ [0, (ckn)1+ε] can be constructed in poly(n) time.

Definition A.2 (k-sum-free set). For any k ≥ 2, a set S ⊆ Z is a k-sum-free set if and only if for
all (not necessarily distinct) x1, . . . , xk ∈ S,

∑

i∈[k−1] xi = (k − 1) · xk implies that x1 = · · · = xk.

We outline a construction of a k-sum-free set, derived from a small modification to Behrend’s
original construction [Beh46].

Constructing k-sum-free Sets. For a vector v, let ‖v‖ represent the ℓ2 norm of v, and let
|〈v1,v2〉| represent the dot product of two vectors v1 and v2. Let p = (k − 1)d − 1. Consider
the set Sr(m,d) consisting of all integers x that can be written as x =

∑m−1
i=0 aip

i, where for all
i ∈ [0,m − 1], ai ∈ [0, d − 1] and ‖〈a0, . . . , am−1〉‖ =

√
r. For an integer x ∈ Sr(m,d) of the

form x =
∑

i∈[0,m−1] ai · pi, let ‖x‖ represent the ℓ2 norm of the vector 〈ai〉i∈[0,m−1]. By definition,

‖x‖ =
√
r.

Claim A.1. For any vectors v1, . . . ,vk, if ‖v1‖ = · · · = ‖vk‖ and
∑

i∈[k] ‖vi‖ =
∥

∥

∥

∑

i∈[k] vi

∥

∥

∥, then
v1 = · · · = vk.

Proof. Note that
∥

∥

∥

∥

∥

∥

∑

i∈[k]
vi

∥

∥

∥

∥

∥

∥

2

=
∑

i∈[k]
〈vi,vi〉+ 2

∑

i,j∈[k],i<j

|〈vi,vj〉| =
∑

i∈[k]
‖vi‖2 + 2

∑

i,j∈[k],i<j

|〈vi,vj〉|.

By the Cauchy-Schwarz inequality, |〈vi,vj〉| ≤ ‖vi‖·‖vj‖. Thus, in order for the above quantity

to be equal to
(

∑

i∈[k] ‖vi‖
)2

, it must be the case that |〈vi,vj〉| = ‖vi‖·‖vj‖ for all i, j ∈ [k]. Hence,
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also by Cauchy-Schwarz, vi and vj are linearly dependent. Then, using the fact that ‖vi‖ = ‖vj‖,
it follows that vi = vj for all pairs i, j ∈ [k], which completes the proof.

Lemma A.2. For all integers k ≥ 2, for all ℓ ∈ [0,m(d − 1)2], Sℓ is k-sum-free.

Proof. Let x1, . . . , xk ∈ Sℓ(m,d) be such that
∑

i∈[k−1] xi = (k − 1) · xk. Then, ‖∑i∈[k−1] xi‖ =
(k − 1) · ‖xk‖. Since ‖x1‖ = ‖x2‖ = · · · = ‖xk‖, it follows that

∑

i∈[k−1]

‖xi‖ =

∥

∥

∥

∥

∥

∥

∑

i∈[k−1]

xi

∥

∥

∥

∥

∥

∥

.

Hence, by Claim A.1, it follows that x1 = · · · = xk.

There are dm possible settings for a0, . . . , am−1 where each ai ∈ [0, d − 1], and the value
‖〈ai〉i∈[0,m−1]‖2 lies within the range [0,m(d− 1)2]. Hence, by the pigeonhole principle, there exists

some r ∈ [0,m(d − 1)2] such that |Sr(m,d)| ≥ dm

m(d−1)2+1 ≥ dm−2/m. Note that Sr(m,d) ⊂ [0, pm].

Hence, to obtain a k-sum-free set of size n, we have that d = (m · n)
1

m−2 . Recall that p = Θ(kd),

and so pm = O(kmn)
m

m−2 . For any ε > 0, we can set m = 2/ε + 2 so that pm = (ckn)1+ε for
some constant c > 0. Hence, Sr(m,d) ⊂ [0, (ckn)1+ε]. For any n, we can compute, for each
ℓ ∈ [0,m(d − 1)2], the exact size of Sℓ(m,d), returning the ℓ for which |Sℓ(m,d)| is maximized.
Note that m(d − 1)2 = O(nε), and the construction of Sℓ(m,d) requires time linear in |Sℓ(m,d)|.
Lemma A.1 follows.

A.1 Background on Parameterized Complexity

For an exposition of fixed parameter tractability, reducibility, and the W-hierarchy, we refer the
reader to [DF92, DF95, FG06]. Here we give a brief overview.

A parameterized problem is defined to be a subset of {0, 1}⋆ × N. Let L,L′ be parameterized
problems. L is in the class FPT if there is an algorithm A, constant c, and computable function
f : N → N, such that on all inputs y = (x, k), A(y) decides whether y is in L and runs in time at
most f(k) · |x|c. A FPT reduction from L to L′ is an algorithm R mapping {0, 1}⋆×N to {0, 1}⋆×N,
such that for all y = (x, k), R(y) ∈ L′ if and only if y ∈ L, R(y) runs in f(k) · |x|c time (for some c
and f), and R(y) = (x′, k′) where k′ ≤ g(k) for some computable function g.

Although it is not the original definition, it is equivalent to define W[1] to be the class of
parameterized problems which have an FPT reduction to k-Clique [DF95, FG06].

B A Deterministic FPT Reduction from k-SUM to k-Clique

In this section we show how, by assuming a plausible circuit lower bound assumption, we are able to
strengthen our result from Section 3.3 to a reduction from general k-SUM to k-Clique (as opposed
to only reducing k-SUM on numbers in [−n2k, n2k] to k-Clique).

To do this, we give a randomized process which takes a k-SUM instance and outputs a collection
of k-SUM instances on numbers in [−n2k, n2k] which, with high probability, are such that a member
of the collection contains a solution if and only if the original k-SUM instance contains a solution.
Then, we apply a theorem which allows us to derandomize this reduction given the appropriate
circuit lower bound.
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A Randomized Weight Reduction. We first define a randomized process (cf. [KvM02, Defi-
nition 4.1]) consisting of an algorithm F along with a predicate π. In what follows, the algorithm
F will represent a (randomized) oracle reduction from general k-SUM to k-SUM on numbers in
[−n2k, n2k] which succeeds on some random bit sequences, and the predicate π represents whether
or not the input random bit sequence is such that F produces a valid oracle reduction. Let
z = O(k · poly log n), and let D represent the domain of k-SUM instances on n integers.

Let F : D × {0, 1}z → Dk be a process which takes as input x a k-SUM instance along with
a random bit sequence r ∈ {0, 1}z . Let the instance x describe a k-SUM instance consisting of a
set S of n integers in the range [0,M ] with target value 0 (without loss of generality). F uses the
sequence of random bits r to choose a prime p ∈ [2, dnk log n log(kM)] by picking random integers
within the interval until a prime is obtained. Let S′ represent the set of integers derived by taking
each integer in S modulo p. The output of F is a collection of k instances of k-SUM, each with
base set S′, and the ith instance has target value i · p, for i ∈ [0, k − 1].

Let π : D×{0, 1}z → {0, 1} be a predicate which takes as input x a k-SUM instance along with
a random bit sequence r ∈ {0, 1}z and outputs a single bit. The predicate π(x, r) runs F (x, r) to
obtain a collection C of k instances of k-SUM, and outputs 1 if and only if the k-SUM instance x
has a solution and there exists some k-SUM instance in C which does not have a solution, or, the
original k-SUM instance does not have a solution and none of the k-SUM instances in C have a
solution. The following lemma is folklore, and also informally stated in [BDP08], but we provide a
proof here for completeness, as it also justifies Proposition 1.1.

Lemma B.1. Let k, n,M,M ′ > 0 be integers such that M ′ = O(knk log n log(kM)), and let d > 0
be a sufficiently large constant. Let C be the collection of k-SUM instances output by F on input x,
a k-SUM instance on n integers in the range [0,M ], and a random bit sequence r ∈ {0, 1}z . Then,
each k-SUM instance in C is on n integers in the range [0,M ′], and π(x, r) = 1 with probability at
least 1− 1/(cd). for some fixed constant c > 0.

Proof. Let S be the set of integers of the k-SUM instance. For a sufficiently large constant d > 0,
for a randomly chosen prime p ∈ [2, d · nk log n log(kM)], consider the new set S′ where we take
all integers of S modulo p. Clearly, if S has a k-SUM solution, then S′ also has a solution, and
hence, there exists a member of the collection of k-SUM instances output by F which contains a
solution. For any k-tuple of integers in [0,M ] with nonzero sum s, we have s ∈ [kM ] so s has at
most log(kM) prime factors. By the prime number theorem, for sufficiently large n, there are at
least cd · nk log(kM) primes in this interval for a fixed constant c > 0, and so the probability that
p is a prime factor of s is at most

log(kM)

cdnk log(kM)
≤
(

1

cd · nk

)

.

By a union bound over all k-tuples of numbers from S′, the probability of a false positive in S′ is
at most 1/(cd). We have shown that if the k-SUM instance S with target value 0 does not contain
a solution, then with probability at least 1 − 1/(cd) over the choice of a random prime p, S does
not contain a k-tuple of integers which sum to a multiple of p, and hence, there does not exist a
member of the collection of k-SUM instances output by F which contains a solution.

Finally, we can remove the “modulo p” constraint from S′ as follows. Treating all elements in
S′ as integers in [0, p−1], for each z ∈ {−k ·p, . . . ,−p, 0, p, . . . , k ·p} we reduce to checking whether
there are x1, . . . , xk ∈ S′ such that

∑

i xi = z (where this sum is over the integers). Such a k-tuple
exists if and only if

∑

i xi equals 0 mod p.
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Derandomizing the Reduction. Let B be an oracle for SAT, and assume there exists a function
f ∈ E with B-oracle circuit complexity 2εn for some ε > 0. We note that, for all k-SUM instances x
and random bit sequences r, π(x, r) can be decided by a B-oracle circuit of size na for some positive
constant a, since we can construct a circuit which creates and then solves the k-SUM instances to
check the predicate. We also have by Lemma B.1 that for all x, for uniformly sampled r ∈ {0, 1}z ,
Pr[π(x, r) = 1] with probability 1− 1/(cd), where c is a universal constant and d can be chosen to
be arbitrarily large. We now apply the following derandomization theorem due to Klivans and van
Melkebeek [KvM02].

Theorem B.1 (cf. [KvM02, Theorem 4.4]). Let B be an oracle, b a positive constant, and ℓ : N → N

a constructible function. Let (F, π) be a randomized process using a polynomial number of random
bits such that B can efficiently check (F, π). If there exists a Boolean function f ∈ E such that
CB
f (ℓ(n)) = Ω(n), then there exists a function G computable in E and a constructible function

s(n) = O(ℓ2(nO(1))/ log n) such that for any input x of length n,

|Prr[π(x, r) = 1]− Prs[π(x,G(s)) = 1]| ≤ O(1/nb)

where r is uniformly distributed over {0, 1}r(n) and s over {0, 1}s(n).

By applying Theorem B.1 with ℓ(n) = log n, there exists a constant s > 0 and an efficiently
computable function G computable in with seed length s log n such that for any input x of length
n, |Pr[π(x, r) = 1] − Pr[π(x,G(σ)) = 1]| = O(1/nb). By choosing d = Ω(n), we have that
Pr[π(x,G(σ)) = 1] ≥ 1− 1/n.

The Deterministic FPT Reduction. Given an instance x of k-SUM, for each σ ∈ {0, 1}s logn,
let Cσ be the collection of instances of k-SUM output by F (x,G(σ)). Note that Cσ is in fact a
collection of instances of k-SUM on numbers in [−n2k, n2k] by Lemma B.1. Hence, as described in
Section 3.3, we can reduce each member of Cσ to an instance of k-Clique—let Sσ represent this
collection of k-Clique instances, obtained by applying the reduction to each member of Cσ. Let S

∗

be a family of k-Clique instances obtained by taking the union of Sσ over all σ ∈ {0, 1}s logn. The
original k-SUM instance x contains a solution if and only if at least a 1/n fraction of the members
of S∗ contain a k-Clique.

To see the correctness of this deterministic reduction, note that at most a 1/n fraction of
σ ∈ {0, 1}s logn are such that π(x,G(σ)) = 0. For all other seeds σ, π(x,G(σ)) = 1 and the process
F correctly reduces its input x to a collection of k-SUM instances. Therefore, if x contains a
solution, then all members of S∗ will contain a k-Clique, and if x does not contain a solution, then
at most a 1/n fraction of the members of S∗ could possibly contain a k-Clique. As the constant
s in the seed length is fixed, we note that the process F also runs in time polynomial in its input
and therefore our reduction is FPT. We have shown the following theorem.

Theorem B.2. Let B be an oracle for SAT. If there is a function f ∈ E with B-oracle circuit
complexity 2εn for some ε > 0, then k-SUM ∈ W[1].

We note that the oracle B can be replaced with any oracle sufficient to efficiently compute the
predicate π—for example, Theorem B.2 follows where B is an oracle for k-SUM.
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C Node-Weight Dominating Set

Lemma C.1. For every fixed k ≥ 2, Node-Weight k-Dominating-Set-Sum can be reduced to no(1)

instances of k-Dominating Set on graphs on O(k2n) nodes. The reduction runs in n2+o(1) time.

Proof. Given a node-weighted graph G = (V,E), w : V → [−n2k, n2k], we first use Lemma 3.1
with d = O(log n/ log log n) and p = O(k2k log n) to get s = O(nlog k/ log logn) = no(1) instances of
the problem where the weight of every node is a vector in [p]d instead of a number in [−n2k, n2k].
We treat each instance i ∈ [s] separately, as follows.

For a pair of nodes u, v ∈ V , let their weights be u,v ∈ [p]d and define the expression

F (u, v) =

d
∑

j=1

(

u[j]2 + v[j]2 + 2(k − 1)u[j] · v[j]
)

,

which corresponds to the “squaring trick” from Lemma 3.2.
We enumerate over all

(k
2

)

-tuples of numbers t = (αi,j)i,j∈[k] such that
∑

i,j αi,j = 0 where
αi,j ∈ [−M,M ] where M = O(poly log n) is an upper bound on the F (u, v) values, and for each
such tuple t we generate an instance of k-Dominating Set, an unweighted graph Gt. Note that the
number of such tuples is logO(k) n = no(1).

Let V0, V1, . . . , Vk, and Vi,j for every i < j, i, j ∈ [k] be
(

k
2

)

+ k + 1 copies of the node set V .
The node set of Gt is V0 ∪

⋃

i Vi ∪
⋃

i<j Vi,j. Let us denote the copy of node v in the set VX by vX .
For every edge (u, v) ∈ E of G we add the edges (ui, v0) and (vi, u0), for every i ∈ [k], to Gt. We
also make the copies V1, . . . , Vk cliques by adding edges (vi, ui) for every u, v ∈ V and i ∈ [k]. Note
that this forces every k-dominating set in Gt to contain exactly one node vi in every set Vi, and
that such k nodes dominate every node in V0 if and only if they correspond to a k-dominating set
in G. Finally, we add the following edges that simulate “gaining edges” by allowing pairs of nodes
ui, vj to be in a k-dominating set in Gt if and only if they are consistent with the tuple t which is
chosen to guarantee that the total sum of weights is zero. For every pair of nodes u 6= v in G and
indices i < j in [k] we add the edge (ui, vi,j) to Gt and then check if F (u, v) = αi,j, and if so, we
add the edge (uj , vi,j) to Gt.

We now claim that a subset S ⊆ V of size k is k-dominating set of weight zero in G if and only
if the nodes S′ = {xi(x) | x ∈ S} where i(x) is the index of x in an arbitrary ordering of S, are a
k-dominating set in Gt, for some tuple t and some instance i ∈ [s]. To see this, first note that a
set of k nodes S[1]1 ∈ V1, . . . , S[k]k ∈ Vk are a dominating set in Gt if and only if S[1], . . . , S[k] are
a dominating set in G and for every pair i < j in [k], the condition F (w(S[i]), w(S[j])) = αi,j is
satisfied. By definition of our formulas F (·, ·) and the proofs of Lemmas 3.1, 3.2, and 3.3, we get
that S[1]1, . . . , S[k]k are a dominating set in Gt for some tuple t and instance i ∈ [s] if and only if
S[1], . . . , S[k] are a dominating set in G of total weight zero.
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