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Approximating APSP without Scaling:

Equivalence of Approximate Min-Plus and Exact Min-Max

Karl Bringmann∗ Marvin Künnemann† Karol Węgrzycki‡

Abstract

Zwick’s (1+ε)-approximation algorithm for the All Pairs Shortest Path (APSP) problem runs

in time Õ(n
ω

ε
logW ), where ω ≤ 2.373 is the exponent of matrix multiplication and W denotes

the largest weight. This can be used to approximate several graph characteristics including
the diameter, radius, median, minimum-weight triangle, and minimum-weight cycle in the same
time bound.

Since Zwick’s algorithm uses the scaling technique, it has a factor logW in the running time.
In this paper, we study whether APSP and related problems admit approximation schemes
avoiding the scaling technique. That is, the number of arithmetic operations should be inde-
pendent of W ; this is called strongly polynomial. Our main results are as follows.

• We design approximation schemes in strongly polynomial time O(n
ω

ε
polylog(n

ε
)) for APSP

on undirected graphs as well as for the graph characteristics diameter, radius, median,
minimum-weight triangle, and minimum-weight cycle on directed or undirected graphs.

• For APSP on directed graphs we design an approximation scheme in strongly polynomial
time O(n

ω+3

2 ε−1 polylog(n
ε
)). This is significantly faster than the best exact algorithm.

• We explain why our approximation scheme for APSP on directed graphs has a worse
exponent than ω: Any improvement over our exponent ω+3

2
would improve the best known

algorithm for Min-Max Product. In fact, we prove that approximating directed APSP and
exactly computing the Min-Max Product are equivalent.

Our techniques yield a framework for approximation problems over the (min,+)-semiring that
can be applied more generally. In particular, we obtain the first strongly polynomial approxi-
mation scheme for Min-Plus Convolution in strongly subquadratic time, and we prove an equiv-
alence of approximate Min-Plus Convolution and exact Min-Max Convolution.
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1 Introduction

Scaling is one of the most fundamental algorithmic techniques. On a problem involving weights from
a range {1, . . . ,W}, the main idea of scaling is to consider each of the logW bits one-by-one. Roughly
speaking, in each phase we only consider the current bit, which simplifies the weighted problem to an
unweighted problem. The scaling technique was particularly successful for graph problems (e.g., [27,
22, 17, 38, 21]). For instance, a scaling-based algorithm solves maximum weighted matching in time
O(m

√
n log(nW )) [22], which was recently improved to time O(m

√
n logW ) [17].

However, in some situations scaling-based algorithms may be slower than alternative approaches,
since they naturally require a factor logW in the running time. In particular, in practice weights
are often given as floating-point numbers, and thus logW can easily be as large as n, rendering
most scaling-based algorithms inferior to naive approaches. For this reason as well as for the
genuinely theoretical interest, research on strongly polynomial algorithms received major attention
(e.g., [49, 37, 56, 44]). We say that an algorithm runs in strongly polynomial time if its number
of arithmetic operations does not depend on W . For example, the fastest strongly polynomial
algorithms for maximum weight matching run in time Õ(nm) [18, 50]. (Here and throughout the
paper we let Õ(T ) = O(T polylogT ), in particular, Õ(nc) never hides a factor logW .)

The resulting challenge is to design improved strongly polynomial algorithms whose running times
come as close as possible to the best known scaling-based algorithms, but without any logW -factors.
In this paper, we tackle this challenge for a large class of approximation algorithms. This is achieved
in part by an algorithmic framework that allows us to switch between approximate problems over
the (min,+)-semiring and exact problems over the (min,max)-semiring.

1.1 Approximating APSP, Matrix Products, and Graph Characteristics

In this paper, we study the following problems (see Appendix A for formal problem definitions).

• Shortest path problems: The All-Pairs Shortest Path problem (APSP) asks to compute,
given a directed graph with positive edge weights, the length of the shortest path between any
two vertices.

• Matrix products: Given matrices A,B ∈ R
n×n
+ , their product over the (⊕,⊗)-semiring is

the matrix C ∈ R
n×n
+ with C[i, j] =

⊕
1≤k≤n(A[i, k] ⊗ B[k, j]). In general, the product can

be computed using O(n3) semiring operations. Over the (+, ·)-ring, the problem is standard
matrix multiplication and can be solved in time O(nω) ≤ O(n2.373) [25]. Min-Plus Product is
the problem of computing the matrix product over the (min,+)-semiring.

• Graph characteristics: Specifically, we study the graph characteristics Diameter, Radius,
Median, Minimum-Weight Triangle, and Minimum-Weight Cycle.

These graph characteristics and Min-Plus Product can be reduced to APSP, and thus all of these
problems can be solved in time O(n3) [19, 57] and using a recent algorithm by Williams [58] in time
n3/2Ω(

√
logn). Moreover, with the exception of Diameter, an O(n3−δ)-algorithm for one of these

graph characteristics, or for Min-Plus Product, or for APSP would yield an O(n3−δ′)-algorithm for
all of these problems [59, 2]. It is therefore conjectured that none of them can be solved in truly
subcubic time [59, 2].
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Zwick designed a (1 + ε)-approximation algorithm for APSP running in time Õ(n
ω

ε logW ) [62].
This yields approximation schemes with the same guarantees for Min-Plus Product and the men-
tioned graph characteristics [2, 40]. Zwick’s running time is close to optimal1, except that it is
open whether the factor logW is necessary. To the best of our knowledge, no strongly polynomial
approximation scheme is known for any of the mentioned problems. This leads to our main question:

Do APSP, Min-Plus Product, and the mentioned graph characteristics have strongly polynomial
approximation schemes running in time Õ(n

ω

ε )? Or at least in time Õ(n
3−δ

ε ) for some δ > 0?

Note that in the setting of strongly polynomial algorithms, by time we mean the number of arith-
metic operations. However, there is also a corresponding question that considers the bit complexity.
In fact, variants of our main question are reasonable and open in at least three different settings:

• Number of arithmetic operations: When we only count arithmetic operations, then in partic-
ular we can add/multiply two logW -bit input integers in constant time. Thus, it is not clear
why the running time of an algorithm should depend on logW at all. Nevertheless, Zwick’s
algorithm requires Õ(n

ω

ε logW ) arithmetic operations. It is open whether this can be reduced

to Õ(n
ω

ε ) (or even to Õ(n
3−δ

ε ) for any δ > 0).

• Bit complexity with integers: In bit complexity, an arithmetic operation on b-bit integers has
cost Õ(b). Note that the input to APSP consists of n2 many logW -bit integers, and suppose
that we keep this number format throughout the algorithm. Running Zwick’s algorithm in this
setting results in a bit complexity of Õ(n

ω

ε log2 W ), since each arithmetic operation has bit

complexity Õ(log(nW )). One logW -factor is natural, since we operate on logW -bit integers.
The question thus becomes whether the second logW -factor of Zwick’s algorithm is necessary,
or whether it can be improved to bit complexity Õ(n

ω

ε logW ).

• Bit complexity with floating point approximations: One can improve upon the bit complexity
of Zwick’s algorithm as described above by changing the number format to floating point.
Note that changing any input number by a factor in [1, 1 + ε] changes the resulting distances
by at most 1+ ε and thus still yields a (1+O(ε))-approximation. We can therefore round any
input integer in the range {1, . . . ,W} to a floating point number with an O(log 1

ε )-bit mantissa
and an O(log logW )-bit exponent. We argue that this is the natural input format of Approx-
imate APSP in Section 2.1. In this format, arithmetic operations on input numbers have
bit complexity Õ(log 1

ε + log logW ), and thus a factor log logW in the bit complexity would
be natural. However, implementing Zwick’s algorithm in this setting yields bit complexity
Õ(n

ω

ε logW ). The question now becomes whether this can be improved to Õ(n
ω

ε log logW ),

after converting the input numbers to floating point in time Õ(n2 logW ) (we will ignore this
conversion time throughout the paper since it is near-linear in the input size).

Note that in all three settings potentially Zwick’s algorithm could be improved by a factor up
to Õ(logW ). We focus on the first setting in this paper, where our goal is to design algorithms
whose number of arithmetic operations is independent of W . However, our algorithms also yield
improvements in the other two settings, which we will briefly mention below.

1For APSP and Min-Plus Product, any (1 + ε)-approximation can be used to compute the Boolean matrix prod-
uct [13], and thus requires time Ω(nω). Moreover, the dependence on 1

ε
should be at least polynomial, since the

hardness conjecture for APSP is stated for W = poly(n) [59], and a setting of ε = 1/W yields an exact algorithm.
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1.2 Our Results

In this paper, we answer our main question affirmatively for all listed problems (for Directed APSP
we need the relaxed form of the question). Our results hold on the Word RAM, see Section 2.1 for
details of the machine model.

For the mentioned graph characteristics, obtaining time Õ(n
ω

ε ) is an easy exercise. Since the
result is a single number, we can first compute a poly(n)-approximation, round edge weights to
obtain W = poly(n/ε), and then use the Õ(n

ω

ε logW )-time approximation scheme as a black box.

Theorem 1.1. Diameter, Radius, Median, Minimum-Weight Triangle, and Minimum-Weight Cycle
on directed and undirected graphs have approximation schemes in strongly polynomial time2 Õ(n

ω

ε ).

For APSP restricted to undirected graphs, we also obtain time Õ(n
ω

ε ). We augment an essentially
standard scaling-based algorithm for APSP by contracting light edges. This is more involved than
our solution for graph characteristics, and is inspired by an iterative algorithm of Tardos [49]. Similar
edge contraction arguments have been used in the context of parallel algorithms for approximate
APSP on undirected graphs [30, 12].

Theorem 1.2. (1 + ε)-Approximate Undirected APSP is in strongly polynomial time2 Õ(n
ω

ε ).

For APSP on directed graphs the ideas used above fail, since there are n2 output numbers and we
cannot contract directed edges. As our most involved result in this paper, we obtain a truly subcubic
strongly polynomial approximation scheme for APSP; no such algorithm was known before.

Theorem 1.3. (1 + ε)-Approximate Directed APSP is in strongly polynomial time2 Õ(n
ω+3

2 /ε).

Our approximation scheme for (directed) APSP is, in fact, a reduction from approximate APSP
to the exact problem Min-Max Product, i.e., the problem of computing the matrix product over
the (min,max)-semiring. This problem is closely related to the All-Pairs Bottleneck Path problem.3

Min-Max Product and All-Pairs Bottleneck Path can be solved in time Õ(n
ω+3

2 ) [15], which is why
this term appears in our approximation scheme for APSP.

Furthermore, our reduction also works in the other direction, which yields an equivalence of
approximation schemes for APSP and exact algorithms for Min-Max Product. In particular, for
readers willing to believe that the best known running time for Min-Max Product is essentially
optimal, this can be seen as a conditional lower bound for approximate APSP, showing that any
improvements upon our approximation scheme in terms of the exponent of n is unlikely.

Theorem 1.4. For any c ≥ 2, if one of the following statements is true, then all are:

• (1+ ε)-Approximate Directed APSP can be solved in strongly polynomial time Õ(nc/poly(ε)),

• (1+ε)-Approximate Min-Plus Product can be solved in strongly polynomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc),

• exact All-Pairs Bottleneck Path can be solved in strongly polynomial time Õ(nc).

2Here, by time we mean the number of arithmetic operations performed on a RAM machine. The bit complexity

of the algorithm is bounded by the number of arithmetic operations times log logW (up to terms hidden by Õ).
3In All-Pairs Bottleneck Path we are given a directed graph with capacities on its edges, and want to determine

for all vertices u, v the capacity of a single path for which a maximum amount of flow can be routed from u to v.
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Our techniques also transfer to other problems over the (min,+)-semiring. In particular, we
design the first strongly polynomial-time approximation scheme for Min-Plus Convolution. Anal-
ogously to Theorem 1.4, we complement this result by an equivalence of approximating Min-Plus
Convolution and exactly solving Min-Max Convolution.

Theorem 1.5. (1+ε)-Approximate Min-Plus Convolution is in strongly polynomial time2 Õ(n3/2/
√
ε).

Furthermore, for any c ≥ 1, if one of the following statements is true, then both are:

• (1+ε)-Approximate Min-Plus Convolution can be solved in strongly polynomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc).

As an application, we obtain an approximation scheme with the same guarantees for the related
Tree Sparsity problem.

Theorem 1.6. (1 + ε)-Approximate Tree Sparsity is in strongly polynomial time2 Õ(n
3/2√
ε
).

We prove these results related to Min-Plus Convolution in Section 8 as Theorems 8.3, 8.2, and
Corollary 8.8.

1.3 Technical Overview

Our main technical contribution is the following Sum-to-Max-Covering, which yields a framework
for reducing approximate problems over the (min,+)-semiring to exact or approximate problems
over the (min,max)-semiring. The most intriguing results of this paper (the approximation scheme
for directed APSP as well as the equivalence with Min-Max Product) are essentially immediate
consequences of Sum-to-Max-Covering, see Sections 3 and 4. Here we denote [n] = {1, . . . , n}.

Theorem 1.7 (Sum-to-Max-Covering). Given vectors A,B ∈ R
n
+ and ε > 0, in linear time in the

output size we can compute vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with s = O((1ε + log n) log 1

ε )
such that for all i, j ∈ [n]:

A[i] +B[j] ≤ min
ℓ∈[s]

max{A(ℓ)[i], B(ℓ)[j]} ≤ (1 + ε)(A[i] +B[j]).

There are two main issues that make the proof of this statement non-trivial.
For close pairs i, j, meaning A[i]

B[j] ∈ [ε, 1ε ], the sum A[i]+B[j] and the maximum max{A[i], B[j]}
differ significantly. It is thus necessary to change the values of the vectors A,B. Roughly speaking,
we handle this issue by splitting A into vectors A(ℓ) such that all entries A(ℓ)[i], A(ℓ)[i′] differ by
either less than a factor 1 + ε or by more than a factor poly(1/ε). Then we can choose B(ℓ) such
that B(ℓ)[j] is approximately A[i] + B[j] for all close pairs i, j. This ensures that for close pairs
max{A(ℓ)[i], B(ℓ)[j]} is approximately A[i] +B[j]. For details see Close Covering (Lemma 5.2).

For the distant pairs i, j, with A[i]
B[j] 6∈ [ε, 1ε ], the sum A[i]+B[j] and the maximum max{A[i], B[j]}

differ by less than a factor 1 + ε, so we do not have to change any values. However, we need to
remove some entries (by setting them to ∞) in order to not interfere with close pairs. We show how
to cover all distant pairs but no too-close pairs, via a recursive splitting into log n levels of chunks
and treating boundaries between chunks by introducing several shifts of restricted areas. For details
see Distant Covering (Lemma 5.3).
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1.4 Further Related Work

It is known that in general not every scaling-based algorithm can be made strongly polynomial, see,
e.g., Hochbaum’s work on the allocation problem [28].

APSP and Min-Plus Product For undirected graphs with weights in {−W, . . . ,W}, APSP
can be solved exactly in time Õ(Wnω) [45, 23, 5, 48], where ω < 2.373 is the matrix multipli-
cation exponent [25]. For directed graphs with weights in {−W, . . . ,W}, Zwick [62] presented an
O(W 0.68n2.575)-time algorithm that also uses fast matrix multiplication (in fact, recent advances
for rectangular matrix multiplication yield slightly stronger bounds [24, 26]).

The closest related work to our paper is by Vassilevska and Williams [54], who considered the
real-valued Min-Plus Product. They proposed a method to compute the k most significant bits
of each entry of the Min-Plus Product in time O(2kn2.687 log n), in the traditional comparison-
addition model of computation. This is similar to an additive W/2k-approximation. However, it
is incomparable to a (1 + ε)-approximation algorithm for Min-Plus Product, since (1) the k most
significant bits might all be 0, in which case they do not provide a multiplicative approximation,
and (2) a (1+ ε)-approximation not necessarily allows to determine any particular bit of the result,
e.g., if a number is very close to being a power of 2. Subsequently, their dependence on n was
improved to O(2kn2.684)[60], which was further refined to O(20.96kn2.687) and to O(2ckn2.684) for
some c < 1 [33].

For approximate APSP for real-valued graphs with weights in [−no(1), no(1)], Yuster [61] pre-

sented an additive ε-approximation in time Õ(n
ω+3

2 ). More recently, among other results, Roditty
and Shapira [39] gave an algorithm computing every distance dG(u, v) up to an additive error of
dG(u, v)

p in time Õ(Wn2.575−p/(7.4−2.3p)). For very small W , this interpolates between Zwick’s
fastest exact algorithm and his approximation algorithm [62].

In this paper we will focus on the problem of (1 + ε)-approximating APSP when ε is close to 0.
For ε < 1 the problem is at least as hard as Boolean matrix multiplication [13] and thus requires
time Ω(nω). However, there are more efficient algorithms in the regime ε ≥ 1 for undirected graphs,
using spanners and distance oracles [52].

All-Pairs Bottleneck Path and Min-Max Product The All-Pairs Bottleneck Path (APBP)
problem is, given an edge-weighted directed graph G, to determine for all vertices u, v the maximal
weight w such that there is a path from u to v using only edges of weight at least w. It is known that
APBP is equivalent to Min-Max Product, up to lower order factors in running time. The first truly
subcubic algorithm for Min-Max Product was given by Vassilevska et al. [55], which was improved

to time O(n
ω+3

2 ) by Duan and Pettie [15].
Shapira et al. [47] proposed an O(n2.575)-time algorithm for a vertex-weighted variant of APBP.

Duan and Ren [16] introduced the problem All-Pairs Shortest Path for All Flows (APSP-AF) and

provided an approximation algorithm in time Õ(n
ω+3

2 ε−3/2 logW ). They also proved an equivalence
with Min-Max Product. However, in contrast to the equivalences presented in this paper, their
equivalence loses a factor logW , and thus does not work for strongly polynomial algorithms.

APSP and APBP can be easily computed in time O(n2.5) on quantum computers [35]. Le Gall
and Nishimura [33] designed the first quantum algorithm for computing Min-Max Product in time
O(n2.473), and noted that every problem equivalent to APBP admits a nontrivial O(n2.5−ε)-time
algorithm in the quantum realm.
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It is also worth mentioning that there are efficient algorithms for products in other algebraic
structures, e.g., dominance product, (+,min)-product, (min,≤)-product (see, e.g., [53]).

Hardness of Approximation in P There is a growing literature on hardness of approximation
in P (see, e.g., [3, 41, 1, 10, 29, 11]), building on recent progress in fine-grained complexity the-
ory. For readers that are willing to believe that the current algorithms for Min-Max Product are
close to optimal, our equivalence of approximating APSP and exactly computing Min-Max Prod-
uct is a hardness of approximation result, and in fact it is one of the first tight lower bounds for
approximation algorithms for problems in P (cf. [11]).

1.5 Organization

After preliminaries on the machine model in Section 2, we present our approximation scheme for
APSP in Section 3 and the equivalence with Min-Max Product in Section 4. The main technical
result, Max-to-Sum-Covering, is proved in Section 5. In Section 6 we discuss Undirected APSP, and
in Section 7 we discuss certain graph characteristics. Finally, in Section 8 we present our approx-
imation scheme for Min-Plus Convolution and prove the equivalence with Min-Max Convolution.
Formal problem definitions can be found in Appendix A.

2 Preliminaries

Notation By W we denote the largest input weight. We use Õ-notation to suppress polylog-
arithmic factors in n and ε, but never in W . By ω < 2.373 we denote the exponent of matrix
multiplication [25]. Observe that ω+3

2 < 2.687. We use [n] to denote the set {1, 2, . . . , n}. We
assume all input weights to be positive real numbers – in particular after scaling we can assume all
numbers to be at least 1, so the input range is R+ = {a ≥ 1 | a ∈ R} ∪ {∞}. We denote by W the
largest finite input number.

We will state our results for both directed and undirected graphs. By default, G denotes a
graph, V the set of its vertices and E set of edges. In most cases the graph is weighed with a
function w : E → R+. When we talk about graph algorithms, n denotes the number of vertices
and m the number of edges. We consider multiplicative (1 + ε)-approximation algorithms, where
the deviation from the exact value is always one-sided. We assume that ε > 0 is sufficiently small
(ε < 1/10). For formal definitions of the problems considered in this paper, see Appendix A.

2.1 Machine Model and Input Format

Throughout the paper, we will assume that for all approximate problems input numbers are

represented in floating-point, while for all exact problems input numbers are integers

represented in usual bit representation. This choice of representation is not necessary for our
new approximation algorithms (they would also work on the Word RAM with input in bit repre-
sentation or on the Real RAM allowing only additions and comparisons); however, it is necessary
for our equivalences between approximate and exact problems, as we discuss at the end of this
section. We first describe the details of these formats as well as why this choice is well-motivated
and natural.

The reader is invited to skip over the machine model details and consider an unrealistic, but
significantly simpler model of computation throughout the paper: A Real RAM model where all
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logical and arithmetic operations on real numbers have unit cost, including rounding operations.
This model is too powerful to be a realistic model of computation [43], but considering our algorithms
in this model captures the main ideas.

Floating-Point Representation for Approximate Problems For all approximate problems
considered in this paper, we can change every input weight by a factor 1 + ε in a preprocessing
step; this changes the result by at most a factor 1 + ε. It therefore suffices to store for each input
weight w its rounded logarithm e = ⌊log2w⌋, which requires only O(log logW ) bits, and a (1 + ε)-
approximation of w/2e ∈ [1, 2], which requires only O(log 1/ε) bits. Note that this is floating-point
representation. Hence, floating-point is the natural input format for the approximate problems
studied in this paper!

The necessity for rigorous models for floating-point numbers in theoretical computer science was
observed in [4, 8, 51]. Here we follow the format proposed by Thorup [50], except that we slightly
simplify it, since we only want to represent positive reals. In floating-point representation, a positive
real number is given as a pair x = (e, f), where the exponent e is a κ-bit integer and the mantissa
f is a γ-bit string f1, . . . , fγ . The pair x represents the real number

2e ·
(
1 +

γ∑

i=1

fi/2
i
)
.

Here γ, κ are parameters of the model. Moreover, we assume that all arithmetic operations on
floating-point numbers can be performed in constant time.

For all approximate problems considered in this paper, we assume the input weights to be
given in floating-point format. In particular, if the input weights are in the range [1,W ], we assume
floating-point representation with Θ(log n)-bit mantissa and Θ(log n+log logW )-bit exponent. The
unit-cost assumption (that all arithmetic operations on floating-point numbers take constant time)
thus hides at most a factor Õ(log n + log logW ) compared to, e.g., the complexity of performing
these operations by a device operating on bits. Note that many other formats can be efficiently
converted into floating-point, and thus our algorithms also work in other settings.

Note that using a fixed floating-point precision introduces inherent inaccuracies when performing
arithmetic operations. For simplicity of presentation, however, we shall assume that all arithmetic
operations yield an exact result. For the algorithms in this paper, it is easy to see that this
assumption can be removed by increasing the precision slightly.

Bit Representation for Exact Problems The only two exact problems that we consider in
this problem are Min-Max Product and Min-Max Convolution. Since both problems are of the
Min-Max type, it is easy to see that we can replace all input numbers by their ranks, i.e., their
index in the sorted ordering of all input numbers. Solving the problem on the ranks, we can then
infer the result. Hence, up to additional near-linear time in the input size to determine the ranks,
we can assume that all input numbers are integers in the range {1, . . . ,poly(n)}, and thus all input
numbers are O(log n)-bit integers. This is the reason why for the exact problems studied in this
paper, bit representation is the natural input format, and not floating-point! As usual for the Word
RAM, we assume that each memory cell stores Ω(log n)-bit integers, and thus operations on input
numbers can be performed in constant time.
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Necessity of our Choice of Input Representation We crucially use our choice of input for-
mats in our equivalences of approximate Min-Plus and exact Min-Max problems (see Theorem 1.4,
Theorem 8.2): In the reduction from exact Min-Max to approximate Min-Plus we need to expo-
nentiate some numbers. In usual bit representation, this would translate O(log n)-bit integers to
poly(n)-bit integers and thus not be efficient enough. However, if m is an O(log n)-bit integer in
standard bit-representation, then we can store 2m in floating-point representation by storing m as
the exponent; the resulting floating-point number has an O(log n)-bit exponent (and an O(1)-bit
mantissa).

For the other direction, from approximate problems in floating-point to exact problems in bit
representation, we use that for Min-Max problems we can replace input numbers by their ranks,
which converts floating-point numbers to O(log n)-bit integers in bit representation.

3 Strongly Polynomial Approximation for Directed APSP

We present a strongly polynomial (1 + ε)-approximation algorithm for APSP with running time

Õ(n
ω+3

2 ε−1), proving Theorem 1.3. To this end, we first recall the reduction from approximate
APSP to approximate Min-Plus Product from [62] (see Theorem 3.1). Then we observe that Sum-
To-Max-Covering yields a reduction from approximate Min-Plus Product to Min-Max Product.
Using the known Õ(n

ω+3

2 )-time algorithm for the latter shows the result (see Theorem 3.2).

Theorem 3.1 (Implicit in [62]). If (1 + ε)-Approximate Min-Plus Product can be solved in time
T (n, ε), then (1 + ε)-Approximate APSP can be solved in time O

(
T (n, ε/ log n) · log n

)
.

Proof. For the sake of completeness, we repeat the argument of Zwick [62, Theorem 8.1]. Let A be
the adjacency matrix of a given edge-weighted directed graph G, i.e., if there is an edge (i, j) ∈ E of
weight w(i, j) then A[i, j] = w(i, j), and A[i, j] = ∞ otherwise. We also add self-loops of weight 0,
i.e, we set A[i, i] = 0 for all i ∈ [n]. Given ε > 0, we set ε′ := ln(1 + ε)/ ⌈log n⌉ (where ln is the
natural logarithm and log is base 2). We will perform ⌈log n⌉ iterations of repeated squaring. In
each iteration, we execute (1 + ε′)-Approximate Min-Plus Product on the current matrix A with
itself, i.e., we square the current matrix A. An easy inductive proof shows that after r iterations
each entry A[i, j] is bounded from below by the distance from i to j in G, and bounded from above
by (1 + ε′)r times the length of the shortest 2r-hop path from i to j. Since any shortest path uses
at most n edges, after ⌈log n⌉ iterations each entry A[i, j] is an approximation of the distance from
i to j in G, by a multiplicative factor of

(1 + ε′)⌈log n⌉ =
(
1 +

ln(1 + ε)

⌈log n⌉
)⌈logn⌉

≤ 1 + ε.

The direct running time of the reduction is O(n2 log n) and there are O(log n) calls to (1 + ε′)-
Approximate Min-Plus Product with ε′ = Θ( ε

logn).

Theorem 3.2. (1 + ε)-Approximate Min-Plus Product can be solved in time Õ(n
ω+3

2 ε−1).

Proof. We use Sum-To-Max-Covering to reduce approximate Min-Plus Product to exact Min-Max
Product and then use a known algorithm for the latter; the pseudocode is shown in Algorithm 1.

Consider input matrices A,B ∈ R
n×n
+ on which we want to compute C ∈ R

n×n
+ with C[i, j] =

mink∈[n]{A[i, k]+B[k, j]} for all i, j ∈ [n]. We view the matrices A,B as vectors in R
n2

+ , in order to
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apply Sum-To-Max-Covering (Lemma 5.1). This yields vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n2

+ ,
which we re-interpret as matrices in R

n×n
+ . We compute the Min-Max Product of every layer

A(ℓ), B(ℓ) and return the entry-wise minimum of the results, see Algorithm 1. (Note that we can
replace the entries of A(ℓ), B(ℓ) by their ranks before computing the Min-Max Product and then
infer the actual result — this is necessary since our input format for approximate Min-Plus Product
is floating-point, but for Min-Max Product our input format is standard bit representation.)

Algorithm 1 ApproximateMinProd(A,B, ε).

1: {(A(1), B(1)), . . . , (A(s), B(s))} = SumToMaxCovering(A,B, ε)
2: C(ℓ) := MinMaxProd(A(ℓ), B(ℓ)) for all ℓ ∈ [s]
3: C̃[i, j] := minℓ∈[s]C

(ℓ)[i, j] for all i, j ∈ [n]

4: return C̃

Let us prove that the output matrix C̃ is a (1 + ε)-approximation of C. Sum-To-Max-Covering
yields that for any i, j, k we have

A[i, k] +B[k, j] ≤ min
ℓ∈[s]

max{A(ℓ)[i, k], B(ℓ)[k, j]} ≤ (1 + ε)(A[i, k] +B[k, j]).

In particular, since C[i, j] = minℓ∈[s]C
(ℓ)[i, j] = minℓ∈[s]mink∈[n]max{A(ℓ)[i, k], B(ℓ)[k, j]}, and

C[i, j] = mink∈[n](A[i, k] +B[k, j]), we obtain

C[i, j] ≤ C̃[i, j] ≤ (1 + ε)C[i, j].

Sum-To-Max-Covering runs in time Õ(n2/ε). Computing s times the Min-Max Product runs in

time Õ(sn
ω+3

2 ). We conclude the proof by noting that Sum-To-Max-Covering yields s = O(1ε polylog(n/ε)).

Combining Theorems 3.1 and 3.2 yields a (1+ ε)-approximation for APSP in time Õ(n
ω+3

2 ε−1).

4 Equivalence of Approximate APSP and Min-Max Product

We next prove our equivalence of approximating APSP, exactly computing the Min-Max Product,
and other problems. The theorem is restated here for convenience.

Theorem 1.4. For any c ≥ 2, if one of the following statements is true, then all are:

• (1+ ε)-Approximate Directed APSP can be solved in strongly polynomial time Õ(nc/poly(ε)),

• (1+ε)-Approximate Min-Plus Product can be solved in strongly polynomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc),

• exact All-Pairs Bottleneck Path can be solved in strongly polynomial time Õ(nc).

Proof. Equivalence of (1 + ε)-Approximate APSP and (1 + ε)-Approximate Min-Plus Product is
essentially known. One direction is given by Theorem 3.1. For the other direction, given matrices
A,B we build a 3-layered graph, with edge weights between the first two layers as in A, edge weights
between the last two layers as in B, and all edges directed from left to right. Then we observe that
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the pairwise distances between the first and third layers are in one-to-one correspondence to Min-
Plus Product on A,B, also in an approximate setting.

Equivalence of Min-Max Product and All-Pairs Bottleneck Path is folklore (see, e.g., [15]). Both
directions of this equivalence work exactly as for (approximate) Min-Plus Product vs. APSP.

Our main contribution is the equivalence of (1 + ε)-Approximate Min-Plus Product and exact
Min-Max Product. Observe that if Min-Max Product can be solved in time T (n) then the algorithm
from Theorem 3.2 runs in time Õ(T (n)/ε).

It remains to show a reduction from Min-Max Product to (1+ε)-Approximate Min-Plus Product.
Fix any constant ε > 0. Given matrices A,B, denote their Min-Max Product by C. Let r be the
value of 4(1+ε)2 rounded up to the next power of 2, and consider the matrices A′, B′ with A′[i, j] :=
rA[i,j] and B′[i, j] := rB[i,j]. (Recall that the input A,B for Min-Max Product is in standard bit
representation, so in constant time we can compute rA[i,j] in floating-point representation, by writing
A[i, j] · log r into the exponent.) Let C ′ be the result of (1 + ε)-Approximate Min-Plus Product on
A′, B′.

Claim 4.1. We have rC[i,j] ≤ C ′[i, j] ≤ rC[i,j]+1/2 for all i, j.

Using this claim, we can infer C from C ′ by computing C[i, j] = ⌊logr C ′[i, j]⌋ (i.e., we simply
read the most significant bits of the exponent of the floating-point number C ′[i, j]). If (1 + ε)-
Approximate Min-Plus Product can be solved in time T (n) (recall that ε is fixed), then this yields
an algorithm for Min-Max Product running in time Õ(T (n)).

Proof of Claim 4.1. We will use mink(A
′[i, k] +B′[k, j]) ≤ C ′[i, j] ≤ (1 + ε)mink(A

′[i, k] +B′[k, j])
for all i, j ∈ [n]. For any i, j there exists k with C[i, j] = max{A[i, k], B[k, j]}. Hence,

C ′[i, j] ≤ (1+ε)(A′[i, k]+B′[k, j]) = (1+ε)(rA[i,k]+rB[k,j]) ≤ 2(1+ε)rmax{A[i,k],B[k,j]} = 2(1+ε)rC[i,j],

and by r ≥ 4(1 + ε)2 we obtain C ′[i, j] ≤ rC[i,j]+1/2. Moreover, for any i, j there exists k with
C ′[i, j] ≥ A′[i, k] +B′[k, j]. We thus obtain

C ′[i, j] ≥ A′[i, k] +B′[k, j] = rA[i,k] + rB[k,j] ≥ rmax{A[i,k],B[k,j]} ≥ rC[i,j].

We remark that for scaling algorithms this proof shows an equivalence of the Õ(Wnω)-time exact
algorithm for Min-Max Product and the Õ( nω

poly(ε) logW )-time approximation scheme for Min-Plus
Product.

5 Sum-To-Max-Covering

In this section, we prove the main technical result of this paper, which we slightly reformulate here.

Theorem 5.1 (Sum-to-Max-Covering, Reformulated). Given vectors A,B ∈ R
n
+ and a parameter

ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with s = O(1ε log

1
ε + log n log 1

ε ) and:

(i) for all i, j ∈ [n] and all ℓ ∈ [s]:

max{A(ℓ)[i], B(ℓ)[j]} ≥ A[i] +B[j],

(ii) for all i, j ∈ [n] there exists ℓ ∈ [s]:

max{A(ℓ)[i], B(ℓ)[j]} ≤ (1 + ε)(A[i] +B[j]).
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We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(nε log
1
ε + n log n log 1

ε ).

We split the construction into two parts, covering the pairs i, j with A[i]
B[j] ∈ [ε, 1/ε] (Close Cover-

ing Lemma, Section 5.1) and covering the remaining pairs (Distant Covering Lemma, Section 5.2).
We show how to combine both cases in Section 5.3.

5.1 Close Covering

We first want to cover all pairs i, j with A[i]
B[j] ∈ [ε, 1/ε]. To get an intuition, let d ∈ Z and consider

only the entries A[i] in the range [(1 + ε)d−1, (1 + ε)d). Remove all other entries of A by setting
them to ∞, obtaining a vector A′. Since we consider the close case, we are only interested in
entries B[j] that differ by at most a factor 1/ε from A[i], so consider the entries B[j] in the range
[ε(1+ε)d−1, 1ε (1+ε)d). Add (1+ε)d to all such entries B[j] and remove all other entries of B by setting
them to ∞, obtaining a vector B′. Then for the considered entries we have max{A′[i], B′[j]} =
B′[j] = B[j] + (1 + ε)d, which is between A[i] + B[j] and (1 + ε)(A[i] + B[j]). This covers all
considered pairs in the sense of Max-to-Sum-Covering.

However, naively we would need to repeat this construction for too many values of d. The main
observation of our construction is that we can perform this construction in parallel for all values
d ∈ D = {s, 2s, 3s, . . .}. That is, we only remove an entry of A if it is irrelevant for all d ∈ D,
and similarly for the entries of B. For a sufficiently large integer s = Θ(1ε log

1
ε ), it turns out that

the considered entries for different d’s do not interfere. Performing this construction for all shifts
D + 1,D + 2, . . . ,D + s covers all close pairs. See Figure 1 for an illustration.

(1 + ε)d−s (1 + ε)d (1 + ε)d+s

A[i] B[j]

Figure 1: An illustration for Algorithm 2. Shown is the positive real line in log-scale. Entries
of A that lie outside the red/dark-shaded areas are set to ∞. Entries of B that lie outside the
blue/light-shaded areas are set to ∞. We set A(ℓ)[i] := (1 + ε)d and B(ℓ)[j] := B[j] + (1 + ε)d. This
guarantees the approximation (1− ε)(A[i] +B[j]) ≤ max{A(ℓ)[i], B(ℓ)[j]} ≤ (1 + ε)(A[i] +B[j]) for
close pairs. Numbers in non-overlapping parts differ by so much that their sum and their max are
equal up to a factor 1 + ε. This ensures that they do not interfere with the close pairs.

Lemma 5.2 (Close Covering). Given vectors A,B ∈ R
n
+ and a parameter ε > 0, there are vectors

A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with s = O(1ε log

1
ε ) such that:

(i) for all i, j ∈ [n] and all ℓ ∈ [s] : max{A(ℓ)[i], B(ℓ)[j]} ≥ (1− ε)(A[i] +B[j]), and

(ii) for all i, j ∈ [n] if A[i]
B[j] ∈ [ε, 1/ε] then ∃ℓ ∈ [s] : max{A(ℓ)[i], B(ℓ)[j]} ≤ (1+ ε)(A[i]+B[j]).

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(nε log
1
ε ).
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Proof. We choose s = Θ(1ε log
1
ε ) with sufficiently large hidden constant, and for any ℓ ∈ {1, . . . , s}

construct vectors A(ℓ), B(ℓ) as described in Algorithm 2.

Algorithm 2 CloseCovering(A,B, ε).

1: Set s := 1 + ⌈2 log1+ε(1/ε)⌉ ⊲ Note that s = Θ(1ε log
1
ε ).

2: for ℓ = 1, . . . , s do ⊲ Take care of A[i] ≈ (1 + ε)ks+ℓ for any k.
3: Dℓ := {ks+ ℓ | k ∈ Z}

4: A(ℓ)[i] :=

{
(1 + ε)d if A[i] ∈

[
(1 + ε)d−1, (1 + ε)d

)
for some d ∈ Dℓ

∞ otherwise

5: B(ℓ)[j] :=

{
B[j] + (1 + ε)d if B[j] ∈

[
ε(1 + ε)d−1, 1ε (1 + ε)d

)
for some d ∈ Dℓ

∞ otherwise
6: end for

7: return {(A(1), B(1)), . . . , (A(s), B(s))}

Note that the condition for B[j] is well-defined in the sense that it applies for at most one
d ∈ Dℓ. To see this, since two consecutive values in Dℓ differ by s, we only need to show the
inequality 1

ε (1 + ε)d ≤ ε(1 + ε)d+s−1, which holds since s ≥ 1 + log1+ε(1/ε
2). The same can be

immediately seen to hold for A[i].
The size and time bounds are immediate. It remains to prove correctness.
For property (ii), consider any i, j with A[i]

B[j] ∈ [ε, 1/ε]. Note that there is a unique ℓ ∈ {1, . . . , s}
such that A(ℓ)[i] 6= ∞. For this ℓ, we have A(ℓ)[i] = (1 + ε)d with (1 + ε)d−1 ≤ A[i] < (1 + ε)d, for
some d ∈ Dℓ. By the assumption A[i]

B[j] ∈ [ε, 1/ε], we obtain ε(1 + ε)d−1 ≤ B[j] ≤ 1
ε (1 + ε)d, and

thus B(ℓ)[j] is not set to ∞, and we have B(ℓ)[j] = B[j] + (1 + ε)d. We conclude by observing that
max{A(ℓ)[i], B(ℓ)[j]} = B(ℓ)[j] = B[j] + (1 + ε)d ≤ (1 + ε)(B[j] +A[j]).

For property (i), consider any i, j and ℓ. If one of A(ℓ)[i], B(ℓ)[j] is set to ∞, then the property
holds trivially. Otherwise, we have A(ℓ)[i] = (1 + ε)d for some d ∈ Dℓ and B(ℓ)[j] = B[j] + (1 + ε)d

′

for some d′ ∈ Dℓ. We consider two cases.
Case 1: d ≤ d′. Then A[i] ≤ (1+ε)d ≤ (1+ε)d

′
, and thus B(ℓ)[j] = B[j]+(1+ε)d

′ ≥ A[i]+B[j].
Case 2: d > d′. Then by definition of Dℓ we have d ≥ d′ + s. We bound

B[j] ≤ 1
ε (1 + ε)d

′ ≤ 1
ε (1 + ε)d−s ≤ 1

ε (1 + ε)1−sA[i] ≤ εA[i], (1)

where the last inequality uses s ≥ 1 + log1+ε(1/ε
2). This yields

A(ℓ)[i] ≥ A[i]
(1)
≥ (1− ε)A[i] +B[j] ≥ (1− ε)(A[i] +B[j]).

In both cases we have max{A(ℓ)[i], B(ℓ)[j]} ≥ (1− ε)(A[i] +B[j]), which proves property (i).

5.2 Distant Covering

We now want to cover all pairs i, j with A[i]
B[j] 6∈ [ε, 1/ε]. Our solution for this case is similar to the

well-known Well-Separated Pair Decomposition (see [9, 6]), which we use in a one-dimensional setting
and in log-scale. The main difference is that we unite sufficiently distant pairs of the decomposition
that lie on the same level.
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Our constructed vectors A(ℓ) will correspond to subsets of the entries of A, i.e., we have A(ℓ)[i] ∈
{A[i],∞}, and similarly for B. For this reason, we switch to subset notation for the majority of
this section, and then return to our usual notation of vectors A(ℓ), B(ℓ) in Corollary 5.10.

For x, y ∈ R+, we define their distance as d(x, y) := max{x
y ,

y
x} if x, y < ∞ and d(x,∞) =

d(∞, x) = ∞ otherwise. For sets X,Y ⊂ R+, we define their distance as d(X,Y ) := minx∈X,y∈Y d(x, y).

Lemma 5.3 (Distant Covering, Set Variant). Given a set Z ⊂ R+ of size n and a parameter ε > 0,
there are sets X1, . . . ,Xs ⊆ Z and Y1, . . . , Ys ⊆ Z with s = O(log n log 1

ε ) such that:

(i) for any ℓ ∈ [s] we have d(Xℓ, Yℓ) >
1
ε , and

(ii) for any x, y ∈ Z with d(x, y) ≥ 2
ε and x < y there is ℓ ∈ [s] such that x ∈ Xℓ and y ∈ Yℓ.

We can compute sets X1, . . . ,Xs and Y1, . . . , Ys satisfying (1) and (2) time O(n log n log 1
ε ).

We will later use Z as the set of all entries of vectors A and B. Regarding (i), observe that if
d(x, y) > 1

ε , then the sum x + y and the maximum max{x, y} differ by less than a factor 1 + ε.
This allows us to ensure point (i) of Sum-to-Max-Covering. Property (ii) ensures that we cover all
distant pairs and thus corresponds to point (ii) of Sum-to-Max-Covering.

The proof outline is as follows, see also Algorithm 3 for pseudocode. To simplify notation we
assume n to be a power of 2 (this is without loss of generality since we can fill up Z with arbitrary
numbers). We first sort Z, so from now on we assume that Z = {z1, . . . , zn} with z1 ≤ . . . ≤ zn. The
algorithm performs log n iterations. In iteration r, we split Z into chunks of size n/2r, and we remove
some chunks that are irrelevant for covering distant pairs, see procedure SplitChunks and Figure 2.
Then we separate the resulting list of chunks into two sub-lists, see procedure SeparateChunks

and Figure 3. Finally, we handle the transition between any two chunks by introducing a restricted
area at their boundary, applied with O(log 1

ε ) different shifts, see procedure ShiftedTransitions

and Figure 4. In the following subsections we describe the individual procedures in detail.

Algorithm 3 DistantCoveringLemma(Z, ε)

1: sort(Z) ⊲ Z = {z1 ≤ z2 ≤ . . . ≤ zn}
2: Set T0 as a list containing one element, T0[1] := Z
3: for r = 1, 2, . . . , ⌈log n⌉ do

4: Tr := SplitChunks(Tr−1, ε)
5: Tr,1, Tr,2 := SeparateChunks(Tr)
6: Sr,1 := ShiftedTransitions(Tr,1, ε)
7: Sr,2 := ShiftedTransitions(Tr,2, ε)
8: end for

9: return
⋃

r Sr,1 ∪ Sr,2

5.2.1 SplitChunks

Algorithm 4 describes the procedure of selecting chunks Tr in every level, see also Figure 2 for an
illustration. We start with a big chunk T0[1] = Z, containing the whole input. Then we iterate over
all levels r = 1, 2, . . . , log n and construct refined chunks as follows. In iteration r, we iterate over
all previous chunks Tr−1[i]. If Tr−1[i] does not contain any two numbers in distance greater than
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1
ε , then we can ignore it. Otherwise, we split Tr−1[i] at the middle into two chunks of half the size
and add them to the list of chunks Tr. For any r, this yields a list of chunks Tr such that

(P1) every chunk Tr[i] is a subset of Z of the form {za, za+1, . . . , zb} and of size |Tr[i]| = n/2r, and

(P2) every x ∈ Tr[i] is smaller than every y ∈ Tr[j], for any i < j.

Note that at the bottom level, chunks have size 1. Moreover, for any r > 0 the list Tr contains an
even number of chunks; this will also hold for all lists of chunks constructed later.

Algorithm 4 SplitChunks(Tr−1[1 . . . ℓ], ε)

1: Initialize Tr as an empty list, and k := 1
2: for i = 1, 2, . . . , ℓ do

3: By construction, Tr−1[i] is of the form {za, za+1, . . . , zb} for some a ≤ b
4: if za < ε · zb then

5: Tr[2k − 1] := {za, . . . , z(a+b−1)/2}
6: ⊲ Split Tr−1[i] in the middle
7: Tr[2k] := {z(a+b+1)/2, . . . , zb}
8: k := k + 1
9: end if

10: end for

11: return Tr

< 1
ε < 1

ε

< 1
ε

r = 1

r = 2

r = 3

r = 4

Figure 2: Illustration of the procedure SplitChunks, which splits and selects chunks of the input
numbers on different levels r.

Claim 5.4. We have d
(
Tr[2k], Tr [2k + 3]

)
> 1

ε for any level r and any index k.

Proof. Write the parent chunk Tr[2k + 1] ∪ Tr[2k + 2] in the form {za, za+1, . . . , zb}. Since Tr[2k +
1], Tr[2k + 2] have been added, we have za < ε · zb. Since every number in T [2k] is smaller than
za and every number in T [2k + 3] is larger than zb, the distance of T [2k], T [2k + 3] is greater than
1
ε .

The main property of our splitting procedure is that all x, y ∈ Z with d(x, y) > 1
ε eventually

are contained in consecutive chunks (see Figure 2) – note that we will only make use of consecutive
chunks with indices 2k − 1, 2k for some k (as opposed to 2k, 2k + 1).

Claim 5.5. For any x, y ∈ Z, if d(x, y) > 1
ε and x < y, then there exist a level r and index k such

that x ∈ Tr[2k − 1] and y ∈ Tr[2k].
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Proof. Consider the largest r such that x, y are contained in the same chunk Tr[k
′]. The chunk

Tr[k
′] contains at least two elements, so r < log n. Since d(x, y) > 1

ε , Algorithm 4 splits Tr[k
′] into

chunks Tr+1[2k−1] and Tr+1[2k]. By maximality of r and by x < y, it follows that x ∈ Tr+1[2k−1]
and y ∈ Tr+1[2k]. This proves the claim.

5.2.2 SeparateChunks

The procedure SeparateChunks is given a list Tr of chunks and separates it into two subsequences
Tr,1 and Tr,2, where Tr,1 contains all chunks T [i] with (i mod 4) ∈ {1, 2}, and Tr,2 contains the
remaining chunks in T . See Algorithm 5 for pseudocode and Figure 3 for an illustration.

Algorithm 5 SeparateChunks(Tr[1 . . . 2ℓ])

1: Initialize Tr,1, Tr,2 as empty lists, and b := 1
2: for k = 1, 2, . . . , ℓ do

3: Append Tr[2k − 1] and Tr[2k] to Tr,b

4: b := 3− b
5: end for

6: return Tr,1, Tr,2

Tr,1

> 1
ε > 1

ε

Tr,2

> 1
ε > 1

ε

Figure 3: Illustration of SeparateChunks, which separates the list of chunks Tr on some level r
into two sub-lists Tr,1 and Tr,2. The selected chunks are marked in red/light-shaded and blue/dark-
shaded. (In the next step, the red/light-shaded chunks will form a set Xℓ, and the blue/dark-shaded
ones will form a set Yℓ. Note that within Tr,1 every red chunk is ε-distant from every blue chunk,
except for its right neighbor. This will be used by the procedure ShiftedTransitions.)

This construction ensures that consecutive chunks with indices 2k and 2k + 1 have distance at
least 1

ε , as shown in the following claim.

Claim 5.6. We have d
(
Tr,b[2k], Tr,b[2k + 1]

)
> 1

ε for any level r, index k, and b ∈ {1, 2}.

Proof. Because of how Tr,1, Tr,2 are constructed, the chunks Tr,b[2k] and Tr,b[2k + 1] correspond to
chunks Tr[2k

′] and Tr[2k
′ + 3] for some k′. The statement now follows from Claim 5.4.

The following analogue of Claim 5.5 is immediate.

Claim 5.7. For any x, y ∈ Z, if d(x, y) > 1
ε and x < y, then there exist a level r, index k, and

b ∈ {1, 2} such that x ∈ Tr,b[2k − 1] and y ∈ Tr,b[2k].

Proof. Consecutive chunks Tr[2k−1] and Tr[2k] are either both added to Tr,1 or both added to Tr,2.
The statement thus follows from Claim 5.5.
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5.2.3 ShiftedTransitions

The procedure ShiftedTransitions is given a list of chunks T = Tr,b and returns O(log 1
ε ) many

pairs (Xt, Yt) of the final covering (recall the statement of Lemma 5.3). Naively, we would like
to assign every odd chunk to Xt and every even chunk to Yt, i.e., Xt =

⋃
k T [2k − 1] and Yt =⋃

k T [2k]. From Claim 5.6 we know that even chunks are distant from their right neighbors, i.e.,
d(T [2k], T [2k + 1]) > 1

ε . This is not necessarily true for d(T [2k − 1], T [2k]), and therefore we
introduce a restricted area at their boundary, applied with O(log 1

ε ) different shifts, as illustrated
in Figure 4. See Algorithm 6.

Algorithm 6 ShiftedTransitions(T [1, . . . 2ℓ], ε)

1: for t = 0, 1, . . . ,
⌈
log2

1
ε

⌉
do

2: for k ∈ {1, . . . , ℓ} do

3: let zmin be the minimal number in T [2k]
4: T ′[2k − 1] := {z ∈ T [2k − 1] | z ≤ ε2tzmin}
5: T ′[2k] := {z ∈ T [2k] | z > 2tzmin}
6: end for

7: Xt :=
⋃

k T
′[2k − 1]

8: Yt :=
⋃

k T
′[2k]

9: end for

10: return {(Xt, Yt) | 0 ≤ t ≤
⌈
log2

1
ε

⌉
}

Claim 5.8. For any output (Xt, Yt) by ShiftedTransitions(Tr,b, ε) we have d(Xt, Yt) >
1
ε .

Proof. Let T = Tr,b. By Claim 5.6 and sortedness (see property (P2)), any chunks T [i] and T [j]
with j ≥ i + 2 have distance greater than 1

ε . Since Xt only contains numbers from odd chunks
T [2k− 1], and Yt only contains numbers from even chunks T [2k], we obtain that any x ∈ Xt, y ∈ Yt

within distance 1
ε satisfy x ∈ T [2k − 1], y ∈ T [2k] for some index k. However, in any iteration t the

subsets T ′[2k − 1] ⊆ T [2k − 1] and T ′[2k] ⊆ T [2k] are chosen to have distance greater than 1
ε , and

hence d(Xt, Yt) >
1
ε .

Claim 5.9. For any x, y ∈ Z, if d(x, y) ≥ 2
ε and x < y, then there exist a level r and b ∈ {1, 2}

such that ShiftedTransitions(Tr,b, ε) outputs a pair (Xt, Yt) with x ∈ Xt, y ∈ Yt.

Proof. By Claim 5.7, there are r, k, b with x ∈ Tr,b[2k − 1] and y ∈ Tr,b[2k]. Let T = Tr,b and
let zmin be the minimal number in T [2k]. If x ≤ ε · zmin, then in iteration t = 0 we construct
T ′[2k − 1] containing x, and T ′[2k] = T [2k] contains y, so x ∈ X0 and y ∈ Y0. Otherwise, let
t ∈ N be minimal with x ≤ ε2t · zmin. By sortedness (see property (P2)) we have x < zmin and
thus t ≤

⌈
log2

1
ε

⌉
. Hence, in iteration t the set T ′[2k − 1] contains x. Moreover, by minimality of t

and d(x, y) ≥ 2
ε we have ε2t−1 · zmin < x ≤ ε

2y, and thus y > 2t · zmin, so y is contained in T ′[2k],
yielding x ∈ Xt, y ∈ Yt.

5.2.4 Proof of Distant Covering

Proof of Lemma 5.3. Properties (i) and (ii) follow immediately from Claims 5.8 and 5.9. The bound
s = O(log n log 1

ε ) on the number of constructed pairs (Xℓ, Yℓ) is immediate from the loops in
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T [2k − 1] T [2k]

1/ε

1/ε2

...
1/ε

Figure 4: Illustration of ShiftedTransitions in log-scale. Dashed areas represent the
added/removed numbers from iteration t to t + 1. In each iteration, we shift to the right by a
factor 2, resulting in at most

⌈
log2

1
ε

⌉
iterations. Note that in each iteration the red/light-shaded

numbers are in distance greater than 1
ε from the blue/dark-shaded numbers. Moreover, the distance

between any two numbers in the dashed area is less than 2
ε .

Algorithms 3 and 6. Finally, the running time of O(n log n log 1
ε ) is immediate from inspecting the

pseudocode.

It remains to translate Lemma 5.3 to the vector notation of Sum-to-Max-Covering.

Corollary 5.10 (Distant Covering, Vector Variant). Given vectors A,B ∈ R
n
+ and a parameter

ε > 0, there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with s = O(log n log 1

ε ) such that:

(i) for all i, j ∈ [n] and all ℓ ∈ [s] : max{A(ℓ)[i], B(ℓ)[j]} ≥ (1− 2ε)(A[i] +B[j]), and

(ii) for all i, j ∈ [n] if A[i]
B[j] 6∈ [ε, 1/ε] then ∃ℓ ∈ [s] : max{A(ℓ)[i], B(ℓ)[j]} ≤ A[i] +B[j].

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(n log n log 1
ε ).

Proof. Set Z := {A[i], B[i] | i ∈ [n]} and run Lemma 5.3 on (Z, ε′) with ε′ := 2ε to obtain subsets
X1, . . . ,Xs ⊆ Z and Y1, . . . , Ys ⊆ Z with s = O(log n log 1

ε ). We only double the number of subsets
by considering (X ′

1, . . . ,X
′
2s) := (X1, . . . ,Xs, Y1, . . . , Ys) and (Y ′

1 , . . . , Y
′
2s) := (Y1, . . . , Ys,X1, . . . ,Xs).

We construct vectors A(ℓ), B(ℓ) with ℓ ∈ [2s] by setting

A(ℓ)[i] :=

{
A[i] if A[i] ∈ X ′

ℓ,

∞ otherwise,
B(ℓ)[i] :=

{
B[i] if B[i] ∈ Y ′

ℓ ,

∞ otherwise.
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The size and time bounds are immediate.
For any numbers x, y ∈ R+ with d(x, y) > 1

ε we claim that max{x, y} ≥ (1− ε)(x+ y). Indeed,
assume without loss of generality x < εy, then we have max{x, y} = y > (1−ε)y+x ≥ (1−ε)(x+y).

Property (i) of Lemma 5.3 yields that d(A(ℓ)[i], B(ℓ)[j]) > 1
ε′ for any i, j, ℓ. Hence, we have

max{A(ℓ)[i], B(ℓ)[j]} ≥ (1− ε′)(A(ℓ)[i] +B(ℓ)[j]) ≥ (1 − ε′)(A[i] +B[j]) = (1− 2ε)(A[i] +B[j]),

proving property (i) of the corollary.
Note that by switching from X1, . . . ,Xs and Y1, . . . , Ys to X ′

1, . . . ,X
′
2s and Y ′

1 , . . . , Y
′
2s we made

Lemma 5.3 symmetric, and thus the requirement x < y of its property (ii) is removed. Thus,
property (ii) of Lemma 5.3 yields that for any i, j with d(A[i], B[j]) ≥ 2

ε′ =
1
ε there exists ℓ ∈ [2s]

with A(ℓ)[i] = A[i] and B(ℓ)[j] = B[j], and thus

max{A(ℓ)[i], B(ℓ)[j]} = max{A[i], B[j]} ≤ A[i] +B[j],

proving property (ii) of the corollary.

5.3 Proof of Sum-To-Max-Covering

The following variant of Sum-To-Max-Covering follows immediately from combining Close Covering
(Lemma 5.2) and Distant Covering (Lemma 5.3). Note that compared to Lemma 5.1 there is an
additional factor 1− 2ε on the right hand side of property (i).

Lemma 5.11 (Weaker Sum-to-Max-Covering). Given vectors A,B ∈ R
n
+ and a parameter ε > 0,

there are vectors A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with s = O(1ε log

1
ε + log n log 1

ε ) such that:

(i) for all i, j ∈ [n] and all ℓ ∈ [s]:

max{A(ℓ)[i], B(ℓ)[j]} ≥ (1− 2ε)(A[i] +B[j]),

(ii) for all i, j ∈ [n] there exists ℓ ∈ [s]:

max{A(ℓ)[i], B(ℓ)[j]} ≤ (1 + ε)(A[i] +B[j]).

We can compute such vectors A(1), . . . , A(s), B(1), . . . , B(s) in time O(nε log
1
ε + n log n log 1

ε ).

Proof of Lemma 5.11. Given vectors A,B ∈ R
n
+ and a parameter ε > 0, we simply run Close Cov-

ering and Distant Covering on (A,B, ε) and concatenate the results, see Algorithm 7. Correctness
as well as size and time bounds are immediate consequences of Lemma 5.2 and Corollary 5.10.

Algorithm 7 WeakerSumToMaxCovering(A,B, ε).

1: return DistantCovering(A,B, ε) ∪ CloseCovering(A,B, ε)

Proof of Lemma 5.1. To prove the stronger variant given in the beginning of Section 5, we have to
remove the factor 1− 2ε on the right hand side of property (i) in Lemma 5.11. To this end, given
A,B, ε, we run the construction from Lemma 5.11 on A,B, ε′ with ε′ := ε

5 , and we divide every
entry of the resulting vectors by 1 − 2ε′, see Algorithm 8. For correctness, note that the division
by 1− 2ε′ removes the factor 1− 2ε′ from property (i) in Lemma 5.11, i.e., we obtain the claimed
max{A(ℓ)[i], B(ℓ)[j]} ≥ A[i] + B[j] for all i, j, ℓ. For property (ii), note that the division by 1− 2ε′

leaves us with max{A(ℓ)[i], B(ℓ)[j]} ≤ 1+ε′

1−2ε′ (A[i] + B[j]) for all i, j and some ℓ. Using ε′ = ε
5 and

1+ε/5
1−2ε/5 ≤ 1 + ε for any ε ∈ (0, 1] finishes the proof.
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Algorithm 8 SumToMaxCovering(A,B, ε).

1: return 1
1−2ε/5 · WeakerSumToMaxCovering(A,B, ε5)

6 Strongly Polynomial Approximation for Undirected APSP

In this section, we present a strongly polynomial (1 + ε)-approximation for APSP on undirected
graphs that runs in time Õ(nω/ε). Contrary to the title of this paper our algorithm will use the
scaling technique, but we combine it with edge contractions and amortized analysis to avoid the
factor logW ; this is inspired by Tardos [49] and uses similar edge contraction arguments as [30, 12].
We start by describing the previously fastest approximation algorithm for APSP (Section 6.1), and
then present our adaptations (Section 6.2).

6.1 Zwick’s Approximation for APSP

Zwick [62] obtained an Õ(n
ω

ε logW )-time (1 + ε)-approximation algorithm for (directed or undi-
rected) APSP as follows. The first step is to reduce approximate APSP to approximate Min-Plus
Product, see Theorem 3.1. It is well-known that Min-Plus Product on n× n-matrices with entries
in {1, . . . ,W} can be solved exactly in time Õ(Wnω). Zwick utilized this fact via adaptive scaling
to realize his second step, as shown in Algorithm 10.

Algorithm 9 scale(A, q, ε).

1: A′[i, j] =

{
⌈A[i, j]/(ε2q)⌉ if A[i, j] ≤ 2q

∞ otherwise
2: return A′

Algorithm 10 Zwick-Apx-MinProd(A,B, ε).

1: Initialize C̃[i, j] := ∞ for all i, j
2: Let W be the largest entry of A,B
3: for q = 0, 1, 2, . . . , ⌈logW ⌉+ 1 do

4: A′ = scale(A, q, ε) ⊲ Scale matrix A so entries are from {0, . . . ,
⌈
1
ε

⌉
}

5: B′ = scale(B, q, ε)
6: C ′ = MinPlusProd(A′, B′) ⊲ This works in time Õ(n

ω

ε )

7: C̃[i, j] = min{C[i, j], ε2qC ′[i, j]} for all i, j
8: end for

9: return C̃

In each iteration q of Algorithm 10 the entries that are greater than 2q are ignored (they are
replaced by ∞). The remaining entries are scaled and rounded to lie in the range {1, . . . ,

⌈
1
ε

⌉
} by

Algorithm 9. This yields scaled matrices A′, B′ with integer entries bounded by O(1ε ), so their Min-

Plus Product C ′ can be computed in time Õ(n
ω

ε ). The output C̃ of the algorithm is the entry-wise

minimum of all computed products C ′ over all q. The total running time is Õ(n
ω

ε logW ).
Since we always round up, one can see that each entry of C̃ is at least the corresponding entry of

the correct Min-Plus Product C of A,B. For the other direction, for all i, j there is an iteration q such
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that 2q−1 < C[i, j] ≤ 2q. Consider any k with C[i, j] = A[i, k] +B[k, j]. Then A[i, k], B[k, j] ≤ 2q,
so they are not set to ∞. We obtain that C ′[i, j] ≤ A′[i, k] + B′[k, j] ≤ A[i,k]+B[k,j]

ε2q + 2, and thus
C̃[i, j] ≤ ε2qC ′[i, j] ≤ C[i, j] + ε2q+1 ≤ (1 + 4ε)C[i, j]. Replacing ε by ε/4 yields the claimed
approximation.

6.2 Undirected APSP in Strongly Polynomial Matrix-Multiplication Time

We now essentially remove the logW -factor from Zwick’s algorithm for undirected graphs, proving
the following restated theorem from the introduction.

Theorem 1.2. (1 + ε)-Approximate Undirected APSP is in strongly polynomial time4 Õ(n
ω

ε ).

Proof of Theorem 1.2. The algorithm proceeds in iterations q = 1, 2, 4, . . . up to the largest power
of 2 bounded by nW . In iteration q, the goal is to find all shortest paths of length in [q, 2q). For
this, all edges of G of weight at least 2q are irrelevant. Therefore, in the first iteration we start
with an empty graph H, and in iteration q we add all edges of G with weight in [q, 2q) to H.
We then round down all edge weights to multiples of qε/n. This may result in edges of weight 0,
which we contract (this crucially uses that we consider undirected graphs). Finally, we run Zwick’s
algorithm on H and update the corresponding distances. Specifically, if we compute a distance
d̃H(u, v) ∈ [(1− ε)q, (1+ ε)2q) in H, then we iterate over all vertices i in G that were contracted to
u in H, and similarly over all j that were contracted to v, and we update our estimated distance
D[i, j]. See Algorithm 11.

Algorithm 11 ApproximateUndirectedAPSP(G, ε).

1: Initialize H to be the graph with n isolated nodes, i.e., H = (V (G), ∅)
2: Initialize D[i, j] := ∞ for all i, j ∈ V (G)
3: for q = 1, 2, 4, . . . , 2⌊log(nW )⌋ do ⊲ Find all shortest paths of length in [q, 2q):
4: Add all edges of G with weight in [q, 2q) to H
5: Round down all edge weights of H to multiples of qε

n
6: Contract all edges of H with weight 0
7: Run Zwick’s (1 + ε)-approximation for APSP on H, obtaining distances d̃H(u, v)
8: for all nodes u, v of H with d̃H(u, v) ∈ [(1 − ε)q, (1 + ε)2q) do

9: D[i, j] := min{D[i, j], d̃H (u, v)} for every node i (j) of G that was contracted to u (v),
10: end for

11: end for

12: Return D

Correctness Denote by dG(i, j) the correct distance between i and j in G, and by dH(., .) the
correct distance in H. The computed approximation satisfies dH(u, v) ≤ d̃H(u, v) ≤ (1+ ε)dH (u, v)
for any u, v ∈ V (H).

Claim 6.1. Consider i, j ∈ V (G) that have been contracted to u, v in H, respectively. If we have
d̃H(u, v) ≥ (1− ε)q then d̃H(u, v) ≥ (1− ε)dG(i, j).

4Here, by time we mean the number of arithmetic operations performed on a RAM machine. The bit complexity

of the algorithm is bounded by the number of arithmetic operations times log logW (up to terms hidden by Õ).
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Since we only update distances when d̃H(u, v) ∈ [(1 − ε)q, (1 + ε)2q), by this claim the output
of Algorithm 11 satisfies D[i, j] ≥ (1− ε)dG(i, j) for all i, j ∈ V (G).

Proof of Claim 6.1. Consider a path P from u to v in H realizing dH(u, v). Uncontract all con-
tracted edges of H to obtain a graph H ′. Since we only contracted edges of (rounded) weight 0,
the path P corresponds to a path P ′ from i to j in H ′ of (rounded) length dH(u, v). Since we can
assume P ′ to be a simple path and we rounded down edge weights to multiples of qε/n, in the graph
G path P ′ has length at most dH(u, v) + qε. Hence, we have dG(i, j) ≤ dH(u, v) + qε.

Note that the claim is trivial if dG(i, j) ≤ q, so assume dG(i, j) > q. Then we conclude by
bounding d̃H(u, v) ≥ dH(u, v) ≥ dG(i, j) − qε > (1− ε)dG(i, j).

It remains to show D[i, j] ≤ (1 + ε)dG(i, j) for all i, j ∈ V (G). Consider the iteration q with
dG(i, j) ∈ [q, 2q). Note that all edges of any shortest path between i and j are added in or before
iteration q. Let u, v be the nodes that i, j have been contracted to in H in iteration q, respectively.
Since rounding down to multiples of qε/n reduces the distance by at most qε, and since contracting
edges of rounded weight 0 does not change any distances, we have dH(u, v) ∈ [(1−ε)dG(i, j), dG(i, j)].
This yields dH(u, v) ∈ [(1 − ε)q, 2q), and in particular we have u 6= v. By the properties of the
approximation (i.e., dH(u, v) ≤ d̃H(u, v) ≤ (1+ε)dH(u, v)), we obtain d̃H(u, v) ∈ [(1−ε)q, (1+ε)2q).
This triggers the update of D[i, j], which yields D[i, j] ≤ d̃H(u, v) ≤ (1+ε)dH (u, v) ≤ (1+ε)dG(i, j).

In total, we obtain that (1−ε)dG(i, j) ≤ D[i, j] ≤ (1+ε)dG(i, j) for all i, j ∈ V (G). By dividing
all output entries D[i, j] by (1− ε), we may instead obtain a “one-sided” approximation of the form
dG(i, j) ≤ D′[i, j] ≤ (1 +O(ε))dG(i, j).

Running Time We call an iteration q void if G has no edge with weight in [q, 2q) and H is
empty (i.e., H consists of isolated vertices). Observe that void iterations do not change H or D.
In order to avoid the logW -factor of a naive implementation of Algorithm 11, we skip over all void
iterations.

In iteration q, let Cq,1, . . . , Cq,k(q) be all connected components of H of size at least 2, and
let nq,1, . . . , nq,k(q) be their sizes (i.e., number of vertices). Note that instead of running Zwick’s
algorithm on H, it suffices to run it on each Cq,i. Moreover, after rounding, the ratio of the
largest to smallest weight in H is O(n/ε), and thus the logW factor of Zwick’s algorithm is
O(log(n/ε)). Hence, we can bound the contribution of Zwick’s algorithm to our running time
by Õ

(∑
q,i(n

ω
q,i/ε) log(n/ε)

)
.

The life-cycle of every pair of vertices u, v ∈ V (G) can be described by the following states:
(1) u and v are not connected in H; (2) u and v are connected in H; (3) u and v are contracted
into the same vertex of H. Observe that each pair u, v ∈ V (G) can be in state (2) for at most
O(log(n/ε)) iterations. Indeed, if u and v are connected in iteration q, then in iteration q′ > n

ε q
they have been contracted. It follows that

∑
q,i n

2
q,i = O(n2 log(n/ε)), since the former counts the

pairs of connected nodes in H, summed over all iterations q.
Combining this with our running time bound of Õ

(∑
q,i(n

ω
q,i/ε) log(n/ε)

)
, the fact ω ≥ 2, and

Jensen’s inequality, yields a time bound of Õ(nω/ε). This bounds the running time spent in calls
to Zwick’s algorithm. Most other parts of our algorithm can be seen to take time Õ(n2) in total.

A subtle point is the update of matrix entries D[i, j] in line 9 of Algorithm 11. Consider any
i, j and let u, v be the vertices that i, j have been contracted to in H in iteration q, respectively.
Note that D[i, j] can only change if u 6= v and u and v are connected in H. This situation can only
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happen for O(log(n/ε)) iterations, since then u and v will be contracted to the same vertex. Hence,
in total updating D takes time O(n2 log(n/ε)). This finishes the proof.

7 Strongly Polynomial Approximation for Graph Characteristics

One of the fundamental challenges in network science is the identification of “important” or “central”
nodes in a network. Different graph characteristics have been proposed to capture this notion [20].
For example the Median of a graph is a node that minimizes the sum of the distances to all other
nodes in graph, the Center of a graph is a node that minimizes the maximum distance to any other
node (this distance is called Radius) and the Diameter of a graph is the distance of the furthest pair
of vertices in the graph. Centrality measures are actively generalized to weighted graphs [36]. In
this section, we present a simple argument that yields strongly polynomial approximation schemes
for these problems. The following theorem is restated from the introduction.

Theorem 1.1. Diameter, Radius, Median, Minimum-Weight Triangle, and Minimum-Weight Cycle
on directed and undirected graphs have approximation schemes in strongly polynomial time5 Õ(n

ω

ε ).

Abboud et al. [2] observed that Diameter, Radius and Median admit Õ(n
ω

ε logW )-time approx-
imation schemes via Zwick’s approximation of APSP. Similarly, Roditty and Williams [40] observed
that Minimum Weight Triangle admits an Õ(n

ω

ε logW )-time approximation scheme. They used
this as a black-box to show that Minimum Weight Cycle (both in directed and undirected graphs)
admits an Õ(n

ω

ε logW )-time approximation scheme.

Proof of Theorem 1.1. Let G be a given graph. For any number w ∈ R+, define Gw as the graph
G where we remove all edges of weight > w and change the weight of all remaining edges to w. On
Gw we can compute a 2-approximation for each of the considered problems in time Õ(nω) (since
ε = 1 is constant and there are only two different edge weights, so also W is constant). Note that if
the result on Gw is infinite, then the solution value on G is greater than w, as we need to include
at least one edge of weight greater than w. Moreover, if the solution value on Gw is finite, then it
is at most w ·n2, since this is the total weight of all edges in Gw. In particular, this means that the
solution value of G is at most wn2.

We use this as follows. First, we sort all edge weights of G and perform binary search to
determine the smallest edge weight w of G such that the solution value on Gw is finite. It follows
that the solution value on G is in [w,wn2], so we have an O(n2)-approximation. Now we round up
all edge weights of G to multiples of wε/n2. This changes the total edge weight of G by at most
εw, and thus also the weight of an optimal solution by at most a multiplicative factor 1 + ε. The
ratio between the largest and smallest weight in the resulting graph G′ is at most W ≤ n4

ε . Hence

the Õ(n
ω

ε logW )-time approximation scheme runs in time Õ(n
ω

ε ) on G′.

8 Strongly Polynomial Approximation for Min-Plus Convolution

In this section, we consider sequences A ∈ R
n
+ and index their entries by A[0], . . . , A[n−1]. Given two

sequences A,B ∈ R
n
+, the convolution problem in the (⊗,⊕)-semiring is to compute the sequence

5Here, by time we mean the number of arithmetic operations performed on a RAM machine. The bit complexity

of the algorithm is bounded by the number of arithmetic operations times log logW (up to terms hidden by Õ).
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C ∈ R
n
+ with C[k] =

⊕
i+j=k(A[i]⊗B[j]) for all 0 ≤ k < n. Clearly, the problem can be solved using

O(n2) ring operations. In the standard (·,+)-ring, the problem can be solved in time O(n log n) by
Fast Fourier Transform (FFT).

Min-Max Convolution is the problem of computing convolution in the (min,max)-semiring.
Kosaraju [31] was the first to design a subquadratic-time algorithm for this problem, obtaining
time O(n3/2

√
log n). He conjectured that his algorithm can be improved to time Õ(n) but so far

no improvement has been found.
Min-Plus Convolution is the problem of computing convolution in the (min,+)-semiring. Com-

puting Min-Plus Convolution in time O(n2−δ) for any δ > 0 is a major open problem [14, 32]. Back-
urs et al. [7] were the first to study (1+ε)-approximation algorithms for Min-Plus Convolution. They
obtained an O( n

ε2
log n log2W )-time algorithm, which they used to design an approximation algo-

rithm for Tree Sparsity. Subsequently, their running time was improved to O(nε log(n/ε) logW ) [34].

In this section, we start with a simple (1+ε)-approximation algorithm for Min-Plus Convolution
that directly follows from our Sum-To-Max-Covering and runs in time Õ(n3/2/ε), see Theorem 8.1.
This is the first strongly polynomial (1 + ε)-approximation algorithm for this problem (with a
running time of O(n2−δ) for any δ > 0). We then prove an equivalence of approximate Min-Plus
Convolution and exact Min-Max Convolution, see Theorem 8.2. Finally, we use more problem-
specific arguments to obtain an improved approximation algorithm running in time Õ(n3/2/ε1/2),
see Theorem 8.3.

8.1 Simple Approximation Algorithm

Direct application of our Sum-to-Max-Covering yields the following strongly polynomial approxi-
mation algorithm for Min-Plus Convolution, similarly as for APSP.

Theorem 8.1. (1+ε)-Approximate Min-Plus Convolution can be solved in strongly polynomial time
Õ(n3/2/ε).

Proof. Consider input sequences (A[i])n−1
i=0 , (B[i])n−1

i=0 on which we want to compute (C[k])n−1
k=0 with

C[k] = mini+j=k(A[i] + B[j]). We view the sequences A,B as vectors in R
n
+, in order to apply

Sum-To-Max-Covering (Lemma 5.1). This yields sequences A(1), . . . , A(s), B(1), . . . , B(s) ∈ R
n
+ with

s = O(ε−1 polylog(n/ε)). We compute the Min-Max Convolution of every layer A(ℓ), B(ℓ). (Note
that we can first replace the entries of A(ℓ), B(ℓ) by their ranks; this is necessary since the input
format for approximate Min-Plus Convolution is floating-point, but Min-Max Convolution requires
standard bit representation of integers.) We then return the entry-wise minimum of the results,
see Algorithm 12. The output sequence C̃ is a (1 + ε)-approximation of C; this follows from the
properties of Sum-To-Max-Covering, analogously to the proof of Theorem 3.2. Since Sum-To-Max-
Covering takes time Õ(n/ε), the running time is dominated by computing s times a Min-Max
Convolution, resulting in Õ(sn3/2) = Õ(n3/2/ε).

Algorithm 12 ApproximateMinConv(A,B, ε)

1: {(A(1), B(1)), . . . , (A(s), B(s))} = SumToMaxCovering(A,B, ε)
2: C(ℓ) := MinMaxConv(A(ℓ), B(ℓ)) for any ℓ ∈ [s]
3: C̃[k] := minℓ∈[s]{C(ℓ)[k]} for any 0 ≤ k < n

4: return C̃
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8.2 Equivalence of Approximate Min-Plus and Exact Min-Max Convolution

We next show an equivalence of approximate Min-Plus Convolution and exact Min-Max Convolu-
tion, similarly to the equivalence for matrix products in Theorem 1.4.

Theorem 8.2. For any c ≥ 1, if one of the following statements is true, then both are:

• (1+ε)-Approximate Min-Plus Convolution can be solved in strongly polynomial time Õ(nc/poly(ε)),

• exact Min-Max Product can be solved in strongly polynomial time Õ(nc).

In particular, any further improvement on the exponent of n in Theorem 8.1 would yield an
improved algorithm for Min-Max Convolution.

Proof. For one direction, observe that if Min-Max Convolution can be solved in time T (n) then the
algorithm from Theorem 8.1 runs in time Õ(n/ε+ T (n)/ε), which is Õ(T (n)) for constant ε > 0.

For the other direction, on input A,B denote the result of Min-Max Convolution by C. Set
r := ⌈4(1 + ε)2⌉ and consider the sequences A′, B′ with A′[i] := rA[i] and B′[j] := rB[j]. (Note
that the integers A[i], B[j] are in standard bit representation, so we can compute floating-point
representations of rA[i], rB[j] in constant time, essentially by writing A[i], B[j] into the exponent.)
Let C ′ be the result of (1 + ε)-Approximate Min-Plus Convolution on A′, B′. Then as in the proof
of Theorem 1.4, we obtain rC[k] ≤ C ′[k] ≤ rC[k]+1/2. Hence, we can infer the Min-Max Convolution
C of A,B by setting C[k] = ⌊logr C ′[k]⌋ (i.e., we essentially only read the exponent of the floating-
point number C ′[k]). If (1 + ε)-Approximate Min-Plus Convolution is in time T (n), this yields an
algorithm for Min-Max Convolution running in time Õ(n+ T (n)) = Õ(T (n)).

8.3 Improved Approximation Algorithm

In the remainder of this section, we improve the simple approximation algorithm of Theorem 8.1.

Theorem 8.3. (1+ε)-Approximate Min-Plus Convolution can be solved in strongly polynomial time
Õ(n3/2/

√
ε).

We will divide the algorithm for Min-Plus Convolution into two parts: the first part will handle
the case when summands are close and the second will handle the distant case.

8.3.1 Approximating Min-Plus Convolution for Distant Summands

First, we will simply use Distant Covering (Corollary 5.10) to correctly compute Min-Plus Convo-
lution for summands that differ by at least a factor 1

ε .

Lemma 8.4. Given sequences A,B ∈ R
n
+ and a parameter ε > 0, let C be the result of Min-Plus

Convolution on A,B. In strongly polynomial O(n3/2 polylog(nε )) time we can compute a sequence

C̃ such that:

(i) for any k ∈ [n] we have C̃[k] ≥ C[k], and

(ii) if there are i+ j = k with C[k] = A[i] +B[j] and A[i]
B[j] /∈ [ ε4 ,

4
ε ] then C̃[k] ≤ (1 + ε)C[k].
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Algorithm 13 DistantMinConv(A,B, ε)

1: {(A(1), B(1)), . . . , (A(s), B(s))} = DistantCovering(A,B, ε/4)
2: C(ℓ) := MinMaxConv(A(ℓ), B(ℓ)) for any ℓ ∈ [s]
3: C̃[k] := 1

1−ε/2 ·minℓ∈[s]{C(ℓ)[k]} for any 0 ≤ k < n

4: return C̃

Proof of Lemma 8.4. We view the sequences A,B as vectors in R
n
+, and apply Distant Covering

(Corollary 5.10) with ε′ := ε
4 . This yields sequences A(1), . . . , A(s), B(1), . . . , B(s) ∈ R

n
+ with s =

O(polylog(nε )). We compute the Min-Max Convolution of every layer A(ℓ), B(ℓ). Then we compute
the entry-wise minimum of the results, scale it by a factor 1

1−2ε′ , and return the resulting sequence C̃,
see Algorithm 13.

For correctness, note that the scaling factor 1
1−2ε′ removes the factor 1 − 2ε′ from the right

hand side of property (i) in Corollary 5.10. This yields C̃[k] ≥ C[k]. Moreover, by property (ii)
of Corollary 5.10, for any indices i + j = k with A[i]

B[j] /∈ [ε′, 1
ε′ ] = [ ε4 ,

4
ε ] there is an ℓ such that

C(ℓ)[k] ≤ A[i] + B[j]. Minimizing over all ℓ and multiplying by 1
1−2ε′ = 1

1−ε/2 < 1 + ε yields the
claimed property (ii).

Since Distant Covering takes time O(n polylog(nε )), the running time is dominated by computing
s times Min-Max Convolution. Using the fastest known algorithm for Min-Max Convolution [31],
we obtain time Õ(n3/2s) = O(n3/2 polylog(nε )).

8.3.2 Approximating Min-Plus Convolution for Close Summands

We now use a variant of a known scaling-based approximation scheme for Min-Plus Convolution to
handle the close summands.

Lemma 8.5. Given sequences A,B ∈ R
n
+ and a parameter ε > 0, let C be the result of Min-Plus

Convolution on A,B. In strongly polynomial Õ(n3/2/
√
ε) time we can compute a sequence C̃ such

that:

(i) for any k ∈ [n] we have C̃[k] ≥ C[k], and

(ii) if there are i+ j = k with C[k] = A[i] +B[j] and A[i]
B[j] ∈ [ ε4 ,

4
ε ] then C̃[k] ≤ (1 + ε)C[k].

Algorithm 14 Scale(A, q, ε).

1: A′[i] =

{⌈
4
εq ·A[i]

⌉
if εq

16 ≤ A[i] ≤ q

∞ otherwise
2: return A′

Proof. Consider the procedures Scale and CloseMinConv (Algorithms 14 and 15), which are
modifications of the known Õ(nε logW )-time approximation scheme for Min-Plus Convolution [34].
The main difference to [34] is that the entries of A that are set to ∞ in the procedure Scale are
not only the ones that are too large (greater than q) but also the ones that are too small (smaller
than εq

16). We claim that this algorithm proves Lemma 8.5. Correctness is based on the following
rounding lemma.
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Algorithm 15 CloseMinConv(A,B, ε).

1: Initialize C̃[k] := ∞ for all k
2: for q = 1, 2, 4, . . . , 2⌈log 2W ⌉ do

3: A′ := Scale(A, q, ε)
4: B′ := Scale(B, q, ε)
5: V := ExactMinConv(A′, B′)
6: C̃[k] := min{C̃[k], V [k] · qε

4 } for all k
7: end for

8: return C̃

Lemma 8.6 (cf. Lemma B.2 in [34]). For any x, y, q, ε ∈ R+ with x + y ≥ q/2 and 0 < ε < 1 we
have:

x+ y ≤
(⌈

4x
qε

⌉
+

⌈4y
qε

⌉) qε
4 ≤ (1 + ε)(x + y).

Proof. We repeat the proof for completeness. The lower bound is immediate. For the upper bound,
note that (⌈

4x
qε

⌉
+

⌈4y
qε

⌉) qε
4 ≤ x+ y + 2 qε

4 = x+ y + ε · q
2 ≤ (1 + ε)(x+ y).

Correctness Correctness of CloseMinConv can now be shown similarly as in [34]. Regarding
property (i), the lower bound of Lemma 8.6 ensures that we have C̃[k] ≥ C[k] throughout the run
of the algorithm. Regarding property (ii), for any i + j = k with C[k] = A[i] + B[j] there exists
a precision parameter q with q/2 ≤ A[i] + B[j] ≤ q. In particular, we have A[i], B[j] ≤ q and
max{A[i], B[j]} ≥ q

4 . If we additionally have A[i]
B[j] ∈ [ ε4 ,

4
ε ], then

min{A[i], B[j]} ≥ ε
4 ·max{A[i], B[j]} ≥ εq

16 ,

and thus A′[i] and B′[j] both are not set to ∞ by the procedure Scale. The upper bound of
Lemma 8.6 now implies C̃[k] ≤ (1 + ε)(A[i] +B[j]) = (1 + ε)C[k].

Running time For the running time analysis, denote by αq the number of entries of A′ that are
not set to ∞ in iteration q. Note that if an entry A[i] is not set to ∞ in iteration q, then we have
εq
16 ≤ A[i] ≤ q, or, equivalently, A[i] ≤ q ≤ 16

ε A[i]. Since q grows geometrically, there are O(log 1
ε )

iterations q in which entry A[i] is not set to ∞. Hence, we obtain
∑

q αq = O(n log 1
ε ). We similarly

define βq as the number of non-∞ entries of B′ in iteration q, and obtain

∑

q

βq = O
(
n log 1

ε

)
. (2)

We argue in the following that procedure CloseMinConv can be implemented in such a way
that the running time for iteration q is O(min{αqβq,

n
ε }polylog(nε )).

To this end, we use an event queue to be able to skip all iterations with αq = 0 or βq = 0.
Moreover, we can maintain all non-∞ entries of A′, B′ in time O(αq+βq) per iteration q. Note that
O(αq + βq) ≤ O(min{αqβq,

n
ε }). This yields the claimed time bound for lines 3 and 4 of procedure

CloseMinConv.
For line 5 of procedure CloseMinConv, note that naively the exact Min-Plus Convolution of A′

and B′ can be computed in time O(αqβq). Moreover, since A′, B′ have entries in {1, . . . ,W}∪ {∞}
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for W =
⌈
4
ε

⌉
, by Fast Fourier Transform their Min-Plus Convolution can be computed in time

Õ(Wn) = Õ(nε ). Using the better of the two yields the claimed time bound.
Finally, line 6 of procedure CloseMinConv can be implemented in time O(min{αqβq, n}),

since this is an upper bound on the number of non-∞ entries of V .
Altogether, we obtain time O(min{αqβq,

n
ε }polylog(nε )) per iteration q. Hence, the total running

time of procedure CloseMinConv is bounded by
∑

q

min
{
αqβq,

n
ε

}
polylog(nε ).

We split this sum into the cases βq ≤ λ and βq > λ, and note that the second case can occur at
most O(nλ log 1

ε ) times due to (2). This yields a total running time of at most

((∑

q

αqλ
)
+ n

ε · n
λ log 1

ε

)
polylog(nε ) ≤

(
nλ+ n2

ελ

)
polylog(nε ).

Setting λ := (n/ε)1/2 yields the claimed total running time bound Õ(n3/2/ε1/2).

8.3.3 Proof of Theorem 8.3

Algorithm 16 ApxMinConv(A,B, ε).

1: C̃1 := DistantMinConv(A,B, ε)
2: C̃2 := CloseMinConv(A,B, ε)
3: C̃[k] := min{C̃1[k], C̃2[k]} for any 0 ≤ k < n
4: return C̃

Proof of Theorem 8.3. Given sequences A,B ∈ R
n
+ and a parameter ε > 0, we simply run our

algorithms for approximating Min-Plus Convolution on distant and close summands, and compute
their entry-wise minimum (see Algorithm 16). Correctness as well as size and time bounds are
immediate consequences of Lemmas 8.4 and 8.5.

8.4 Applications for Tree Sparsity

A direct consequence of the strongly polynomial (1 + ε)-approximation for Min-Plus Convolution
is an analogous strongly polynomial (1 + ε)-approximation for Tree Sparsity. We will make use
of the following strongly polynomial reduction that uses an approximation algorithm for Min-Plus
Convolution as a black-box.

Theorem 8.7 (cf. Theorem 7.1 [34], reformulation of [7]). If (1 + ε)-Approximate Min-Plus Con-
volution can be solved in time T (n, ε), then (1+ ε)-Approximate Tree Sparsity can be solved in time
O
((
n+ T (n, ε/ log2 n)

)
log n

)
.

Note, that this reduction runs in strongly polynomial time, and the logW -factors in the running
time of [7, 34] come exclusively from the use of scaling for approximating Min-Plus Convolution.
In consequence, our strongly polynomial (1 + ε)-approximation for Min-Plus Convolution yields a
strongly polynomial (1 + ε)-approximation for Tree Sparsity.
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Corollary 8.8. (1+ε)-Approximate Tree Sparsity can be solved in strongly polynomial time Õ(n
3/2√
ε
).

Tree Sparsity has applications in image processing, computational biology [46] and machine
learning [7]. The main issue of previous approximation schemes for this problem was that in appli-
cations the input consists of real numbers and thus logW -factors significantly influence the running
time [42].
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A Problem Definitions

For an edge-weighted (directed or undirected) graph G, dG(u, v) denotes the minimal total weight
of any path from u to v in G.

Directed/Undirected All-Pairs Shortest Path (APSP)
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute dG(u, v) for any u, v ∈ [n]

(1 + ε)-Approximate Directed/Undirected All-Pairs Shortest Path (APSP)
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute values d̃(u, v) for any u, v ∈ [n] such that dG(u, v) ≤ d̃(u, v) ≤ (1+ ε)dG(u, v)

All-Pairs Bottleneck Path
Input: An edge-weighed directed graph G on n nodes, with weights in R+

Task: For every two nodes u, v determine the maximum over all paths from u to v of the
minimum edge weight along the path

Min-Plus Product
Input: Matrices A,B ∈ R

n×n
+

Task: Compute matrix C ∈ R
n×n
+ with C[i, j] = mink∈[n](A[i, k] +B[k, j]) for any i, j ∈ [n]

Min-Max Product
Input: Matrices A,B ∈ R

n×n
+

Task: Compute matrix C ∈ R
n×n
+ with C[i, j] = mink∈[n]max{A[i, k], B[k, j]} for any i, j ∈ [n]

(1 + ε)-Approximate Min-Plus Product
Input: Matrices A,B ∈ R

n×n
+

Task: Compute a matrix C̃ ∈ R
n×n
+ with C[i, j] ≤ C̃[i, j] ≤ (1 + ε)C[i, j] for any i, j ∈ [n],

where C is the correct output of Min-Plus Product
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Min-Plus Convolution
Input: Sequences (A[i])n−1

i=0 , (B[i])n−1
i=0 ∈ R

n
+

Task: Compute sequence (C[i])n−1
i=0 with C[k] = mini+j=k(A[i] +B[j])

Min-Max Convolution
Input: Sequences (A[i])n−1

i=0 , (B[i])n−1
i=0 ∈ R

n
+

Task: Compute sequence (C[i])n−1
i=0 with C[k] = mini+j=k max{A[i], B[j]}

(1 + ε)-Approximate Min-Plus Convolution
Input: Sequences (A[i])n−1

i=0 , (B[i])n−1
i=0 ∈ R

n
+

Task: Compute a sequence (C̃[i])n−1
i=0 with C[k] ≤ C̃[k] ≤ (1+ε)C[k] for any 0 ≤ k < n, where

C denotes the correct output of Min-Plus Convolution

Tree Sparsity
Input: A node-weighted rooted tree T , with weights in R+, and an integer k
Task: Find the maximal total weight of any rooted subtree of T consisting of k vertices

Directed/Undirected Minimum Weight Triangle
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute the minimal total weight of any triangle in G

(1 + ε)-Approximate Directed/Undirected Minimum Weight Triangle
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute a number T̃ ∈ [T, (1+ε)T ], where T is the minimal total weight of any triangle
in G

Directed/Undirected Minimum Weight Cycle
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute the minimal total weight of any cycle in G

(1 + ε)-Approximate Directed/Undirected Minimum Weight Cycle
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute a number C̃ ∈ [C, (1 + ε)C], where C is the minimal total weight of any cycle
in G

Radius
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute mins∈V (G)maxv∈V (G) dG(s, v)

(1 + ε)-Approximate Radius
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute a number R̃ ∈ [R, (1 + ε)R], where R is the radius of G
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Diameter
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute maxu,v∈V (G) dG(u, v)

(1 + ε)-Approximate Diameter
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute a number D̃ ∈ [D, (1 + ε)D], where D is the diameter of G

Median
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute minu∈V (G)

∑
v∈V (G) dG(u, v)

(1 + ε)-Approximate Median
Input: An edge-weighed directed/undirected graph G on n nodes, with weights in R+

Task: Compute a number M̃ ∈ [M, (1 + ε)M ], where M is the median of G
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