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Abstract

Givenn weighted points (positive or negative) ind dimensions, what is the axis-aligned box which
maximizes the total weight of the points it contains?

The best known algorithm for this problem is based on a reduction to a related problem, the WEIGHTED

DEPTH problem [T. M. Chan, FOCS’13], and runs in timeO(nd). It was conjectured [Barbay et al.,
CCCG’13] that this runtime is tight up to subpolynomial factors. We answer this conjecture affirma-
tively by providing a matching conditional lower bound. We also provide conditional lower bounds
for the special case when points are arranged in a grid (a wellstudied problem known as MAXIMUM

SUBARRAY problem) as well as for other related problems.
All our lower bounds are based on assumptions that the best known algorithms for the ALL -PAIRS

SHORTEST PATHS problem (APSP) and for the MAX -WEIGHT k-CLIQUE problem in edge-weighted
graphs are essentially optimal.

1 Introduction

Consider a set of points in the plane. Each point is assigned areal weight that can be either positive or
negative. The MAX -WEIGHT RECTANGLE problem asks to find an axis parallel rectangle that maximizes
the total weight of the points it contains. This problem (andits close variants) is one of the most basic
problems in computational geometry and is used as a subroutine in many applications [EHL+02,FMMT96,
LN03, BK10, APV06]. Despite significant work over the past two decades, the best known algorithm runs
in time quadratic in the number of points [DGM96, CDBPL+09, BCNPL14]. It has been conjectured that
there is no strongly subquadratic time algorithm1 for this problem [BCNPL14].

An important special case of the MAX -WEIGHT RECTANGLE problem is when the points are arranged
in a square grid. In this case the input is given as ann× n matrix filled with real numbers and the objective
is to compute a subarray that maximizes the sum of its entries[PD95,Tak02,Smi87,QA99,CCTC05]. This
problem, known as MAXIMUM SUBARRAY problem, has applications in pattern matching [FHLL93], data
mining and visualization [FMMT96] (see [Tak02] for additional references). The particular structure of the
MAXIMUM SUBARRAY problem allows for algorithms that run inO(n3), i.e. O(N3/2) with respect to the
input sizeN = n2, as opposed toO(N2) which is the best algorithm for the more general MAX -WEIGHT

RECTANGLE problem.
One interesting question is if this discrepancy between theruntimes of these two very related problems

can be avoided. Is it possible to apply ideas from one to improve the runtimes of the other? Despite

∗backurs@mit.edu
†ndikkala@mit.edu
‡tzamos@mit.edu
1A strongly subquadratic algorithm runs in timeO(N2−ε) for constantε > 0.
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Problem In 2 dimensions In d dimensions

MAX -WEIGHT RECTANGLE O(N2) [BCNPL14,Cha13] O(Nd) [BCNPL14,Cha13]

onN weighted points Ω(N2) [this work] Ω(Nd) [this work]

MAXIMUM SUBARRAY O(n3) [TT98,Tak02] O(n2d−1) [Kadane’s algorithm]

onn× · · · × n arrays Ω(n3) [this work] Ω(n3d/2) [this work]

MAXIMUM SQUARE SUBARRAY O(n3) [trivial] O(nd+1) [trivial]

onn× · · · × n arrays Ω(n3) [this work] Ω(nd+1) [this work]

WEIGHTED DEPTH O(N) [Cha13] O(N d/2) [Cha13]

onN weighted boxes Ω(N) [trivial] Ω(N d/2) [this work]

Table 1: Upper bounds and conditional lower bounds for the various problems studied. The bounds shown
ignore subpolynomial factors.

considerable effort there has been no significant improvement to their runtime other than by subpolynomial
factors since they were originally studied.

In this work, we attempt to explain this apparent barrier forfaster runtimes by giving evidence of the
inherent hardness of the problems. In particular, we show that a strongly subquadratic algorithm for MAX -
WEIGHT RECTANGLE would imply a breakthrough for fundamental graph problems.We show similar
consequences forO(N3/2−ε) algorithms for the MAXIMUM SUBARRAY problem. Our lower bounds are
based on standard hardness assumptions for the ALL -PAIRS SHORTEST PATHS and the MAX -WEIGHT

k-CLIQUE problems and generalize to the higher-dimensional versions of the problems.

1.1 Related work on the problems

In one dimension, the MAX -WEIGHT RECTANGLE problem and MAXIMUM SUBARRAY problem are iden-
tical. The 1-D problem was first posed by Ulf Grenander for pattern detection in images, and a linear time
algorithm was found by Jay Kadane [Ben84].

In two dimensions, Dobkin et al [DGM96, DG94, Maa94] studiedthe MAX -WEIGHT RECTANGLE

problem in the case where weights are+1 or −1 for its applications to computer graphics and machine
learning. They presented the firstO(N2 logN) algorithm. More recently, Cortés et al [CDBPL+09] studied
the problem with arbitrary weights and they developed an algorithm with the same runtime applicable to
many variants of the problem. An even faster algorithm was shown by Barbay et al. [BCNPL14] that runs
in O(N2) time.

For higher dimensions, Barbay et al [BCNPL14] show a reduction to the related WEIGHTED DEPTH

problem which allows them to achieve runtimeO(Nd). GivenN axis-parallel rectangular weighted boxes,
the WEIGHTED DEPTH problem asks to find a point that maximizes the total weight ofall boxes that contain
it. Compared to the MAX -WEIGHT RECTANGLE where we are given points and we aim to find the best box,
in this problem, we are given boxes and the aim is to find the best point. The WEIGHTED DEPTH problem
is also related to Klee’s measure problem2 which has a long line of research. All known algorithms for one
problem can be adjusted to work for the other [Cha13]. The WEIGHTED DEPTH problem was first solved in
O(Nd/2 log n) by Overmars and Yap [OY91] and was improved toO(Nd/2) by Timothy M. Chan [Cha13]

2Klee’s measure problem asks for the total volume of the unionof N axis-parallel boxes ind dimensions.
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who gave a surprisingly simple divide and conquer algorithm.
A different line of work, studies the MAXIMUM SUBARRAY problem. Kadane’s algorithm for the 1-

dimensional problem can be generalized in higher dimensions for d-dimensionaln × · · · × n arrays giving
O(n2d−1) which implies anO(n3) algorithm when the array is an×nmatrix. Tamaki and Tokuyama [TT98]
gave a reduction of the 2-dimensional version of the problemto the distance product problem implying

a O
(

n3

2Ω(
√

log n)

)

algorithm by using the latest algorithm for distance product by Ryan Williams [Wil14].

Tamaki and Tokuyama’s reduction was further simplified by Tadao Takaoka [Tak02] who also gave a more
practical algorithm whose expected time is close to quadratic for a wide range of random data.

1.2 Our results and techniques

Despite significant work on the MAX -WEIGHT RECTANGLE and MAXIMUM SUBARRAY problems, it
seems that there is a barrier in improving the best known algorithms for these problems by polynomial
factors. Our results indicate that this barrier is inherentby showing connections to well-studied fundamen-
tal graph problems. In particular, our first result states that there is no strongly subquadratic algorithm for
the MAX -WEIGHT RECTANGLE problem unless the MAX -WEIGHT k-CLIQUE problem can be solved in
O(nk−ε) time, i.e. substantially faster than the currently best known algorithm. More precisely, we show
the following:

Theorem 1. For any constantε > 0, an O(N2−ε) time algorithm for theMAX -WEIGHT RECTANGLE

problem onN weighted points in the plane implies anO(n⌈4/ε⌉−ε) time algorithm for theMAX -WEIGHT

⌈4/ε⌉-CLIQUE problem on a weighted graph withn vertices.

Our conditional lower bound generalizes to higher dimensions. Namely, we show that anO(Nd−ε) time
algorithm for points ind-dimensions implies anO(nk−ε) time algorithm for the MAX -WEIGHT k-CLIQUE

problem fork = ⌈d2/ε⌉. This matches the best known algorithm [BCNPL14, Cha13] forany dimension up
to subpolynomial factors. Therefore, because of our reduction, significant improvements in the runtime of
the known upper bounds would imply a breakthrough algorithmfor finding ak-clique of maximum weight
in a graph.

To show this result, we embed an instance of the MAX -WEIGHT k-CLIQUE problem to the MAX -
WEIGHT RECTANGLE problem, by treating coordinates of the optimal rectangular box as base-n numbers
where digits correspond to nodes in the maximum-weightk-clique. In the construction, we place points
with appropriate weights so that the weight of any rectangular box corresponds to the weight of the clique
it represents. We show that it is sufficient to use onlyO(n⌈k

d
⌉+1) points ind-dimensions to represent all

weightedk-cliques which gives us the required bound by choosing an appropriately largek.
We also study the special case of the MAX -WEIGHT RECTANGLE problem in the plane where all points

are arranged in a square grid, namely the MAXIMUM SUBARRAY problem. Our second result states that
for n× n matrices, there is no strongly subcubic algorithm for the MAXIMUM SUBARRAY problem unless
there exists a strongly subcubic algorithm for the ALL -PAIRS SHORTESTPATHS problem. More precisely,
we show that:

Theorem 2. For any constantε > 0, anO(n3−ε) time algorithm for theMAXIMUM SUBARRAY problem
onn× n matrices implies anO(n3 − ε/10) time algorithm for theALL -PAIRS SHORTESTPATHS problem.

We note that a reduction from ALL -PAIRS SHORTESTPATHS problem to MAXIMUM SUBARRAY prob-
lem onn× n matrices was independently shown by Virginia Vassilevska Williams [VW].
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Combined with the fact that the MAXIMUM SUBARRAY problem reduces to the ALL -PAIRS SHORTEST

PATHS problem as shown in [TT98, Tak02], our result implies that the two problems are equivalent, in the
sense that any strongly subcubic algorithm for one would imply a strongly subcubic algorithm for the other.

To extend our lower bound to higher dimensions, we need to make a stronger hardness assumption based
on the MAX -WEIGHT k-CLIQUE problem. We show that anO(n3d/2 − ε) time algorithm for the MAXIMUM

SUBARRAY problem ind-dimensions implies anO(nk−ε) time algorithm for the MAX -WEIGHT k-CLIQUE

problem. To prove this result, we introduce the following intermediate problem: Given a graphG find a
maximum weight subgraphH that is isomorphic to a clique on2d nodes without the edges of a matching
(MAX -WEIGHT CLIQUE WITHOUT MATCHING problem). This graphH contains a large clique of size
3d/2 as a minor and we show that this implies that noO(n3d/2 − ε) algorithms exist for the MAX -WEIGHT

CLIQUE WITHOUT MATCHING problem. We complete our proof by reducing the MAX -WEIGHT CLIQUE

WITHOUT MATCHING problem to the MAXIMUM SUBARRAY problem ind dimensions.
We note that the best known algorithm for the MAXIMUM SUBARRAY problem runs inO(n2d−1) time

and is based on Kadane’s algorithm for the 1-dimensional problem. It remains an interesting open question
to close this gap. To improve either the lower or upper bound,it is necessary to better understand the
computational complexity of the MAX -WEIGHT CLIQUE WITHOUT MATCHING problem.

Another related problem we consider is the MAXIMUM SQUARE SUBARRAY problem: Given ann× n
matrix find a maximum subarray with sides of equal length. This problem and its higher dimensional
generalization can be trivially solved inO(nd+1) runtime by enumerating over all possible combinations of
thed+1 parameters, i.e. the side-length and the location of the hypercube. We give a matching lower bound
based on hardness of the MAX -WEIGHT k-CLIQUE problem.

Finally, we adapt the reduction for Klee’s measure problem shown by Timothy M Chan [Cha08] to show
a lower bound for the WEIGHTED DEPTH problem.

Our results are summarized in Table 1, where we compare the current best upper bounds with the con-
ditional lower bounds that we show.

The conditional hardness results presented above are for the variants of the problems where weights are
arbitrary real numbers. We note that all these bounds can be adapted to work for the case where weights
are either+1 or −1. In this case, we reduce the (unweighted)k-CLIQUE-DETECTION problem3 to each of
these problems. Thek-CLIQUE-DETECTION problem can be solved inO(nω⌊k/3⌋+(k mod3)) [NP85] using
fast matrix multiplication, whereω < 2.372864 [Wil12, LG14] is the fast matrix multiplication exponent.
Without using fast matrix multiplication, it is not known whether a purely combinatorial algorithm exists
that runs inO(nk−ε) time for any constantε > 0 and it is a longstanding graph problem. Our lower
bounds can be adapted for the+1 / − 1 versions of the problems obtaining the same runtime exponents for
combinatorial algorithms as in Table 1. Achieving better exponents for any of these problems would imply
a breakthrough combinatorial algorithm for thek-CLIQUE-DETECTION problem.

There is a vast collection of problems in computation geometry for which conditional lower bounds are
based on the assumption of3-SUM hardness, i.e. that the best known algorithm for the3-SUM problem4

can’t be solved in timeO(n2−ε). This line of research was initiated by [GO95] (see [VW15] for more
references). Reducing3-SUM problem to the problems that we study seems hard if possible at all. Our
work contributes to the list of interesting geometry problems for which hardness is shown from different
assumptions.

3Given a graph onn vertices, thek-CLIQUE-DETECTIONproblem asks whether ak-clique exists in the graph.
4Given a set of integers, decide if there are3 integers that sum up to0.
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1.3 Hardness assumptions

There is a long list of works showing conditional hardness for various problems based on the ALL -PAIRS

SHORTESTPATHS problem hardness assumption [RZ04,WW10,AW14,AGW15,AVWY15]. Among other
results, [WW10] showed that deciding whether a weighted graph contains a triangle of negative weight is
equivalent to the ALL -PAIRS SHORTEST PATHS problem meaning that a strongly subcubic algorithm for
the NEGATIVE TRIANGLE problem implies a strongly subcubic algorithm for the ALL -PAIRS SHORTEST

PATHS problem and the other way around. It is easy to show that the problem of computing the maximum
weight triangle in a graph is equivalent to the NEGATIVE TRIANGLE problem (by inverting edge-weights of
the graph and doing the binary search over the weight of the max-weight triangle). Computing a max-weight
triangle is a special case of the problem of computing a max-weightk-clique in a graph for a fixed integer
k. This is a very well studied computational problem and despite serious efforts, the best known algorithm
for this problem still runs in timeO(nk−o(1)), which matches the runtime of the trivial algorithm up to
subpolynomial factors. The assumption that there is noO(nk−ε) time algorithm for this problem, has served
as a basis for showing conditional hardness results for several problems on sequences [ABW15,AWW14].

2 Preliminaries

2.1 Problems studied in this work

Definition 1 (MAX -WEIGHT RECTANGLE problem). GivenN weighted points (positive or negative) in
d ≥ 2 dimensions, what is the axis-aligned box which maximizes the total weight of the points it contains?

Definition 2 (MAXIMUM SUBARRAY problem). Given ad-dimensional arrayM with nd real-valued en-
tries, find thed-dimensional subarray ofM which maximizes the sum of the elements it contains.

Definition 3 (MAX -WEIGHT SQUARE problem). Given ad-dimensional arrayM with nd real-valued
entries, find thed-dimensional square (hypercube) subarray ofM , i.e. a rectangular box with all sides of
equal length, which maximizes the sum of the elements it contains.

Definition 4 (WEIGHTED DEPTHproblem). Given a set ofN weighted axis-parallel boxes ind-dimensional
spaceRd, find a pointp ∈ R

d that maximizes the sum of the weights of the boxes containingp.

2.2 Hardness assumptions

We use the hardness assumptions of the following problems.

Definition 5 (ALL -PAIRS SHORTEST PATHS problem). Given a weighted undirected graphG = (V,E)
such that|V | = n, find the shortest path betweenu andv for everyu, v ∈ V .

Definition 6 (NEGATIVE TRIANGLE problem). Given a weighted undirected graphG = (V,E) such that
|V | = n, output yes if there exists a triangle in the graph with negative total edge weight.

Definition 7 (MAX -WEIGHT k-CLIQUE problem). Given an integerk and a weighted graphG = (V,E)
with n vertices, output the maximum total edge-weight of ak-clique in the graph. W.l.o.g. we assume that
the graph is complete since otherwise we can set the weight ofnon-existent edges to be equal to a negative
integer with large absolute value.
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For any fixedk, the best known algorithm for the MAX -WEIGHT k-CLIQUE problem runs in time
O(nk−o(1)).

In Sections 3 and 5, we use the following variant of the MAX -WEIGHT k-CLIQUE problem which can
be shown to be equivalent to Definition 7:

Definition 8 (MAX -WEIGHT k-CLIQUE problem fork-partite graphs). Given an integerk and a weighted
k-partite graphG = (V1 ∪ . . . ∪ Vk, E) with kn vertices such that|Vi| = n for all i ∈ [k]. Choose
k verticesvi ∈ Vi and consider total edge-weight of thek-clique induced by these vertices. Output the
maximum total-edge weight of a clique in the graph.

Notation For any integern, we denote the set{1, 2, . . . , n} by [n]. For a setS and an integerd, we denote
the set{(s1, . . . , sd) | si ∈ S} by Sd.

3 Hardness of the MAX -WEIGHT RECTANGLE problem

The goal of this section is to show a hardness result for the MAX -WEIGHT RECTANGLE problem making
the assumption of MAX -WEIGHT k-CLIQUE hardness. We will show the result directly for any constant
number of dimensions.

Theorem 3. For any constantsε > 0 and d, anO(Nd−ε) time algorithm for theMAX -WEIGHT RECT-

ANGLE problem onN weighted points ind-dimensions implies anO(n⌈d2/ε⌉−ε) time algorithm for the
MAX -WEIGHT ⌈d2/ε⌉-CLIQUE problem on a weighted graph withn vertices.

We setk = ⌈dε ⌉. To prove the theorem, we will construct an instance of the MAX -WEIGHT RECTANGLE

problem whose answer computes a max-weightdk-clique in a(d×k)-partite weighted graph G withn nodes
in each of its parts. The MAX -WEIGHT dk-CLIQUE problem on general graphs reduces to this case since
we can created × k copies of the nodes and connect nodes among different parts with edge-weights as in
the original graph.

The instance of the MAX -WEIGHT RECTANGLE problem will consist ofN = O(nk+1) points with in-
teger coordinates{−nk, ..., nk}d. For such an instance the required runtime for the MAX -WEIGHT RECT-
ANGLE problem, from the theorem statement, would imply that the maximum weightdk-clique can be
computed in

O
(

Nd−ε
)

= O
(

Nd(1 − 1/k)
)

= O
(

nd(k − 1/k)
)

= O
(

ndk−ε
)

.

To perform the reduction we introduce the following intermediate problem:

Definition 9 (RESTRICTEDRECTANGLE problem). GivenN = Ω(nk) weighted points in an{−nk, ..., nk}d-
grid, compute a rectangular box of a restricted form that maximizes the weight of its enclosed points. The
rectangular box

∏d
i=1[−x′i, xi] must satisfy the following conditions:

1. Both~x, ~x′ ∈ {0, ..., nk − 1}d, and

2. Treating each coordinatexi as ak-digit integer(xi1xi2...xik)n in basen, i.e. xi =
∑k

j=1 xijn
k−j,

we must have~x′ = (xd, x1, x2, ..., xd−1), where for an integerz = (z1z2...zk)n ∈ {0, ..., nk − 1}, we
denote byz = (zk...z2z1)n the integer that has all the digits reversed.

We show that the RESTRICTEDRECTANGLE problem reduces to the MAX -WEIGHT RECTANGLE problem.

6



3.1 RESTRICTED RECTANGLE ⇒ M AX -WEIGHT RECTANGLE

Consider an instance of the RESTRICTED RECTANGLE problem. We can convert it to an instance of the
MAX -WEIGHT RECTANGLE problem by introducing several additional points. LetC be a number greater
than twice the sum of absolute values of all weights of the given points. We know that the solution to any
rectangular box must have weight in(−C/2,C/2).

The conditions of the RESTRICTED RECTANGLE require that the rectangular box must contain the
origin~0. To satisfy that we introduce a point with weightC at the origin. This forces the optimal rectangle
to contain the origin since any rectangle that doesn’t include this point gets weight strictly less thanC.

The integrality constraint is satisfied since all points in the instance have integer coordinates so without
loss of generality the optimal rectangle in the MAX -WEIGHT RECTANGLE problem will also have integer
coordinates.

Finally, we can forcex′2 = x1, by adding for eachx1 ∈ {0, ..., nk − 1} the 4 points:

• (x1,−x1, 0, 0, .., 0) with weightC

• (x1 + 1,−x1, 0, 0, .., 0) with weight−C

• (x1,−x1 − 1, 0, 0, .., 0) with weight−C

• (x1 + 1,−x1 − 1, 0, 0, .., 0) with weightC

This creates4nk points and adds weightC to any rectangle withx′2 = x1 without affecting any of the
others. Working similarly forx2..., xd we can force that the optimal solution satisfies the constraint that
~x′ = (xd, x1, x2, ..., xd−1).

If x andx′ satisfy the constraints of the RESTRICTED RECTANGLE problem, we collect total weight
at least(d + 1)C − C

2 = (d + 1
2)C. If at least one of the constraints is not satisfied, we receive weight

strictly less than(d+ 1
2)C. Thus, the optimal rectangular box for the MAX -WEIGHT RECTANGLE problem

satisfies all the necessary constraints and coincides with the optimal rectangular box for the RESTRICTED

RECTANGLE problem. The total number of points is stillO(N) sinceN = Ω(nk) and we addedO(nk)
points.

3.2 MAX -WEIGHT (d× k)-PARTITE CLIQUE ⇒ RESTRICTED RECTANGLE

Consider a(d × k)-partite weighted graphG. We label each of its parts asPij for i ∈ [d] andj ∈ [k].
We associate eachdk-clique of the graphG with a corresponding rectangular box in the RESTRICTED

RECTANGLE problem. In particular, for a rectangular box defined by a point ~x ∈ {0, ..., nk − 1}d, eachxij,
i.e. thej-th most significant digit ofxi in the basen representation, corresponds to the index of the node in
partPij (0-indexed).

We now create an instance by adding points so that the total weight of every rectangular box satisfying
the conditions of the RESTRICTED RECTANGLE problem is equal to the weight of its correspondingdk
clique. To do that we need to take into account the weights of all the edges. We can easily take care of edges
between partsP11, P12, ..., P1k of the graph by adding the following points for eachx1 ∈ {0, ..., nk − 1}.

• (x1, 0, 0, 0, .., 0) with weight W (x1) equal to the weight of thek-clique x11, x12, ..., x1k in parts
P11, P12, ..., P1k

• (x1 + 1, 0, 0, 0, .., 0) with weight−W (x1)

7



This creates2nk points and adds weightW (x1) to any rectangle whose first coordinate matchesx1 without
affecting any of the others. We work similarly for every coordinatei from 2 throughd accounting for the
weight of all edges between partsPia andPib for all i ∈ [d] anda 6= b ∈ [k]. To take into account the
additional edges, we show how to add edges between partsP1a andP2b. For allx1 ∈ nk−a{0, ..., na − 1}
andx2 ∈ nk−b{0, ..., nb − 1} we add the points:

• (x1, x2, 0, 0, .., 0) with weightw equal to the weight of the edge between nodesx1a andx2b in parts
P1a andP2b.

• (x1 + nk−a, x2, 0, 0, .., 0) with weight−w

• (x1, x2 + nk−b, 0, 0, .., 0) with weight−w

• (x1 + nk−a, x2 + nk−b, 0, 0, .., 0) with weightw

This adds weight equal to the weight of the edge between nodesx1a andx2b in partsP1a andP2b for any
rectangle with corner~x. This createsO(na+b) points. This number becomes too large ifa + b > k + 1.
However, if this is the case we can instead apply the same construction in the part of the space where
the numbersx1 and x2 appear reversed, i.e. by working withx′2 = x1 and x′3 = x2. For all x′2 ∈
na−1{0, ..., nk+1−a − 1} andx′3 ∈ nb−1{0, ..., nk+1−b − 1} we add the points:

• (0,−x′2,−x′3, 0, 0, .., 0) with weightw equal to the weight of the edge between nodesx′2(k+1−a) and
x′3(k+1−b) in partsP1a andP2b.

• (0,−x′2 − na−1,−x′3, 0, .., 0) with weight−w

• (0,−x′2,−x′3 − nb−1, 0, .., 0) with weight−w

• (0,−x′2 − na−1,−x′3 − nb−1, 0, .., 0) with weightw

This produces the identical effect as above creatingO(n2k+2−a−b) rectangles. Ifa + b ≥ k + 1 this adds
at mostO(nk+1) points as desired. We add edges between any other 2 partsPi,· andPi′,· by performing a
similar construction as above.

The overall number of points in the instance isO(nk+1) and this completes the proof of the theorem.

4 Hardness for MAXIMUM SUBARRAY in 2 dimensions

In this section our goal is to show that, if we can solve the MAXIMUM SUBARRAY problem on a matrix
of sizen × n in time O(n3−ε), then we can solve the NEGATIVE TRIANGLE problem in timeO(n3−ε)
on n vertex graphs. It is known that aO(n3−ε) time algorithm for the NEGATIVE TRIANGLE implies
a O(n3 − ε/10) time algorithm for the ALL -PAIRS SHORTEST PATHS problem [WW10]. Combining our
reduction with the latter one, we obtain Theorem 2 from the introduction, which we restate here:

Theorem 2. For any constantε > 0, anO(n3−ε) time algorithm for theMAXIMUM SUBARRAY problem
onn× n matrices implies anO(n3 − ε/10) time algorithm for theALL -PAIRS SHORTESTPATHS problem.

The generalization of this statement can be found in Section5. Here we prove2-dimensional case first
because the argument is shorter.
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Clearly, the NEGATIVE TRIANGLE problem in equivalent to the POSITIVE TRIANGLE problem. In
the remainder of this section we therefore reduce the problem of detecting whether a graph has a positive
triangle to the MAXIMUM SUBARRAY problem.

We need the following intermediate problem:

Definition 10 (MAXIMUM 4-COMBINATION ). Given a matrixB ∈ R
m×m, output

max
i,i′,j,j′∈[m] : i≤i′ andj≤j′

B[i, j] +B[i′, j′]−B[i, j′]−B[i′, j].

Our reduction consists of two steps:

1. Reduce the POSITIVE TRIANGLE problem onn vertex graph to the MAXIMUM 4-COMBINATION

problem on2n× 2n matrix.

2. Reduce the MAXIMUM 4-COMBINATION problem onn × n matrix to the MAXIMUM SUBARRAY

matrix of sizen× n.

4.1 POSITIVE TRIANGLE ⇒ M AXIMUM 4-COMBINATION

Let A be the weighted adjacency matrix of sizen × n of the graph and letM be the largest absolute value
of an entry inA. LetM ′ := 10M andM ′′ := 100M . We define matrixD ∈ R

n×n :

Di,j =

{

M ′ +M ′′ if i = j;

M ′′ otherwise.

We define matrixB ∈ R
2n×2n :

B :=

[

A −AT

−AT D

]

.

The reduction follows from the following lemma.

Lemma 4. LetX be the weight of the max-weight rectangle in the graph corresponding to the adjacency
matrixA. LetY be the output of theMAXIMUM 4-COMBINATION algorithm when run on matrixB. The
following equality holds:

Y = X +M ′ +M ′′.

Proof. Consider integersi, j, i′, j′ that achieve a maximum in the MAXIMUM 4-COMBINATION instance as
per Definition 10. Our first claim is thati, j ≤ n andi′, j′ ≥ n+ 1. If this is not true, we do not collect the
weightM ′′ and the largest output that we can get is≤ 4M ′ ≤ 9M ′′/10. Note that we can easily achieve a
larger output withi = j = 1 andi′ = j′ = n+ 1.

Our second claim is thati′ = j′. If this is not so, we do not collect the weightM ′ and the largest output
that we can get isM ′′+4M ≤ M ′′+M ′/2. Note that we can easily achieve a larger output withi = j = 1
andi′ = j′ = n+ 1. Thus, we can denotei′ = j′ = k + n.

Now, by the construction ofB, we have

B[i, j] +B[i′, j′]−B[i, j′]−B[i′, j] = A[i, j] +A[j, k] +A[k, i] +M ′ +M ′′.

We get the equality we need.
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4.2 MAXIMUM 4-COMBINATION ⇒ M AXIMUM SUBARRAY

Let A′ ∈ R
(n+1)×(n+1) be a matrix defined byA′[i, j] = A[i − 1, j − 1] if i, j ≥ 2 andA′[i, j] = 0

otherwise.
LetC ∈ R

n×n be a matrix defined byC[i, j] = A′[i, j] +A′[i+ 1, j + 1]−A′[i, j + 1]−A′[i+ 1, j].
The reduction follows from the claim that the output of the MAXIMUM SUBARRAY onC is equal to the

output of the MAXIMUM 4-COMBINATION onA′. The claim follows from the following equality:

i′′
∑

i=i′

j′′
∑

j=j′

C[i, j] = A′[i′′ + 1, j′′ + 1] +A′[i′, j′]−A′[i′′ + 1, j′]−A′[i′, j′′ + 1].

5 Hardness for MAXIMUM SUBARRAY for arbitrary number of dimensions

We can extend the ideas used in the hardness proof of Theorem 2, to prove the following theorem for the
MAXIMUM SUBARRAY problem ond dimensional arrays.

Theorem 5. For any constantε > 0, an O
(

nd+⌊d/2⌋−ε
)

time algorithm for theMAXIMUM SUBAR-
RAY problem ond-dimensional array, implies anO

(

nd+⌊d/2⌋−ε
)

time algorithm for theMAX -WEIGHT

(d+ ⌊d/2⌋)-CLIQUE problem.

To prove the theorem, we introduce some notation and define some intermediate problems which will
be helpful in modularizing the reduction. We will also be using the notation introduced here in Section 6.

Definition 11 (d-Tuple). i is d-tuple if i = (i1, . . . , id) for some integersi1, . . . , id.

Notation Let i be thed-tuple(i1, . . . , id) and∆ be an integer. We denote thed-tuple (∆ · i1, . . . ,∆ · id)
by ∆ · i. Let j be thed-tuple j = (j1, . . . , jd). We denote thed-tuple (i1 + j1, . . . , id + jd) by i + j. For
d-tuple i = (i1, . . . , id), we denote sum|i1|+ . . . + |id| by ‖i‖1. If i is binary,‖i‖1 denotes the number of
ones ini. jt is the binary vector with only one entry equal to1: jtt = 1. That is, thet-th entry ofjt is equal
to 1. For d-tuple i, we definetype type(i) of i as follows. type(i) is a binary vector such that for every
t ∈ [d], type(i)t = 0 iff it < 0. Given twod-tuplesi = (i1, . . . , id) andj = (j1, . . . , jd), we denoted-tuple
(i1 · j1, . . . , id · jd) by i× j.

Definition 12 (d-Dimensional Array). We callA an array ind dimensions of side-lengthn if it satisfies the
following properties.

• A containsnd real valued entries.

• A[i] = A[i1, . . . , id] is the entry inA corresponding tod-tuplei = (i1, . . . , id) ∈ [n]d.

Definition 13 (Boolean Cube). LetBd := {0, 1}d be a set consisting of all2d binary d-tuples. We call it a
Boolean cube ind dimensions.

Definition 14 (Centrald-Dimensional Array). We callA a central array ind dimensions of side-length
2n+ 1 if it satisfies the following properties.

• A contains(2n + 1)d real valued entries.

10



• A[i] = A[i1, . . . , id] is the entry inA corresponding tod-tuple

i = (i1, . . . , id) ∈ {−n,−n+ 1, . . . , n− 1, n}d.

Definition 15 (MAX -WEIGHT 2k-SUBGRAPH PROBLEM). We are given integerk and weighted2k-partite
graphG = (V1 ∪ V2 . . . Vk ∪ V ′

1 ∪ V ′
2 . . . V

′
k, E) with 2kn vertices.|Vi| = |V ′

i | = n for all i ∈ [k]. Choose
2k verticesvi ∈ Vi, v′i ∈ V ′

i and define

W :=
∑

i∈[k]

∑

j∈[k]\{i}

w(vi, v
′
j) + w(vi, vj) + w(v′i, v

′
j).

w(u, v) denotes the weight of edge(u, v). In other words,W is equal to the total edge-weight of2k-clique
induced by2k verticesvi, v′j from which we subtract weight contributed byk edges(vi, v′i). The computation
problem is to output maximumW that we can obtain by choosing the2k vertices.

The trivial algorithm solves this problem in timeO(n2k). We can improve the runtime toO(n2k−1).
Below we show that we cannot get runtimeO

(

nk+⌊k/2⌋−Ω(1)
)

unless we get a much faster algorithm for
the MAX -WEIGHT CLIQUE problem than what currently is known.

Definition 16 (CENTRAL MAXIMUM SUBARRAY SUM problem). LetA be a central array ind dimensions
of side-length2n+ 1. We must output

max
i∈[n]d, δ∈[2n]d

s.t.δ1−i1,...,δd−id≥0

∑

j∈Bd

A[−i+ δ × j].

Definition 17 (CENTRAL MAXIMUM SUBARRAY COMBINATION problem). LetA be a central array ind
dimensions of side-length2n+ 1. We must output

max
i∈[n]d, δ∈[2n]d

s.t.δ1−i1,...,δd−id≥0

∑

j∈Bd

(−1)‖j‖1 · A[−i+ δ × j].

Definition 18 (MAXIMUM SUBARRAY COMBINATION problem). Let A be an array ind dimensions of
side-length2n+ 1. We must output

max
i∈[n]d, δ∈[2n]d

∑

j∈Bd

(−1)‖j‖1 · A[−i+ δ × j].

Definition 19 (MAXIMUM SUBARRAY problem). LetA be an array ind dimensions of side-lengthn. We
must output

max
i,δ∈[n]d

∑

i1≤k1≤δ1

. . .
∑

id≤kd≤δd

A[k1, . . . , kd].

Our goal is to show that, if we can solve MAXIMUM SUBARRAY problem in timeO
(

nd+⌊d/2⌋−ε
)

for
someε > 0 on d-dimensional array, then we can solve MAX -WEIGHT (d+ ⌊d/2⌋)-CLIQUE problem in
timeO

(

nd+⌊d/2⌋−ε
)

. Below, whenever, we refer to an array, it hasd dimensions.
We will achieve this goal via a series of reductions:

1. Reduce MAX -WEIGHT (d+ ⌊d/2⌋)-CLIQUE on (d+ ⌊d/2⌋) n vertex graph to MAX -WEIGHT 2d-
SUBGRAPH PROBLEM on2dn vertex graph.
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2. Reduce MAX -WEIGHT 2d-SUBGRAPH PROBLEM problem on2dn vertex graph to CENTRAL MAX -
IMUM SUBARRAY SUM on array with side-length2dn + 1.

3. Reduce CENTRAL MAXIMUM SUBARRAY SUM on array with side-length2n+1 to CENTRAL MAX -
IMUM SUBARRAY COMBINATION on array with side-length2n+ 1.

4. Reduce CENTRAL MAXIMUM SUBARRAY COMBINATION on array with side-length2n+1 to MAX -
IMUM SUBARRAY COMBINATION on array with side-length2n+ 1.

5. Reduce MAXIMUM SUBARRAY COMBINATION on array with side-length2n + 1 to MAXIMUM

SUBARRAY on array with side-length2n.

We can check that this series of reductions is sufficient for our goal. (For this, remember our assumption
thatd = O(1).) Also, all reductions can be performed in timeO(nd).

Remark. It is possible to show that there is noO
(

n3d/2−ε
)

time algorithm for theMAXIMUM SUBARRAY

problem unless we have a much faster algorithm forMAX -WEIGHT CLIQUE problem. The proof of this
lower bound, however, is more complicated, and we omit it here.

5.1 MAX -WEIGHT (d+ ⌊d/2⌋)-CLIQUE ⇒ M AX -WEIGHT 2d-SUBGRAPH PROBLEM

Given an instance of the MAX -WEIGHT (d+ ⌊d/2⌋)-CLIQUE problem on(d+ ⌊d/2⌋)-partite graph

G = (V1 ∪ . . . ∪ Vd+⌊d/2⌋, E),

we transform it into an instance of the MAX -WEIGHT 2d-SUBGRAPH PROBLEM on graph

G′ = (V1 ∪ . . . ∪ Vd ∪ V ′
1 ∪ . . . ∪ V ′

d, E
′)

as follows. We buildG′ out ofG in three steps.

Step 1 G′ is the same asG, except that we renameVi+d asV ′
i for i = 1, . . . , ⌊d/2⌋. Clearly, the max-

weight clique inG′ is of the same weight as the max-weight clique inG.

Step 2 For i = 1, . . . , ⌊d/2⌋, we do the following. We add a set of vertices

V ′
i+⌊d/2⌋ := {v′ : v ∈ V ′

i }

toG′. For everyv ∈ V ′
i andu ∈ V ′

i+⌊d/2⌋, we set the weight of the edge(v, u) as follows:

w(v, u) :=

{

0, if u = v′;

−M otherwise,

whereM = 100 · d10 ·W andW is the largest absolute value of the edge weight inG. M is chosen to be
a sufficiently large positive value. For everyu ∈ Vi andv′ ∈ V ′

i+⌊d/2⌋, we set the weight of the edge(u, v′)
to be equal to the weight of the edge(u, v): w(u, v′) := w(u, v). We set all unspecified edge weights to be
equal to0.
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Step 3 If 2⌊d/2⌋ < d, we add a set of verticesV ′
d toG′, and we set all unspecified edges to have weight0.

The correctness of the reduction follows from the followingtheorem.

Theorem 6. The maximum weight of(d+ ⌊d/2⌋)-clique inG is equal to the maximum weight2d-subgraph
ofG′ (see Definition 15).

Proof. Fix anyi in {1, . . . , ⌊d/2⌋}. If, when choosing maximum weight2d-subgraph ofG′, we pick vertex
v ∈ V ′

i , then we must pick vertexv′ from V ′
i+⌊d/2⌋ since, otherwise, we would collect cost−M by the

construction. Suppose we pickv ∈ V ′
i andu ∈ Vi. Since we have to pickv′ from V ′

i+⌊d/2⌋ and since the
weight of (u, v) is equal to the weight of(u, v′), we must collect the weight of the edge(u, v). Now the
correctness of the claim follows from Definition 15.

5.2 MAX -WEIGHT 2d-SUBGRAPH PROBLEM ⇒ CENTRAL M AXIMUM SUBARRAY SUM

Given a2d-partite graph
G = (V1 ∪ . . . ∪ Vd ∪ V ′

1 ∪ . . . ∪ V ′
d, E),

we construct arrayA with side-length2n + 1 as follows. Leti ∈ {−n, . . . , n}d be ad-tuple. We set
A[i] = −M ′, if there existsr ∈ [d] such thatir = 0. We setM ′ = 10010d · W ′, whereW ′ is the largest
absolute value among the edge weights inG. M ′ is chosen to be a sufficiently large positive value. We
choosed verticesv1, . . . , vd from G as follows. Ifik < 0, we setvk to be the(−ik)-th vertex from setVk.
If ik > 0, we setvk to be theik-th vertex from setV ′

k. We setA[i] to be equal to the total weight ofd-clique
spanned by verticesv1, . . . , vd.

We need the following lemma.

Lemma 7. Fix i ∈ [n]d andδ ∈ [2n]d such thatn ≥ δr − ir > 0 for all r ∈ [d]. For everyr ∈ [d], setur to
be their-th vertex fromVr andu′r to be the(δr − ir)-th vertex fromV ′

r . Then
∑

j∈Bd

A[−i+ δ × j] = 2d−2 · w,

wherew is the total weight of2d-subgraph spanned by verticesu1, . . . , ud, u′1, . . . , u
′
d.

Proof. Follows from Definition 15 and the construction of arrayA.

We observe that, as we maximize overd-tuplesi andδ (as per Definition 16), we never choosei andδ
such that there existsr with δr− ir = 0 so as to not collect−M ′. Also, we see that, as we maximize over all
i andδ, we maximize over all2d-subgraphs by Lemma 7. The output of CENTRAL MAXIMUM SUBARRAY

SUM problem onA is therefore equal to the maximum weight of a2d-subgraph inG multiplied by2d−2.
This finishes the description of the reduction.

5.3 CENTRAL M AXIMUM SUBARRAY SUM ⇒ CENTRAL M AXIMUM SUBARRAY COMBI -
NATION

Let A be the input array for the CENTRAL MAXIMUM SUBARRAY SUM problem. We constructA′ as
follows. For everyi ∈ {−n, . . . , n}d:

A′[i] :=

{

A[i] if |{r : ir ≥ 0}| is even,

−A[i] otherwise.
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Our claim is that the output of the CENTRAL MAXIMUM SUBARRAY COMBINATION on A′ is equal to
the output of CENTRAL MAXIMUM SUBARRAY SUM on A. This follows by the definitions of the both
problems.

5.4 CENTRAL M AXIMUM SUBARRAY COMBINATION ⇒ M AXIMUM SUBARRAY COMBI -
NATION

LetA be the input array for the CENTRAL MAXIMUM SUBARRAY COMBINATION problem. LetW ′′ be the
largest absolute value of an entry inA. We defineM ′′ = 10010d ·W ′′ to be large enough positive value.

We defineA′ as follows. First we setA′ := A. Then, for everyd-tuple i with ir < 0 for all r ∈ [d], we
increaseA′[i] byM ′′.

The reduction follows from the following lemma.

Lemma 8. LetX be the output of theCENTRAL MAXIMUM SUBARRAY COMBINATION on inputA. Let
X ′ be the output of theMAXIMUM SUBARRAY COMBINATION on inputA′. Then equalityX ′ = X +M ′′

holds.

Proof. Consider MAXIMUM SUBARRAY COMBINATION on inputA′.
We claim that a maximum cannot be achieved ford-tuplesi andδ such that there existsr ∈ [d] with

δr − ir < 0. Suppose that there are suchi andδ that achieve a maximum. By the construction ofA′, and
becauseδr − ir < 0, all valuesM ′′ that we collect will cancel out among themselves. We will then be left
with value, at most,X ′ ≤ |Bd|W

′′ ≤ 1
10M

′′. We can, however, achieve a value of at least9
10M

′′ > 1
10M

′′

by settingik = −n andδk = 0 for all k ∈ [d].
By the discussion in the previous paragraph, a maximum must be achieved fori andδ such thatδr−ir ≥

0 for all r ∈ [d]. Now this is exactly the condition that we impose oni and δ in the statement of the
CENTRAL MAXIMUM SUBARRAY COMBINATION problem. By the construction ofA′, we get equality
X ′ = X +M ′′.

5.5 MAXIMUM SUBARRAY COMBINATION ⇒ M AXIMUM SUBARRAY

Let A be the inputd-dimensional array with side-length2n + 1 to the MAXIMUM SUBARRAY COMBINA -
TION problem. GivenA, we produced-dimensional arrayA′ of side-length2n such that the output of the
MAXIMUM SUBARRAY problem onA′ is equal to the output of the MAXIMUM SUBARRAY COMBINATION

problem onA. We constructA′ as follows. For everyd-tuplei ∈ [2n]d, we set

A′[i] =
∑

j∈Bd

(−1)‖j‖1 ·A[i+ j].

We can check equality

∑

i1≤k1≤i1+δ1

. . .
∑

id≤kd≤id+δd

A′[k1, . . . , kd] =
∑

j∈Bd

(−1)‖j‖1 ·A[i+ (δ + 1)× j]. (1)

where1 is thed-tuple (1, . . . , 1). In the MAXIMUM SUBARRAY problem, we maximize l.h.s. of (1) over
d-tuplesi andd-tuplesδ ∈ [2n]d. In the MAXIMUM SUBARRAY COMBINATION problem, we maximize
r.h.s. of (1) overd-tuples i and d-tuplesδ ∈ [2n]d. The reduction follows from the definitions of the
computational problems.
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6 Hardness for MAXIMUM SQUARE SUBARRAY problem

When the side-lengths of the subarray we are looking for are restricted to be equal, the problem becomes
slightly easier and there exists aO

(

nd+1
)

algorithm for solving it. In this section, we show a matching
lower bound for the MAXIMUM SQUARE SUBARRAY problem.

Theorem 9. For any constantε > 0, an O
(

nd+1−ε
)

time algorithm for theMAXIMUM SQUARE SUB-
ARRAY problem on ad-dimensional array implies anO

(

nd+1−ε
)

time algorithm for theMAX -WEIGHT

(d+ 1)-CLIQUE problem.

To prove Theorem 9, we define some intermediate problems which will be helpful in modularizing the
reduction.

Definition 20 (CENTRAL MAX -SUM problem). Let A be a central array ind dimensions of side-length
2n+ 1. We must output

max
i∈[n]d, ∆∈[2n]

s.t.∆−i1,...,∆−id≥0

∑

j∈Bd

A[−i+∆ · j].

Definition 21 (CENTRAL MAXIMUM COMBINATION problem). LetA be a central array ind dimensions
of side-length2n+ 1. We must output

max
i∈[n]d, ∆∈[2n]

s.t.∆−i1,...,∆−id≥0

∑

j∈Bd

(−1)‖j‖1 · A[−i+∆ · j].

Definition 22 (MAXIMUM COMBINATION problem). LetA be an array ind dimensions of side-lengthn.
We must output

max
i∈[n]d, ∆∈[n]

∑

j∈Bd

(−1)‖j‖1 · A[i+∆ · j].

Definition 23 (MAXIMUM SQUARE SUBARRAY problem). LetA be an array ind dimensions of side-length
n. We must output

max
i∈[n]d, ∆∈{0,...,n−1}

∑

i1≤k1≤i1+∆

. . .
∑

id≤kd≤id+∆

A[k1, . . . , kd].

We note that there is a simple algorithm for MAXIMUM SQUARE SUBARRAY problem that runs in time
O(nd+1).

Our goal is to show that, if we can solve MAXIMUM SQUARE SUBARRAY in timeO(nd+1−ε) for some
ε > 0 ond-dimensional array, whered ≥ 3 is a constant, then we can solve MAX -WEIGHT (d+ 1)-CLIQUE

in timeO(nd+1−ε). Below, whenever we refer to an array, it hasd dimensions.
We will show this by a series of reductions:

1. Reduce MAX -WEIGHT (d+ 1)-CLIQUE on n vertex graph to CENTRAL MAX -SUM problem on
array with side-length2dn+ 1.

2. Reduce CENTRAL MAX -SUM problem on array with side-length2n + 1 to CENTRAL MAXIMUM

COMBINATION problem on array with side-length2n+ 1.

3. Reduce CENTRAL MAXIMUM COMBINATION problem on array with side-length2n + 1 to MAXI -
MUM COMBINATION problem on array with side-length2n+ 1.
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4. Reduce MAXIMUM COMBINATION problem on array with side-lengthn to MAXIMUM SQUARE

SUBARRAY problem on array with side-lengthn− 1.

We can check that this series of reductions is sufficient for our goal. All reductions can be performed in
timeO(nd).

6.1 MAX -WEIGHT (d+ 1)-CLIQUE ⇒ CENTRAL M AX -SUM

Given a weighted graphG = (V,E) on n vertices, our goal is to produce ad-dimensional arrayA with
side-length2dn + 1 so that the following holds. If we solve the CENTRAL MAX -SUM problem onA, we
can infer the maximum total edge-weight of(d+ 1)-clique inG in constant time.

We setc′ to be equal to the maximum absolute value of the edge-weightsin G. We setc := 100|V |4c′,
which is much larger than the total edge weight of the graph. We define the followingd-dimensional array
D of side-lengthn. For everyd-tuplei ∈ [n]d, we setD[i] by the following rules.

1. If there arer 6= t ∈ [d] such thatir = it, setD[i] = −c.

2. Otherwise, setD[i] to be equal to the total edge weight ofd-clique with verticesi1, . . . , id.

Using arrayD, we construct arrayA in the following way:

• Initially, set every entry ofA to be equal to−c.

• For everyi ∈ [n]d, setA[−i] = D[i].

• For everyt ∈ [d] andi ∈ [n]d, set

A[−(i− it · j
t) + ‖i‖1 · j

t] = D[i]. (2)

The following theorem completes our reduction.

Theorem 10. LetMA be the output of theCENTRAL MAX -SUM problem with input arrayA. LetMG be
the max-weight(d+ 1)-clique inG. Then

MA = (d− 1)MG − (2d − (d+ 1))c.

Proof. Remember the definition of the CENTRAL MAX -SUM problem. We want to maximize the sum
∑

j∈Bd

A[−i+∆ · j]

over all choices ofd-tuplei and integer∆. We have an additional constraint that as we range over allj ∈ Bd,
type(−i+∆ ·j) should range over all elements inBd. We notice thatA[i] = −c if there are twor 6= t ∈ [d]
with ir, it ≥ 0. This means that the quantity we are maximizing

∑

j∈Bd

A[−i+∆ · j]

=A[−i] +





∑

t∈[d]

A[−i+∆ · jt]



− (2d − (d+ 1))c.

To prove the theorem, it suffices to show

(d− 1)MG = M ′
A := max

i∈[n]d, ∆∈[2n]
s.t.∆−i1,...,∆−id≥0

A[−i] +
∑

t∈[d]

A[−i+∆ · jt].

The equality follows from the following two cases.
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Case(d − 1)MG ≥ M ′
A If A[−i] = −c or A[−i + ∆ · jt] = −c (for somet), then we immediately get

the inequality, by definitions ofA, D andc. We therefore assume thatA[−i] and eachA[−i +∆ · jt] (for
everyt ∈ [d]) is equal toD[i′] for somed-tuplei′. Moreover, each one of thesed+1 integersD[i′] is equal
to the total edge-weight ofd-clique induced by verticesi′1, . . . , i

′
d in G, since, otherwise,D[i′] = −c (see

the definition of arrayD). By the construction, we have equality thatA[−i] = D[i]. Fix t, and consider
A[−i+∆ · jt]. A[−i+∆ · jt] = D[i(t)] for somed-tuple i(t). By equation (2), we must have

−(i(t)− i(t)t · j
t) + jt · ‖i(t)‖1 = −i+∆ · jt,

which, after simplification, yields

i(t)r =

{

ir if r 6= t

∆− ‖i‖1 if r = t.

We conclude thatM ′
A = D[i] +D[i(1)] + . . .+D[i(d)], whered-tuplei(t) is the same asd-tuplei, except

that we replace entryit by ∆ − ‖i‖1. Alternatively,M ′
A is the total edge-weight ofd-cliques induced by

sets of verticesi, i(1), . . . , i(d), which is the same as the total edge-weight of thed + 1 clique induced by
verticesi1, . . . , id,∆− ‖i‖1, multiplied byd− 1. This yields the inequality.

Case(d−1)MG ≤ M ′
A Suppose thatMG is achieved by(d+1)-clique induced by verticesi1, . . . , id, id+1.

We seti to bed-tuple i = (i1, . . . , id) and we set integer∆ to be∆ = id+1 + ‖i‖1. Now we can check
thatA[−i] +

∑

t∈[d]A[−i + ∆ · jt] is equal to the total edge-weight of(d + 1)-tuple induced by vertices
i1, . . . , id+1, multiplied byd− 1. This statement follows from the definitions of arraysA andD.

6.2 CENTRAL M AX -SUM ⇒ CENTRAL M AXIMUM COMBINATION

LetA be the inputd-dimensional array with side length2n+ 1 for the CENTRAL MAX -SUM problem. We
produced-dimensional arrayA′ of side length2n+1 fromA as follows. For alld-tuplesi ∈ {−n, . . . , n}d,
we set

A′[i] = (−1)‖type(i)‖1A[i].

A′ is input of CENTRAL MAXIMUM COMBINATION problem. The correctness of this reduction follows
from the definitions of both computational problems.

6.3 CENTRAL M AXIMUM COMBINATION ⇒ M AXIMUM COMBINATION

LetA be the inputd-dimensional array with side length2n+1 for the CENTRAL MAXIMUM COMBINATION

problem. LetMC be the output of the CENTRAL MAXIMUM COMBINATION problem onA. Let c′ be the
largest absolute value among entries inA. We definec := 100 · 2d · c′. We define arrayA′ as follows.

1. SetA′ = A.

2. For everyi ∈ [n]d, setA′[−i] = A[−i] + c.

Now we will show the equality

MC + c = max
i∈{−n,...,n}d, ∆∈[2n+1]

∑

j∈Bd

(−1)‖j‖1 · A′[i+∆ · j]. (3)
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Notice that the r.h.s. of (3) is the MAXIMUM COMBINATION problem ond-dimensional array with side
length2n + 1 after renumbering the entries. To show reduction, it therefore suffices to show equality (3).
Consider thed-tuple i and the integer∆ that achieve the maximum in (3). Suppose that for somet ∈ [d],
thed-tuplei and integer∆ are such thatit +∆ < 0. Then we have

∑

j∈Bd

(−1)‖j‖1 · A′[i+∆ · j] ≤ 2d · c′.

because among the selected cells, all those with valuec cancel each other out. This cannot be an optimal
solution, however, because we can achieve the value of at least c − 2d · c′ > 2d · c′ by choosingi =
(−1, . . . ,−1) and∆ = 1. Therefore, an optimal choice ofd-tuplei and integer∆ will satisfy it+∆ ≥ 0 for
all t ∈ [d]. If we add these constraints to the optimization problem on the r.h.s. of (3), we get the CENTRAL

MAXIMUM COMBINATION problem with input arrayA′. The equality follows from the definition of array
A′.

6.4 MAXIMUM COMBINATION ⇒ M AXIMUM SQUARE SUBARRAY

LetA be the inputd-dimensional array with side-lengthn to the MAXIMUM COMBINATION problem. Given
A, we produced-dimensional arrayA′ of side-lengthn− 1 such that the output of the MAXIMUM SQUARE

SUBARRAY problem onA′ is equal to the output of the MAXIMUM COMBINATION problem onA. We
constructA′ as follows. For everyd-tuplei ∈ [n− 1]d, we set

A′[i] =
∑

j∈Bd

(−1)‖j‖1 ·A[i+ j].

We can check equality
∑

i1≤k1≤i1+∆

. . .
∑

id≤kd≤id+∆

A′[k1, . . . , kd] =
∑

j∈Bd

(−1)‖j‖1 ·A[i+ (∆ + 1) · j]. (4)

In the MAXIMUM SQUARE SUBARRAY problem, we maximize l.h.s. of (4) overd-tuplesi and integers
∆ = {0, . . . , n − 2}. In the MAXIMUM COMBINATION problem, we maximize r.h.s. of (4) overd-tuplesi
and integers(∆ + 1) ∈ [n]. The reduction follows from the definitions of the computational problems.

7 Hardness for WEIGHTED DEPTH problem

In this section, we prove a matching lower bound for the WEIGHTED DEPTH problem. We need to show
that aO(N (d/2)−ε) algorithm for the WEIGHTED DEPTH problem implies aO(nd−2ε) time algorithm for
finding maximum-weightd-clique in an edge-weighted graph withn vertices.

For this purpose, we adapt a reduction from [Cha08], where a conditional lower bound is shown for
combinatorialalgorithms for the closely related Klee’s measure problem.

Theorem 11. For any constantε > 0, anO
(

n⌊d/2⌋−ε
)

time algorithm for theWEIGHTED DEPTH problem
in d dimensional space implies anO

(

nd−2ε
)

time algorithm for theMAX -WEIGHT (d)-CLIQUE problem.

Proof. For eachu 6= v ∈ V = [n] andi 6= j ∈ [d], we create a rectangle
{

(x1, . . . , xd) ∈ [0, n)d : xi ∈ [u, u+ 1), xj ∈ [v, v + 1)
}
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and we set the weight of this rectangle to be equal to the weight w(u, v) of the edge(u, v). The total number
of rectangles isN = O(d2n2) = O(n2).

W.l.o.g., for allu 6= v ∈ V , w(u, v) > 0 (if this is not so, we add a sufficiently large enough fixed
quantity to the weight of every edge). The heaviest pointp therefore lives in[0, n)d. We claim that the
weight of the heaviest point in[0, n)d is twice the weight of the heaviestd-clique in the graph. This is so,
since the weight of a pointp ∈ [0, n)d is equal to

∑

i 6=j∈[d]

w(⌊pi⌋, ⌊pj⌋),

which is twice the weight ofd-clique supported on the vertices⌊p1⌋, . . . , ⌊pd⌋. Conversely, the weight of
d-clique supported on the verticesv1, . . . , vd ∈ [n], is equal to half of the weight of point(v1, . . . , vd) ∈
[0, n)d.
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