
ar
X

iv
:1

60
2.

02
67

0v
1

 [
cs

.D
S]

 8
 F

eb
 2

01
6

Model and Objective Separation with Conditional Lower

Bounds: Disjunction is Harder than Conjunction

Krishnendu Chatterjee1, Wolfgang Dvořák2, Monika Henzinger2, and

Veronika Loitzenbauer2

1IST Austria
2University of Vienna, Faculty of Computer Science

February 9, 2016

Abstract

Given a model of a system and an objective, the model-checking question asks whether
the model satisfies the objective. We study polynomial-time problems in two classical
models, graphs and Markov Decision Processes (MDPs), with respect to several fundamen-
tal ω-regular objectives, e.g., Rabin and Streett objectives. For many of these problems
the best-known upper bounds are quadratic or cubic, yet no super-linear lower bounds
are known. In this work our contributions are two-fold: First, we present several im-
proved algorithms, and second, we present the first conditional super-linear lower bounds
based on widely believed assumptions about the complexity of CNF-SAT and combinato-
rial Boolean matrix multiplication. A separation result for two models with respect to an
objective means a conditional lower bound for one model that is strictly higher than the
existing upper bound for the other model, and similarly for two objectives with respect to
a model. Our results establish the following separation results: (1) A separation of models
(graphs and MDPs) for disjunctive queries of reachability and Büchi objectives. (2) Two
kinds of separations of objectives, both for graphs and MDPs, namely, (2a) the separation
of dual objectives such as reachability/safety (for disjunctive questions) and Streett/Rabin
objectives, and (2b) the separation of conjunction and disjunction of multiple objectives
of the same type such as safety, Büchi, and coBüchi. In summary, our results establish
the first model and objective separation results for graphs and MDPs for various classi-
cal ω-regular objectives. Quite strikingly, we establish conditional lower bounds for the
disjunction of objectives that are strictly higher than the existing upper bounds for the
conjunction of the same objectives.

1 Introduction

The fundamental problem in formal verification is the model-checking question that given a
model of a system and a property asks whether the model satisfies the property. The model
can be, for example, a standard graph, or a probabilistic extension of graphs, and the property

1

http://arxiv.org/abs/1602.02670v1

describes the desired behaviors (or infinite paths) of the model. For several basic model-
checking questions, though polynomial-time algorithms are known, the best-known existing
upper bounds are quadratic or cubic, yet no super-linear lower bounds are known. In graph
algorithmic problems unconditional super-linear lower bounds are very rare when polynomial-
time solutions exist. However, recently there have been many interesting results that establish
conditional lower bounds [3, 6, 1]. These are lower bounds based on the assumption that
for some well-studied problem such as 3-SUM [24] or All-Pairs Shortest Paths [40, 36] no
(polynomially1) faster algorithm exists (compared to the best known algorithm). The lower
bounds in this work assume (A1) there is no combinatorial2 algorithm with running time
of O(n3−ε) for any ε > 0 to multiply two n × n Boolean matrices; or (A2) for all ε > 0
there exists a k such that there is no algorithm for the k-CNF-SAT problem that runs in
2(1−ε)·n ·poly(m) time, where n is the number of variables and m the number of clauses. These
two assumptions have been used to establish lower bounds for several well-studied problems,
such as dynamic graph algorithms [3, 6], measuring the similarity of strings [5, 10, 11, 7, 2],
context-free grammar parsing [34, 1], and verifying first-order graph properties [35, 43]. No
relation between conjectures (A1) and (A2) is known. In this work we present conditional
lower bounds that are super-linear for fundamental model-checking problems.

Models. The two most classical models in formal verification are standard graphs and Markov
decision processes (MDPs). MDPs are probabilistic extensions of graphs, and an MDP consists
of a finite directed graph (V,E) with a partition of the vertex set V into player 1 vertices V1

and random vertices VR and a probabilistic transition function that specifies for vertices in VR

a probability distribution over their successor vertices. Let n = |V | and m = |E|. An infinite
path in an MDP is obtained by the following process. A token is placed on an initial vertex
and the token is moved indefinitely as follows: At a vertex v ∈ V1 a choice is made to move the
token along one of the outedges of v, and at a vertex v ∈ VR the token is moved according to
the probabilistic transition function. Note that if VR = ∅, then we have a standard graph, and
if V1 = ∅, then we have a Markov chain. Thus MDPs generalize standard graphs and Markov
chains.

Objectives. Objectives (or properties) are subsets of infinite paths that specify the desired set
of paths. The most basic objective is reachability where, given a set T ⊆ V of target vertices,
an infinite path satisfies the objective if the path visits a vertex of T at least once. The dual
objective to reachability is safety where, given a set T ⊆ V of target vertices, an infinite
path satisfies the objective if the path does not visit any vertex of T . The next extension of
a reachability objective is the Büchi objective that requires the set of target vertices to be
reached infinitely often. Its dual, the coBüchi objective, requires the set of target vertices to
be reached only finitely often. A natural extension of single objectives are conjunctive and
disjunctive objectives [23, 44, 18]. For two objectives ψ1 and ψ2 their conjunctive objective
is equal to ψ1 ∩ ψ2 and their disjunctive objective is equal to ψ1 ∪ ψ2. The conjunction of
reachability (resp. Büchi) objectives is known as generalized reachability (resp. Büchi) [23, 44].
A very central and canonical class of objectives in formal verification are Streett (strong fairness)

1In particular improvements by polylogarithmic factors are not excluded.
2Combinatorial here means avoiding fast matrix multiplication [33], see also the discussion in [27].

2

objectives and their dual Rabin objectives [39]. A one-pair Streett objective for two sets of
vertices L and U specifies that if the Büchi objective for target set L is satisfied, then also the
Büchi objective for target set U has to be satisfied; in other words, a one-pair Streett objective
is the disjunction of a coBüchi objective (with target set L) and a Büchi objective (with target
set U). The dual one-pair Rabin objective for two vertex sets L and U is the conjunction
of a Büchi objective with target set L and a coBüchi objective with target set U . A Streett
objective is the conjunction of k one-pair Streett objectives and its dual Rabin objective is the
disjunction of k one-pair Rabin objectives.

Algorithmic questions. The algorithmic question given a model and an objective is as follows:
(a) for standard graphs, the model-checking question asks whether there is a path that satisfies
the objective; and (b) for MDPs, the basic model-checking question asks whether there is a
policy (or a strategy that resolves the non-deterministic choices of outgoing edges) for player 1 to
ensure that the objective is satisfied with probability 1. Observe that if we consider the model-
checking question for MDPs with VR = ∅, then it exactly corresponds to the model-checking
question for standard graphs. Given k objectives, the conjunctive query question asks whether
there is a policy for player 1 to ensure that all the objectives are satisfied with probability 1,
and the disjunctive query question asks whether there is a policy for player 1 to ensure that one
of the objectives is satisfied with probability 1. Conjunctive queries coincide with conjunctive
objectives on graphs and MDPs, while disjunctive queries coincide with disjunctive objectives
on graphs but not MDPs (see Observations 2.1 and 2.2).

Significance of model and objectives. Standard graphs are the model for non-deterministic
systems, and provide the framework to model hardware and software systems [29, 20], as
well as many basic logic-related questions such as automata emptiness. MDPs model systems
with both non-deterministic and probabilistic behavior; and provide the framework for a wide
range of applications from randomized communication and security protocols, to stochastic
distributed systems, to biological systems [32, 8]. In verification, reachability objectives are
the most basic objectives for safety-critical systems. In general all properties that arise in
verification (such as liveness, fairness) are ω-regular languages (ω-regular languages extend
regular languages to infinite words), and every ω-regular language can be expressed as a Streett
objective (or a Rabin objective). Important special cases of Streett (resp. Rabin) objectives
are Büchi and coBüchi objectives [16]. Thus the algorithmic questions we consider are the
most basic questions in formal verification.

Model separation and objective separation questions. In this work our results (upper and
conditional lower bounds) aim to establish the following two fundamental separations:

• Model separation. Consider an objective where the algorithmic question for both graphs
and MDPs can be solved in polynomial time, and establish a conditional lower bound
for MDPs that is strictly higher than the best-known upper bound for graphs. In other
words, the conditional lower bound would separate the model of graphs and MDPs for
problems (i.e., w.r.t. the objective) that can be solved in polynomial time.

• Objective separation. Consider a model (either graphs or MDPs) with two different
objectives and show that, though the algorithmic question for both objectives can be

3

solved in polynomial time, there is a conditional lower bound for one objective that is
strictly higher than the best-known upper bound for the other objective. In other words,
the conditional lower bound would separate the two objectives w.r.t. the model though
they both can be solved in polynomial time.

To the best of our knowledge, there is no previous work that establish any model separation
or objective separation result in the literature.

Our results. In this work we present improved algorithms as well as the first conditional
lower bounds that are super-linear for algorithmic problems in model checking that can be
solved in polynomial time, and together they establish both model separation and objective
separation results. An overview of the results for the different objectives is given in Table 1,
where our results are highlighted in boldface. We use MEC to refer to the time to compute
the maximal end-component decomposition of an MDP. An end-component is a (non-trivial)
strongly connected sub-MDP that has no outgoing edges for random vertices. We have MEC =
O(min(n2,m1.5)) [16] and assume MEC = Ω(m) and m ≥ n. Moreover, we use k to denote the
number of combined objectives in the case of conjunction or disjunction of multiple objectives
and b to denote the total number of elements in all the target sets that specify the objectives.
We first describe Table 1 and our main results and then discuss the significance of our results
for model and objective separation.

1. Conjunctive and Disjunctive Reachability (and Büchi) Problems. First, we consider con-
junctive and disjunctive reachability objectives and queries. Recall that conjunctive ob-
jectives and queries in general and disjunctive objectives and queries on graphs coincide.
For reachability further the disjunctive objective can be reduced to a single objective
(see Observation 2.3). The following results are known: the algorithmic question for con-
junctive reachability objectives is NP-complete for graphs [13], and PSPACE-complete
for MDPs [23]; and the disjunctive objective can be solved in linear time for graphs and
in O(min(n2,m1.5) + b) time in MDPs [19, 16]. We present three results for disjunctive
reachability queries in MDPs: (i) We present an O(km+MEC)-time algorithm3. (ii) We
show that under assumption (A1) there does not exist a combinatorial O(k · n2−ε) algo-
rithm for any ε > 0. (iii) We show that for k = Ω(m) there does not exist an O(m2−ε)
time algorithm for any ε > 0 under assumption (A2). Hence we establish an upper
bound and matching conditional lower bounds based on (A1) and (A2).

Disjunctive Büchi objectives (on graphs and MDPs) can be reduced in linear time to
disjunctive reachability objectives and vice versa, therefore the same results apply to
disjunctive Büchi problems (see Observation 2.6). The basic algorithm for conjunctive
Büchi objectives runs in time O(m+ b) on graphs and in time O(MEC + b) on MDPs.

2. Conjunctive and Disjunctive Safety Problems. Second, we consider conjunctive and dis-
junctive safety objectives and queries. The following results are known: the conjunctive
problem can be reduced to a single objective and can be solved in linear time, both in

3This implies an O(MEC + b)-time algorithm for disjunctive objective but does not improve the running
time for this case.

4

Table 1: Upper and lower bounds. Our results are boldface and respective results are referred.

Graphs MDPs

upper bound lower bound∗ upper bound lower bound∗

Reach Conj. NP-c [13] PSPACE-c [23]

Disj. Obj.
Θ(m + b)

O(MEC + b) [19, 16]

Disj. Qu. O(k · m + MEC) k · n2−o(1) , m2−o(1)

Safety Conj. Θ(m + b) Θ(m + b)

Disj. Obj.
O(k · m) k · n2−o(1)

PSPACE-c [23]

Disj. Qu. O(k · m) k · n2−o(1) , m2−o(1)

Büchi Conj. Θ(m + b) O(MEC + b)

Disj. Obj.
Θ(m + b)

O(MEC + b) [19, 16]

Disj. Qu. O(k · m + MEC) k · n2−o(1) , m2−o(1)

coBüchi Conj. Θ(m + b) O(MEC + b)

Disj. Obj.
O(k · m) k · n2−o(1)

O(k · m + MEC) k · n2−o(1) , m2−o(1)

Disj. Qu. O(k · m + MEC) k · n2−o(1) , m2−o(1)

Singleton Disj. Obj.
Θ(m)

m2−o(1)

Disj. Qu. m2−o(1)

Streett O(min(n2, m
√

m log n, km) + b log n) [28, 17] O(min(n2, m
√

m log n) + b log n)

Rabin O(k · m) k · n2−o(1) O(k · MEC) k · n2−o(1) , m2−o(1)

∗ k · n2−o(1) lower bounds are based on the BMM Conjecture / Strong Triangle Conjecture (A1)

m2−o(1) lower bounds are based on the Orthogonal Vectors Conjecture / Strong ETH (A2)

graphs and MDPs (see e.g. [14]); disjunctive queries for MDPs can be solved in O(k ·m)
time; and disjunctive objectives for MDPs are PSPACE-complete [23]. We present two
results: (i) We show that for the disjunctive problem in graphs under assumption (A1)
there does not exist a combinatorial O(k · n2−ε) algorithm for any ε > 0. This implies
the same conditional lower bound for disjunctive queries and objectives in MDPs and
matches the upper bound for graphs and disjunctive queries in MDPs. (ii) We present,
for k = Ω(m), an Ω(m2−o(1)) lower bound for disjunctive objectives and queries in MDPs
under assumption (A2). Again this lower bound matches the upper bound of O(k ·m)
for disjunctive queries.

3. Conjunctive and Disjunctive coBüchi Problems. For coBüchi, a conjunctive objective
can be reduced to a single objective. For single objectives the basic algorithm runs in
time O(MEC+b) on MDPs and in time O(m+b) on graphs. Since the conditional lower
bounds for disjunctive safety objectives and queries actually already apply for the non-
emptiness of the winning set, the reductions also hold for coBüchi (see Observation 2.5).
Here the running times and the conditional lower bounds are matching for both dis-
junctive queries and disjunctive objectives. For the conditional lower bound based on

5

Table 2: Model Separation.

upper bound Graphs lower bounds MDPs

Reach/Büchi Disj. Qu. m + nk k · n2−o(1), m2−o(1)

coBüchi Singleton Disj. Obj./Qu. m m2−o(1)

Table 3: Dual Objective Separation for Graphs.

upper bound lower bound

Reach Disj. m + nk k · n2−o(1) Safety Disj.

Büchi Disj. m + nk k · n2−o(1) coBüchi Disj.

Büchi Conj. m + nk k · n2−o(1) coBüchi Disj.

Streett n2 + nk log n k · n2−o(1) Rabin

Table 4: Dual Objective Separation for MDPs.

upper bound lower bound

Büchi Disj. Obj. min(n2, m1.5) + nk k · n2−o(1), m2−o(1) coBüchi Disj. Obj.

Büchi Conj. min(n2, m1.5) + nk k · n2−o(1), m2−o(1) coBüchi Disj. Obj.

Streett min(n2, m
√

m log n) + nk log n k · n2−o(1), m2−o(1) Rabin

assumption (A2) only singleton coBüchi objectives, i.e., coBüchi objectives with target
sets of cardinality one, are needed, therefore the bound already holds for this case. We
additionally present two results: (i) We present O(km+ MEC)-time algorithms for dis-
junctive queries and objectives in MDPs. (ii) We present a linear time algorithm for
disjunctive singleton coBüchi objectives in graphs.

4. Rabin and Streett objectives. Finally, we consider Rabin and Streett objectives. The basic
algorithm for Rabin objectives runs in time O(k ·m) on graphs and in time O(k ·MEC)
on MDPs. As disjunctive coBüchi objectives are a special case of Rabin objectives,
the conditional lower bounds for coBüchi objectives of Ω(k · n2−o(1)) on graphs and
additionally Ω(m2−o(1)) on MDPs extend to Rabin objectives. The conditional lower
bound for graphs is matching (for combinatorial algorithms). Furthermore, we extend
the results of [28, 17] from graphs to MDPs to show that MDPs with Streett objectives
can be solved in O(min(m

√
m log n, n2) + b log n) time.

Significance of our results. We now describe the model and objective separation results that
are obtained from the results we established.

1. Model Separation. Table 2 shows our results that separate graphs and MDPs regarding
their complexity for certain objectives and queries under assumptions (A1) and (A2).
First, for reachability and Büchi objectives disjunction in graphs is in linear time while

6

in MDPs we have Ω(kn2−o(1)) and Ω(m2−o(1)) conditional lower bounds for disjunctive
queries. Second, for coBüchi we have a separation when restricted to the class where
each target set is a singleton. For these objectives disjunction in graphs is in linear time
while we establish an Ω(m2−o(1)) conditional lower bound for MDPs for both disjunctive
objectives and queries.

2. Objective Separation. Further we identify complexity separations between different ob-
jectives. Here we consider two aspects, separations between dual objectives like Büchi
and coBüchi (Tables 3 and 4), and separations between conjunction and disjunction of
objectives (Table 5). We compare dual objectives in two ways: (i) we show that single
objectives that are dual to each other behave differently when we consider disjunction
for each of them and (ii) we compare conjunctive objectives and their dual disjunctive
objectives. For (ii) we have that conjunctive Büchi objectives are dual to disjunctive
coBüchi objectives, and Streett objectives, the conjunction of 1-pair Streett objectives,
are dual to Rabin objectives, the disjunction of 1-pair Rabin objectives.

(a) Separating Dual Objectives in Graphs. First, we consider reachability and safety
objectives. In graphs we have that for reachability objectives disjunction is in linear
time while for disjunctive safety objectives we establish an Ω(kn2−o(1)) lower bound
under assumption (A1). Analogously, we have disjunctive Büchi objectives are in
linear time on graphs while we establish an Ω(kn2−o(1)) conditional lower bound
for disjunction of coBüchi objectives. Further, conjunctive Büchi objectives are in
linear time and thus can be separated from their dual objective, the disjunctive
coBüchi objectives. Finally, for Streett objectives in graphs with b = O(n2/ log n)
we have an O(n2) algorithm while we establish an Ω(n3−o(1)) lower bound for Rabin
objectives when k = Θ(n).

(b) Separating Dual Objectives in MDPs. First, consider Büchi and coBüchi objectives
in MDPs. On MDPs disjunctive Büchi objectives are in time O(MEC + b), which
is in O(min(n2,m1.5) + nk), while for coBüchi objectives we show Ω(kn2−o(1)) and
Ω(m2−o(1)) conditional lower bounds for both disjunctive queries and disjunctive
objectives. This separates the two objectives for both sparse and dense graphs.
Further conjunctive Büchi objectives can be solved in O(MEC + b) time and thus
there is also a separation between disjunctive coBüchi objectives and their dual.
Finally, for Streett objectives in MDPs with b = O(min(n2,m1.5)/ log n) we show
both an O(n2)-time and an O(m1.5)-time algorithm while we establish Ω(n3−o(1))
and Ω(m2−o(1)) conditional lower bounds for Rabin objectives when k = Θ(n).

(c) Separating Conjunction and Disjunction in Graphs and MDPs. Except for reach-
ability, i.e., in particular for all considered polynomial-time problems, we observe
that the disjunction of objectives is computationally harder than the conjunction
of these objectives (under assumptions (A1), (A2)). First, for safety objectives
conjunction is in linear time even for MDPs while for disjunctive queries (disjunc-
tive objectives are PSPACE-complete) we present Ω(kn2−o(1)) and Ω(m2−o(1)) condi-
tional lower bounds, where the first bound also holds for graphs. Second, for Büchi

7

Table 5: Separating Conjunction and Disjunction.

Conjunction Disjunction

Safety Graphs m + nk k · n2−o(1)

MDP Qu. m + nk k · n2−o(1), m2−o(1)

Büchi MDPs Qu. min(n2, m1.5) + nk k · n2−o(1), m2−o(1)

coBüchi Graphs m + nk k · n2−o(1)

MDPs Obj./Qu. min(n2, m1.5) + nk k · n2−o(1), m2−o(1)

1-pair Streett Graphs n2 + nk log n k · n2−o(1)

MDPs Obj./Qu. min(n2, m
√

m log n) + nk log n k · n2−o(1), m2−o(1)

1-pair Rabin Graphs m + nk k · n2−o(1)

MDPs Obj./Qu. min(n2, m1.5) + nk k · n2−o(1), m2−o(1)

and coBüchi objectives conjunction is in O(MEC + b) on MDPs (and O(m + b)
on graphs) while we show Ω(kn2−o(1)) and Ω(m2−o(1)) conditional lower bounds for
disjunctive coBüchi objectives and disjunctive Büchi / coBüchi queries on MDPs.
The Ω(m2−o(1)) bound even holds for the disjunction of singleton coBüchi objec-
tives. Further, for coBüchi objectives our Ω(kn2−o(1)) bound also holds on graphs,
which separates conjunction and disjunction also in this setting. Third, we can also
see the results for Streett and Rabin objectives as a separation between conjunc-
tion and disjunction. Recall that Streett objectives are the conjunction of one-pair
Streett objectives and Rabin objectives are the disjunction of one-pair Rabin ob-
jectives. Further, both Büchi and coBüchi objectives are special cases of each of
one-pair Streett and one-pair Rabin objectives. In particular the following sepa-
rations are easy observations or corollaries of our results: For the disjunction of
one-pair Streett objectives the same conditional lower bounds (and the same upper
bound, see Observation 6.10) as for the disjunction of coBüchi objectives apply.
Thus the disjunction of one-pair Streett objectives is harder than the conjunction
of one-pair Streett objectives (under assumptions (A1)/(A2)). The conjunction of
one-pair Rabin objectives can be solved in the same time as conjunctive Büchi ob-
jectives. Thus also the disjunction of one-pair Rabin objectives is harder than their
conjunction.

Remark about Streett and Rabin objective separation. One remarkable aspect of our objective
separation result is that we achieve it for Rabin and Streett objectives (both in graphs and
MDPs), which are dual. In more general models such as games on graphs, Rabin objectives are
NP-complete and Streett objectives are coNP-complete [22]. In graphs and MDPs, both Rabin
and Streett objectives can be solved in polynomial time. Since Rabin and Streett objectives
are dual, and they belong to the complementary complexity classes (either both in P, or one
is NP-complete, other coNP-complete), they were considered to be equivalent for algorithmic
purposes for graphs and MDPs. Quite surprisingly we show that under some widely believed

8

assumptions, both for MDPs and graphs, Rabin objectives are algorithmically harder than
Streett objectives.

Technical contributions.
Algorithms. (1) We show that given the MEC-decomposition of an MDP, the almost-sure

reachability problem can be solved in linear time on the MDP where each MEC is contracted
to a player 1 vertex. This yields to the improved algorithms for disjunctive queries of reacha-
bility and Büchi objectives on MDPs. (2) For MDPs with disjunctive coBüchi objectives and
disjunctive queries of coBüchi objectives we use the MEC-decomposition in a different way;
namely, we show that it is sufficient to do a linear-time computation in each MEC per coBüchi
objective to solve both disjunctive questions. (3) Further we show that for graphs with a
disjunctive coBüchi objective for which the target set of each of the single coBüchi objectives
has cardinality one the problem can be solved with a breadth-first search like algorithm in
linear time. (4) Finally, we provide faster algorithms for MDPs with Streett objectives. The
straight-forward algorithm repeatedly computes MEC-decompositions in a black-box manner;
we show that one can open this black-box and combine the current best algorithms for MEC-
decomposition [16] and graphs with Streett objectives [28, 17] to achieve almost the same
running time for MDPs with Streett objectives as for graphs.

Conditional Lower Bounds. (a) Conjecture (A1) is equivalent to the conjecture that there
is no combinatorial O(n3−ε) time algorithm to detect whether an n-vertex graph contains a tri-
angle [40]. We show that triangle-detection in graphs can be linear-time reduced to disjunctive
queries of almost-sure reachability in MDPs and thus that the latter is hard assuming (A1).
(b) For the hardness under (A2) we consider the intermediate problem Orthogonal Vectors,
which is known to be hard under (A2) [41], and linear-time reduce it to disjunctive queries
of almost-sure reachability in MDPs. (c) For disjunctive safety problems we give a linear-time
reduction from triangle-detection that only requires player 1 vertices and thus hardness also
holds in graphs when assuming (A1). (d) However, the reduction we give from Orthogonal
Vectors to disjunctive safety problems requires random vertices and thus hardness under (A2)
only holds on MDPs. (e) Based on the hardness results for almost-sure reachability and safety,
we then exploit reductions between the different types of objectives to obtain the hardness
results for Büchi, coBüchi, and Rabin.

Outline. In Section 2 we provide formal definitions, describe the connections between differ-
ent objectives, and state the conjectures on which the conditional lower bounds are based.
Section 3 is about disjunctive reachability queries on MDPs; we first present the improved
algorithm and then the conditional lower bounds. In Section 4 we describe the conditional
lower bounds for disjunctive safety problems on graphs and MDPs. In Section 5 we provide
the improved algorithms for MDPs with Streett objectives. In Section 6 we show how the
conditional lower bounds extend from reachability and safety to Büchi, coBüchi, and Rabin
and present algorithms for MDPs with Rabin objectives and for MDPs with disjunctive ob-
jectives and queries of Büchi and coBüchi objectives. In Section 7 we describe the linear time
algorithm for disjunctive coBüchi objectives on graphs for the special case when all target sets
are singletons. We conclude in Section 8.

9

2 Preliminaries

Markov Decision Processes (MDPs) and Graphs. An MDP P = ((V,E), (V1, VR), δ) consists
of a finite directed graph with vertices V and edges E with a partition of the vertices into
player 1 vertices V1 and random vertices VR and a probabilistic transition function δ. We
call an edge (u, v) with u ∈ V1 player 1 edge and an edge (v,w) with v ∈ VR a random edge.
The probabilistic transition function is a function from VR to D(V), where D(V) is the set of
probability distributions over V and a random edge (v,w) ∈ E if and only if δ(v)[w] > 0. For
the purpose of this paper we assume for simplicity that, for each random vertex v, δ(v)[w] is
the uniform distribution over all w ∈ V with (v,w) ∈ E; this is w.l.o.g. as we are only ask
whether a probability is zero or one (qualitative analysis) or zero or larger than zero. Graphs
are a special case of MDPs with VR = ∅.
Sub-MDPs and Maximal End-Components. A sub-MDP of an MDP P induced by a vertex set
X ⊆ V is defined as P [X] = ((X,E∩(X×X), (V1∩X,VR∩X), δ′), where δ′ : X → D(X) is for
each v ∈ VR ∩X the uniform distribution over all w ∈ X with (v,w) ∈ E. An end-component
(EC) of an MDP P is a set of vertices X ⊆ V such that (a) the induced sub-MDP P [X] is
strongly connected, (b) all outgoing edges in E of vertices in X∩VR are contained in P [X], and
(c) P [X] contains at least one edge. An end-component is a maximal end-component (MEC) if
it is maximal under set inclusion. An end-component is trivial if it consists of a single vertex
(with a self-loop), otherwise it is non-trivial. The MEC-decomposition of an MDP consists of
all MECs of the MDP and the set of vertices that do not belong to any MEC.

Plays and Strategies. A play or infinite path in P is an infinite sequence ω = 〈v0, v1, v2, . . .〉
such that (vi, vi+1) ∈ E for all i ∈ N; we denote by Ω the set of all plays. A player 1
strategy σ : V ∗ · V1 → V is a function that assigns to every finite prefix ω ∈ V ∗ · V1 of a play
that ends in a player 1 vertex v a successor vertex σ(ω) ∈ V such that there exists an edge
(v, σ(ω)) ∈ E; we denote by Σ the set of all player 1 strategies. A strategy is memoryless if
we have σ(ω) = σ(ω′) for any ω, ω′ ∈ V ∗ · V1 that end in the same vertex v ∈ V1.

Objectives and Almost-Sure Winning Sets. An objective ψ is a subset of Ω said to be winning
for player 1. We say that a play ω ∈ Ω satisfies the objective if ω ∈ ψ. For any measurable set
of plays A ⊆ Ω we denote by Prσ

v (A) the probability that a play starting at v ∈ V belongs to
A when player 1 plays strategy σ. A strategy σ is almost-sure (a.s.) winning from a vertex
v ∈ V for an objective ψ if Prσ

v (ψ) = 1. In graphs the existence of an almost-sure winning
strategy corresponds to the existence of a play in the objective. The almost-sure winning set
〈〈1〉〉

as
(P,ψ) of player 1 is the set of vertices for which player 1 has an almost-sure winning

strategy. Computing the almost-sure winning set for some objective is also called qualitative
analysis of MDPs. Below we define the objectives used in this work. Let Inf(ω) for ω ∈ Ω
denote the set of vertices that occurs infinitely often in ω.

Reachability For a vertex set T ⊆ V the reachability objective is the set of infinite paths
that contain a vertex of T , i.e., Reach (T) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃j ≥ 0 : vj ∈ T}.

Safety For a vertex set T ⊆ V the safety objective is the set of infinite paths that do not
contain any vertex of T , i.e., Safety (T) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀j ≥ 0 : vj /∈ T}.

10

Büchi For a vertex set T ⊆ V the Büchi objective is the set of infinite paths in which a vertex
of T occurs infinitely often, i.e., Büchi (T) = {ω ∈ Ω | Inf(ω) ∩ T 6= ∅}.

coBüchi For a vertex set T ⊆ V the coBüchi objective is the set of infinite paths for which
no vertex of T occurs infinitely often, i.e., coBüchi (T) = {ω ∈ Ω | Inf(ω) ∩ T = ∅}.

Streett Given a set SP of k pairs (Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k, the
Streett objective is the set of infinite paths for which it holds for each 1 ≤ i ≤ k that
whenever a vertex of Li occurs infinitely often, then a vertex of Ui occurs infinitely often,
i.e., Streett (SP) = {ω ∈ Ω | Li ∩ Inf(ω) = ∅ or Ui ∩ Inf(ω) 6= ∅ for all 1 ≤ i ≤ k}.

Rabin Given a set RP of k pairs (Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k, the
Rabin objective is the set of infinite paths for which there exists an i, 1 ≤ i ≤ k, such
that a vertex of Li occurs infinitely often but no vertex of Ui occurs infinitely often, i.e.,
Rabin (RP) = {ω ∈ Ω | Li ∩ Inf(ω) 6= ∅ and Ui ∩ Inf(ω) = ∅ for some 1 ≤ i ≤ k}.

Given c objectives ψ1, . . . , ψc, the conjunctive objective ψ = ψ1 ∩ . . . ∩ ψc is given by the
intersection of the c objectives, and the disjunctive objective ψ = ψ1 ∪ . . . ∪ ψc =

∨c
i=1 ψi is

given by the union of the c objectives. For the conjunctive query of c objectives ψ1, . . . , ψc

we define the (almost-sure) winning set to be the set of vertices that have one strategy that
is (almost-sure) winning for each of the objectives ψ1, . . . , ψc. Analogously, a vertex is in the
(almost-sure) winning set

∨c
i=1〈〈1〉〉as

(P,ψi) for the disjunctive query of the c objectives if it is
in a (almost-sure) winning set for at least one of the c objectives (i.e. we take the union of the
winning sets).

Below we present several observations that interlink different types of objectives.

Observation 2.1. The almost-sure winning set for a conjunctive objective is the same as for
the corresponding conjunctive query.

Proof. We have for any v ∈ V and σ ∈ Σ and any two objectives ψ1, ψ2 that Prσ
v (ψ1 ∧ ψ2) = 1

iff Prσ
v (ψ1) = 1 and Prσ

v (ψ2) = 1.

Observation 2.2. On graphs (i.e. VR = ∅) the winning set for a disjunctive objective is the
same as for the corresponding disjunctive query.

Proof. For any two objectives ψ1, ψ2 we have for each ω ∈ Ω that ω ∈ (ψ1 ∪ ψ2) iff ω ∈ ψ1 or
ω ∈ ψ2.

Observation 2.3. The disjunctive objective of Büchi (resp. reachability) objectives is the
same as the Büchi (resp. reachability) objective of the union of the target sets.

Proof. We show the claim for Büchi, the proof for reachability is analogous. For two target
sets T1, T2 ⊆ V we have {ω ∈ Ω | Inf(ω) ∩ T1 6= ∅} ∪ {ω ∈ Ω | Inf(ω) ∩ T2 6= ∅} = {ω ∈ Ω |
Inf(ω) ∩ (T1 ∪ T2) 6= ∅}.

Observation 2.4. The conjunctive objective of coBüchi (resp. safety) objectives is the same
as the coBüchi (resp. safety) objective of the union of the target sets.

11

Proof. We show the claim for coBüchi, the proof for safety is analogous. For two target sets
T1, T2 ⊆ V we have {ω ∈ Ω | Inf(ω) ∩ T1 = ∅} ∩ {ω ∈ Ω | Inf(ω) ∩ T2 = ∅} = {ω ∈ Ω |
Inf(ω) ∩ (T1 ∪ T2) = ∅}.

By definition each path winning for a safety objective is also winning for the corresponding
coBüchi objective while the converse is not always true. However, when it comes to the non-
emptiness of winning sets these two objectives become equivalent.

Observation 2.5. For a fixed MDP P the winning set for Safety (T) is non-empty iff the
winning set for coBüchi (T) is non-empty. This equivalence extends also to conjunctions and
disjunctions of safety and coBüchi objectives.

Proof. By [21, p. 891] (see also Section 5.1) the winning set for Safety (T) resp. coBüchi (T) is
non-empty if and only if there exists an end-component X with X ∩ T = ∅.

Observation 2.6. Disjunctive (Obj./Qu.) Reachability in MDPs can be linear time reduced
to disjunctive (Obj./Qu.) Büchi-Objectives in MDPs and vice versa.

Proof. Reachability ⇒ Büchi: For each target set T replace each t ∈ T with two vertices:
tin ∈ V1 and tout, where tout belongs to the same player as t. Assign all incoming edges of t
to tin and all outgoing edges of t to tout, and add the edge (tin, tout) and the self-loop (tin, tin).
Let the corresponding target set for Büchi be the union of tin for all t ∈ T . A vertex tin in the
modified MDP can be visited infinitely often almost surely iff in the original MDP the vertex
t can be reached almost surely.

Büchi ⇒ Reachability: For each target set T replace each t ∈ T with three vertices:
tin ∈ VR, tr ∈ V1, and tout, where tout belongs to the same player as t. Assign all incoming
edges of t to tin and all outgoing edges of t to tout, and add the edges (tin, tout), (tin, tr), and
(tr, tout). Let the corresponding target set for Reachability be the union of tr for all t ∈ T . A
vertex tr in the modified MDP can be reached almost surely iff in the original MDP the vertex
t can almost surely be visited infinitely often.

Observation 2.7. Conjunctive Büchi (resp. coBüchi) objectives are special instances of Streett
objectives.

Proof. For Büchi let Li = V and Ui = Ti, for coBüchi let Li = Ti and Ui = ∅.

Observation 2.8. Disjunctive Büchi (resp. coBüchi) objectives are special instances of Rabin
objectives.

Proof. For Büchi let Li = Ti and Ui = ∅, for coBüchi let Li = V and Ui = Ti.

2.1 Conjectured Lower Bounds

While classical complexity results are based on standard complexity-theoretical assumptions,
e.g., P 6= NP, polynomial lower bounds are often based on widely believed, conjectured lower
bounds about well studied algorithmic problems. Our lower bounds will be conditioned on the
popular conjectures discussed below.

12

First, we consider conjectures on Boolean matrix multiplication [40, 3] and triangle detec-
tion [3] in graphs, which build the basis for our lower bounds on dense graphs. A triangle in
a graph is a triple x, y, z of vertices such that (x, y), (y, z), (z, x) ∈ E.

Conjecture 2.9 (Combinatorial Boolean Matrix Multiplication Conjecture (BMM)). There
is no O(n3−ε) time combinatorial algorithm for computing the boolean product of two n × n
matrices for any ε > 0.

Conjecture 2.10 (Strong Triangle Conjecture (STC)). There is no O(min{nω−ε, m2ω/(ω+1)−ε})
expected time algorithm and no O(n3−ε) time combinatorial algorithm that can detect whether a
graph contains a triangle for any ε > 0, where ω < 2.373 is the matrix multiplication exponent.

By a result of Vassilevska Williams and Ryan Williams [40], we have that BMM is equivalent
to the combinatorial part of STC. Moreover, if we do not restrict ourselves to combinatorial
algorithms, STC still gives a super-linear lower bound.

Second, we consider the Strong Exponential Time Hypothesis [31, 12] and the Orthogonal
Vectors Conjecture [4], the former dealing with satisfiability in propositional logic and the
latter with the Orthogonal Vectors Problem.

The Orthogonal Vectors Problem (OV). Given two sets S1, S2 of d-bit vectors with |Si| ≤ N ,
d ∈ Θ(logN), are there u ∈ S1 and v ∈ S2 such that

∑d
i=1 ui · vi = 0?

Conjecture 2.11 (Strong Exponential Time Hypothesis (SETH)). For each ε > 0 there is a
k such that k-CNF-SAT on n variables and m clauses cannot be solved in O(2(1−ε)n poly(m))
time.

Conjecture 2.12 (Orthogonal Vectors Conjecture (OVC)). There is no O(N2−ε) time algo-
rithm for the Orthogonal Vectors Problem for any ε > 0.

By a result of Williams [41] we know that SETH implies OVC, i.e., whenever a problem
is hard assuming OVC, it is also hard when assuming SETH. Hence, it is preferable to use
OVC for proving lower bounds. Finally, to the best of our knowledge, no relations between
the former two conjectures and the latter two conjectures are known.

Remark 2.13. The conjectures that no polynomial improvements over the best known run-
ning times are possible do not exclude improvements by sub-polynomial factors such as poly-
logarithmic factors or factors of, e.g., 2

√
log n as in [42].

3 Reachability in MDPs

First let us briefly discuss reachability on Graphs. The winning set for disjunctive reachability
can simply be computed by union all target sets and then starting a breadth-first search
which is in O(m). On the other hand, the problem becomes NP-complete when considering
conjunctive reachability [23], as with conjunction one can require a path to contain several
vertices and in particular one can embed the well-known NP-hard problem of Hamiltonian
path.

13

Turning to MDPs, notice that in MDPs based on acyclic graphs almost-sure reachability is
equivalent to computing the winning set for a player with reachability objectives in a 2-player
graph-game where all the random vertices are owned by the opponent (as random will play the
optimal strategy for the opponent with non-zero probability). As computing the winning set
for conjunctive reachability in the 2-player graph-game is PSPACE-hard [23] even for acyclic
graphs, we have that conjunctive almost-sure reachability in MDPs is PSPACE-hard as well.
Moreover, as we will show later, compared to graphs, also disjunctive reachability becomes
harder, i.e., we will provide polynomial lower-bound based on popular conjectures.

In the first part of this section we present an improved algorithm for disjunctive reachability
queries in MDPs. As disjunctive reachability objectives can be easily reduced to a single
reachability objective by taking the union of all target sets, the algorithm mentioned above is
also an algorithm for disjunctive reachability objectives (by setting k = 1). In the second part
we present two lower bounds for disjunctive reachability queries, an Ω(n3−o(1)) lower bound
based on STC and an Ω(m2−o(1)) lower bound based on OVC (resp. SETH).

3.1 Algorithm for Disjunctive Reachability Queries in MDPs

In this section we present an algorithm to compute the almost-sure winning set for disjunctive
reachability queries in MDPs. In particular we show the following theorem:

Theorem 3.1. For an MDP P and target sets Ti ⊆ V for 1 ≤ i ≤ k the almost-sure winning
set for disjunctive reachability queries can be computed in O(km + MEC) time, where MEC
is the time needed to compute a MEC-decomposition.

A vertex v is in the almost-sure winning set if player 1 has a strategy to reach one of the
k target sets Ti with probability 1 starting from v. Note that the sets Ti are not absorbing in
contrast to what is often assumed for the reachability objective in MDPs. The trivial algorithm
would be to invoke an algorithm for almost-sure reachability in MDPs k times (for one target
set Ti at a time, temporarily making the set Ti absorbing if necessary). The crucial observation
to improve upon this is that given an MDP without non-trivial end-components, almost-sure
reachability in MDPs can be solved in linear time.

We further observe that, for each target set, either all vertices of an end-component are
winning (almost-surely) or none. Thus if we know the MEC-decomposition of an MDP, we can
contract the MECs to single vertices with self-loops and solve almost-sure reachability on the
derived MDP. This derived MDP does not have non-trivial end-components, therefore given
the MEC decomposition, the problem can be solved in linear time per target set. Our algorithm
implies that almost-sure reachability (i.e. k = 1) can be solved in the same asymptotic time
needed to determine the MEC-decomposition of an MDP.

Definition 3.2 (Contraction of MECs). Contracting a MEC X in an MDP P creates a
modified MDP P ′ from P where the vertices of X are replaced by a single vertex u that belongs to
player 1 and the edges to or from a vertex in X are replaced with edges to or from, respectively,
the vertex u; parallel edges are omitted from P ′, for parallel random edges the probabilities are
added up.

14

Observation 3.3 ([15]). The MDP P ′ that is constructed from the MDP P by contracting all
MECs of P does not contain any non-trivial end-components.

Proof. Assume by contradiction that the MDP P ′ contains an end-component X ′ with at least
two vertices. Let X be the set of vertices corresponding to the vertices of X ′ in the original
MDP P . Then X is an end-component in P , a contradiction to the definition of P ′.

In the derived MDP we basically apply, for each target set, one iteration of the classical
almost-sure reachability algorithm but with a slightly modified random attractor computation
defined below. The classical algorithm repeatedly executes the following two steps: 1) Compute
the vertices S from which player 1 can reach the target set T . 2a) If S = V , output S as the
(almost-sure) winning set of player 1. 2b) If S (V , remove the random attractor of V \ S
from the graph (and from V) and repeat. Intuitively, a random attractor of a set of vertices W
contains the vertices from which there is a positive probability to reach W for every strategy
of player 1. The extended random attractor, formally defined below and used implicitly in [16],
additionally includes player 1 vertices for which the only player 1 strategy to avoid a positive
probability to reach W is using a self-loop of a vertex not in the target set. Additionally, we
explicitly avoid adding vertices in the considered target set to the attractor. In the classical
algorithm this was achieved by making the target set absorbing, which would not work for the
extended random attractor.

Definition 3.4 (Extended Random Attractor). Let E(v) denotes the set of vertices u ∈ V
for which (v, u) ∈ E. In an MDP P = ((V,E), (V1, VR), δ) the extended random attractor
Attr+(P,W, T) for sets of vertices W,T ⊆ V is defined as Attr+(P,W, T) =

⋃

j≥0Zj where
Z0 = W \ T and Zj for j > 0 is defined recursively as Zj+1 = Zj ∪ {v ∈ VR | E(v) ∩ Zj 6=
∅}∪{v ∈ V1 | E(v) ⊆ Zj∪{v}}\T . In contrast to a random attractor (a) a set of vertices T can
be specified that is never included in Attr+(P,W, T) and (b) a player 1 vertex is also included in
Zj+1 if all its outgoing edges apart from its self-loop are contained in Zj . The extended random
attractor A = Attr+(P,W, T) can be computed in O(

∑

v∈A Indeg(v) + |V1 \ T |) time [9, 30].

Putting the pieces together, our algorithm looks as follows: First, the MEC-decomposition
of the input MDP P is computed. Then all MECs of P are contracted to construct the derived
MDP P ′, which does not contain any non-trivial MECs. For each target set we execute one
iteration of the classical algorithm, replacing the usual random attractor with the extended
random attractor. The union of the winning sets determined for each target set then gives the
winning set of player 1 for disjunctive reachability.

Proposition 3.5 (Runtime). Algorithm DisjReachMDP runs in time O(km+ MEC).

Proof. Contracting all MECs can be done in time O(m) as we have to consider each edge
(and vertex) at most twice. The for-loop is executed k times. Within the for-loop both the
vertices S that can reach Ti and the extended random attractor A = Attr+(P ′, V \ S, Ti) can
be found in linear time, that is, in O(km) time over all iterations of the for-loop. Undoing the
contraction takes again at most O(m) time.

15

Algorithm DisjReachMDP: Disjunctive Query Reachability in MDPs

Input : an MDP P = ((V,E), (V1, VR), δ) and target sets Ti ⊆ V for 1 ≤ i ≤ k
Output :

∨

1≤i≤k〈〈1〉〉as
(P,Reach (Ti))

1 compute MEC decomposition of P
2 let P ′ be P with all MECs contracted
3 let T ′

i for 1 ≤ i ≤ k be the set of vertices of P ′ that represent some vertex of Ti

4 W ′ ← ∅
5 for i← 1 to k do

6 S′ ← GraphReach(P ′, T ′
i)

7 A′ ← Attr+(P ′, V ′ \ S′, T ′
i)

8 W ′ ←W ′ ∪ V ′ \ A′

9 let W be the vertices in W ′ after undoing contraction
10 return W

Proposition 3.6 (Correctness). For an MDP P and target sets Ti ⊆ V for 1 ≤ i ≤ k
Algorithm DisjReachMDP returns the set

∨

1≤i≤k〈〈1〉〉as
(P,Reach (Ti)).

Proof. We assume that in the MDP P each vertex has at least one outgoing edge and each
random vertex has at least one outgoing edge that is not a self-loop. This is w.l.o.g. because
∨

1≤i≤k〈〈1〉〉as
(P,Reach (Ti)) does not change if we replace each vertex without outgoing edges

by a vertex with a self-loop and treat a random vertex whose only outgoing edge is a self-loop
as a player 1 vertex.

First note that by definition a vertex is in
∨

1≤i≤k〈〈1〉〉as
(P,Reach (Ti)) if and only if it is in

〈〈1〉〉
as

(P,Reach (Ti)) for some 1 ≤ i ≤ k. Hence we can consider the k target sets separately
by showing that in the i-th iteration of the for-loop of Algorithm DisjReachMDP the set
〈〈1〉〉

as
(P,Reach (Ti)) is identified.

Let P ′ be the MDP derived from the MDP P by contracting all MECs of P and let T ′
i be the

set of contracted vertices that represent some vertex of Ti as in Algorithm DisjReachMDP.
We use the superscript ′ to denote sets related to the MDP P ′ and omit the superscript for
sets related to the original MDP P . Note that since only strongly connected subgraphs are
contracted in P ′, it clearly holds that a vertex v ∈ V can reach another vertex u ∈ V if and
only if the vertex v′ ∈ V ′ corresponding to v can reach the vertex u′ ∈ V ′ corresponding to u.

Fix some iteration i and let S′ = GraphReach(P ′, T ′
i), let A′ = Attr+(P ′, V ′ \ S′, T ′

i),
and let W ′

i = V ′ \ A′, that is, W ′
i is the set added to W ′ in the i-th iteration of the for-

loop of Algorithm DisjReachMDP. Let the same letters without superscript denote the
corresponding sets of vertices after reverting the contraction of the MECs of P . We prove the
lemma by first showing 〈〈1〉〉

as
(P,Reach (Ti)) ⊆Wi and then Wi ⊆ 〈〈1〉〉as

(P,Reach (Ti)).

We prove 〈〈1〉〉
as

(P,Reach (Ti)) ⊆Wi by showing A ⊆ V \〈〈1〉〉
as

(P,Reach (Ti)) by induction
on the recursive definition of A′ = Attr+(P ′, V ′\S′, T ′

i) = ∪j≥0Z
′
j, where the sets Z ′

j are defined
as in Definition 3.4 and the sets Zj are the corresponding sets after reverting the contraction
of the MECs of P . Since the attractor computation is done on P ′, each set Zj either contains

16

all vertices of a MEC of P or none. Clearly A∩Ti = ∅ as vertices in T ′
i are explicitly excluded

from A′. Player 1 cannot reach Ti almost surely from the vertices in Z0 = V \S because these
vertices cannot reach any vertex in Ti. Assume the claim holds for Zj , i.e., for all vertices
z ∈ Zj and any strategy σ of player 1 we have Prσ

z (P,Reach (Ti)) < 1. By the definition of
Z ′

j+1, for a random vertex v′ in Z ′
j+1 \Z ′

j there is a positive probability to reach a vertex in Z ′
j ;

thus, Prσ′

v′ (P ′,Reach (T ′
i)) < 1 for any strategy σ′ of player 1. Random vertices in P ′ were not

contracted, thus the same argument holds for Zj+1 and P . A player 1 vertex x′ in Z ′
j+1 \ Z ′

j

corresponds to either a player 1 vertex x or a MEC X in Zj+1 \Zj . In both cases all the edges
from x resp. X lead to vertices in Zj or to x resp. X itself. Hence since x /∈ Ti resp. X∩Ti = ∅,
we also have Prσ

x (Reach (Ti)) < 1 for any strategy σ of player 1 and x resp. all x ∈ X.

We next show Wi ⊆ 〈〈1〉〉as
(P,Reach (Ti)). Let G[Wi] = (Wi, E∩(Wi×Wi)) be the subgraph

induced by the vertices in Wi. We establish two properties: (1) all outgoing edges of random
vertices VR ∩Wi lead to vertices in Wi, and (2) all vertices in Wi \ Ti can reach Ti in G[Wi].
The claim follows from these two properties using the same proof as for the classical algorithm
for almost-sure reachability in MDPs (see below).

(1) For vertices in VR we distinguish whether they are contained in a MEC of P or not. In
the first case property (1) follows from the fact that a MEC has no outgoing random
edges and every MEC is either completely contained in Wi or completely contained in
V \Wi. In the second case property (1) follows from the definition of an extended random
extractor because a vertex in VR ∩W ′

i with an edge to a vertex in A would have been
included in A.

(2) To show property (2) we will use that by Observation 3.3 the MDP P ′ does not contain
any non-trivial MEC. Assume by contradiction that some vertices in Wi\Ti cannot reach
Ti in G[Wi]. Then there exists a bottom SCC C (i.e. an SCC without outgoing edges,
possibly a single vertex) in G[Wi] with C ∩ Ti = ∅. Note that every MEC in G[Wi] is
completely contained in one of the SCCs of G[Wi]. By property (1) C has no outgoing
random edges in P ; by this and the fact that C is strongly connected, the corresponding
set C ′ of vertices in P ′ would be a non-trivial MEC in P ′ if it contained more than one
vertex. Thus C ′ can contain only one vertex c′ and this vertex has either no outgoing
edge or only a self-loop in G′

W ′

i

. If c′ was a player 1 vertex, then all its outgoing edges

would go to vertices in A′ or be a self-loop, hence c′ would have been included in the
attractor A′. If c′ was a random vertex, then by the assumption that in P , and thus
in P ′, every random vertex has an outgoing edge that is not a self-loop we would get
a contradiction to property (1). Thus no such bottom SCC C can exist, that is, every
bottom SCC of G[Wi] contains a vertex of Ti and thus property (2) holds.

To see that the two established properties imply Wi ⊆ 〈〈1〉〉as
(P,Reach (Ti)), let for a vertex

u ∈Wi be d(u) the shortest path distance to a vertex in Ti. Consider the following strategy σ
of player 1: For a player 1 vertex u, choose an edge to a vertex v such that d(v) < d(u). For a
random vertex u, there is always an edge to a vertex v such that d(v) < d(u). Let ℓ = |Wi| and
let α be the minimum positive transition probability in the MDP P . For all vertices v ∈ Wi

17

s

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4

b4

c4

ga

gb

gc

Figure 1: Illustration of Reduction 3.8, with G = ({a, b, c}, {(a, b), (b, a), (b, c), (c, a)}). Vertices
drawn as cycle are owned by player 1, vertices drawn as diamond are random vertices.

the probability that Ti is reached within ℓ steps is at least αℓ, that is, the probability that Ti

is not reached within b · ℓ steps is at most (1− αℓ)b, which goes to 0 as b goes to ∞. Thus for
all v ∈Wi strategy σ ensures that Ti is reached with probability 1.

3.2 Conditional Lower Bounds for Disjunctive Reachability in MDPs

Here we complement the above algorithm by conditional lower bounds for disjunctive reacha-
bility queries in MDPs. These lower bound will be based on the conjectures STC, SETH, and
OVC introduced in Section 2.1.

We first present our lower bound for dense MDPs based on STC.

Theorem 3.7. There is no combinatorial O(n3−ǫ) or O((k ·n2)1−ǫ) algorithm (for any ǫ > 0)
for disjunctive reachability queries in MDPs under Conjecture 2.10 (i.e., unless STC and BMM
fail). In particular, there is no such algorithm deciding whether the winning set is non-empty
or deciding whether a specific vertex is in the winning set. The bounds hold for dense MDPs
with m = Θ(n2).

The above theorem is by the following reduction from the triangle detection problem.

Reduction 3.8. Given an instance of triangle detection, i.e., a graph G = (V,E), we build
the following MDP P .

• The vertices V ′ of P are given by four copies V 1, V 2, V 3, V 4 of V , a start vertex s, and
absorbing vertices F = {gv | v ∈ V }. The edges E′ of P are defined as follows: There is
an edge from s to the first copy v1 ∈ V 1 of every v ∈ V and the last copy v4 ∈ V 4 of every
v ∈ V is connected to its first copy v1 and its corresponding absorbing vertex gv ∈ F ;
further for 1 ≤ i ≤ 3 there is an edge from vi to ui+1 iff (v, u) ∈ E.

• The set of vertices V ′ is partitioned into player 1 vertices V ′
1 = {s} ∪ V 1 ∪ V 2 ∪ V 3 ∪ F

and random vertices V ′
R = V 4. Moreover, the probabilistic transition function for each

vertex v ∈ V ′
R chooses among v’s successors with equal probability 1/2 each.

18

The reduction is illustrated in Figure 1. As all random choices are uniformly at random
we omit the exact probabilities in the figures.

Next we prove that Reduction 3.8 is indeed a valid reduction from triangle detection to
disjunctive reachability queries in MDPs.

Lemma 3.9. A graph G has a triangle iff s is contained in
∨

v∈V 〈〈1〉〉as
(P,Reach (Tv)), where

P is the MDP given by Reduction 3.8 and Tv = {gv} for v ∈ V .

Proof. For the only if part assume that G has a triangle with vertices a, b, c and let ai,bi,ci

be the copies of a, b, c in V i. Now a strategy for player 1 in the MDP P to reach ga with
probability 1 is as follows: When in s, go to a1; when in a1, go to b2; when in b2, go to c3;
when in c3, go to a4. As a, b, c form a triangle, all the edges required by the above strategy
exist. When player 1 starts in s and follows the above strategy the only random vertex he
encounters is a4. The random choice sends him to the target vertex ga and to vertex a1 with
probability 1/2 each. In the former case he is done, in the latter case he continues playing his
strategy and will reach a4 again after three steps. The probability that player 1 has reached
ga after 3q + 1 steps is 1− (1/2)q which converges to 1 with q going to infinity. Thus we have
found a strategy to reach ga with probability 1.

For the if part assume that s ∈ ∨

v∈V 〈〈1〉〉as
(P,Reach (Tv)). That is, there is an a ∈ V

such that s ∈ 〈〈1〉〉
as

(P,Reach (Ta)). Let us consider a corresponding strategy for reaching
Ta = {ga}. First, assume that the strategy would visit a vertex v4 for v ∈ V \ {a}. Then with
probability 1/2 player 1 would end up in the vertex gv which has no path to ga, a contradiction
to s ∈ 〈〈1〉〉

as
(P,Reach (Ta)). Thus the strategy has to avoid visiting vertices v4 for v ∈ V \{a}.

Second, as the only way to reach ga is a4, the strategy has to choose a4. But then with
probability 1/2 it will be send to a1 and there must be a path from a1 to ga that doesn’t not
cross V 4 \ {a4}. By the latter this path must be of the form a1, b2, c3, a4, ga for some b, c ∈ V .
Now by the construction of G′ in the MDP P the vertices a, b, c form a triangle in the original
graph G.

The size and the construction time of the MDP P , constructed by Reduction 3.8, is linear
in the size of the original graph G and we have k = Θ(n) target sets. Thus if we would
have a combinatorial O(n3−ǫ) or O((k ·n2)1−ǫ) algorithm for disjunctive queries of reachability
objectives in MDPs for any ǫ > 0, we would immediately get a combinatorial O(n3−ǫ) algorithm
for triangle detection, which contradicts STC and BMM.

Next we present a lower bound for sparse MDPs based on OVC and SETH.

Theorem 3.10. There is no O(m2−ǫ) or O((k·m)1−ǫ) algorithm (for any ǫ > 0) for disjunctive
reachability queries in MDPs under Conjecture 2.12 (i.e., unless OVC and SETH fail). In
particular, there is no such algorithm deciding whether the winning set is non-empty or deciding
whether a specific vertex is in the winning set.

To prove the above we give a reduction from OVC to disjunctive reachability queries in
MDPs.

Reduction 3.11. Given two sets S1, S2 of d-dimensional vectors, we build the following
MDP P .

19

s

(1,0,0)

(1,1,1)

(0,1,1)

c1

c2

c3

(1,1,0)

(0,1,0)

(0,0,1)

g110

g010

g001

Figure 2: Illustration of Reduction 3.11 for S1 = {(1, 0, 0), (1, 1, 1), (0, 1, 1)} and S2 =
{(1, 1, 0), (0, 1, 0), (0, 0, 1)}.

• The vertices V of the MDP P are given by a start vertex s, vertices S1 and S2 representing
the sets of vectors, vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates, and
absorbing vertices F = {gv | v ∈ S2}. The edges E of P are defined as follows: the start
vertex s has an edge to every vertex of S1 and every vertex v ∈ S2 has an edge to s and
to its corresponding absorbing vertex gv ∈ F ; further for each x ∈ S1 there is an edge to
ci ∈ C iff xi = 1 and for each y ∈ S2 there is an edge from ci ∈ C iff yi = 0.

• The set of vertices V is partitioned into player 1 vertices V1 = {s} ∪ C ∪ F and random
vertices VR = S1 ∪ S2. The probabilistic transition function for each vertex v ∈ VR

chooses among v’s successors uniformly at random.

The reduction is illustrated on an example in Figure 2.

Lemma 3.12. There exist orthogonal vectors x ∈ S1, y ∈ S2 iff s ∈ ∨

v∈V 〈〈1〉〉as
(P,Reach (Tv))

where P is the MDP given by Reduction 3.11 and Tv = {gv} for v ∈ V .

Proof. For the only if part assume that there are orthogonal vectors x ∈ S1, y ∈ S2. Now a
strategy for player 1 in the MDP P to reach gy with probability 1 is as follows: When in s, go
to x; when in some c ∈ C, go to y. As x and y are orthogonal, each ci ∈ C reachable from x
has an edge to y, i.e., for xi = 1 it must be that yi = 0. When player 1 starts in s and follows
the above strategy, he reaches y after three steps. There the random choice sends him to the
target vertex gy and back to vertex y with probability 1/2 each. In the former case he is done,
in the latter case he continues playing his strategy and will reach y again after three steps.
The probability that player 1 has reached gy after 3q steps is 1− (1/2)q , which converges to 1
with q going to infinity. Thus we have found a strategy to reach gy with probability 1.

For the if part assume that s ∈ ∨

v∈V 〈〈1〉〉as
(P,Reach (Tv)). That is, there is an y ∈ S2

such that s ∈ 〈〈1〉〉
as

(P,Reach (Ty)). Let us consider a corresponding strategy for reaching
Ty = {gy}. First, assume that the strategy would visit a vertex y′ ∈ S2 for y′ 6= y. Then
with probability 1/2 the player would end up in the vertex gy′ which has no path to gy, a
contradiction to s ∈ 〈〈1〉〉

as
(P,Reach (Ty)). Thus the strategy has to avoid visiting vertices

20

S2 \ {y}. Second, as the only way to reach gy is y, the strategy has to choose y. But then
with probability 1/2 it will be send to s and thus there must be a strategy to reach gy from s
with probability 1 that does not cross S2 \ {y}. As y is the only predecessor of gy, there must
also be such a strategy to reach y. In other words, there must be an x ∈ S1 such that for each
successor ci ∈ C there is an edge to y. By the construction of the MDP P this is equivalent
to the existence of an x ∈ S1 such that whenever xi = 1 then yi = 0, and thus x and y are
orthogonal vectors.

The number of vertices in P , constructed by Reduction 3.11, is O(N) and the construction
can be performed in O(N logN) time (recall that d ∈ O(logN)). The number of edges m
is O(N logN) (thus we consider P to be a sparse MDP) and the number of target sets k ∈
Θ(N) = θ(m/ logN). Finally, if we would have an O(m2−ǫ) or O((k · m)1−ǫ) algorithm for
disjunctive reachability queries in MDPs for any ǫ > 0, we would immediately get an O(N2−ǫ)
algorithm for OV, which contradicts OVC (and thus SETH).

4 Safety Objectives

It is well-known that computing the a.s. winning set for a single safety objective in an MDP
is equivalent to computing the winning set of player 1 for safety objectives in the 2-player
graph-game where all the random vertices are owned by the opponent, called player 2 (see
e.g. [14]). A 2-player graph-game is defined as a graph with a partition of the vertices into
player 1 vertices V1 and player 2 vertices V2. A player 2 strategy is defined analogous to a
player 1 strategy (replacing the vertices V1 with the vertices V2 in the definition). The objective
of player 2 is the dual of the objective of player 1.

Safety objectives in 2-player graph-games can be computed in O(m) time by computing
a player 2 attractor (the definition of a player 1 or player 2 attractor is analogous to the
definition of a random attractor in Definition 5.12). Thus in MDPs the a.s. winning set for a
single safety objective can be computed in O(m) time by computing a random attractor, and
the a.s. winning set for a disjunctive query can be determined in O(k ·m) time by computing k
random attractors and union the winning sets. Conjunctive safety can be reduced to a single
safety objective in O(b) time by taking the union of all the sets Ti.

Turning to disjunctive safety objectives, we have the same equivalence to 2-player graph-
games as for single objectives (Observation 4.1). In this 2-player game the disjunctive safety
objective is the complementary objective to the conjunctive reachability objective with the
same sets and, as the game is determined [23]4, the PSPACE-hardness shown in [23] also
applies to disjunctive safety objectives.

Observation 4.1. Computing the a.s. winning set for a disjunctive safety objective in an
MDP with player 1 vertices V1 and random vertices VR is equivalent to computing the same
disjunctive safety objective in the 2-player graph-game with the same edges and the same
player 1 vertices and player 2 vertices V2 = VR.

4A graph-game is determined if the winning set of player 1 is the complement of the winning set of player 2.

21

s

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

Figure 3: Illustration of Reduction 4.3, with G = ({a, b, c, d}, {(a, b), (b, a), (b, c), (c, a), (c, d),
(d, a)}). The target sets for disjunctive safety are Ta = {b1, c1, d1, b4, c4, d4}, Tb =
{a1, c1, d1, a4, c4, d4}, Tc = {a1, b1, d1, a4, b4, d4}, and Td = {a1, b1, c1, a4, b4, c4}.

Proof. We show that a vertex s is almost sure winning in the MDP if and only if it is winning
for player 1 in the game graph.
⇐: Assume s is not winning for player 1 in the graph-game. Then s is winning for player 2
and thus player 2 has a strategy to visit all target sets from s. As there are only finitely many
target sets, all these target sets are visited after a finite number of steps, lets say after l steps.
Now consider the corresponding MDP; with some constant probability the random choices in
the MDP will follow exactly the strategy of player 2 in the graph-game for the first l steps and
in that case player 1 cannot win almost surely from s. Hence, s is not in the a.s. winning set.
⇒: Assume player 1 has a winning strategy for the graph-game starting in s. By definition
this strategy is also winning for the MDP (if it is winning for each possible choice of player 2
then it also winning for a random choice).

4.1 Conditional Lower Bounds for Safety Objectives

We first present a lower bound for disjunctive safety based on STC that even holds on graphs.

Theorem 4.2. There is no combinatorial O(n3−ǫ) or O((k ·n2)1−ǫ) algorithm (for any ǫ > 0)
for disjunctive safety (objectives or queries) in graphs under Conjecture 2.10 (i.e., unless STC
and BMM fail). In particular, there is no such algorithm deciding whether the winning set is
non-empty or deciding whether a specific vertex is in the winning set.

The above is by the linear time reduction from triangle detection to disjunctive safety in
graphs provided below.

Reduction 4.3. Given a graph G = (V,E) (for triangle detection), we build a graph G′ =
(V ′, E′) (for disjunctive safety) as follows. As vertices V ′ we have four copies V 1, V 2, V 3, V 4

of V and a vertex s. A vertex vi ∈ V i has an edge to a vertex ui+1 ∈ V i+1 iff (v, u) ∈ E.
Finally, s has an edge to all vertices in V 1 and all vertices in V 4 have an edge to s.

Reduction 4.3 is illustrated in Figure 3.

22

Lemma 4.4. Let G′ be the graph given by Reduction 4.3 for a graph G and let Tv = (V 1 \
{v1}) ∪ (V 4 \ {v4}). Then the following statements are equivalent.

1. G has a triangle.

2. s is in the winning set of (G′,
∨

v∈V Safety (Tv)).

3. The winning set of (G′,
∨

v∈V Safety (Tv)) is non-empty.

Proof. (1)⇒(2): Assume that G has a triangle with vertices a, b, c and let ai,bi,ci be the copies
of a, b, c in V i. Now a strategy for player 1 in G′ to satisfy Safety (Ta) is as follows: When in
s, go to a1; when in a1, go to b2; when in b2, go to c3; when in c3, go to a4; and when in a4,
go to s. As a, b, c form a triangle, all the edges required by the above strategy exist. When
player 1 starts in s and follows the above strategy, then he plays an infinite path that only
uses vertices s, a1, b2, c3, a4 and thus satisfies Safety (Ta).

(2)⇒(1): Assume that there is a winning play starting in s and satisfying Safety (Ta).
Starting from s, this play has to first go to a1, as all other successors of s would violate the
safety constraint. Then the play continues on some vertex b2 ∈ V 2 and c3 ∈ V 3 and then,
again by the safety constraint, has to enter a4. Now by construction of G′ we know that there
must be edges (a, b), (b, c), (c, a) in the original graph G, i.e. there is a triangle in G.

(2)⇔(3): Notice that when removing s from G′ we get an acyclic graph and thus each
infinite path has to contain s infinitely often. Thus, if the winning set is non-empty, there is
a cycle winning for some vertex and then this cycle is also winning for s. For the converse
direction we have that if s is in the winning set, then the winning set is non-empty.

The size and the construction time of the graph G′, constructed by Reduction 4.3, is linear
in the size of the original graph G and we have k = Θ(n) target sets. Thus if we would have a
combinatorial O(n3−ǫ) or O((k · n2)1−ǫ) algorithm for disjunctive safety objectives or queries
in graphs, we would immediately get a combinatorial O(n3−ǫ) algorithm for triangle detection,
which contradicts STC (and thus BMM).

The above reduction uses a linear number of safety constraints which are all of linear size.
Thus, a natural question is whether smaller safety sets would make the problem any easier.
Next we argue that our result even holds for safety sets that are of logarithmic size. To this
end we modify Reduction 4.3 as follows. We remove all edges incident to s and replace them
by two complete binary trees. The first tree with s as root and the vertices V 1 as leaves is
directed towards the leaves, the second tree with root s and leaves V 4 is directed towards s.
Now for each pair v1, v4 one can select one vertex of each level of the trees (except for the root
levels) for the set Tv such that the only safe path starting in s has to use v1 and each safe path
to s must pass v4. As the depth of the trees is logarithmic in the number of leaf vertices, we
get sets of logarithmic size. The construction with the binary trees is illustrated in Figure 4.

Next we present an Ω(m2−o(1)) lower bound for disjunctive objective/query safety in sparse
MDPs.

Theorem 4.5. There is no O(m2−ǫ) or O((k ·m)1−ǫ) algorithm (for any ǫ > 0) for disjunctive
safety objectives/queries in MDPs under Conjecture 2.12 (i.e., unless OVC and SETH fail).

23

s

x1

x2

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

y1

y2

Figure 4: Illustration of how to reduce the number of entries in the target sets in Reduction 4.3
with two complete binary trees. Here G = ({a, b, c, d}, {(a, b), (b, a), (b, c), (c, a), (c, d), (d, a)})
and the target sets for disjunctive safety are Ta = {b1, x2, b

4, y2}, Tb = {a1, x2, a
4, y2}, Tc =

{d1, x1, d
4, y1}, and Td = {c1, x1, c

4, y1}.

In particular, there is no such algorithm for deciding whether the winning set is non-empty or
deciding whether a specific vertex is in the winning set.

To prove the above, we give a linear time reduction from OV to disjunctive safety objec-
tives/queries.

Reduction 4.6. Given two sets S1, S2 of d-dimensional vectors, we build the following MDP P .

• The vertices V of the MDP P are given by a start vertex s, vertices S1 and S2 representing
the sets of vectors, and vertices C = {ci | 1 ≤ i ≤ d} representing the coordinates. The
edges E of P are defined as follows: the start vertex s has an edge to every vertex of S1

and every vertex v ∈ S2 has an edge to s; further for each x ∈ S1 there is an edge to
ci ∈ C iff xi = 1 and for each y ∈ S2 there is an edge from ci ∈ C iff yi = 1.

• The set of vertices V is partitioned into player 1 vertices V1 = {s} ∪ S2 and random
vertices VR = S1 ∪ C. Moreover, the probabilistic transition function for each vertex
v ∈ VR chooses among v’s successors uniformly at random.

The reduction is illustrated on an example in Figure 5.

Lemma 4.7. Given two sets S1, S2 of d-dimensional vectors, the corresponding MDP P given
by Reduction 4.6 and Tv = {v} for v ∈ S2 the following statements are equivalent

1. There exist orthogonal vectors x ∈ S1, y ∈ S2.

2. s ∈ ∨

v∈S2
〈〈1〉〉

as
(P,Safety (Tv))

3. s ∈ 〈〈1〉〉
as

(

P,
∨

v∈S2
Safety (Tv)

)

4. The winning set
∨

v∈S2
〈〈1〉〉

as
(P,Safety (Tv)) is non-empty.

24

5. The winning set 〈〈1〉〉
as

(

P,
∨

v∈S2
Safety (Tv)

)

is non-empty.

Proof. W.l.o.g. we assume that the 1-vector, i.e., the vector with all coordinates being 1, is
contained in S2 (adding the 1-vector does not change the result of the OV instance). Then
a play in the MDP P proceeds as follows. Starting from s, player 1 chooses a vertex x ∈ S1;
then a vertex c ∈ C and then a vertex y ∈ S2 are picked randomly; then the play goes back to
s, starting another cycle of the play.

(1)⇒(2): Assume there are orthogonal vectors x ∈ S1, y ∈ S2. Now player 1 can satisfy
Safety (Ty) in the MDP P by simply going to x whenever the play is in s. The random player
will then send it to some adjacent c ∈ C and then to some adjacent vertex in S2, but as x and
y are orthogonal, this c is not connected to y. Thus the play will never visit y.

(2)⇒(3): Assume s ∈ ∨

v∈S2
〈〈1〉〉

as
(P,Safety (Tv)). Then there is a vertex y ∈ S2 such that

s ∈ 〈〈1〉〉
as

(P,Safety (Ty)). Now we can enlarge the objective to
∨

v∈S2
Safety (Tv) and obtain

s ∈ 〈〈1〉〉
as

(

P,
∨

v∈S2
Safety (Tv)

)

.
(3)⇒(1): Assume s ∈ 〈〈1〉〉

as

(

P,
∨

v∈S2
Safety (Tv)

)

and consider a corresponding strategy σ.
W.l.o.g. we can assume that this strategy is memoryless [38]. Thus whenever the play is in s,
it picks a fixed x ∈ S1 as the next vertex. Assume towards contradiction that there is no
orthogonal vector y ∈ S2 for x. Then for each y ∈ S2 we have that there is a c ∈ C connecting
x to y. In each cycle of the play one goes from s to x and then by random choice to some vertex
in S2. By the above, each of the vertices in S2 has a non-zero probability to be reached in
this cycle, which can, for each fixed n, be lower bounded by a constant p. Thus after n cycles
in the play with probability at least p|S2| all vertices in S2 have been visited and thus none of
the safety objectives is satisfied, a contradiction to the assumption that with probability 1 at
least one safety objective is satisfied. Thus there must exist a vector y ∈ S2 orthogonal to x.

(2)⇔(4) & (3)⇔(5): Notice that when removing s from P we get an acyclic MDP and
thus each infinite path has to contain s infinitely often. Certainly if s is in the a.s. winning set,
this set is non-empty. Thus let us assume there is a vertex v different from s with a winning
strategy σ. All (winning) paths starting in v cross s after at most 3 steps and thus σ must be
also winning when starting in s.

The number of vertices in the MDP P , constructed by Reduction 4.6, is O(N), the number
of edges m is O(N logN) (recall that d ∈ O(logN)), we have k ∈ Θ(N) target sets, and the
construction can be performed in O(N logN) time. Thus, if we would have an O(m2−ǫ) or
O((k ·m)1−ǫ) algorithm for disjunctive queries or disjunctive objectives of safety objectives for
any ǫ > 0, we would immediately get an O(N2−ǫ) algorithm for OV, which contradicts OVC
(and thus SETH).

5 Algorithms for MDPs with Streett objectives

In this section we extend algorithms for graphs with Streett objectives to MDPs. In particular
we prove the following theorem.

25

s

(1,0,0)

(1,1,1)

(0,1,1)

c1

c2

c3

(1,1,0)

(1,1,1)

(0,1,0)

(0,0,1)

Figure 5: Illustration of Reduction 4.6, for S1 = {(1, 0, 0), (1, 1, 1), (0, 1, 1)} and S2 =
{(1, 1, 0), (1, 1, 1), (0, 1, 0), (0, 0, 1)}.

Theorem 5.1. For an MDP P with Streett objectives defined by Streett pairs SP = {(Li, Ui) |
1 ≤ i ≤ k} with b =

∑k
i=1(|Li| + |Ui|) the almost-sure winning set can be computed in

O(min(n2,m
√
m log n) + b log n) time.5

We first describe the basic algorithm for MDPs with Streett objectives, which uses an
algorithm for MEC-decomposition as a black box. We then develop a new algorithm that
opens up this black box and after an initial computation of the MEC-decomposition only
uses strongly connected components and random attractor computations (Section 5.3). This
algorithm reveals strong similarities to the known algorithms for graphs with Streett objectives.
We then extend the two approaches that lead to the best asymptotic running times on graphs,
one for dense graphs (Section 5.4) and one for sparse (Section 5.4) graphs, to MDPs. The
algorithms for graphs are based on finding “good” strongly connected subgraphs and then
determining which vertices can reach these “good components”. For MDPs we find good
end-components and then compute almost-sure reachability with the union of all good end-
components as target set to determine the almost-sure winning set. We first show that this
approach is correct (Section 5.1, see also [8, Chap. 10.6.3]) and then provide algorithms that
identify all good end-components.

5.1 Good End-Components

Good end-components are also useful for other objectives such as Rabin objectives. The results
of this subsection are valid for all objectives for which whether an infinite path ω belongs to
the objective depends only on the vertices Inf(ω) that occur infinitely often in ω. For such
objectives we show that determining the winning set is equivalent to computing almost-sure

5It can also be computed in O((MEC + b) · k) time, which is faster for some combinations of parameters
with k = O(log n).

26

reachability of the union of all good end-components. We define a good end-component as an
end-component for which the objective is satisfied if exactly the vertices of the end-component
are visited infinitely often.

Definition 5.2 (Good End-Component). Given an MDP P and an objective ψ, an end-
component X of P such that each path ω ∈ Ω with Inf(ω) = X is in ψ is called a good
ψ end-component.

For a Streett objective the following is an equivalent definition.

Definition 5.3 (Good Streett End-Component). Given an MDP P and a set SP = {(Li, Ui) |
1 ≤ i ≤ k} of Streett pairs, a good Streett end-component is an end-component X of P such
that for each 1 ≤ i ≤ k either Li ∩X = ∅ or Ui ∩X 6= ∅.

The importance of end-components lies in the fact that player 1 can keep the play in an
end-component forever and can visit each vertex in the end-component almost surely and also
almost surely infinitely often (Lemma 5.4). This implies that in a good end-component player 1
has an almost-sure winning strategy (Lemma 5.5) and thus player 1 has an almost-sure winning
strategy from every vertex that can almost-surely reach a good end-component (Lemma 5.6
and Corollary 5.7). This shows the soundness of the approach of determining the almost-sure
winning set for an objective determined by Inf(ω) by computing almost-sure reachability of
the union of all good end-components.

Lemma 5.4. Given an MDP P and an end-component X, player 1 has a strategy from each
vertex of X such that all vertices of X are almost-surely reached infinitely often and only
vertices of X are visited.

Proof. We define a strategy σ as follows: Choose some arbitrary numbering of the vertices
in X. The (not memoryless) strategy of player 1 is to first follow a shortest path within
the end-component (with, say, lexicographic tie breaking) to the first vertex from the current
position of the play until this vertex is reached, then a shortest path within the end-component
to the second vertex and so on, until he starts with the first vertex again. This is possible
because an end-component is a strongly connected subgraph. Since an end-component has no
outgoing random edges, the play does not leave the end-component when player 1 plays this
strategy. Let ℓ = |X| and let α be the smallest positive transition probability in the MDP.
Then the probability that the first chosen shortest path is followed with the above strategy is
at least αℓ and the probability that a sequence of ℓ shortest paths within X are followed and
thus all vertices of X are visited is at least αℓ2

. Thus the probability that not all vertices in
X were visited after q · ℓ2 steps is at most (1− αℓ2

)q, which goes to 0 when q goes to infinity.
Hence player 1 has a strategy such that all vertices in X are visited with probability 1. By
the same argument all vertices in X are visited infinitely often with probability 1 because
the probability that some vertex is not visited after some finite prefix of length t · ℓ2 can be
bounded by (1− αℓ2

)(q−t).

Lemma 5.5. Player 1 has a strategy σ from each vertex in a good ψ end-component X to
satisfy ψ almost-surely.

27

Proof. By Lemma 5.4 player 1 has a strategy that almost-surely visits all nodes in X infinitely
often. By the definition of good ψ end-component, all paths visiting all nodes in X infinitely
often are in ψ. Hence, the strategy given by Lemma 5.4 is also almost-sure winning for ψ.

Lemma 5.6. Given an MDP P , an objective ψ that is determined by Inf(ω), and a set S of
almost-sure winning nodes we have that if v ∈ 〈〈1〉〉

as
(P,Reach (S)), then also v ∈ 〈〈1〉〉

as
(P,ψ).

Proof. Assume v ∈ 〈〈1〉〉
as

(P,Reach (S)) and consider the following strategy. Start with the
strategy for reaching S and as soon as one vertex s of S is reached switch to the almost-sure
winning strategy of s. As S is (almost-surely) reached within a finite number of steps, the
vertices visited by the strategy for reaching S does not affect the objective ψ.

Corollary 5.7 (Soundness of Good End-Components). For a set of good end-components X
and an objective ψ that is determined by Inf(ω) we have that 〈〈1〉〉

as
(P,Reach (

⋃

X∈X X)) is
contained in 〈〈1〉〉

as
(P,ψ).

Another conclusion we can draw from the above lemmata is that if a MEC contains a good
end-component, then player 1 has an almost-sure winning strategy for the whole MEC because
he can reach the good end-component almost-surely from every vertex of the MEC. We exploit
this observation in the improved algorithm for coBüchi objectives in Section 6.4.

Corollary 5.8 (of Lemmata 5.4 and 5.6). Given an MDP P and an objective ψ that is
determined by Inf(ω), if a MEC X contains an almost-sure winning vertex (e.g. a good end-
component X), then all vertices in X are almost-sure winning for player 1.

To show the completeness of the approach of computing good end-components, we have to
argue that every vertex from which player 1 can satisfy the objective almost-surely has also a
strategy to reach a good end-component almost-surely. For this we need two rather technical
lemmata. The intuition behind Lemma 5.9 is that if a random vertex occurs infinitely often
on a path, then almost-surely also each of its successors appears infinitely often on that path.
Thus we can argue that vertex sets that are reached infinitely often with positive probability are
closed under random edges and hence SCCs within such sets of vertices are end-components
(Lemma 5.10). To show completeness (Proposition 5.11) we then use a set of paths in the
objective that are reached with positive probability to show that the vertices that these paths
use infinitely often form good end-components. A similar proof is given for Büchi objectives
in [21].

Lemma 5.9. Given an MDP P , a strategy σ of player 1, the set Ωσ of infinite paths starting at
a vertex v that are compatible with the strategy σ, and a vertex a ∈ VR with Prσ ({ω ∈ Ωσ | a ∈ Inf(ω)}) =
p, for each successor b of a we have Prσ({ω ∈ Ωσ | a ∈ Inf(ω), b ∈ Inf(ω)}) = p and
Prσ ({ω ∈ Ωσ | a ∈ Inf(ω), b /∈ Inf(ω)}) = 0.

Proof. Whenever the strategy visits node a, with some constant probability q the play con-
tinues in b. Thus the probability that b was visited less than ℓ times after a was visited n
times is upper bounded by (1 − qℓ)n/ℓ which goes to 0 with increasing n. Thus, we have
Prσ ({ω ∈ Ωσ | a ∈ Inf(ω), b /∈ Inf(ω)}) = 0 and hence for the complement set Prσ({ω ∈ Ωσ |
a ∈ Inf(ω), b ∈ Inf(ω)}) = p.

28

Lemma 5.10. Given an MDP P , a strategy σ of player 1, the set Ωσ of infinite paths starting
at a vertex v that are compatible with the strategy σ, a set Ω′ ⊆ Ωσ, and the set of vertices
S = {a | Prσ ({ω | a ∈ Inf(ω), ω ∈ Ω′}) > 0}, then for each SCC C of S and each vertex
a ∈ C ∩ VR all successors of a are contained in C, i.e., C is an end-component of P .

Proof. Consider an SCC C, a vertex a ∈ C ∩ VR, and a successor b. Then by definition
Prσ ({ω | a ∈ Inf(ω), ω ∈ Ω′}) = p for a p > 0 and by Lemma 5.9 we get Prσ({ω | a ∈ Inf(ω),
b /∈ Inf(ω), ω ∈ Ωσ}) = 0 and thus Prσ({ω | a ∈ Inf(ω), b ∈ Inf(ω), ω ∈ Ω′}) = p, i.e., b ∈ S.
For each of the paths ω in the latter set we have a path from b to a consisting solely of nodes in
Inf(ω). As in P there are just finitely many paths from b to a at least one must have non-zero
probability and thus is also contained in S. Hence, b belongs to the SCC C.

Proposition 5.11 (Completeness of Good End-Components). Given an MDP P with an
objective ψ determined by Inf(ω) and let X be the set of all good ψ end-components, then
〈〈1〉〉

as
(P,ψ) is contained in 〈〈1〉〉

as
(P,Reach (∪X∈XX)).

Proof. For a vertex v ∈ 〈〈1〉〉
as

(P,ψ), fix a strategy σ of player 1 such that the objective is
satisfied almost-surely. Let Pσ be the sub-MDP of P that consists of the vertices that are
visited infinitely often with non-zero probability when player 1 follows strategy σ. Note that
by Lemma 5.10 each SCC of Pσ is an end-component of P . Moreover, σ is a strategy for
almost-surely reaching Pσ (each infinite path has to visit at least one vertex infinitely often).

It remains to show that each vertex of Pσ can almost-surely reach a good end component.
We will actually show that each vertex of Pσ is already contained in a good end component. To
this end let Ωσ be the set of infinite paths starting at v that are compatible with the strategy
σ and satisfy the objective. For an arbitrary node u of Pσ we consider all paths ω ∈ Ωσ with
u ∈ Inf(ω) and group them by Inf(ω). At least one of these groups has non-zero probability,
as there are only finitely many possible sets Inf(ω) and u ∈ Inf(ω) has non-zero probability.
Let us consider one of the groups of paths ΩS

σ with non-zero probability and the corresponding
set S = Inf(ω) for ω ∈ ΩS

σ . By Lemma 5.10 the set S is closed under random edges. Moreover,
as in each path ω ∈ Ωσ the vertices Inf(ω) are strongly connected, the set S is also strongly
connected and thus an end-component. Finally, as the paths ω ∈ ΩS

σ satisfy the objective
and the objective ψ is determined by Inf(ω) = S, the set S forms a good end component.
Hence, we have shown that each vertex of Pσ is contained in a good ψ end-component, which
completes the proof.

5.2 Algorithm Preliminaries

We introduce some additional notation for the algorithms for MDPs with Streett and Rabin
objectives. For a set RP = {(Li, Ui) | 1 ≤ i ≤ k} of Rabin pairs or a set SP = {(Li, Ui) |
1 ≤ i ≤ k}, let b =

∑k
i=1(|Li| + |Ui|). A strongly connected component (SCC) is a maximal

strongly connected subgraph. A single vertex is considered strongly connected. An SCC
without outgoing edges is a bottom SCC, one without incoming edges a top SCC. The reverse
graph RevG is constructed by reversing the direction of all edges of the graph G. In a graph
G = (V,E) the set of vertices E(v) for some vertex v denotes the set of vertices w ∈ V

29

for which (v,w) ∈ E. The out-degree of v ∈ V in G is denoted with OutdegH(v), its in-
degree with IndegH(v). Let MEC denote the runtime to compute the maximal end-component
decomposition of an MDP; we assume MEC = Ω(m). Further we assume that each vertex in
the input MDP has at least one outgoing edge, and thus we have m = Ω(n).

Definition 5.12 (Random Attractor). In an MDP P = ((V,E), (V1, VR), δ) the random attrac-
tor Attr(P,W) of a set of vertices W ⊆ V is defined as Attr(P,W) =

⋃

j≥0 Zj where Z0 = W
and Zj for j > 0 is defined recursively as Zj+1 = Zj ∪ {v ∈ VR | E(v) ∩ Zj 6= ∅} ∪ {v ∈ V1 |
E(v) ⊆ Zj}. The random attractor Attr(P,W) can be computed in O(

∑

v∈Attr(P,W) Indeg(v))
time [9, 30].

All the algorithms for Streett objectives maintain vertex sets that are candidates for good
end-components. For such a vertex set S we (a) refine the maintained sets according to the
SCC decomposition of P [S] and (b) for a set of vertices W for which we know that it cannot
be contained in a good end-component, we remove its random attractor from S. The following
lemma shows the correctness of these operations.

Lemma 5.13. Given an MDP P = ((V,E), (V1, VR), δ), let X be an end-component with
X ⊆ S for some S ⊆ V . We have

(a) X ⊆ C for one SCC C of P [S] and

(b) X ⊆ S \Attr(P ′,W) = ∅ for each W ⊆ V \X and each sub-MDP P ′ containing X.

Proof. Property (a) holds since every end-component induces a strongly connected sub-MDP.
We prove Property (b) by showing that Attr(P ′,W) does not contain a vertex ofX by induction
over the recursive definition of a random attractor. Let the sets Zj be as in Definition 5.12 and
let E′(v) be the vertices to which v has an edge in P ′. We have Z0 = W and thus Z0 ∩X = ∅.
Assume we have Zj ∩ X = ∅ for some j ≥ 0. No vertex of VR ∩X has an outgoing edge to
V \X and thus the set X ∩{v ∈ VR | E′(v)∩Zj 6= ∅} is empty. Further every vertex in V1∩X
has an outgoing edge to a vertex in X. Hence also X ∩{v ∈ V1 | E′(v) ⊆ Zj} is empty and we
have that Zj+1 ∩X = ∅.

Let X be a good Streett end-component. Then X ∩ Ui = ∅ implies X ∩ Li = ∅. Thus
if S ∩ Ui = ∅ for some vertex set S and some index i, then we have Ui ⊆ V \ X for each
end-component X ⊆ S. Hence we obtain the following corollary.

Corollary 5.14. Given an MDP P , let X be a good Streett end-component with X ⊆ S for
some S ⊆ V . For each i with S ∩ Ui = ∅ it holds that X ⊆ S \ Attr(P [S], Li ∩ S).

5.3 Improving Upon the Basic Algorithm

In Algorithm StreettMDPbasic, the basic algorithm for MDPs with Streett objectives, we
maintain a set of already identified (maximal) good end-components goodEC, which is initially
empty, and a set of candidate end-components X , which is initialized with the MECs of the
input MDP P . In each iteration of the while-loop we remove an end-component X from X and

30

check whether it is a good end-component. For this check we find sets Ui for 1 ≤ i ≤ k that
do not intersect with X and identify vertices in X ∩ Li for such an i as “bad vertices” B. If
there are no bad vertices, then X is a good end-component and added to goodEC. Otherwise
the bad vertices and their random attractor within X are removed from X. On the sub-MDP
induced by the remaining vertices of X we compute the MEC-decomposition, which identifies
all remaining candidate end-components among the vertices of X. The new candidates are
then added to X . If the algorithm finds good end-components, it returns the almost-sure
winning set for the reachability of the union of them.

Algorithm StreettMDPbasic: Basic Algorithm for MDPs with Streett Objectives

Input : an MDP P = ((V,E), (V1, VR), δ) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉

as
(P,Streett (SP))

1 goodEC← ∅
2 X ← allMECs(P)
3 while X 6= ∅ do

4 remove some X ∈ X from X
5 B ← {x ∈ X | ∃i s.t. x ∈ Li and X ∩ Ui = ∅}
6 if B 6= ∅ then

7 X ← X \ Attr(P [X], B)
8 X ← X ∪ allMECs(P [X])

9 else

10 goodEC← goodEC ∪ {X}

11 return 〈〈1〉〉
as

(

P,Reach
(

⋃

X∈goodEC X
))

Proposition 5.15 (Runtime of Algorithm StreettMDPbasic). Algorithm StreettMDPbasic

can be implemented to run in O((MEC + b) min(n, k)) time.

Proof. The initialization of X with all MECs of the input MDP P can clearly be done in
O(MEC) time. Further by Theorem 3.1 the almost-sure reachability computation after the
while-loop can be done in O(MEC) time.

Let Xv denote the end-component of X currently containing an arbitrary, fixed vertex
v ∈ V during Algorithm StreettMDPbasic. In each iteration of the while-loop in which
Xv is considered either (a) B = ∅ and Xv will not be considered further or (b) the number of
vertices in Xv is reduced by at least one and we have for some 1 ≤ i ≤ k that Xv ∩ Li 6= ∅
before the iteration of the while-loop and Xv ∩ Li = ∅ after the while-loop. Thus each vertex
and each edge of the MDP P is considered in at most O(min(n, k)) iterations of the while-loop.

Consider the jth iteration of the while-loop; let Xj denote the set removed from X in this
iteration and let bits(Xj) =

∑k
i=1(|Li ∩Xj | + |Ui ∩Xj |). Assume that each vertex has a list

of the sets Li and Ui for 1 ≤ i ≤ k it belongs to. (We can generate these lists from the lists
of the Streett pairs in O(b) time at the beginning of the algorithm.) Then we can determine

31

B by going through all lists of the vertices in Xj in O(|Xj | + bj) time, which amounts to
O((n + b) min(n, k)) total time over all iterations of the while-loop. The random attractor
computed in Line 7 is removed and not considered further, thus its computation takes O(m)
time over the whole algorithm (see Definition 5.12). The computation of all MECs in P [Xj]
takes total time O(MEC · min(n, k)) over all iterations of the while loop. Thus the whole
algorithm can be implemented in O((MEC + b) min(n, k)) total time.

Proposition 5.16 (Soundness of Algorithm StreettMDPbasic). Let W be the set returned
by Algorithm StreettMDPbasic. We have W ⊆ 〈〈1〉〉

as
(P,Streett (SP)).

Proof. By Corollary 5.7 it is sufficient to show that every set X ∈ goodEC is a good end-
component. The algorithm explicitly checks immediately before X is added to goodEC that
we have for each 1 ≤ i ≤ k either Li ∩X = ∅ or Ui ∩ X 6= ∅. Thus it only remains to show
that X is an end-component when it is added to goodEC. Before a set is added to goodEC,
the same set is contained in the set X . We show that all sets in X are end-components at
any point in the algorithm by induction over the iterations of the while-loop in the algorithm.
Before the first iteration of the while-loop the sets X ∈ X are the maximal end-components
of P . Now consider an iteration in which a set X is removed from X and new sets are added
to X . First, some vertices and their random attractor in the sub-MDP P [X] induced by X
are removed from X. Let X ′ be the remaining set of vertices. By the definition of a random
attractor there are no random edges from X ′ to the removed random attractor. Further, by
the induction hypothesis there are no random edges from X to V \ X. Thus there are no
random edges from X ′ to V \X ′. Then the algorithm adds the MECs of the sub-MDP P [X ′]
to X . Let X̂ be one such MEC. Since X̂ is a MEC in P [X ′], it is a MEC in P if and only if
it has no random edges from X̂ to V \X ′. This holds by X̂ ⊆ X ′ and the properties of X ′

established above.

Proposition 5.17 (Completeness of Algorithm StreettMDPbasic). Let W be the set re-
turned by Algorithm StreettMDPbasic. We have 〈〈1〉〉

as
(P,Streett (SP)) ⊆W .

Proof. By Proposition 5.11 it is sufficient to show that at the end of Algorithm StreettMDPbasic

the union of the sets in goodEC contains all good end-components of the MDP P . We show by
induction that every good end-component is a subset of either goodEC or X before and after
each iteration of the while-loop in Algorithm StreettMDPbasic; as X is empty at the end
of the algorithm, this implies the claim.

Before the first iteration of the while-loop, the set X is initialized with the MECs of P ,
thus the induction base holds. Let X be the set of vertices removed from X in an iteration of
the while-loop and let X∗ be the union of the good end-components contained in X. Either
X is added to goodEC or we have that for some indices i the set X contains vertices of Li but
not of Ui; then for these indices the sets Li and their random attractor are removed from X.
Let X̂ be this the updated set, i.e., X̂ = X \ Attr(P [X], B) . By Corollary 5.14 we still have
X∗ ⊆ X̂ after this step. Then all MECs of P [X̂] are added to X . Every good end-component
contained in X̂ is completely contained in one MEC of P [X̂], thus the claim continues to hold
after the iteration of the while-loop.

32

The essential observation towards faster algorithms for MDPs with Streett objectives is
the following. Consider a set X in an iteration of the basic algorithm after some vertices
in Attr(P [X], B) were removed. We have that there are no random edges from X to the
remaining vertices in the graph and further we have for each 1 ≤ i ≤ k either Li ∩ X = ∅
or Ui ∩ X 6= ∅. Thus if P [X] is still strongly connected, then X is a good end-component
and is added to goodEC in one of the subsequent iterations of the algorithm. If, however, the
sub-MDP P [X] consists of multiple SCCs, then we have that the bottom SCCs of P [X] are
end-components in P but the remaining SCCs of P [X] might have outgoing random edges
within P [X]. Note, however, that we have for any good end-component X̂ in P [X] and any
SCC C of P [X] that either X̂ ⊆ C or X̂ ∩ C = ∅, simply by the fact that every good end-
component is strongly connected (Lemma 5.13 (a)). Let X̂ ⊆ C and let R be the random
vertices of C with edges to vertices not in C. Then the vertices in R cannot intersect with X̂
because an end-component has no outgoing random edges. Further, also the random attractor
of R cannot intersect with X̂ (Lemma 5.13 (b)). Thus we can remove Attr(P [X], R) from P [X]
and all good end-components that were contained in P [X] are still contained in the remaining
sub-MDP. However, now the set of vertices in C \Attr(P [X], R) has no outgoing random edges.
Thus if it is still strongly connected, then it is an end-component. With this observation we can
avoid computing a MEC decomposition in the while-loop of the basic algorithm and instead
only compute strongly connected components and random attractors, which both can be done
in linear time. Note that in the improved algorithm we do not have the property that every
maintained set of vertices is an end-component (as in the basic algorithm) but still none of
the maintained sets has outgoing random edges.

In this formulation the algorithm for MDPs with Streett objectives has a very similar struc-
ture to the algorithm for graphs with Streett objectives: We repeatedly remove “bad vertices”
and recompute strongly connected components. The main difference is that we additionally
compute random attractors. Based on this, we can indeed show that for Streett objectives the
same techniques as for graphs also apply to MDPs and by this improve the runtime to the
runtime for graphs plus the time to compute one MEC decomposition. This can be seen as
opening up the “black-box” use of a MEC-decomposition algorithm and combining the fastest
algorithms for MEC-decomposition [15, 16] and graphs with Streett objectives [28, 17]. In
contrast to graphs with Streett objectives, no O((m+ b)k) algorithm can be achieved for small
values of k. Intuitively, this is because it could be that only in a few iterations bad vertices are
removed while the majority of the iterations is actually used to recompute MECs. We present
the new algorithmic ideas for MDPs with Streett objectives in Algorithm StreettMDPimpr

(which is only faster for large enough k) and then apply the known techniques for sparse and
dense graphs in Algorithms StreettMDPsparse and StreettMDPdense, respectively, to
beat the basic algorithm for all parameters except very small values of k; the basic algorithm
is faster for e.g. k = O(1) or k = O(

√
log n) and m = O(n4/3).

In our improved algorithms we use the data structure D(X) from [28] to quickly identify
and remove vertices in X ∩ Li for which X ∩ Ui = ∅ from a set of vertices X.

Lemma 5.18 ([28]). After a one-time preprocessing time of O(k), there is a data structure
D(X) for a given set X that can be initialized with the operation Construct(X) in time

33

O(bits(X) + |X|), where bits(X) =
∑k

i=1 (|X ∩ Li|+ |X ∩ Ui|). Further it supports the op-
eration Remove(X,D(X), B) that removes a set B ⊆ V from X and updates D(X) accord-
ingly in time O(bits(B) + |B|) and the operation Bad(D(X)) that returns a pointer to the set
{x ∈ X | ∃i s.t. x ∈ Li and X ∩ Ui = ∅} in constant time.

In Algorithm StreettMDPimpr we maintain a list Q of data structures of disjoint vertex
sets that are candidates for good end-components. For every set S with D(S) in Q we maintain
that there are no random edges from S to V \ S. The list Q is initialized with the data
structures of all MECs of the input MDP P . In each iteration of the outer while-loop the data
structure of one vertex set S is pulled from Q. In the inner while-loop the set of “bad vertices”
{x ∈ S | ∃i s.t. x ∈ Li and S ∩ Ui = ∅} is identified and its random attractor is removed from
S and D(S). Through removing the random attractor we maintain the property that there
are no random edges from S to V \S at this step. Thus we have that if P [S] is (still) strongly
connected, then P [S] is a good end-component, which we identify in Line 11. If P [S] does
not contain an edge, we do not have to consider it further. If it contains an edge but is not
strongly connected, the SCCs of P [S] are identified. For each SCC C we identify its random
vertices that have edges to vertices of S \C and remove their random attractor from C. After
this step the data structure of the remaining vertices of C is added to Q. At this point we
distinguish between the largest SCC and the other SCCs of P [S]. We construct a new data
structure for all but the largest SCC and reuse the data structure of S for the largest SCC.
This improves the runtime because we only spend time proportional to the smaller SCCs and a
vertex can be in a smaller SCC at most O(log n) times. Note that at this point of the algorithm
the sub-MDP P [C] is not necessarily strongly connected since vertices were removed after the
SCC computation but we maintain the property that there are no random edges from a vertex
set for which the data structure is in Q to other vertices. When the list Q becomes empty, the
algorithm terminates. If good end-components were identified, the almost-sure winning set for
the reachability objective of the union of the good end-components is output.

Proposition 5.19 (Runtime Algorithm StreettMDPimpr). Algorithm StreettMDPimpr

terminates in O(mn+ b log n) time.

Proof. Using the data structure of Lemma 5.18 ([28]), the initialization phase of Algorithm StreettMDPimpr

takes O(k+MEC+b+n) time, which is in O(mn+b). Further by Theorem 3.1 the almost-sure
reachability computation after the outer while-loop can be done in O(MEC) time.

Whenever bad vertices and their random attractor are identified in lines 6–7, they are
removed in Line 8 and not considered further. Thus finding bad vertices takes total time O(n),
identifying the random attractor of bad vertices takes total time O(m) (see Definition 5.12),
and removing the bad vertices and their attractor takes total time O(m + b) by Lemma 5.18.

After the initialization of Q with the MECs of P , all vertex sets for which a data structure is
stored in Q induce a strongly connected sub-MDP. Consider the set S when Line 13 is reached
and its smallest superset S′ ⊇ S that was identified as strongly connected in the algorithm
(i.e. S′ is either a MEC of P or an SCC computed in Line 13 in a previous iteration of the
algorithm). We have that S is a proper subset of S′, i.e., either bad vertices were removed
from S′ in Line 8 or a non-empty set of random vertices was identified in Line 15. Hence any

34

Algorithm StreettMDPimpr: New Algorithm for MDPs with Streett Objectives

Input : an MDP P = ((V,E), (V1, VR), δ) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉

as
(P,Streett (SP))

1 goodEC← ∅; Q← ∅
2 X ← allMECs(P)
3 for X ∈ X do Q← Q ∪ {Construct(X)}
4 while Q 6= ∅ do

5 remove some D(S) from Q
6 while Bad(D(S)) 6= ∅ do

7 A← Attr(P [S], Bad(D(S)))
8 (S,D(S))← Remove(S,D(S), A)

9 if P [S] contains at least one edge then

10 if P [S] is strongly connected then

11 goodEC← goodEC ∪ {S}
12 else

13 C ← SCCs(P [S]); S′ ← S
14 for C ∈ C do

15 R← {v ∈ VR ∩ C | ∃w ∈ S′ \ C s.t. (v,w) ∈ E}
16 A← Attr(P [C], R)
17 if C is largest SCC in C then

18 (S,D(S))← Remove(S,D(S), A)

19 else

20 (S,D(S))← Remove(S,D(S), C)
21 C ← C \A
22 Q← Q ∪ {Construct(C)}

23 Q← Q ∪ {D(S)}

24 return 〈〈1〉〉
as

(

P,Reach
(

⋃

X∈goodEC X
))

35

part of P is considered in at most n iterations of the outer while-loop. This implies that we
can bound the total time spent in lines 13–16 with O(mn).

By the same argument as for the removal of bad vertices and their attractor, the calls to
Remove in Line 18 take total time O(n + b). It remains to bound the time for the calls to
Remove and Construct in lines 20–22. Note that we avoid to make these calls for the largest
of the SCCs of the sub-MDP induced by S, which are computed in Line 13. Thus whenever
we call Remove and Construct for an SCC C, we have |C| ≤ |S|/2. Hence we can charge the
time for Remove and Construct to the vertices of C and to bits(C) such that every vertex v
and every bits({v}) is charged O(log n) times. Thus we can bound the time for lines 20–22
with O((n + b) log n). This proves the claimed runtime.

Proposition 5.20 (Soundness of Algorithm StreettMDPimpr). Let W be the set returned
by Algorithm StreettMDPimpr. We have W ⊆ 〈〈1〉〉

as
(P,Streett (SP)).

Proof. By Corollary 5.7 it is sufficient to show that every set X ∈ goodEC is a good end-
component. The algorithm explicitly checks immediately before X is added to goodEC in
Line 11 that X contains at least one edge and is strongly connected. Further we have by the
termination condition of the inner while-loop that for each 1 ≤ i ≤ k either Li ∩ X = ∅ or
Ui ∩X 6= ∅. Thus it remains to show that there are no random edges from X to V \X.

Let X ′ be the set of vertices for which the data structure D(X ′) was removed from Q in the
iteration of the outer while-loop in which X was added to goodEC. By the following invariant
there are no random edges from X ′ to V \X ′.

Invariant 5.21. For every set S for which the data structure D(S) is in Q there are no random
edges from S to V \ S.

Assume the invariant holds. If X ′ is not equal to X, then some vertices and their random
attractor within P [X ′] were removed in the inner while-loop. By the definition of a random
attractor there are no random edges from X to X ′ \X and thus to V \X.

It remains to prove the invariant by induction over the iterations of the outer while-loop.
Before the first iteration of the while-loop Q is initialized with the maximal end-components
of P and thus the invariant holds. Assume the invariant holds before the beginning of an
iteration of the outer while-loop and let S be the set of vertices for which the data structure
is removed from Q in this iteration. In the inner while-loop some vertices and their random
attractor in P [S] might be removed from S. Let S′ be the remaining vertices. By the definition
of a random attractor there are no random edges from S′ to S \ S′ and thus by the induction
hypothesis there are no random edges from S′ to V \ S′.

If P [S′] is strongly connected, then no set is added to Q in this iteration of the while-loop.
Otherwise the SCCs C of P [S′] are considered as candidates to be added to Q. For each set
C ∈ C the random vertices R in C with edges to vertices in S′\C and their random attractor A
in P [C] are removed from C. Let C ′ be the remaining vertices. We have that there are no
random edges from C ′ to S′ \ C by the definition of R and that there are no random edges
from C ′ to C \ C ′ by the definition of A. Thus there are no random edges from C ′ to V \ C ′

for any set C ′ for which the data structure is added to Q, which shows the invariant.

36

Proposition 5.22 (Completeness of Algorithm StreettMDPimpr). Let W be the set re-
turned by Algorithm StreettMDPimpr. We have 〈〈1〉〉

as
(P,Streett (SP)) ⊆W .

Proof. By Proposition 5.11 it is sufficient to show that at the end of the algorithm the union
of the sets in goodEC contains all good end-components of the MDP P . We show the following
invariant by induction over the iterations of the outer while-loop; as Q is empty at the end of
the algorithm, this implies the claim.

Invariant 5.23. For each good end-component X of P and some set Y ⊇ X either Y ∈ goodEC

or D(Y) ∈ Q holds before and after each iteration of the outer while-loop.

Before the first iteration of the outer while-loop, the set Q is initialized with the MECs of
P , thus the induction base holds. Let S be the set of vertices for which the data structure
is removed from Q in an iteration of the outer while-loop and let XS be the set of good end-
components contained in S. We have X ⊆ S′ for every X ∈ XS after the inner while-loop by
Corollary 5.14.

Since every end-component contains an edge, P [S′] contains at least one edge if XS is not
empty. Then either S′ and thus all X ∈ XS are added to goodEC or the SCCs C of P [S′] are
computed. For each X ∈ XS there exists C ∈ C such that X ⊆ C by Lemma 5.13 (a); let X
and C be such that X ⊆ C. Since X has not outgoing random edges, we have R ∩ X = ∅
(Line 15) and thus also X ⊆ C \ Attr(P [C], R) by Lemma 5.13 (b). The data structure of
C \ A is added to Q in lines 22 or 23, hence the claim holds after the outer while-loop.

5.4 Algorithm for Dense MDPs with Streett Objectives

Algorithm StreettMDPdense combines Algorithm StreettMDPimpr with the ideas of
the MEC-algorithm for dense MDPs of [16] and the algorithm for graphs with Streett objec-
tives of [17]. The difference to Algorithm StreettMDPimpr lies in the search for strongly
connected components. To detect a good end-component, it is essential to detect when a
sub-MDP P [S] remains strongly connected after some vertices and their random attractor
were removed from the vertex set S for which the data structure D(S) is maintained in Q.
For this it is sufficient to identify one strongly connected component C of the sub-MDP P [S]:
The sub-MDP is strongly connected if and only if the SCC spans the whole sub-MDP, i.e.,
C = S. As for Algorithm StreettMDPimpr, the correctness of the algorithm is based on
maintaining the Invariants 5.21 and 5.23. For maintaining these invariants it makes no dif-
ference whether we compute all SCCs of P [S] or just one. Whenever P [S] is not strongly
connected, there exists a top or bottom SCC that contains at most half of the vertices of S. In
Algorithm StreettMDPdense we search for such a “small” top or bottom SCC of P [S]. The
search for a top SCC is done by searching for a bottom SCC in the reverse graph. To search
for a bottom SCC, a sparsification technique called Hierarchical Graph Decomposition is used.
This technique was introduced by [25] for undirected graphs and extended to directed graphs
and game graphs by [16]. In the level-j graph Hj of a graph H only the first 2j outgoing edges
of each vertex are considered, thus Hj has O(n ·2j) edges. The main observation (Lemma 5.25)
is that we can identify each bottom SCC with at most 2j vertices by searching for bottom

37

Algorithm StreettMDPdense: Algorithm for dense MDPs with Streett Objectives

Input : an MDP P = ((V,E), (V1, VR), δ) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉

as
(P,Streett (SP))

1 goodEC← ∅; Q← ∅
2 X ← allMECs(P)
3 for X ∈ X do Q← Q ∪ {Construct(X)}
4 while Q 6= ∅ do

5 remove some D(S) from Q
6 while Bad(D(S)) 6= ∅ do

7 A← Attr(P [X], Bad(D(S)))
8 D(S)← Remove(S,D(S), A)

9 if P [S] contains at least one edge then

10 for j ← 1 to ⌈log(|S|)⌉ do

11 foreach H ∈ {G,RevG} do

12 construct Hj[S]
13 Blj ← {v ∈ S | OutdegH(v) > 2j}
14 Z ← S \ GraphReach(Hj [S],Bl j)
15 if Z 6= ∅ then

16 C ← SmallestBSCC(Hj[Z])
17 if C = S then

18 goodEC← goodEC ∪ {C}
19 continue with next iteration of while-loop

20 if |C| ≤ |S|/2 then

21 if H = RevG then /* top SCC */

22 Q← Q ∪ Remove(S,D(S), C)
23 R← {v ∈ VR ∩ C | ∃u ∈ S \ C s.t. (v, u) ∈ E}
24 C ← C \Attr(P [C], R)

25 else /* bottom SCC */

26 Q← Q ∪ Remove(S,D(S),Attr (P [S], C))

27 Q← Q ∪ Construct(C)
28 continue with next iteration of while-loop

29 return 〈〈1〉〉
as

(

P,Reach
(

⋃

X∈goodEC X
))

38

SCCs of Hj that only contain vertices for which all their outgoing edges in H are also in Hj.
The search is started at level j = 1 and then j is doubled until such a bottom SCC is found
in Hj. Note that Hj = H for j ≥ log n. When a bottom SCC is identified at level j∗ but
not at j∗ − 1, then this bottom SCC has Ω(2j∗

) vertices by the above observation. Further,
the number of edges in the graphs from level 1 to j∗ form a geometric series. Thus the work
spent in all the levels up to j∗ can be bounded in terms of the number of edges in Hj∗, that is,
the bottom SCC of size Ω(2j∗

) is identified in O(n · 2j∗

) time. By searching “in parallel” for
top and bottom SCCs and charging the needed time to the identified SCC, the total runtime
can be bounded by O(n2). To identify only bottom SCCs of Hj for which all the outgoing
edges are present in Hj we determine the set of “blue” vertices Blj that have an out-degree
higher than 2j and remove vertices that can reach blue vertices before computing SCCs. In
the following we provide formal definitions and proofs for Algorithm StreettMDPdense.

Definition 5.24 (Hierarchical Graph Decomposition). Let H = (V,E) be a simple directed
graph. We consider for j ∈ N the subgraphs Hj = (V,Ej) of H where Ej contains for each
vertex of V its first 2j outgoing edges in E (for some arbitrary but fixed ordering of the outgoing
edges of each vertex). Note that when j ≥ log(maxv∈V OutdegH(v)), then Hj = H. Let the
set Blj denote all vertices with out-degree more than 2j in H.

Lemma 5.25 (See e.g. [26]). We use Definition 5.24.

1. A set C ⊆ V \ Blj is a bottom SCC in Hj if and only if it is a bottom SCC in H.

2. If a set C ⊆ V with |C| ≤ 2j is a bottom SCC in H, then C ⊆ V \ Blj .

Proof. 1. By C ⊆ V \ Blj the outgoing edges of the vertices in C are the same in Hj and
in H. Thus we have Hj[C] = H[C] and C has no outgoing edges in Hj if and only if it
has no outgoing edges in H.

2. In H all outgoing edges of each vertex of C have to go to other vertices of C. Thus each
vertex of C has an out-degree of at most |C| ≤ 2j in H.

Proposition 5.26 (Runtime of Algorithm StreettMDPdense). Algorithm StreettMDPdense

terminates in O(n2 + b log n) time.

Proof. Using the data structure of Lemma 5.18 ([28]), the initialization phase of Algorithm StreettMDPdense

takes O(MEC+b+n) time, which is in O(n2 +b) [16]. Further by Theorem 3.1 the almost-sure
reachability computation after the outer while-loop can be done in O(MEC) time. Removing
bad vertices takes total time O(n+ b) by Lemma 5.18. Whenever a random attractor is com-
puted, its edges are not considered further; thus all attractor computations take O(m) total
time by Definition 5.12. Whenever Remove or Construct are called (after the initialization of
Q), the vertices that are removed resp. added are either (1) vertices for which the size of the
SCC containing them was at least halved or (2) vertices that are not considered further. For
each vertex case (1) can happen at most O(log n) times and case (2) at most once, thus all
calls to Remove or Construct take total time O((n + b) log n) by Lemma 5.18.

39

To efficiently construct the graphs Hj and compute Blj for 1 ≤ j < ⌈log(n)⌉ and H ∈
{G,RevG}, we maintain for all vertices a list of their incoming and outgoing edges, which
we update whenever we encounter obsolete entries while constructing Hj. Each entry can be
removed at most once, thus this can be done in O(m) total time.

Let S be the set of vertices considered in an iteration of the outer while-loop and let |S| = n′.
The jth iteration of the for-loop takes O(n′ · 2j) time because Hj contains O(n′ · 2j) edges and
constructing Hj and Blj and computing reachability, SCCs, and R can all be done in time
linear in the number of edges. The search in G and RevG only increases the runtime by a
factor of two. Further all iterations up to the jth iteration can be executed in time O(n′ ·2j) as
their runtimes form a geometric series. Note that whenever a graph is not strongly connected,
it contains a top SCC and a bottom SCC and one of them has at most half of the vertices.
Thus in some iteration j∗ a top or bottom SCC with either C = S or |C| ≤ n′/2 is found by
Lemma 5.25. Since C was not found in iteration j∗ − 1, we have |C| = Ω(2j∗

) by Lemma 5.25.
In the case C = S the vertices in S are not considered further by the algorithm. Thus we

can bound the time for this iteration with O(n′ · 2log(n′)) = O(n′2) and hence the total time
for this case with O(n2).

It remains to bound the time for the case |C| ≤ n′/2. Let |C| = n1 and let c be some
constant such that the time spent for the search of C is bounded by c · n1 · n′. We denote this
time for the set S over the whole algorithm with f(n′) and show f(n′) = 2cn′2 by induction
as follows:

f(n′) ≤ f(n1) + f(n′ − n1) + cn′n1 ,

≤ 2cn2
1 + 2c(n′ − n1)2 + cn′n1 ,

= 2cn2
1 + 2cn′2 − 4cn′n1 + 2cn2

1 + cn′n1 ,

= 2cn′2 + 4cn2
1 − 3cn′n1 ,

≤ 2cn′2 ,

where the last inequality follows from n1 ≤ n′/2.

Proposition 5.27 (Soundness of Algorithm StreettMDPdense). Let W be the set returned
by Algorithm StreettMDPdense. We have W ⊆ 〈〈1〉〉

as
(P,Streett (SP)).

Proof. We follow the proof of Proposition 5.20. Let C be a set of vertices added to goodEC

in Line 18. Since P [C] is strongly connected by Lemma 5.25, we have that immediately
before C is added to goodEC it was checked that P [C] contains at least one edge, is strongly
connected, and Bad(D(C)) is empty. Thus it is sufficient to show that Invariant 5.21 holds in
Algorithm StreettMDPdense.

Before the first iteration of the while-loop Q is initialized with the maximal end-components
of P and thus the invariant holds. Assume the invariant holds before the beginning of an
iteration of the outer while-loop and let S be the set of vertices for which the data structure
is removed from Q in this iteration. In the inner while-loop some vertices and their random
attractor in P [S] might be removed from S. Let S′ be the remaining vertices. By the definition

40

of a random attractor there are no random edges from S′ to S \ S′ and thus by the induction
hypothesis there are no random edges from S′ to V \ S′.

Then either P [S′] is strongly connected and no set is added to Q in this iteration of the
while-loop or either a top or a bottom SCC C of P [S′] is identified by Lemma 5.25.

If C is a top SCC, then there are no edges from S′ \C to C and thus S′ \C has no outgoing
random edges. Hence the invariant is maintained when D(S′ \ C) is added to Q. Then the
random vertices of C with edges to vertices in S′ \C and their random attractor are removed
from C. Thus the remaining vertices of C have no random edges to V \ C and the invariant
is maintained when the data structure of this vertex set is added to Q.

If C is a bottom SCC, then there are no edges from C to S′ \ C; thus the invariant is
maintained when D(C) is added to Q. The random attractor of C is removed from S′ \ C
before the data structure of the remaining vertices is added to Q, hence the invariant is
maintained in all cases.

Proposition 5.28 (Completeness of Algorithm StreettMDPdense). Let W be the set re-
turned by Algorithm StreettMDPdense. We have 〈〈1〉〉

as
(P,Streett (SP)) ⊆W .

Proof. Following the proof of Proposition 5.22, it is sufficient to show by induction over the
iterations of the outer-while loop that Invariant 5.23 holds in Algorithm StreettMDPdense.

Before the first iteration of the outer while-loop, the set Q is initialized with the MECs of
P , thus the induction base holds. Let S be the set of vertices for which the data structure
is removed from Q in an iteration of the outer while-loop and let XS be the set of good
end-components contained in S. Let S′ be the subset of S that is not removed in the inner
while-loop. We have X ⊆ S′ for every X ∈ XS by Corollary 5.14.

Since every end-component contains an edge, P [S′] contains at least one edge if XS is not
empty. Then either S′ and thus all X ∈ XS are added to goodEC (Line 18) or an SCC C (S′

of P [S′] is identified in Line 16 by Lemma 5.25. By Lemma 5.13 (a) each X ∈ XS is either a
subset of C or of S′ \ C. For X ⊆ C we have R ∩X = ∅ (Line 23) since X has no outgoing
random edges and thus X ⊆ C \ Attr(P [C], R) by Lemma 5.13 (b). For X ⊆ S′ \ C we have
X ∩ C = ∅ and thus X ⊆ S′ \ Attr(P [S′], C) by Lemma 5.13 (b). The data structures of
C \ Attr(P [C], R) and of S′ \ Attr(P [S′], C) are added to Q in lines 27 and either 22 or 26,
hence the invariant holds after the outer while-loop.

5.5 Algorithm for Sparse MDPs with Streett Objectives

Algorithm StreettMDPsparse combines Algorithm StreettMDPimpr with the ideas of
the MEC-algorithm for sparse MDPs of [16] and the algorithm for graphs with Streett objec-
tives of [28]. As for dense graphs, the difference to Algorithm StreettMDPimpr lies in the
search for strongly connected components in the sub-MDP P [S] induced by a vertex set S
for which the data structure was maintained in Q and then some vertices (and their random
attractor) might have been removed from it. The algorithm is based on the following obser-
vation: Whenever a strongly connected component C is not strongly connected after some
vertices A were removed from it, then (a) there is a top and a bottom SCC in P [C \A] and (b)
some vertex of the top SCC had an incoming edge from a vertex of A and some vertex of the

41

Algorithm StreettMDPsparse: Algorithm for sparse MDPs with Streett Objectives

Input : an MDP P = ((V,E), (V1, VR), δ) and Streett pairs SP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉

as
(P,Streett (SP))

1 goodEC← ∅; Q← ∅; X ← allMECs(P)
2 for X ∈ X do Q← Q ∪ {Construct(X)}
3 while Q 6= ∅ do

4 remove some D(S) from Q
5 while Bad(D(S)) 6= ∅ do

6 A← Attr(P [X], Bad(D(S)))
7 (S,D(S))← Remove(S,D(S), A)
8 add label h (t) to vertices that just lost an incoming (outgoing) edge

9 H ← {v ∈ S | h ∈ label(v)}; T ← {v ∈ S | t ∈ label(v)}
10 if P [S] contains at least one edge then

11 if |H|+ |T | = 0 then goodEC← goodEC ∪ {S}
12 else if |H|+ |T | ≥

√

m/ log n then

/* like Algorithm StreettMDPimpr plus maintaining labels */

13 remove all labels from S
14 C ← SCCs(P [S]); S′ ← S
15 for C ∈ C do

16 A← Attr(P [C], {v ∈ VR ∩ C | ∃w ∈ S′ \ C s.t. (v,w) ∈ E})
17 add label h (t) to vertices with incoming (outgoing) edge from (to) A
18 if C is largest SCC in C then (S,D(S))← Remove(S,D(S), A)
19 else

20 (S,D(S))← Remove(S,D(S), C); C ← C \ A
21 Q← Q ∪ {Construct(C)}

22 Q← Q ∪D(S)

23 else

24 Search in lock-step from each v ∈ T in G[S] and from each v ∈ H in RevG[S],
terminate when first search has found a bottom SCC C
/* like Alg. StreettMDPdense plus maintaining labels */

25 if C = S then goodEC← goodEC ∪ {S}
26 else

27 remove all labels from C
28 if C is bottom SCC in RevG[S] then /* top SCC */

29 Q← Q ∪ Remove(S,D(S), C)
30 C ← C \Attr(P [C], {v ∈ VR ∩C | ∃u ∈ S \ C s.t. (v, u) ∈ E})
31 else /* bottom SCC */

32 Q← Q ∪ Remove(S,D(S),Attr (P [S], C))

33 add label h (t) to vertices that just lost an incoming (outgoing) edge
34 Q← Q ∪ Construct(C)

35 return 〈〈1〉〉
as

(

P,Reach
(

⋃

X∈goodEC X
))

42

bottom SCC had an outgoing edge to a vertex of A. We label vertices that lost an incoming
edge since the last SCC computation with h (for head) and vertices that lost an outgoing
edge with t (for tail). If more than

√

m/ log n vertices are labeled, we remove all labels and
compute SCCs as in Algorithm StreettMDPimpr; this can happen at most

√
m log n times.

Otherwise we search for the smallest top or bottom SCC of P [S] by searching in lock-step
from all labeled vertices. Lock-step means that one step in each of the searches is executed
before the next step of a search is started and all searches are stopped as soon as one search
finishes. The search for top SCCs is done by searching for bottom SCCs in the reverse graph.
Tarjan’s depth-first search based SCC algorithm detects a bottom SCC in time proportional
to the number of edges in the bottom SCC when the search is started from a vertex inside the
bottom SCC. As there are at most

√

m/ log n parallel searches, the time for all the lock-step
searches is O(

√

m/ log n) times the number of edges in the smallest top or bottom SCC of
P [S]. Since each edge can be in the smallest SCC at most O(log n) times, this leads to a
total runtime of O(m

√
m log n). Whenever an SCC is identified, the labels of its vertices are

removed. The Invariants 5.21 and 5.23 are maintained as in Algorithm StreettMDPimpr.

Lemma 5.29 (Label Invariant). In Algorithm StreettMDPsparse the following invariant
is maintained for every set S for which the data structure D(S) is in Q: Either (1) no vertex
of S is labeled and P [S] is strongly connected or (2) in each top SCC of P [S] at least one
vertex is labeled with h and in each bottom SCC of P [S] at least one vertex is labeled with t.

Proof. The proof is by induction over the iterations of the outer while-loop. After the initial-
ization of Q with the MECs of P no vertex is labeled and every set S with D(S) ∈ Q is strongly
connected. Let now S denote the set for which D(S) is removed from Q at the beginning of
an iteration of the outer while-loop and assume the invariant holds for S.

Observation. We have for non-empty vertex sets W and Z = W \Y with Y (W that if C is
a top (bottom) SCC in P [Z] but had incoming (outgoing) edges in P [W], then these incoming
(outgoing) edges were from (to) vertices in Y . Thus when the invariant holds for W and we
label each vertex of Z with an incoming edge from Y with h and each vertex of Z with an
outgoing edge to Y with t, then the invariant holds for Z.

By this observation the invariant remains to hold for S after the inner while-loop. In the
case |H| + |T | ≥

√

m/ log n all labels are removed from S and then each SCC C of P [S] is
considered separately. Note that for each C the invariant holds and thus the invariant remains
to hold for the set C added to Q after the vertices in A were removed and the corresponding
labels were added in Line 17. In the case |H| + |T | <

√

m/ log n a bottom or top SCC C of
P [S] is identified and all labels of C are removed. The invariant holds for C and thus the
invariant remains to hold for the set C added to Q after vertices were removed from C in
Line 30 and the corresponding labels were added in Line 33. By the above observation with
W = S and Y = Attr(P [S], C) the invariant also holds for the set S \Attr(P [S], C) for which
the data structure is added to Q after the corresponding labels are added in Line 33.

Proposition 5.30 (Runtime of Algorithm StreettMDPsparse). Algorithm StreettMDPsparse

takes O(m
√
m log n+ b log n) time.

43

Proof. Using the data structure of Lemma 5.18 ([28]), the initialization phase of Algorithm StreettMDPsparse

takes O(MEC + b + n) time, which is in O(m
√
m + b) [16]. Further by Theorem 3.1 the

almost-sure reachability computation after the outer while-loop can be done in O(MEC) time.
Removing bad vertices takes total time O(n + b) by Lemma 5.18. Since a label is added only
when an edge is not considered further by the algorithm, the total time for adding and remov-
ing labels is O(m). Whenever a random attractor is computed, its edges are not considered
further; thus all attractor computations take O(m) total time by Definition 5.12. Note that
whenever a graph is not strongly connected, it contains a top SCC and a bottom SCC and
one of them has at most half of the vertices. Thus whenever a top or bottom SCC C with
C (S is identified in Line 24, then |C| ≤ |S|/2. This implies by Lemma 5.29 that whenever
Remove or Construct are called (after the initialization of Q), the vertices that are removed
resp. added are either (1) vertices for which the size of the SCC containing them was at least
halved or (2) vertices that are not considered further. Case (1) can happen at most O(log n)
times, thus all calls to Remove or Construct take total time O((n+ b) log n) by Lemma 5.18.

It remains to bound the time for identifying SCCs and determining the random boundary
vertices R = {v ∈ VR ∩C | ∃u ∈ S \C s.t. (v, u) ∈ E}) in Case 1, |H|+ |T | ≥

√

m/ log n, and
Case 2, |H|+ |T | <

√

m/ log n. Since labels are added only when edges are not considered fur-
ther and all labels of the considered vertices are deleted when Case 1 occurs, Case 1 can happen
at most

√
m log n times. Thus the total time for Case 1 can be bounded by O(m

√
m log n). In

Case 2 we charge the time for the O(
√

m/ log n) lock-step searches to the edges in the identified
SCC C. With Tarjan’s SCC algorithm [37] a bottom SCC is identified in time proportional to
the number of edges in the bottom SCC when the search is started at a vertex in the bottom
SCC, which is in Algorithm StreettMDPsparse guaranteed by Lemma 5.29 for both top
and bottom SCCs. Since always the smallest top or bottom SCC in P [S] is identified, each
edge is charged at most O(log n) times. Thus the total time for identifying SCCs in Case 2
is O(m

√
m log n). Determining the random boundary vertices R in Case 2 can be charged to

the edges in C and to the edges from C to S \C, which are then not considered further by the
algorithm. Thus the total runtime of the algorithm is O(m

√
m log n).

Proposition 5.31 (Correctness of Algorithm StreettMDPsparse). Let W be the set re-
turned by Algorithm StreettMDPsparse. We have W = 〈〈1〉〉

as
(P,Streett (SP)).

Proof. Lemma 5.29 implies that whenever a vertex set is added to goodEC in Line 11, it
induces a strongly connected sub-MDP. Thus we have that immediately before a set of ver-
tices C is added to goodEC in Line 11 or Line 25, it is checked that P [C] contains at least
one edge, is strongly connected, and Bad(D(C)) is empty. For the soundness and complete-
ness of Algorithm StreettMDPsparse it remains to show the Invariants 5.21 and 5.23.
We have for each iteration of the outer while-loop: The inner while-loop is the same as
in Algorithms StreettMDPimpr and StreettMDPdense. In the case |H| + |T | = 0,
the currently considered set of vertices is added to goodEC and no set is added to Q. If
|H| + |T | ≥

√

m/ log n, the same operations as in Algorithm StreettMDPimpr are per-
formed. If |H| + |T | <

√

m/ log n, like in Algorithm StreettMDPdense, either a top or a
bottom SCC is identified and then the same operations as in Algorithm StreettMDPdense

44

are applied to the identified SCC and the remaining vertices. As the operations in Algo-
rithms StreettMDPimpr and StreettMDPdense preserve the invariants, this is also true
for Algorithm StreettMDPsparse.

6 MDPs with Rabin and Disjunctive Büchi and coBüchi Ob-

jectives

In the first part of this section we prove the following conditional lower bounds for Rabin, and
disjunctive Büchi and coBüchi objectives.

Theorem 6.1. Assuming STC, there is no combinatorial O(n3−ǫ) or O((kn2)1−ǫ) algorithm
for each of the following problems:

1. computing the a.s. winning set in an MDP with a disjunctive Büchi query;

2. computing the winning set in a graph with a disjunctive coBüchi objective and thus also
computing the a.s. winning set in an MDP for disjunctive coBüchi objective or a disjunc-
tive coBüchi query;

3. computing the a.s. winning set in an MDP with a Rabin objective.

Theorem 6.2. Assuming SETH or OVC, there is no O(m2−ǫ) or O((k ·m)1−ǫ) algorithm for
each of the following problems:

1. computing the a.s. winning set in an MDP with a disjunctive Büchi query;

2. computing the a.s. winning set in an MDP with a disjunctive coBüchi objective or a
disjunctive coBüchi query;

3. computing the a.s. winning set in an MDP with a disjunctive Singleton coBüchi objective
or a disjunctive Singleton coBüchi query;

4. computing the a.s. winning set in an MDP with a Rabin objective.

On the algorithmic side we prove the following theorem in the second part of this section.
Note that a Rabin objective corresponds to a disjunctive objective over 1-pair Rabin objectives.

Theorem 6.3. Given an MDP P = ((V,E), (V1, VR), δ) and a Rabin objective wit Rabin pairs
RP = {(Li, Ui) | 1 ≤ i ≤ k}, let b =

∑k
i=1(|Li|+ |Ui|). Let MEC denote the time to compute

a MEC-decomposition.

1. The almost-sure winning set 〈〈1〉〉
as

(P,Rabin (RP)) can be computed in O(k ·MEC) time.

2. If Ui = ∅ for all 1 ≤ i ≤ k (i.e. the Rabin pairs are Büchi objectives), then the almost-sure
winning set for the disjunctive objective over the Rabin pairs can computed in O(MEC+b)
time and the disjunctive query in O(k ·m+ MEC) time.

3. If Li = V for all 1 ≤ i ≤ k (i.e. the Rabin pairs are coBüchi objectives), then the almost-
sure winning set for the disjunctive objective and the disjunctive query over the Rabin
pairs can computed in O(k ·m+ MEC) time.

45

6.1 Conditional Lower Bounds for Rabin, Büchi and coBüchi

The conditional lower bounds for Rabin, and disjunctive Büchi and coBüchi objectives are
based on our results for reachability (see Section 3.2) and safety objects (see Section 4.1) and
the Observations 2.5, 2.6 & 2.8 that interlink these objectives.

Proposition 6.4. Assuming STC, there is no combinatorial O(n3−ǫ) or O((k · n2)1−ǫ) algo-
rithm for

1. computing the winning set in an MDP with a disjunctive Büchi query,

2. computing the winning set in a graph with a disjunctive coBüchi objective, and

3. computing the winning set in an MDP with a Rabin objective.

Moreover, there is no such algorithm deciding whether the winning set is non-empty or deciding
whether a specific vertex is in the winning set.

Proof. 1) By Observation 2.6 in MDPs reachability can be reduced in linear time to Büchi.
Thus the result follows from the corresponding hardness result for reachability (cf. Theo-
rem 3.7).

2) By Observation 2.5 the winning set of disjunctive safety is non-empty iff the winning set
of disjunctive coBüchi with the same target sets is non-empty. Thus the result follows from
the corresponding hardness result for safety (cf. Theorem 4.2).
For the problem of deciding whether a specific vertex is in the winning set, recall that the
graph G′ constructed in Reduction 4.3 is such that vertex s appears in each infinite path and
thus if there is a winning strategy starting in some vertex, then there is also one starting in
s. That is, deciding on G′ whether s is winning is equivalent to deciding whether the winning
set is non-empty. Hence, the lower bound for the former follows.

3) The result follows from (2) and Observation 2.8, by which disjunctive coBüchi objectives
are special instances of Rabin objectives.

Proposition 6.5. Assuming SETH or OVC, there is no O(m2−ǫ) or O((k ·m)1−ǫ) algorithm
for

1. computing the winning set in an MDP with a disjunctive Büchi query,

2. computing the winning set in an MDP with a disjunctive coBüchi objective or a disjunc-
tive coBüchi query,

3. computing the winning set in an MDP with a disjunctive Singleton coBüchi objective or
a disjunctive Singleton coBüchi query, and

4. computing the winning set in an MDP with a Rabin objective.

Moreover, there is no such algorithm for deciding whether the winning set is non-empty or
deciding whether a specific vertex is in the winning set.

46

Proof. 1) By Observation 2.6 in MDPs reachability can be reduced in linear time to Büchi.
Thus the result follows from the corresponding hardness result for reachability (cf. Theo-
rem 3.10).

2) By Observation 2.5 the winning set of disjunctive safety is non-empty iff the winning set
of disjunctive coBüchi with the same target sets is non-empty. Thus the result follows from
the corresponding hardness result for safety (cf. Theorem 4.5).
For the problem of deciding whether a specific vertex is in the winning set, recall that the
MDP P constructed in Reduction 4.6 is such that vertex s appears in each infinite path and
thus if there is a winning strategy starting in some vertex, then there is also one starting in s.
That is, deciding on P whether s is winning is equivalent to deciding whether the winning set
is non-empty. Hence, the lower bound for the former follows.

3) This holds by (2) and the fact that all sets Ti in Lemma 4.7 are singletons.
3) The result follows from (2) and Observation 2.8, by which disjunctive coBüchi objectives

are special instances of Rabin objectives.

6.2 Algorithm for MDPs with Rabin Objectives

In this section we describe an algorithm for MDPs with Rabin objectives that considers each
MEC of the input MDP separately. This formulation has the advantage that we can obtain
a faster runtime than previously known for the special case of disjunctive coBüchi objectives,
which we describe in Section 6.4. The special case of Büchi objectives is described in Sec-
tion 6.3.

For Rabin objectives a good end-component could, equivalently to Definition 5.2, be defined
as follows.

Definition 6.6 (Good Rabin End-Component). Given an MDP P and a set RP = {(Li, Ui) |
1 ≤ i ≤ k} of Rabin pairs, a good Rabin end-component is an end-component X of P such
that Li ∩X 6= ∅ and Ui ∩X = ∅ for some 1 ≤ i ≤ k.

As for Streett objectives, we determine the almost-sure winning set for Rabin objectives
by computing almost-sure reachability of the union of all good Rabin end-components. The
correctness of this approach follows from Corollary 5.7 and Proposition 5.11. We use the
notation defined in Section 5.2. Our strategy to find all good Rabin end-components is as
follows. First the MEC-decomposition of the input MDP P is determined. For each MEC X
and separately for each 1 ≤ i ≤ k we first remove the set Ui and its random attractor and then
compute the MEC-decomposition in the sub-MDP induced by the remaining vertices. Every
newly computed MEC that contains a vertex of Li is a good Rabin end-component. If the
MEC X of P contains one such good end-component, then by Corollary 5.8 all vertices of X
are in the almost-sure winning set for the Rabin objective. Thus we can immediately add X
to the set of winning MECs in Line 8.6

6We could alternatively add only the vertices in the good end-component because the winning MEC would
be detected as winning in the final almost-sure reachability computation; the presented formulation shows
the similarities to the coBüchi algorithm in Section 6.4. Additionally, this allows reusing the initial MEC-
decomposition for the almost-sure reachability computation.

47

Algorithm RabinMDP: Algorithm for MDPs with Rabin Objectives

Input : MDP P = ((V,E), (V1 , VR), δ) and Rabin pairs RP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉

as
(P,Rabin (RP))

1 X ← allMECs(P); winMEC← ∅
2 foreach X ∈ X do

3 for 1 ≤ i ≤ k do

4 if Li ∩X 6= ∅ then

5 Y ← allMECs(X \ Attr(P [X], Ui))
6 foreach Y ∈ Y do

7 if Li ∩ Y 6= ∅ then

8 winMEC← winMEC ∪ {X}
9 continue with next X ∈ X

10 return 〈〈1〉〉
as

(P,Reach (
⋃

X∈winMEC X))

Proposition 6.7 (Runtime of Algorithm RabinMDP). Algorithm RabinMDP can be imple-
mented in O(k ·MEC) time.

Proof. The initialization of X with all MECs of the input MDP P can clearly be done in
O(MEC) time. Further by Theorem 3.1 the final almost-sure reachability computation can
be done in O(MEC) time7. Assume that each vertex has a list of the sets Li and Ui for
1 ≤ i ≤ k it belongs to. (We can generate these lists from the lists of the Rabin pairs in
O(b) = O(nk) time at the beginning of the algorithm.) Consider an iteration of the outer
for-each loop, let X denote the considered MEC, and fix one iteration i of the k iterations
of the for loop. Line 4 requires O(|X|) time. Let mX be the number of edges in P [X] and
let MECX denote the time needed to compute a MEC-decomposition on P [X]. The Line 5
requires O(mX + MECX) = O(MECX) time. The inner for-each loop takes O(|X|) time as
in each iteration we need O(|Y |) in Line 7 and constant time in Line 8. Thus in total we have
O(b+ MEC +

∑

X∈X k · (|X|+ MECX)) = O(k ·MEC).

Proposition 6.8 (Correctness of Algorithm RabinMDP). Algorithm RabinMDP computes
〈〈1〉〉

as
(P,Rabin (RP)).

Proof. By the Corollaries 5.8 & 5.7 and Proposition 5.11 we know that it suffices to correctly
classify each MEC as either winning or not winning; we say a MEC is winning iff it contains
a good Rabin EC, that is, it contains an EC X such that Li ∩X 6= ∅ and Ui ∩X = ∅ for some
1 ≤ i ≤ k. The loops in Lines 2 & 3 iterate over all MECs X and all Rabin Pairs (Li, Ui).
What remains to show is that Lines 4–8 correctly classify whether a MEC contains a good EC
satisfying the Rabin pair (Li, Ui).

7Actually the almost-sure reachability computation can be done in O(m) reusing the already computed MEC
decomposition.

48

• Assume X contains a good EC X ′ that satisfies (Li, Ui), i.e., Li∩X ′ 6= ∅ and Ui∩X ′ = ∅.
Then the if condition in Line 4 is true and the algorithm subtracts the random attractor
of Ui. As X ′ is strongly connected, has no outgoing random edges, and Ui ∩ X ′ = ∅,
it does not intersect with Attr(P [X], Ui) (see also Lemma 5.13). Thus there is a MEC
Y ∈ Y that contains X ′ and thus Li ∩ Y 6= ∅. Hence, the algorithm correctly classifies
the set X as winning MEC.

• Assume the algorithm classifies a MEC X as winning. Then for some i in Line 7 there
is an end-component Y ∈ Y of P [X \ Attr(P [X], Ui)] with Li ∩ Y 6= ∅ and Ui ∩ Y = ∅,
i.e., Y is a good end-component in P [X \ Attr(P [X], Ui)]. Moreover, there cannot be a
random edge from u ∈ Y to Attr(P [X], Ui) as such an u would be included in the random
attractor Attr(P [X], Ui). Thus Y is also a good end-component of the full MDP P , i.e.,
it was classified correctly.

By the above we have that whenever the outer for-each loop terminates, the set winMEC

consists of all winning MECs and then by Corollary 5.7 and Proposition 5.11 we can compute
〈〈1〉〉

as
(P,Rabin (RP)) by computing almost-sure reachability of the union of all winning MECs.

6.3 Algorithms for MDPs with Büchi Objectives

As Büchi objectives can be encoded as Rabin pairs, Algorithm RabinMDP can also be used
to compute the a.s. winning set for disjunctive Büchi objectives. However, Büchi objectives
allow for some immediate simplifications that result in Algorithm DisjObjBüchiMDP. This
simplifications are based on the observation that for Büchi all sets Ui are empty and therefore
also the random attractors computed in Line 5 of Algorithm RabinMDP are empty. Hence,
there is also no need to recompute the MECs and deciding whether a MEC is winning reduces
to testing whether it intersects with one of the target sets.

Algorithm DisjObjBüchiMDP: Algorithm for MDPs with Disjunctive Büchi Objec-
tives

Input : MDP P = ((V,E), (V1, VR), δ) and Büchi objectives Ti for 1 ≤ i ≤ k
Output : 〈〈1〉〉

as

(

P,
∨

1≤i≤k Büchi (Ti)
)

1 X ← allMECs(P); winMEC← ∅
2 foreach X ∈ X do

3 if
⋃

1≤i≤k Ti ∩X 6= ∅ then

4 winMEC← winMEC ∪ {X}

5 return 〈〈1〉〉
as

(P,Reach (
⋃

X∈winMEC X))

Proposition 6.9 (Runtime of Algorithm DisjObjBüchiMDP). Algorithm DisjObjBüchiMDP

can be implemented in O(MEC + b) time.

49

Proof. The initialization of X with all MECs of the input MDP P can clearly be done in
O(MEC) time. Further by Theorem 3.1 the final almost-sure reachability computation can
be done in O(MEC) time. Assume that each vertex has a flag indicating whether it is in one
of the sets Ti or in none of them (We can generate these flags from lists of the sets Ti in O(b)
time at the beginning of the algorithm.). Consider an iteration of the for-each loop, let X
denote the considered MEC and fix some iteration i of the for loop. One Iteration costs O(|X|)
as in each iteration we need O(|X|) in Line 3 and constant time in Line 4. Thus in total the
algorithm takes O(MEC + n+ b) = O(MEC + b) time.

When it comes to disjunctive Büchi queries with k sets Ti, one basically solves k Büchi
problems and then computes disjunctive almost-sure reachability queries of the winning sets
of the Büchi problems. However, as the MEC-decomposition is independent of the sets Ti, is
suffices to compute the MEC-decomposition once. This results in an O(k ·m + MEC + b) =
O(k ·m+ MEC) time algorithm (see Algorithm DisjQueryBüchiMDP).

Algorithm DisjQueryBüchiMDP: Algorithm for Disjunctive Büchi Queries on MDPs

Input : MDP P = ((V,E), (V1, VR), δ) and Büchi objectives Ti for 1 ≤ i ≤ k
Output :

∨

1≤i≤k〈〈1〉〉as
(P,Büchi (Ti))

1 X ← allMECs(P)
2 for 1 ≤ i ≤ k do

3 winMECi ← ∅
4 foreach X ∈ X do

5 for 1 ≤ i ≤ k do

6 if Ti ∩X 6= ∅ then

7 winMECi ← winMECi ∪ {X}

8 return
∨

1≤i≤k〈〈1〉〉as

(

P,Reach
(

⋃

X∈winMECi
X

))

6.4 Algorithms for MDPs with coBüchi Objectives

Again, as coBüchi objectives can be encoded as Rabin pairs, one can use Algorithm RabinMDP

to compute the a.s. winning set for disjunctive coBüchi objectives. However, coBüchi ob-
jectives allow for some simplifications that result in the simpler and more efficient Algo-
rithm DisjObjCoBüchiMDP. This simplifications are based on the observation that for
coBüchi all sets Li coincide with the set of all vertices and therefore the if conditions in Lines 4
& 7 of Algorithm RabinMDP are always true. That is, whenever there is a vertex in a MEC X
of P that is not contained in Attr(P [X], Ti), then there is a MEC in P [X \ Attr(P [X], Ti)],
which is a good end-component of P . Testing whether a MEC contains a good EC for a
coBüchi objective coBüchi (Ti) thus reduces to testing whether the random attractor of Ti

covers the whole MEC.

50

Observation 6.10. The same ideas can be used for the disjunction of one-pair Streett objec-
tives (Table 5). For each MEC X and each i we check whether X ∩Li 6= ∅ and X ∩Ui = ∅. If
this is the case, then we determine whether the random attractor of Li covers the whole MEC.
If not, then the MEC contains a good end-component for the one-pair Streett objective.

Algorithm DisjObjCoBüchiMDP: Algorithm for MDPs with Disjunctive coBüchi
Objectives

Input : MDP P = ((V,E), (V1, VR), δ) and coBüchi objectives Ti for 1 ≤ i ≤ k
Output : 〈〈1〉〉

as

(

P,
∨

1≤i≤k coBüchi (Ti)
)

1 X ← allMECs(P); winMEC← ∅
2 foreach X ∈ X do

3 for 1 ≤ i ≤ k do

4 if X 6⊆ Attr(P [X], Ti) then

5 winMEC← winMEC ∪ {X}
6 continue with next X ∈ X

7 return 〈〈1〉〉
as

(P,Reach (
⋃

X∈winMEC X))

Proposition 6.11 (Runtime). Algorithm DisjObjCoBüchiMDP can be implemented in
O(k ·m+ MEC) time.

Proof. The initialization of X with all MECs of the input MDP P can clearly be done in
O(MEC) time. Further by Theorem 3.1 the final almost-sure reachability computation can be
done in O(MEC) time. Consider an iteration of the for-each loop, let X denote the considered
MEC, and fix some iteration i of the for loop. Let mX be the number of edges in P [X]. In the
ith iteration we need O(|mX |) time to compute the random attractor in Line 4 and constant
time in Line 5. Thus the total time is O(k ·m+ MEC).

When it comes to disjunctive coBüchi queries with k sets Ti, we have to remember which
of the sets Ti are satisfied by a MEC and then compute disjunctive almost-sure reachability
queries, one query per set Ti. This increases the running time for the almost-sure reachabil-
ity computation to O(k · m) (given the MEC-decomposition), which, however, is subsumed
by the total running time of O(k · m + MEC). The resulting algorithm is stated as Algo-
rithm DisjQueryCoBüchiMDP.

7 Algorithm for Graphs with Singleton coBüchi Objectives

In this section we show how to compute in linear time the winning set for graphs with a special
type of coBüchi objectives, namely when all sets Ti for 1 ≤ i ≤ k have cardinality one.

51

Algorithm DisjQueryCoBüchiMDP: Algorithm for Disjunctive coBüchi Queries on
MDPs

Input : MDP P = ((V,E), (V1, VR), δ) and coBüchi objectives Ti for 1 ≤ i ≤ k
Output :

∨

1≤i≤k〈〈1〉〉as
(P, coBüchi (Ti))

1 X ← allMECs(P)
2 for 1 ≤ i ≤ k do

3 winMECi ← ∅
4 foreach X ∈ X do

5 for 1 ≤ i ≤ k do

6 if X 6⊆ Attr(P [X], Ti) then

7 winMECi ← winMECi ∪ {X}

8 return
∨

1≤i≤k〈〈1〉〉as

(

P,Reach
(

⋃

X∈winMECi
X

))

Theorem 7.1. Given a graph G = (V,E) and coBüchi objectives Ti with |Ti| = 1 for 1 ≤ i ≤ k,
the winning set for the disjunction over the coBüchi objectives can be computed in O(m) time.

To compute the winning set it is sufficient to detect whether a strongly connected graph
contains a cycle that does not contain all the vertices in the set T =

⋃

1≤i≤k Ti. To see this,
first note that each non-trivial SCC of the graph (i.e., each SCC that contains at least one
edge) that does not contain all vertices of T is winning. If there is no SCC S with T ⊆ S, then
we can determine the winning set in linear time by computing the vertices that can reach any
non-trivial SCC. Thus it remains to consider an SCC S with T ⊆ S. For the relevant case
of |T | > 1 we have that S is a non-trivial SCC. Since S is strongly connected, the vertices of
S can reach each other and hence it is sufficient to compute whether S contains a cycle that
does not contain all the vertices of T (i.e. solving the non-emptiness problem). If such a cycle
exists, then also S is winning, otherwise S is not winning. In any case, the winning set can
then be determined by computing the vertices that can reach some winning SCC.

We now describe the algorithm to determine whether a strongly connected graphG = (V,E)
contains a simple cycle C such that we have Ti ∩ C = ∅ for some 1 ≤ i ≤ k, given |Ti| = 1
for all i. First we check whether G[V \ T1] contains a non-trivial SCC. If this is true, then
G contains a cycle that does not contain T1 and we are done. Otherwise every cycle of G
contains T1. We assign the edges of G edge lengths as follows: All edges (v,w) ∈ E for which
w ∈ T have length 1, all other edges have length 0. Let s denote the vertex in T1. Let δ be
the length of the shortest path (w.r.t. the edge lengths defined above) from s to s that uses
at least one edge, i.e., the minimum length of a cycle containing s. We have that δ < k if and
only if this cycle with the length δ does not contain all vertices of T . Thus if δ < k, then G
is winning for the coBüchi objective, otherwise not. Note that this algorithm would also work
for a Rabin objective where we have for each 1 ≤ i ≤ k that (a) Li = {s} for some s ∈ V and
(b) |Ui| = 1.

Since all edge lengths are zero or one, we can compute δ in linear time. In Algorithm SingletonCBGraph

52

Algorithm SingletonCBGraph: Disjunctive Singleton coBüchi on Graphs

Input : strongly connected graph G = (V,E) and coBüchi objectives Ti with |Ti| = 1
for 1 ≤ i ≤ k and k > 1, let T =

⋃

i Ti

Output : “yes” if there is a cycle C with T 6⊆ C; “no” otherwise

1 S ← SCCs(G[V \ T1])
2 if S contains non-trivial SCC then

3 return yes

4 else

5 let s be the vertex in T1

6 replace s with sin and sout: sin gets in-edges and sout gets out-edges of s
7 Q0 ← {sout}; mark sout

8 for j ← 0 to k − 1 do

9 Qj+1 ← ∅
10 while Qj 6= ∅ do

11 remove v from Qj

12 if v = sin then

13 return yes

14 foreach (v,w) ∈ E with w not marked do

15 mark w
16 if w ∈ T then add w to Qj+1

17 else add w to Qj

18 return no

53

we additionally use that all incoming edges of a vertex have the same length. After checking
whether G[V \ T1] contains a non-trivial SCC, the algorithm works as follows. We modify
the graph by replacing the vertex s by two vertices, sin and sout, and replacing s in all edges
(v, s) ∈ E with sin and in all edges (s, v) ∈ E with sout. Then δ is equal to the shortest path
from sout to sin. For the algorithm we consider both sin and sout to be contained in T . In the
jth iteration of the for-loop we consider two “queues”, Qj and Qj+1 (can be implemented as
sets). Each vertex is added to a queue at most once during the algorithm, which is ensured
by marking vertices when they are added to a queue and only add before unmarked vertices.
The following lemma shows that, until the vertex sin is removed from Qj and the algorithm
terminates, precisely the vertices with distance j from sout are added to Qj for each j. Thus
sin is added to Qj for some j < k if and only if δ < k, which shows the correctness of the
algorithm. The runtime of the algorithm is O(m) because each vertex is added to and removed
from a queue at most once and thus the outgoing edges of a vertex are only considered once,
namely when it is removed from a queue.

Lemma 7.2. Before each iteration j of the for-loop in Algorithm SingletonCBGraph, Qj

contains the vertices of T with distance j from sout. During iteration j, the vertices of V \ T
with distance j from sout are added to Qj. No other vertices are added to Qj .

Proof. The proof is by induction over the iterations of the for-loop. Before the first iteration
(j = 0), Q0 is initialized with sout and all queues Qj for j > 0 are empty, thus the induction
base holds. Assume the claim holds before the jth iteration. At the end of the while-loop, Qj

is empty; every vertex v that was added to Qj before or in the jth iteration of the for-loop
is removed from Qj in some iteration of the while-loop. Then all the unmarked vertices w
with (v,w) ∈ E are marked and added to Qj if the edge (v,w) has length zero or added to
Qj+1 if the edge (v,w) has length one. A vertex u ∈ V \ T with distance at least j from
sout has distance exactly j if and only if it can be reached from some vertex v ∈ T that has
distance j by a sequence of zero length edges. The while-loop precisely adds these vertices to
Qj . Further, a vertex u ∈ V ∩ T has distance j + 1 if and only if it has an edge from some
vertex v ∈ V that has distance j. The while-loop adds exactly these vertices to Qj+1.

8 Conclusion

In this work we present improved algorithms and the first conditional super-linear lower bounds
for several fundamental model-checking problems in graphs and MDPs w.r.t. to ω-regular
objectives. Our results establish the first model separation results for graphs and MDPs w.r.t.
to classical ω-regular objectives, and first objective separation results both in graphs and
MDPs for dual objectives, and conjunction and disjunction of same objectives. An interesting
direction of future work is to consider similar results for other models, such as, games on
graphs.

54

Acknowledgments.

K. C. and M. H. are supported by the Austrian Science Fund (FWF): P23499-N23. K. C. is
supported by S11407-N23 (RiSE/SHiNE), an ERC Start Grant (279307: Graph Games), and
a Microsoft Faculty Fellows Award. For W. D., M. H., and V. L. the research leading to these
results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117, 2015.

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Re-
sults For LCS and other Sequence Similarity Measures. In FOCS, pages 59–78, 2015.

[3] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In FOCS, pages 434–443, 2014.

[4] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and
fixed parameter subquadratic algorithms for radius and diameter. CoRR, abs/1506.01799,
2015.

[5] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In ICALP 2014, Proceedings, Part I, pages 39–51, 2014.

[6] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In STOC, pages 41–50, 2015.

[7] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In STOC, pages 51–58, 2015.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

[9] Catriel Beeri. On the membership problem for functional and multivalued dependencies
in relational databases. ACM Transactions on Database Systems, pages 241–259, 1980.

[10] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In FOCS, pages 661–670, 2014.

[11] Karl Bringmann and Marvin Künnemann. Quadratic Conditional Lower Bounds for
String Problems and Dynamic Time Warping. In FOCS, pages 79–97, 2015.

[12] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfia-
bility of small depth circuits. In IWPEC, pages 75–85, 2009.

55

[13] Krishnendu Chatterjee, Luca de Alfaro, and Rupak Majumdar. The complexity of cover-
age. Int. J. Found. Comput. Sci., 24(2):165–186, 2013.

[14] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Qualitative analysis
of partially-observable Markov decision processes. In MFCS, pages 258–269, 2010.

[15] Krishnendu Chatterjee and Monika Henzinger. Faster and Dynamic Algorithms For Max-
imal End-Component Decomposition And Related Graph Problems In Probabilistic Ver-
ification. In SODA, pages 1318–1336, 2011.

[16] Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for
Alternating Büchi Games and Maximal End-component Decomposition. Journal of the
ACM, 61(3):15, 2014.

[17] Krishnendu Chatterjee, Monika Henzinger, and Veronika Loitzenbauer. Improved Algo-
rithms for One-Pair and k-Pair Streett Objectives. In LICS, pages 269–280, 2015.

[18] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized parity
games. In FOSSACS, volume 4423, pages 153–167, 2007.

[19] Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Simple stochastic
parity games. In CSL, pages 100–113, 2003.

[20] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer, 2:410–425,
2000.

[21] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic verification.
J. ACM, 42(4):857–907, July 1995.

[22] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and logics of
programs. SIAM J. Comput., 29(1):132–158, 1999.

[23] Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games.
CoRR, abs/1010.2420, 2010.

[24] Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 45(4):140–152, 2012.

[25] Monika Henzinger, Valerie King, and Tandy Warnow. Constructing a Tree from Home-
omorphic Subtrees, with Applications to Computational Evolutionary Biology. Algorith-
mica, 24(1):1–13, 1999.

[26] Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer. Finding 2-Edge
and 2-Vertex Strongly Connected Components in Quadratic Time. In ICALP (Track A),
pages 713–724, 2015.

56

[27] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In STOC, pages 21–30, 2015.

[28] Monika Henzinger and Jan Arne Telle. Faster Algorithms for the Nonemptiness of Streett
Automata and for Communication Protocol Pruning. In SWAT, pages 16–27, 1996.

[29] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–295,
May 1997.

[30] Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, pages 384–406, 1981.

[31] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[32] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of
probabilistic real-time systems. In CAV, LNCS 6806, pages 585–591, 2011.

[33] François Le Gall. Powers of Tensors and Fast Matrix Multiplication. In ISSAC, pages
296–303, 2014.

[34] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multiplication.
J. ACM, 49(1):1–15, January 2002.

[35] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
SODA, pages 1065–1075, 2010.

[36] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2):389–401, 2011. Announced at ESA’04.

[37] Robert Endre Tarjan. Depth first search and linear graph algorithms. SIAM J. Computing,
1(2):146–160, 1972.

[38] W. Thomas. On the synthesis of strategies in infinite games. In STACS’95, LNCS 900,
pages 1–13. Springer, 1995.

[39] W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

[40] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In FOCS 2010, pages 645–654, 2010.

[41] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. Announced at ICALP’04.

[42] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC 2014,
pages 664–673, 2014.

57

[43] Ryan Williams. Faster decision of first-order graph properties. In CSL-LICS ’14, pages
80:1–80:6, 2014.

[44] Pierre Wolper. Constructing automata from temporal logic formulas: A tutorial. In
Lectures on Formal Methods and Performance Analysis, pages 261–277, 2000.

58

