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ABSTRACT
We introduce the Nondeterministic Strong Exponential Time
Hypothesis (NSETH) as a natural extension of the Strong
Exponential Time Hypothesis (SETH). We show that both
refuting and proving NSETH would have interesting conse-
quences.

In particular we show that disproving NSETH would give
new nontrivial circuit lower bounds. On the other hand,
NSETH implies non-reducibility results, i.e. the absence of
(deterministic) fine-grained reductions from SAT to a num-
ber of problems. As a consequence we conclude that unless
this hypothesis fails, problems such as 3-sum, APSP and
model checking of a large class of first-order graph proper-
ties cannot be shown to be SETH-hard using deterministic
or zero-error probabilistic reductions.

Categories and Subject Descriptors
F.1.3 [Computation By Abstract Devices]: Complex-
ity Measures and Classes—Reducibility and Completeness;
F.1.2 [Computation By Abstract Devices]: Modes of
Computation—Alternation and Nondeterminism

Keywords
3-Sum; All-pairs shortest path; Computational Complexity;
conditional lower bounds; fine-grained complexity; nonde-
terminism; SETH

1. INTRODUCTION
Traditionally, complexity theory has been used to distin-

guish very hard problems, such as NP-complete problems,
from relatively easy problems, such as those in P. How-
ever, over the past few decades, there has been progress
in understanding the exact complexities of problems, both
for very hard problems and those within P, under plausible
assumptions. For example, under hypotheses such as the
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3-sum conjecture [13] from computational geometry or the
Strong Exponential Time Hypothesis for the complexity of
SAT [16, 15], it follows that the known algorithms for many
basic problems within P, including Fréchet distance [9], edit
distance [5], string matching [1], k-dominating set [23], or-
thogonal vectors [26], stable marriage for low dimensional
ordering functions [21], and many others [8], are essentially
optimal.

Unfortunately, as our understanding of the relationship
between the exact complexities of problems grows, so does
the complexity of the web of known reductions and the num-
ber of distinct conjectures these results are based on. Ide-
ally, we would like to show that many of these conjectures
are in fact equivalent, or that all follow from some basic
unifying hypothesis, thereby improving our understanding
and simplifying the state of knowledge. For example, it
would be nice to show that the 3-sum conjecture follows from
SETH (Strong Exponential Time Hypothesis). It would
also be nice to show that SETH implies that hittingset
and maxflow require superlinear time. Can we prove that
APSP takes n3 time under SETH?

In this paper, we introduce a new technique which pro-
vides evidence that such a simplification (i.e. hardness re-
sults under one unifying hypothesis such as SETH) is un-
likely, at least when restricted to deterministic reductions.
Just as one can show that a problem is unlikely to be NP-
complete by showing that it belongs to a presumably smaller
complexity class (such as NP ∩ coNP), we can get non-
reducibility results by comparing the complexity of problems
in other models of computation.

To obtain our non-reducibility results, we consider the
nondeterministic and co-nondeterministic complexities of the
problem under question. If a problem has smaller nonde-
terministic and co-nondeterministic complexities, we show
that if there were to be a deterministic fine-grained reduc-
tion from sat to such a problem, it follows that sat can
be solved faster in co-nondeterministic time, which may be
unlikely. More precisely, we introduce the following variant
of SETH for nondeterministic models.
Nondeterministic Strong Exponential Time Hypoth-
esis (NSETH): For every ε > 0, there exists a k so that

k-taut is not in NTIME[2n(1−ε)], where k-taut is the lan-
guage of all k-dnf which are tautologies.

We feel that NSETH is plausible for many of the same
reasons as SETH. Just as many algorithmic techniques have
been developed for k-sat, all of which approach exhaustive
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search for large k, many proof systems have been considered
for k-taut, and none have been shown to have significantly
less than purely exponential complexity for large k. In fact,
the tree-like ([24]) and regular resolution ([6]) proof systems
have been proved to require such sizes. Moreover, we ob-
serve that results of [17] that obtain circuit lower bounds
assuming SETH is false yield the same bounds assuming
that NSETH is false. So disproving NSETH would be both
a breakthrough in proof complexity and in circuit complex-
ity.

We consider problems together with their presumed or
conjectured complexities. Let the pair (L, T ) denote the lan-
guage L with (presumed) deterministic time complexity T .
We use the notion of fine-grained reducibility (the special
case of subcubic reducibility was defined in [33], the general
case was defined in [32]) introduced by Vassilevska Williams
[31] to reduce problems with their complexities to one an-
other. We say that (L1, T1) is fine-grained reducible (de-
noted as ≤FGR) to (L2, T2) if there is a Turing reduction
from L1 to L2 such that improvement of the sort T 1−ε

2 for
ε > 0 in the complexity of L2 leads to an improvement of
T 1−δ
1 in the complexity of L1 for some δ > 0. We say that a

language L with time complexity T is SETH-hard if there is
a fine-grained reduction from cnfsat with time 2n to (L, T ).

Using fine-grained reductions, an intricate web of relation-
ships between improving basic algorithms within polynomial
time has been established. By considering the nondetermin-
istic and co-nondeterministic complexities of such problems,
we show, under NSETH, that deterministic fine-grained re-
ductions between many of these problems do not exist. In
particular,

• hittingset for sets of total size m and time T (m) =
m1+γ is not SETH-hard for any γ > 0, and no problem
that is SETH-hard reduces to hittingset for any such
time complexity.

• 3-sum for T (n) = n1.5+γ is not SETH-hard for any
γ > 0.

• maxflow, minimum cost maxflow, and maximum
cardinality matching on a graph with m edges and
T (m) = m1+γ are not SETH-hard.

• All-pairs shortest path on a graph with n vertices and

T (n) = n
3+ω
2

+γ is not SETH-hard.

While there are many known SETH-hard problems, few
are graph problems, and those few have the same logical
structure. In addition to specific problems, our method can
be used to explain why the structure of SETH-hard graph
problems are all similar. In particular, we consider first-
order definable graph properties on sparse graphs (where
we view the input size as the number of edges m). We show
that, under SETH, the maximum time complexity for such
a property expressible with k quantifiers will be close to
O(mk−1). On the other hand, if NSETH, all SETH-hard
properties have the same logical structure: k− 1 quantifiers
of one type, followed by a single quantifier of the other type.

These results are only valid for deterministic or zero-error
probabilistic fine-grained reductions. We introduce a non-
uniform variant NUNSETH under which they also hold for
randomized reductions with bounded error. However, some
care should be used to evaluate whether this hypothesis is

true, since it has not been the subject to previous study
and Williams has recently shown related hypotheses about
Merlin-Arthur complexity of k-taut are false ([30]).

2. OUTLINE OF THE PAPER
In section 3, we provide definitions of fine-grained re-

ducibilities and establish basic closure properties of these
reductions. In section 4, we outline reasons why disproving
NSETH is nontrivial. In section 5, we examine the non-
deterministic and co-nondeterministic complexities of sev-
eral problems within polynomial time whose exact complex-
ities have been extensively studied, and show that, under
NSETH, none of these problems are SETH-hard. In sec-
tion 6, we explain why all the known maximally hard SETH-
hard first-order graph properties have the same logical struc-
ture.

In section 7, we show that NSETH also implies that cer-
tain new problems are hard, especially those involving ver-
ifying solutions to known SETH-hard problems. Finally,
section 8 presents our conclusions and open problems.

3. DEFINITIONS AND BASIC PROPERTIES
Fine-grained reductions are defined with the motivation

to control the exact complexity of the reducibility. For this
purpose, we consider languages together with their presumed
or conjectured complexities. We use the pair (L, T ) to denote
a language together with its time complexity T . Intuitively,
if (L1, T1) fine-grained reduces to (L2, T2), then any con-
stant savings in the exponent of the time complexity of L2

implies some constant savings in the exponent of the time
complexity of L1.

Definition 1 (Fine-Grained Reductions (≤FGR)). Let L1

and L2 be languages, and let T1 and T2 be time bounds. We
say that (L1, T1) fine-grained reduces to (L2, T2) (denoted
(L1, T1) ≤FGR (L2, T2)) if

(a) ∀ε > 0 ∃δ > 0, ∃ML2 , a deterministic Turing reduc-
tion from L1 to L2, such that

TIME[M] ≤ T 1−δ
1

(b) Let Q̃(M, x) denote the set of queries made byM to the
oracle on an input x of length n. The query lengths obey
the following time bound.∑

q∈Q̃(M,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

If a fine-grained reduction exists from (L1, T1) to (L2, T2),
algorithmic savings for L2 can be transferred to L1. The def-
inition gives us exactly what is needed to establish savings
for L1 by simulating the machine ML2 using the faster al-
gorithm for L2. The role of each parameter in the definition
of fine-grained reducibility makes this clear.

T1: The presumed time to decide L1, usually given by a
trivial algorithm.

T2: The presumed time to decide L2.

ε: Any savings (assumed or real) on computing L2.
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δ: The savings (as a function of ε) that can be obtained over
T1 when deciding L1 by reducing to L2.

Definition 2 (Randomized Fine-Grained Reductions
(≤srFGR)). Exactly as in the deterministic case, except the
Turing reduction from (L1, T1) to (L2, T2) is a probabilistic
machine with some two-sided error bound

Pr[ML2(x) = L1(x)] ≥ s

We denote a randomized fine grained reduction from L1

to L2 with error bound s by (L1, T1) ≤srFGR (L2, T2). Gen-

erally, we will use s = 2/3, so we denote ≤2/3
rFGR by ≤rFGR.

We will have occasion to consider FGRs between function
problems. This poses the problem that, in certain situa-
tions, just writing down the solution to a problem could ex-
ceed the time bound and wipe out fine-grained savings. In
the deterministic case, we cope with this by adding another
restriction to the definition of a fine-grained reduction:

Definition 3 (Fine-Grained Reductions for Functions
(≤fFGR)). Exactly as in the decision deterministic case, ex-
cept that the Turing reduction Mf2 is to a function problem
f2 and is expected to produce a functional output. In ad-
dition to the existing resource bounds, we bound the size of
answers given by the f2 oracle.

∑
q∈Q̃(M,x)

(|f2(q)|) ≤ (T1(n))1−δ

The bound on query answer size ensures that each proof
about decision FGRs goes through in the function FGR case,
with an additional step corrosponding to the bound on query
answers that is identical to checking the bound on query sizes
of the definition of a decision FGR.

We will also consider FGRs between nondeterministic com-
putation of function problems. Defining exactly what it
means for a nondeterministic machine to compute a func-
tion is fairly involved, so we sidestep this issue by using
the graph of the function as a decision problem. That is,
by convention we use the language gr(f) = {〈x, f(x)〉|x ∈
{0, 1}∗} to assess the nondeterministic complexity of every
function f we are interested in. Since here we only only
study (N∩coN)TIME complexity, this convention does not
unduly simplify our model. It is equivalent to being able to
print the ith bit of f(x) on input x in (N ∩ coN)TIME,
which we would have anyway. Thus, using the graph of a
function, all properties of FGRs between the nondetermin-
istic complexity of decision problems hold between function
problems as well.

3.1 Deterministic Fine-grained Reductions
The properties of deterministic fine-grained reductions are

exactly what one would expect and follow by standard meth-
ods. See full version of the paper for proofs.

Lemma 1 (Fine-grained reductions translate savings for
DTIME). Let (L1, T1) ≤FGR (L2, T2), and
L2 ∈ DTIME[T2(n)1−ε] for ε > 0. There exists δ > 0 such
that

L1 ∈ DTIME[T1(n)1−δ]

Lemma 2 (Fine-grained reductions transfer savings for
(N ∩ coN)TIME). Let (L1, T1) ≤FGR (L2, T2), and L2 ∈
(N ∩ coN)TIME[T2(n)1−ε] for some ε > 0. Then there
exists a δ > 0 such that

L1 ∈ (N ∩ coN)TIME[T1(n)1−δ]

To prove both of these “savings” lemmas, we simply run
the reduction TM and simulate oracle calls to L2 using the
efficient algorithm for L2 to get savings for L1.

Corollary 1 (Fine-grained reductions translate savings from
reductions). When the true complexity of a problem is mean-
ingfully smaller than the time bound used in a fine-grained
reduction, savings are translated.

1. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and L2 ∈ DTIME[T2].

Then there exists δ > 0 such that

L1 ∈ DTIME[T 1−δ
1 ]

2. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and

L2 ∈ (N ∩ coN)TIME[T2]. Then there exists a δ > 0
such that

L2 ∈ (N ∩ coN)TIME[T 1−δ
1 ]

The above follows from the saving transfer lemmas by a
simple substitution.

Lemma 3 (Fine-grained reductions are closed under com-
position). Let (A, TA) ≤FGR (B, TB) and (B, TB) ≤FGR
(C, TC). It then follows (A, TA) ≤FGR (C, TC).

Finally, composition is proved by carefully verifying time
and query bounds on the obvious “nested” simulation of A
using the algorithm for C.

3.2 Randomized FGRs
As we will show, many of the problems such as k-sum and

hittingset which have served as starting points for fine-
grained reductions have substantially smaller nondetermin-
istic complexities than their conjectured deterministic com-
plexities. From the above closure properties, it will follow
that if NSETH is true, none of these problems is SETH-hard
under deterministic (or zero-error probabilistic) fine-grained
reductions. This leaves a major loophole: these problems
might still be SETH-hard under randomized reductions. In
this section, we will outline a reason why even randomized
SETH-hardness would be somewhat surprising. We intro-
duce a non-uniform version of NSETH, NUNSETH, and
show that this hypothesis would imply the non-existence of
even randomized SETH-hardness results.

Definition 4. Let k-taut be the tautology problem restricted
to k-dnf’s. The Non-uniform Nondeterministic Strong Ex-
ponential Time Hypothesis (NUNSETH) is the statement :
∀ε > 0∃k ≥ 0, so that there are no nondeterministic circuit
families of size O(2n(1−ε)) recognizing the language k-taut.

While we do not have any general conservation of non-
uniform nondeterministic time by randomized reductions,
we do have a limit for the special case of problems that are
SETH-hard under randomized reductions.

Lemma 4. Assume L is SETH-hard with T (N) via a ran-
domized reduction. If NUNSETH, then there is no δ > 0 so
that L ∈ (N ∩ coN)TIME[T 1−δ(n)].
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Proof. Let ε be the constant corresponding to δ in the reduc-
tion, and let ML be the corresponding randomized oracle
machine. Let m < nk be the length in bits of a description
of a k-sat formula on n inputs. By repeating ML O(m)
times and taking the majority answer, we can make the er-
ror probability less than 2−m. Therefore, there is one ran-
dom tape that has no errors, using the standard argument
that BPP ∈ P/poly. Since M runs in total time 2(1−ε)n,

this tape will have length at most m2(1−ε)n, and so will be
an exponential improvement over 2n. Once we have fixed
the tape, we can simulate the oracle queries nondeterminis-
tically as in the case of deterministic reductions, with total
complexity O(m) times what it is for one run. Thus, we get

a nondeterministic circuit with total size O(m2(1−ε)n).

Note that the above argument, in addition to needing ad-
vice, multiplies the complexity by an amount polynomial in
the input size. While this is not an issue for SAT, it would
render the consequences of randomized reductions for prob-
lems within P moot, since we are trying to preserve exact
polynomial complexities.

While NUNSETH seems plausible, we should exercise some
caution before adopting it as an axiom. First, there are no
known consequences if NUNSETH fails to be true. Secondly,
we originally were going to add equally plausible (to us) hy-
potheses concerning the total time for bounded round in-
teractive protocols for k-taut. However, Williams recently
showed that even the general formula counting problem has
a Merlin-Arthur protocol of total complexity Õ(2n/2). Be-
cause there is a polynomial overhead in making such a pro-
tocol a nondeterministic algorithm with advice, this does
not contradict NUNSETH. However, it does remind us that
counter-intuitive things can happen when randomness and
nondeterminism are combined, so we should be cautious in
assuming non-uniformity might not speed up computation
in this circumstance.

4. WHAT IF ¬NSETH?
SETH is an interesting hypothesis because both ¬SETH

and SETH have interesting consequences that seem diffi-
cult to prove unconditionally. In this section, we show that
the same proofs that show “¬SETH implies circuit lower
bounds” can be applied to ¬NSETH as well. This is evi-
dence that NSETH will be hard to refute.

Algorithms for ckt-sat or ckt-taut imply circuit lower
bounds (see [27] and [29]). For some restricted circuit classes
C, we can reduce satisfiability or tautology of C-circuits to
k-sat or k-taut by decomposing C circuits into a “big OR”
of CNF formulas. Thus, both ¬SETH and ¬NSETH imply
faster C-circuit analysis algorithms (tautology or satisfiabil-
ity) for these classes, which imply lower bounds.

The proofs of [17] optimize the reduction of arbitrary non-
deterministic time languages to 3-sat to obtain new “failure
of a hardness hypothesis about k-sat implies circuit lower
bounds” results for a variety of circuit classes. The following
(see the full version for details) is implicit in their work:

Theorem 1. We have the following implications from fail-
ure of a k-taut hardness hypothesis to circuit lower bounds
for restricted classes:

1. If the nondeterministic exponential time hypothesis
(NETH) is false; i.e., for every ε > 0, 3-taut is in

time 2εn, then ∃f ∈ ENP such that f does not have
linear-size circuits.

2. If the nondeterministic strong exponential time hypoth-
esis (NSETH) is false; i.e., there is a δ < 1 such that
for every k, k-taut is in time 2δn, then ∃f ∈ ENP such
that f does not have linear-size series-parallel circuits.

3. If there is α > 0 such that nα-taut is in time
2n−ω(n/ log logn), then ∃f ∈ ENP such that f does not
have linear-size log-depth circuits.

Since (by item 2 above) refuting NSETH would give non-
trivial circuit lower bounds, it is unlikely to be easy to refute.

5. THE NONDETERMINISTIC TIME COM-
PLEXITY OF PROBLEMS IN P

How could we show that one language is not reducible
to another language? There is an ever-growing web of prob-
lems, hypotheses, and reductions that reflect the fine-grained
complexity approach to explaining hardness. Could this
structure collapse into a radically simpler graph, with just a
few equivalence classes? If we assume NSETH, the answer
to this question is probably not as much as one might hope.

We can broadly categorize computational problems into
two sets. In the first category, the deterministic time com-
plexity is higher than both the nondeterministic and co-
nondeterministic time complexity. In the second category,
at least one of nondeterminism or co-nondeterminism does
not help in solving the problem more efficiently. Corollary 1
shows that savings in (N ∩ coN)TIME are preserved under
deterministic fine-grained reductions. As a result, we can
rule out tight reductions from a problem that is hard using
nondeterminism or co-nondeterminism to a problem that is
easy in (N ∩ coN)TIME.

If NSETH holds, then k-taut is in the category of prob-
lems that do not benefit fron nondeterminism.. benefit from
co-nondeterminism. So, any problem that is SETH-hard
under deterministic reductions also falls in this category.

In this section we explore problems that do benefit from
(N ∩ coN)TIME, i.e. we give nondeterministic algorithms
that are faster than their presumed deterministic time com-
plexities. This rules out deterministic fine-grained reduc-
tions from cnfsat to these problems with their presumed
time complexities. As a consequence, it is not possible to
show that these problems are SETH-hard using a determin-
istic reduction.

We begin by formalizing the notion of non-reducibility.

Theorem 2 (NSETH implies no reduction from SAT). If
NSETH and C ∈ (N ∩ coN)TIME[TC ] for some problem
C, then (SAT, 2n) 6≤FGR (C, T 1+γ

C ) for any γ > 0.

Proof. Assume NSETH, (SAT, 2n) ≤FGR (C, T 1+γ
C ), and

C ∈ (N ∩ coN)TIME[TC ]. By Corollary 1, preservation
of (N ∩ coN)TIME savings under fine-grained reductions,

there exists δ > 0 such that SAT ∈ (N∩coN)TIME[2n(1−δ)].
This contradicts NSETH, therefore it cannot be the case
(under NSETH) that
(SAT, 2n) ≤FGR (C, TC).

Corollary 2 (NSETH implies no reductions from
SETH-hard problems). If NSETH holds and C ∈ (N ∩
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coN)TIME[TC ], then for any B that is SETH-hard under
deterministic reductions with time TB, and γ > 0, we have

(B, TB) 6≤FGR (C, T 1+γ
C )

Proof. Assume NSETH, and that (B, TB) is SETH-hard.
Therefore, we know (SAT, 2n) ≤FGR (B, TB). Now assume
(B, TB) ≤FGR (C, T 1+γ

C ). Then by Lemma 3, composition
of fine-grained reductions, we have that (SAT, 2n) ≤FGR
(C, TC). But by Theorem 2 above, this is impossible under
NSETH.

We now give the main result of this section.

Theorem 3. Under NSETH, there is no deterministic or
zero-error fine-grained reduction from SAT or any SETH-
hard problem to the following problems with the following
time complexities for any γ > 0.

• maxflow, min-cost maxflow, and maximum match-
ing with T (m) = m1+γ

• hittingset with T (m) = m1+γ

• 3-sum with T (n) = n1.5+γ

• All-pairs shortest path with T (n) = n
3+ω
2

+γ

Note that for graph problems, n refers to the number of
vertices, m refers to the number of edges, and ω is the matrix
multiplication exponent.

To prove Theorem 3 we give both nondeterministic and
co-nondeterministic algorithms for these problems.

5.1 Maximum Flow
The maximum flow problem has been an extensively stud-

ied problem for decades and has a large number of theoret-
ical and practical applications. While approximate maxi-
mum flow on undirected graphs has a Õ(m) algorithm [18],
where m is the number of edges, no linear time algorithm is
known for the exact version of the problem.

A natural question from the point of conditional hardness
is if we can prove a superlinear lower bound by proving that
the problem is SETH-hard.

In this section we use the max-flow/min-cut theorem to
give a (N ∩coN)TIME algorithm for the decision version of
max-flow with time linear in the number of edges. Assuming
NSETH, we can then conclude that there is no determinis-
tic fine-grained reduction from any SETH-hard problem to
maximum flow with a superlinear time bound.

Definition 5 (Maximum Flow Problem). Let G = (V,E)
be a connected directed graph, s, t ∈ V be vertices and k ∈ R.

The maximum flow problem (maxflow) is to decide if
there exists a flow from s to t of value at least k.

The nondeterministic algorithm for maximum flow is straight-
forward and the co-nondeterministic algorithm follows di-
rectly for the max-flow/min-cut theorem.

Lemma 5. maxflow ∈ (N ∩ coN)TIME[O(m)]

Proof. For the nondeterministic algorithm, nondeterminis-
tically guess the flow on each edge. We can verify in linear
time that the value of the flow is at least k, that no edge
flow exceeds the edge capacity, and that for all nodes the
inflow is equal to the outflow.

For the co-nondeterministic algorithm, nondeterministi-
cally guess a cut (S, T ) such that s ∈ S and t ∈ T with
value l where l < k. By the max-flow/min-cut theorem
there is no flow with value strictly greater than l. The value
of a cut can be computed in O(m) time.

This completes the part of Theorem 3 concerning max-
imum flow. In contrast, the single-source maximum flow
problem requires quadratic time under SETH [2]. In the
single-source maximum flow problem we are given a source
s and need to output the maximum flow from s to all other
nodes. As a consequence, there is no deterministic fine-
grained reduction from single-source maximum flow to max-
imum flow under NSETH.

5.2 Hitting Set
Given two families of non-empty sets S and T defined on

universe U , a set S ∈ S is a hitting set if it has nonempty in-
tersections with all members in T . The hittingset problem
accepts input (S, T , U) iff

∃S ∈ S ∀T ∈ T ∃u ∈ U ((u ∈ S) ∧ (u ∈ T ))

Let the size of input be m =
∑
S∈S |S| +

∑
T∈T |T |. We

assume for any u ∈ U , we can in constant time decide if
u ∈ S or u ∈ T . It is conjectured, that this problem does
not admit a subquadratic time algorithm [4]. We show that
hittingset and its negation are both solvable in nondeter-
ministic linear time.

Lemma 6. hittingset ∈ (N ∩ coN)TIME[O(m)]

hittingset can be solved nondeterministically in linear
time, by guessing an S, enumerating all T ∈ T , and guessing
a u ∈ T .

The negation of the hittingset problem ¬hittingset,
which is defined as

∀S ∈ S ∃T ∈ T ∀u ∈ U ((u /∈ S) ∨ (u /∈ T ))

can be solved by the following algorithm.

for each S ∈ S do
Nondeterministically select T from T ;
for each u ∈ S do

if u ∈ T then
Reject.

end

end

end
Accept.

Algorithm 1: Algorithm for ¬hittingset

The algorithm runs in time O(
∑
S∈S |S|) = O(m).

The full version generalizes this algorithm for model check-
ing of arbitrary k-quantifier sentences with at least one ex-
istential quantifier and ending with a universal quantifier.

5.3 Min-Cost Maximum Flow
The min-cost maximum flow problem is an important gen-

eralization of the maximum flow problem that also general-
izes problems such as shortest path and bipartite minimum
cost perfect matching.
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In the min-cost maximum flow problem on a graph G =
(V,E) we consider flow networks where the edges e have
aditional costs ψ(e). The cost of a flow is defined as∑

e∈E

ψ(e)flow(e)

Definition 6. Let G = (V,E) be a connected directed graph
with capacity constraints and edge costs, let s, t ∈ V be ver-
tices and k, c ∈ R.

The min-cost maximum flow problem is to decide if there
either exists a flow from s to t of value strictly more than k,
or if there is a flow from s to t of value exactly k and cost
at most c.

Orlin [22] gives a O(m2) algorithm for min-cost maxflow.
In this section consider the question if it is possible to show
SETH-hardness of this problem and show that there is a
O(m) nondeterministic and co-nondeterministic algorithm.
Therefore, assuming NSETH, this problem is not SETH-
hard under deterministic reductions for any superlinear time.

It is easy to see that this problem is in NTIME[O(m)]
where m is the number of edges. Simply either guess a max-
imum flow with minimum cost and verify that it is indeed a
flow with the correct value and cost. We therefore concen-
trate on the co-nondeterministic time complexity.

Lemma 7. The min-cost maximum flow problem is in (N ∩
coN)TIME[O(m)].

Proof. Klein [19] showed that a for any flow f , there is a
flow of the same value as f but smaller cost if and only if
there is a negative cost cycle in the residual graph.

Furthermore, as oserved in the analysis of the Bellmann-
Ford algorithm [7, 12], there is a nondeterministic algorithm
for the nonexistance of a negative weight cycle in a graph.
A potential for a weighted graph G = (V,E,w) is a map
p : V → R such that for all edges (u, v) ∈ E we have
p(v) ≤ p(u) + w(u, v). Bellman and Ford show that there
is a negative weight cycle in G if and only if there is no
potential for G.

The co-nondeterministic algorithm for min-cost maximum
flow has two cases. If there is no flow of value k, then we non-
deterministically guess a cut of value less than k. Otherwise,
nondeterministically guess a flow of value k with minimum
cost. We then certify that the flow is a maximum flow by
guessing a cut of value k. Furthermore we guess a potential
for the residual graph. The cut certifies that there is no flow
of value greater than k, and the potential certifies that there
is no maximum flow of smaller cost.

Verifying all nondeterministic guesses can be done in time
O(m).

Since the maximum flow problem is a generalization of the
min-cost maximum flow problem, Lemma 5 also follows as
a corollary of 7.

5.4 Maximum Matching
The maximum matching problem in general graphs is one

of the most fundamental problems in computer science. The
maximum matching problem is in time O(m

√
n) [20], match-

ing the time complexity of the bipartite case [14].
In this section we show that there is a linear time co-

nondeterministic algorithm, and that there is therefore no
fine-grained reduction from cnfsat to maximum matching
for any superlinear time, assuming NSETH.

Definition 7 (Maximum Matching Problem). The maxi-
mum matching problem is given a graph G = (V,E) and a
number k, is to decide if there exists a matching of size at
least k.

We give an O(m) co-nondeterministc algorithm for this
problem. The O(m) nondeterministic algorithm is trivial.

Lemma 8. The maximum matching problem is in (N ∩
coN)TIME[O(m)].

Proof. Edmonds Theorem [11] relates maximum matchings
of a graph G = (V,E) with odd set covers. An odd set
cover is a map f : V → N, such that each edge is either
adjacent to a vertex v with f(v) = 1, or is adjacent to two
vertices u, v such that f(u) = f(v) ≥ 2. Furthermore, for
ni = |{v | v ∈ V, f(v) = i}| we have ni is odd for all i ≥ 2.

For an odd set cover O, let val(O) = n1+
∑
i≥2b

ni
2
c be the

value of the set cover. Edmonds Theorem says that for any
matchingM and any odd set cover O, we have |M | ≤ val(O).
Furthermure, for any maximum matching M there is an odd
set cover O such that |M | = val(O). Therefore a matching
M is maximum if and only if there is an odd set cover O
such that |M | = val(O).

The co-nondeterministic algorithm then guesses a maxi-
mum matching M and an odd set cover O such that |M | =
val(O).

Verifying that M is a matching and O an odd set cover,
as well as computing the value of the set cover can easily be
done in time O(m).

5.5 3-SUM
The conjecture that the 3-sum problem admits noO(n2−ε)

algorithm for any ε > 0 has proven immensely useful to show
the conditional hardness of a large number of problems (e.g.
[13, 10, 3]), most of which are not known to be hard under
SETH. A fine-grained reduction from SAT to 3-sum would
therefore have a large impact, proving the 3-sum conjecture
under SETH.

We give a subquadratic algorithm for 3-sum in
(N∩coN)TIME, which rules out a deterministic fine-grained
reduction from SAT to 3-sum under NSETH.

Definition 8. Given n integers a1 . . . an in the range
[−nc, nc] for some constant c, the 3-Sum problem (3-sum) is
the problem of determining if there is a triple 1 ≤ i, j, k ≤ n
such that ai + aj + ak = 0.

Lemma 9. 3-sum ∈ (N ∩ coN)TIME[Õ(n1.5)]

Proof. There is a trivial constant time nondeterministic al-
gorithm of guessing the triplet of indices. The more interest-
ing part is to show that there is an efficient nondeterministic
algorithm to show that there is no such triplet.

We nondeterministically guess a proof of the form (p, t, S),
such that

• p is a prime number, such that p ≤ primen1.5 , where
primei is i-th prime number.

• t is a nonnegative integer with t ≤ 3cn1.5 logn such
that t = |{(i, j, k) | ai + aj + ak = 0 mod p}| is the
number of three-sums modulo p.

• S = {(i1, j1, k1), . . . , (it, jt, kt)} is a set of t triples of
indices, such that for all r : 0 < r ≤ t we have air +
ajr + akr = 0 mod p and air + ajr + akr 6= 0
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We first show that such a proof exists. Let us assume
that there is no triple of elements that sum up to zero. Let
R be the set of all pairs ((i, j, k), p), such that p is a prime
≤ primen1.5 and ai + aj + ak = 0 mod p. Then |R| ≤
n3 log (3nc) < 3cn3 logn, as any integer z can have at most
log(z) prime divisors. Then, by a simple counting argument,
there indeed exists a prime p0 ≤ primen1.5 , such that the
number of pairs of the form ((i, j, k), p0) in R is at most
3cn3 logn
n1.5 = 3cn1.5 logn).
To verify a proof of that form we first need to check that

for all r ≤ t:

air + ajr + akr = 0 mod p

air + ajr + akr 6= 0

Then we compute the number of 3-sums modulo p and
compare it with t. In order to do this we expand the follow-
ing expression using Fast Fourier Transform in time Õ(t):

(∑
i

x(ai mod p)

)3

Let bj be a coefficient before xj . We need to check that

b0 + bp + b2p = t

If it is true, then the proof is accepted, otherwise it is
rejected.

The time complexity of verification is Õ(n1.5) for reading

and checking the properties of all the triples and Õ(t) =

Õ(n1.5) for counting the number of triples that sum to 0

modulo p. Therefore the total time complexity is Õ(n1.5).

5.6 All-pairs shortest paths and related prob-
lems

The All-pairs shortest path problem (APSP) is to find the
shortest path in a graph between any pair of nodes. Like
the 3-sum conjecture and SETH, the conjecture that APSP
does not admit an O(n3−ε) time algorithm for any ε > 0 has
been used successfully to show the conditional hardness of
a number of problems, e.g. [33, 25].

We use a similar technique as in the algorithm for 3-sum
to show that the Zero Weight Triangle problem (ZWT),
which is hard under APSP, admits an efficient algorithm in
(N ∩ coN)TIME.

Definition 9. Given a tripartite graph G(V1, V2, V3, E) with
|V1| = |V2| = |V3| = n and edge weights in [−na, na], the
Zero Weight Triangle problem is the problem of determining
if there is a triangle such that the sum of the edge weights is
0.

We first show that if the range is small enough, then we
can count the number of zero weight triangles efficiently.

Lemma 10. For a prime p, there is a deterministic al-
gorithm for counting the number of zero weight triangles
mod p in time O(nωp)

Proof. For i ∈ GF(p), let q(i) be the polynomial xi. Let A
be the weight matrix of the input graph G ( mod p). We

define matrix B as B[i, j] = q(A[i, j]). For a polynomial r
and integer i, let bi,r be the coefficient of xi in r. Every
triangle with weight zero mod p has weight either 0, p and
3p. We have that bj,B3[i,i] is the number of traingles of
weight j that involve vertex i. Therefore

n∑
i=1

∑
j∈{0,p,2p}

bj,B3[i,i] = 3t (1)

where t is the number of zero weight triangles modulo p.
The time to compute B3 is O(nωp) if we multiply the

polynomials using Fast Fourier Transform.

In particular, we will be using Lemma 10 to verify that
our nondeterministic guess of the number of false positives
is correct.

Lemma 11. The Zero Weight Triangle Problem is in (N ∩
coN)TIME[O(n

ω+3
2 )].

Proof. As for 3-sum, the nondeterministic algorithm is triv-
ial and we concentrate on the co-nondeterministic algorithm.

Let µ = 3−ω
2

. Further let c be a large constant such that
there are at least nµ primes in the range R = [nµ, cnµ logn].
We assume that there is no zero weight triangle and con-
sider any fixed triangle. The total weight of the trian-
gle is in the range [−3na, 3na] and the number of primes
p ∈ R such that the triangle has weight 0 mod p is at
most log(3na)/ log(nµ) < 2

µ
a. Since R contains at least

nµ primes, there is a prime p ∈ R such that the number of

triangles with weight 0 mod p is at most 2
µ
an

3+ω
2 .

The nondeterministic algorithm now proceeds as follows:
Nondeterministically pick p as above. By Lemma 10 we can
deterministically count the number t of triangles with weight

0 mod p in time O(nωp) = O(n
3+ω
2 ). Nondeterministically

pick t distinct triangles and check that each of them has
weight w 6= 0 with w = 0 mod p.

The total time is bounded by O(n
3+ω
2 ) as claimed.

Corollary 3. APSP ∈ (N ∩ coN)TIME[Õ(n
3+ω
2 )].

Proof. A deterministic fine-grained reduction from the prob-
lem of finding a negative weight triangle to ZWT can be
found in [25], such that the negative weight triangle prob-

lem is also in (N ∩ coN)TIME[Õ(n
3+ω
2 )].

Finally, [33] give a deterministic fine-grained reduction
from APSP to the negative weight triangle problem with
time Õ(n2T (n1/3)), where T (n) is the time complexity of
the negative weight triangle problem.

Instead of applying this reduction directly, which would
still give a subcubic nondeterministic upper bound for APSP,
we instead modify their reduction to a nondeterministic re-
duction that preserves the savings in the exponent. The
reduction from [33] loses savings in the exponent when re-
ducing from min-plus product to negative weight triangle.
The fine-grained reduction from APSP to min-plus product
is folklore and does not change the exponent.

For two matrices A and B the min-plus product C is the
matrix such that C[i, j] = mink{A[i, k] +B[k, j]}. Given an
instance of min-plus product, nondeterministically guess C
as well as a matrix K such that K[i, j] = argmink{A[i, k] +
B[k, j]}. We can easily check that C[i, j] = A[i,K[i, j]] +
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B[K[i, j], j] for all i and j, which proves that none of the
entries in C are too large.

To verify none of the entries in C are too small, we con-
struct a complete n×n×n tripartite graphG = (V1, V2, V3, E)
such that matrix −A is the weight matrix for the edges be-
tween V1 and V2, −B corresponds to the weights between V2

and V3, and C corresponds to the weights between V1 and
V3. There are i, j, k such that C[i, j] < A[i, k] + B[k, j] if
and only if there is a negative weight triangle in this graph.

This reduction along with the co-nondeterministic algo-
rithm for ZWT gives a nondeterministic algorithm for APSP
with the claimed time complexity.

Note that [33] in fact give a sizable list of problems that
are equivalent to APSP under subcubic deterministic fine-
grained reductions (including negative weight triangle, but
not zero weight triangle). Our non-reducibility result there-
fore applies to all of these problems.

6. CHARACTERIZING THE QUANTIFIER
STRUCTURE OF SETH-HARD GRAPH
PROBLEMS

There are many problems within P that are known to be
SETH-hard, but few of them are graph problems. And of
the ones that are, they tend to have similar logical forms.
For instance, k-Dominating Set [23] is definable by a ∀k∃
quantified formula; Graph Diameter-2 and Bipartite Graph
Dominated Vertex [8] are definable by ∀∀∃ quantified for-
mulas. Here we study the relations between SETH-hardness
and the logical structures of model checking problems. The
paper by Ryan Williams [28] explored the first-order graph
properties on dense graphs, while in this paper, we look into
sparse graphs whose input is a list of edges.

We define “graph property” quite broadly. The input to
a graph property is a many-sorted universe that we view as
sets of vertices, together with a number of unary relations
(node colors), and binary relations, viewed as different cate-
gories or colors of edges. The binary relations can in general
be directed. We specify the problem to be solved by a first
order sentence. Let ϕ be a first order sentence in prenex
normal form, which has k quantifiers.

ϕ = Q1x1 ∈ X1, Q2x2 ∈ X2, . . . Qkxk ∈ Xkψ

or shortened as

ϕ = Q1x1Q2x2 . . . Qkxkψ

where ϕ is a quantifier-free formula whose atoms are unary
or binary predicates on x1, . . . , xk.

An instance of the model checking problem of ϕ gives k
(k ≥ 3) specifies sets X1, . . . Xk, where variable xi is an
element of set Xi, and unary or binary relations on these
sets. (Xi needn’t be disjoint, so allowing them to be viewed
as distinct only increases the expressive power. We assume
equality is one of the relations, so we can tell when xi = xj .)
The sets X1, . . . , Xk can be considered as the sets of nodes
in a k-partite graph, and the values of a binary predicate
can be considered as edges in the graph, i.e. for predicate
P , P (xi, xj) = true means there is an edge between nodes xi
and xj . We refer to the k-partite graph with edges defined
by predicate P as GP , and the union of graphs defined on
all predicates as G. The data structures used to code the
relations are as follows: For each unary relation, an array of

Booleans indexed by the vertices saying whether the relation
holds, and for each binary predicate, the list representation
of the corresponding directed graph. We want to see if ϕ is
true for the input model.

Examples of this problem include k-Clique, which is de-
fined by

ϕ = ∃x1 . . .∃xk
∧

i,j∈{1,...,k},i6=j

E(xi, xj)

and k-Dominating Set, defined by

ϕ = ∃x1 . . .∃xk∀xk+1 (E(x1, xk+1) ∨ · · · ∨ E(xk, xk+1))

and Graph Radius-2, defined by

ϕ = ∃x1∀x2∃x3 (E(x1, x3) ∧ E(x3, x2))

We let n = maxi |Xi| be the maximum size of the node
parts, and m be the number of edges in the union of the
graphs. The size is n + m, but for convenience, we will
assume m > n and use m as the size.

The maximum deterministic complexity of a k-quantifier
formula for k ≥ 2 is O(mk−1). For k = 2, this is just linear
in the input size, so matching lower bounds follow. So the
interesting case is k ≥ 3. If SETH is true, some formulas
require approximately this time. But if NSETH holds, all
such formulas that are SETH hard are of the same logical
form. This is made precise as follows:

Theorem 4. Let k ≥ 3. If NSETH is true, then there
is a k-quantifier formula whose model checking problem is
O(mk−1) SETH-hard, and all such formulas have the form
∀k−1∃ or ∃k−1∀.

Theorem 4 comes directly from the following lemmas:

Lemma 12. If SETH or NSETH is true, then there are
∀k−1∃ problems that are SETH-hard for time O(mk−1).

Thus by negating ϕ, the ∃k−1∀ problems are also hard
under SETH.

On the other hand if a problem is of any form other than
∀k−1∃, we will show it has smaller nondeterministic com-
plexity. Such a problem has either exactly one existential
quantifier not in the innermost position, no existential quan-
tifiers, or at least two existential quantifiers.

Lemma 13. If ϕ has exactly one existential quantifier, but
it is not on the innermost position, then it can be solved in
O(mk−2) nondeterminisitic time.

Lemma 14. If ϕ has more than one existential quantifiers,
then it can be solved in time O(mk−2) nondeterministically.

These problems can be solved by guessing the existen-
tially quantified variables, and exhaustive search on univer-
sally quantified variables. Because there are at most k − 2
universial quantifiers, the algorithm runs in time O(mk−2).

Lemma 15. If all quantifiers are universal, then it can be
solved in deterministic time O(mk−1.5).

Thus, only ∀k−1∃ formulas require O(mk−1) nondetermin-
istic time, and by looking at the complements, only ∃k−1∀
formulas require O(mk−1) co-nondeterministic time. Thus,
assuming NSETH, only these two types of first-order prop-
erties might be SETH-hard for the maximum difficulty of a
k-quantifier formula.

Proofs of lemmas 12, 13 and 15 can be found in the full
version of the paper.
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7. CONSEQUENCES FOR VERIFICATION
OF SOLUTIONS

Besides implying that some problems are not SETH-hard,
NSETH also implies some new lower bounds on problems
in P . Namely, if NSETH is true, then problems such as
Fréchet distance, edit distance, and longest common sub-
string also require quadratic co-nondeterministic time (i.e.,
to show that the optimal solution has cost that exceeds a
given value). This immediately implies that, even given a
solution, testing optimality requires quadratic time. We can
formalize this as follows:

Theorem 5. Let Opt(x) be the optimization problem, given
x, find maxy,|y|=l(|x|) F (x, y), for some F that is computable
in time TF (n + l(n)) ≥ n + l(n). The verification problem
Ver is: given x and y, is y an optimal solution for Opt, i.e.,
is there no y′ with F (x, y′) > F (x, y). Assume that Opt is
SETH-hard for some T (n) which is greater than T 1+γ

F (n +
l(n)) for some γ > 0. Then if NSETH, Ver cannot be solved
in any time T ′ so that TVer(n + l(n)) < T 1−ε(n) for any
ε > 0.

Proof. Assume not, that Ver can be solved in some time T ′

with TVer(n + l(n)) < T 1−ε(n). Then we can compute the
function Opt in NTIME((TVer(n+ l(n)) + TF (n+ l(n)))) as
follows:

Non-deterministically guess an optimal solution y and run
the algorithm for Ver on the pair (x, y). If it is optimal (i.e.,
in Ver), return F (x, y). The total time is l(n) to guess y,
plus TF (n+ l(n)) to compute F , plus TVer(n+ l(n)).

From the assumption that Opt is SETH-hard for time
T (n), and since the time complexity of the above procedure
is O(T (n)1−ε) for some ε > 0, it follows that TAUT is in

time 2n(1−δ) for some δ > 0. This contradicts NSETH.

So NSETH gives us a way to argue that not only finding
but verifying optimal solutions is computationally intensive.

8. CONCLUSIONS AND OPEN PROBLEMS
A theme running through computational complexity is

that looking at general relationships between models of com-
puting and complexity classes can frequently shed light on
the difficulty of specific problems. In this paper, we in-
troduce this general technique to the study of fine-grained
complexity by comparing nondeterministic complexities of
problems. This raises the more general question of what
other notions and models of complexity might be useful in
distinguishing the fine-grained complexity of problems. For
example, we show that neither 3-sum or all-pairs shortest
path can be SETH-hard if NSETH holds. This still leaves
open the possibility that the two conjectures are equivalent
to each other (if not to SETH). One might be able to prove
such an equivalence, or give evidence against it by showing
a different notion of complexity that distinguishes the two
and is preserved by FGR.
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