
Hardness of RNA Folding Problem With Four
Symbols∗

Yi-Jun Chang

Department of EECS, University of Michigan, Ann Arbor, MI, USA
cyijun@umich.edu

Abstract
An RNA sequence is a string composed of four types of nucleotides, A,C,G, and U . Given an
RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality set of
crossing-free pairs of the form {A,U} or {C,G}. The problem is central in bioinformatics and
has received much attention over the years. Whether the RNA folding problem can be solved in
O(n3−ε) time remains an open problem. Recently, Abboud, Backurs, and Williams (FOCS’15)
made the first progress by showing a conditional lower bound for a generalized version of the
RNA folding problem based on a conjectured hardness of the k-clique problem. However, their
proof requires alphabet size ≥ 36 to work, making the result biologically irrelevant. In this pa-
per, by constructing the gadgets using a lemma of Bringmann and Künnemann (FOCS’15) and
surrounding them with some carefully designed sequences, we improve upon the framework of
Abboud et al. to handle the case of alphabet size 4, yielding a conditional lower bound for the
RNA folding problem. We also investigate the Dyck edit distance problem. We demonstrate a
reduction from RNA folding problem to Dyck edit distance problem of alphabet size 10, estab-
lishing a connection between the two fundamental string problems. This leads to a much simpler
proof of the conditional lower bound for Dyck edit distance problem given by Abboud et al. and
lowers the required alphabet size for the lower bound to work.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases RNA folding, Dyck edit distance, longest common subsequence, condi-
tional lower bound, clique

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.13

1 Introduction

An RNA sequence is a string composed of four types of nucleotides, A,C,G, and U . Given
an RNA sequence, the goal of the RNA folding problem is to find a maximum cardinality
set of crossing-free pairs of nucleotides, where all the pairs are either {A,U} or {C,G}. The
problem is central in bioinformatics and has found applications in many areas of molecular
biology. For a comprehensive exposition of the topic, the reader is referred to e.g. [18].

It is well-known that the problem can be solved in cubic time by a simple dynamic
programming method [9]. Due to the importance of RNA folding in practice, there has been
a long line of research on improving the time complexity (See e.g. [3, 11, 12, 13, 18, 21]).
Currently the best upper bound is O

(
n3

log2(n)

)
[13, 18], which can be obtained by four-Russian

method or fast min-plus multiplication (based on ideas from Valiant’s CFG parser [19]).

∗ A more detailed version of the paper: http://arxiv.org/abs/1511.04731. Supported by NSF grants
CCF-1217338, CNS-1318294, and CCF-1514383.

© Yi-Jun Chang;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.13
http://arxiv.org/abs/1511.04731
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Hardness of RNA Folding Problem With Four Symbols

Whether the RNA folding problem can be solved in O(n3−ε) time for some ε > 0 is still
a major open problem. Other than attempting to improve the upper bound, we should also
approach the problem in the opposite direction, i.e. arguing why the problem is hard.

Conditional lower bounds

A popular way to show hardness of a problem is to demonstrate a lower bound conditioned
on some widely accepted hypothesis.

I Conjecture 1 (Strongly Exponential Time Hypothesis (SETH)). There exists no ε, k0 > 0
such that k-SAT with n variables can be solved in time O(2(1−ε)n) for all k > k0.

I Conjecture 2. There exists no ε, k0 > 0 such that k-clique on graphs with n nodes can
be solved in time Õ

(
n(ω−ε)k/3) for all k > k0, where ω < 2.373 is the matrix multiplication

exponent.

For instance, assuming that SETH (Conjecture 1) holds, the following bounds are
unattainable for any ε > 0:

an O(nk−ε) algorithm for k-dominating set problem [14],
an O(n2−ε) algorithm for dynamic time warping, longest common subsequence, and edit
distance [2, 6, 7],
an O(m2−ε) algorithm for (3/2− ε)-approximating the diameter of a graph with m edges
[15].

We note that such negative results allow us to have a better picture of the structure of
polynomial time complexity, and identify the main obstacles to obtaining faster algorithms
for various fundamental problems.

As remarked in [1], it is easy to reduce the longest common subsequence problem on
binary strings to the RNA folding problem as following: Given two binary strings X,Y , we
let X̂ ∈ {A,C}|X| be the string such that X̂[i] = A if X[i] = 0, X̂[i] = C if X[i] = 1, and we
let Ŷ ∈ {G,U}|Y | be the string such that Ŷ [i] = U if Y [i] = 0, Ŷ [i] = G if Y [i] = 1. Then
we have a 1-1 correspondence between RNA foldings of X̂ ◦ Ŷ R (i.e. concatenation of X̂ and
the reversal of Ŷ) and common subsequences of X and Y . It has been shown in [7] that
there is no O(n2−ε) algorithm for longest common subsequence problem on binary strings
conditioned on SETH, and we immediately get the same conditional lower bound for RNA
folding from the simple reduction!

Very recently, based on a conjectured hardness of k-clique problem (Conjecture 2), a
higher conditional lower bound was proved for a generalized version of the RNA folding
problem (which coincides with the RNA folding problem when the alphabet size is 4) [1]:

I Theorem 1 ([1]). If the generalized RNA folding problem on sequences of length n with
alphabet size 36 can be solved in T (n) time, then 3k-clique on graphs with |V | = n can be
solved in O

(
T
(
nk+2 log(n)

))
time.

Therefore, a O(nω−ε) time algorithm for the generalized RNA folding with alphabet
size at least 36 will disprove Conjecture 2, yielding a breakthrough to the parameterized
complexity of clique problem.

However, the above theorem is irrelevant to the RNA folding problem in real life (which
has alphabet size 4). It is unknown whether the generalized RNA folding for alphabet size 4
admits a faster algorithm than the case for alphabet size > 4. In fact, there are examples of
string algorithms whose running time scales with alphabet size (e.g. string matching with

Y. -J. Chang 13:3

mismatched [5] and jumbled indexing [4, 8]). We also note that when the alphabet size is 2,
the generalized RNA folding can be trivially solved in linear time.

In this paper, we improve upon Theorem 1 by showing the same conditional lower bound
for the RNA folding problem:

I Theorem 2. If the RNA folding problem on sequences in {A,C,G,U}n can be solved in
T (n) time, then 3k-clique on graphs with |V | = n can be solved in O

(
T
(
nk+1 log(n)

))
time.

Note that we also get an O(n) factor improvement inside T (·), though it does not affect
the conditional lower bound.

In the proof of Theorem 1 in [1], given a graph G = (V,E), a sequence of length
O(nk+2 log(n)) is constructed in such a way that we can decide whether G has a 3k-
clique according to the number of pairs in an optimal generalized RNA folding of S. The
construction requires a large alphabet size to build various “walls” which prevent undesired
pairings between different parts of the sequence. Extending their approach to handle the
case with alphabet size 4 may not be easy without aid from other techniques and ideas.

Overview of our approach

At a high level, our reduction (from 3k-clique problem to RNA folding problem) follows the
approach in [1]: We enumerate all k-cliques, and each of them is encoded as some gadgets.
All the gadgets are then put together to form an RNA sequence. The goal is to ensure that
an optimal RNA folding corresponds to choosing three k-cliques that form a 3k-clique, given
that the underlying graph admits a 3k-clique.

To achieve this result using 4 symbols, we implement the above construction using more
efficient gadgets based on a key lemma in [7], whose original purpose is to prove that longest
common subsequence and other edit distance problems are SETH-hard even on binary strings.
We will treat it as a black box and apply it multiple times.

In the final RNA sequence, all clique gadgets are well-separated by some carefully designed
sequences whose purpose is to “trap” all the clique gadgets except three of them. We will see
that only these three clique gadgets can influence the number of matched pairs in an optimal
RNA folding, and the number of matched pairs is maximized when these three clique gadgets
correspond to a 3k-clique. Therefore, we can infer whether the graph has a 3k-clique from
the optimal RNA folding of the RNA sequence.

Dyck Edit Distance

One other way to formulate the RNA folding problem is as follows: deleting the minimum
number of letters in a given string to transform the string into a string in the language
defined by the grammar S → SS, ASU,USA,CSG,GSC, ε (empty string). The Dyck edit
distance problem [16, 17], which asks for the minimum number of edits to transform a given
string to a well-balanced parentheses of s different types, has a similar formulation. Due
to the similarity, the same conditional lower bound as Theorem 1 was also shown for the
Dyck edit distance problem (with alphabet size ≥ 48) in [1]. In this paper, we improve and
simplify their result by demonstrating a simple reduction from RNA folding to Dyck edit
distance problem:

I Theorem 3. If Dyck edit distance problem on sequences of length n with alphabet size 10
can be solved in T (n) time, then the RNA folding problem on sequences in {A,C,G,U}n can
be solved in O(T (n)) time.

CPM 2016

13:4 Hardness of RNA Folding Problem With Four Symbols

I Corollary 4. If the Dyck edit distance problem on sequences of length n with alphabet
size 10 can be solved in T (n) time, then 3k-clique on graphs with |V | = n can be solved in
O
(
T
(
nk+1 log(n)

))
time.

Interpretations of our results

The current state-of-art algorithm for k−clique, which takes O
(
nωk/3) time, requires the

use of fast matrix multiplication [10] which does not perform very efficiently in practice.
For combinatorial, non-algebraic algorithm for k−clique, the current state-of-art has time
complexity O

(
nk

logk(n)

)
[20], which is only slightly better than the trivial approach.

Therefore, despite the current gap between the n3 upper bound and the nω lower bound
(neglecting polylog factors) for RNA folding and Dyck edit distance, it is unlikely to have
an n3−ε time “efficient” algorithm for these problems, unless there is a breakthrough in
combinatorial algorithms for k-clique. As a result, our reductions (and the ones in [1])
imply that very likely the use of approximation or heuristic is necessary if one needs a faster
algorithm.

2 Preliminaries

Given a set of letters Σ, the set Σ′ is defined as {x′|x ∈ Σ}. We require that Σ∩Σ′ = ∅, and
∀x, y ∈ Σ, (x 6= y)→ (x′ 6= y′). Therefore, we have |Σ′| = |Σ| and |Σ ∪ Σ′| = 2|Σ|.

For any X = (x1, . . . , xk) ∈ Σk, we write p(X) to denote (x′1, . . . , x′k) (the letter p stands
for the prime symbol). We denote the reversal of the sequence X as XR. The concatenation
of two sequences X,Y is denoted as X ◦ Y (or simply XY). We write substring to denote a
contiguous subsequence. Two pairs of indices (i1, j1), (i2, j2), with i1 < j1 and i2 < j2, form
a crossing pair iff ({i1, j1} ∩ {i2, j2} 6= ∅) ∨ (i1 < i2 < j1 < j2) ∨ (i2 < i1 < j2 < j1) .

Generalized RNA Folding

Given S ∈ (Σ ∪Σ′)n, the goal of the generalized RNA folding problem is to find a maximum
cardinality set A ⊆ {(i, j)|1 ≤ i < j ≤ n} among all sets meeting the following conditions:

A does not contain any crossing pair.
For any (i, j) ∈ A, either (i) S[i] ∈ Σ and S[j] = S[i]′ or (ii) S[j] ∈ Σ and S[i] = S[j]′ is
true.

We write RNA(S) = |A|.
Any set meeting the above conditions is called an RNA folding of S. If its cardinality

equals RNA(S), then it is said to be optimal.
In the paper we will only focus on the generalized RNA folding problem with four types

of letters, i.e. Σ = {0, 1},Σ′ = {0′, 1′}, which coincides with the RNA folding problem for
alphabet {A,C,G,U}.

With a slight abuse of notation, sometimes we will write (S[i], S[j]) to denote a pair
(i, j) ∈ A. The notation {·, ·} is used to indicate an unordered pair.

Longest Common Subsequence (LCS)

Given X ∈ Σn and Y ∈ Σm, we define δLCS(X,Y) = n+m− 2k, where k = the length of
the longest common subsequence of X and Y . It is easy to observe that RNA(X ◦ p(Y R))
equals the length of LCS = (n+m− δLCS(X,Y))/2. In this sense, we can conceive of an
LCS problem as an RNA folding problem with some structural constraint on the sequence.

Y. -J. Chang 13:5

In [7], a conditional lower bound for the LCS problem with |Σ| = 2 based on SETH was
presented. A key technique in their approach is a function that transforms an instance of an
alignment problem between two sets of sequences to an instance of the LCS problem, which
is described below.

Alignments of two sets of sequences

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered sets of sequences
of alphabet Σ. We assume that n ≥ m. An alignment is a set A = {(i1, j1), (i2, j2), . . .,
(i|A|, j|A|)} with 1 ≤ i1 < i2 < . . . < i|A| ≤ n and 1 ≤ j1 < j2 < . . . < j|A| ≤ m. An
alignment A is called structural iff |A| = m and im = i1 +m− 1. That is, all sequences in Y
are matched, and the matched positions in X are contiguous. The set of all alignments is
denoted as An,m, and the set of all structural alignments is denoted as Sn,m.

The cost of an alignment A (with respect to X and Y) is defined as:

δ(A) =
∑

(i,j)∈A

δLCS(Xi, Yj) + (m− |A|) max
i,j

δLCS(Xi, Yj).

That is, unaligned parts of Y are penalized by maxi,j δLCS(Xi, Yj).
Given a sequence X, the type of X is defined as (|X|,

∑
iX[i]), where each letter is

assumed to be a number. Note that when the alphabet is simply {0, 1},
∑
iX[i] is simply

the number of occurrences of 1 in X.
The following key lemma was proved in [7] (Lemma 4.3 of [7]):

I Lemma 5 ([7]). Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be two linearly ordered
sets of binary strings such that n ≥ m, all Xi are of type TX = (`X , sX), and all Yi are
of type TY = (`Y , sY). There are two binary strings SX = GAm,TY

X (X1, . . . , Xn), SY =
GAn,TX

Y (Y1, . . . , Ym) and an integer C meeting the following requirements:
minA∈An,m δ(A) ≤ δLCS(SX , SY)− C ≤ minA∈Sn,m δ(A).
The types of SX , SY and the integer C only depend on n,m, TX , TY .
SX , SY , and C can be calculated in time O((n+m)(`X + `Y)). Hence |SX | and |SY | are
both O((n+m)(`X + `Y)).

Note that the term GA comes from the word gadget.
Intuitively, computing an optimal alignment (or an optimal structural alignment) of two

sets of sequences is at least as hard as computing a longest common subsequence. The above
lemma gives a reduction from the computation of a number s with minA∈An,m δ(A) ≤ s ≤
minA∈Sn,m δ(A) (which can be regarded as an approximation of optimal alignments) to a
single LCS instance.

In the next section, we will use the above lemma as a black box to devise two encodings,
the clique node gadget CNG(t) and the clique list gadget CLG(t), for a k-clique t in a graph
in such a way that we can decide whether two k-cliques t1, t2 form a 2k-clique according the
value of δLCS(CNG(t1),CLG(t2)).

When invoking the lemma, X, Y are designed in such a way that we can test whether
a condition is met (e.g. whether two given k-cliques form a 2k-clique) by the value of
minA∈An,m δ(A). We will show that minA∈An,m δ(A) = minA∈Sn,m δ(A) for the case we are
interested in. Therefore, we can infer whether the condition we are interested in is met from
the value of δLCS(SX , SY).

CPM 2016

13:6 Hardness of RNA Folding Problem With Four Symbols

3 From Cliques to RNA Folding

The goal of this section is to prove Theorem 2.
Let G = (V,E) be a graph, and let n = |V |. We write Ck to denote the set of k-cliques in

G. We fix Σ = {0, 1}. As in [1], we will construct a sequence SG ∈ (Σ ∪ Σ′)∗ such that we
can decide whether G has a 3k-clique according to the value of RNA(SG).

As our framework of the construction of SG is similar to the one in [1], we will give the
building blocks for constructing SG the same names as their analogues in [1], despite that
they have different lower-level implementations.

3.1 Testing 2k-cliques via LCS
We associate each vertex v ∈ V a distinct integer in {0, 1, . . . n− 1}. Let sv be the binary
encoding of such integer with |sv| = dlog(n)e. We define v̄ to be the binary string resulted
by replacing each 0 in sv with 01 and replacing each 1 in sv with 10. It is clear that for each
v ∈ V , v̄ is of type T0 = (2dlog(n)e, dlog(n)e), and δLCS(ū, v̄) = 0 iff u = v.

Our goal is to devise two encodings CNG(t),CLG(t) for a k-clique t such that we can
infer whether two k-cliques t1, t2 form a 2k-clique from the value of δLCS(CNG(t1),CLG(t2)).

For each v ∈ V , the list gadget LG(v) and the node gadget NG(v) are defined as following:
LG(v) = GA1,T0

X (ū1, ū2, . . . , ū|N(v)|, 1dlog(n)e0dlog(n)e, . . . , 1dlog(n)e0dlog(n)e), where N(v) =
{u1, u2, . . . , u|N(v)|}, and the number of occurrences of 1dlog(n)e0dlog(n)e is n− |N(v)|.
NG(v) = GAn,T0

Y (v̄).

I Lemma 6. There is a constant c0, depending only on n, such that for any v1, v2 ∈ V , we
have {v1, v2} ∈ E iff δLCS(LG(v1),NG(v2)) = c0 = minv′

1,v
′
2∈V δLCS(LG(v′1),NG(v′2)).

Proof. We let N(v1) = {u1, u2, . . . , u|N(v1)|}.
Let X = (ū1, ū2, . . . , ū|N(v1)|, 1dlog(n)e0dlog(n)e, . . . , 1dlog(n)e0dlog(n)e), where the number of

occurrences of 1dlog(n)e0dlog(n)e is n− |N(v1)|, and let Y = (v̄2).
In view of Lemma 5, minA∈An,1 δ(A) ≤ δLCS(LG(v1), NG(v2))−C ≤ minA∈Sn,1 δ(A), for

some C whose value depends on |X|, |Y|, and T0. As these parameters depend solely on n,
the number C only depends on n.

Since |Y| = 1, any non-empty alignment between X and Y is structural. This implies
that δLCS(LG(v1), NG(v2))− C = minA∈An,1 δ(A) = minA∈Sn,1 δ(A).

When {v1, v2} ∈ E, since v̄2 is contained in X, clearly minA∈Sn,m δ(A) = 0. When
{v1, v2} 6∈ E, v̄2 does not appear in X, so minA∈Sn,m δ(A) > 0. Note that 1dlog(n)e0dlog(n)e 6=
v̄, for any v ∈ V .

Hence {v1, v2} ∈ E iff δLCS(LG(v1), NG(v2)) = C = minv′
1,v

′
2∈V δLCS(LG(v′1),NG(v′2)).

Therefore, it suffices to set c0 = C. J

We let TX be the type of the list gadgets, and we let TY be the type of the node gadgets.
For each k-clique t = {u1, u2, . . . , uk}, we define the clique node gadget CNG(t) and the
clique list gadget CLG(t) as following:

CLG(t) = GAk2,TY
X (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)),

where the number of occurrences of each LG(ui) is k.
CNG(t) = GAk2,TX

Y (NG(u1),NG(u2), . . . ,NG(uk),NG(u1),NG(u2), . . . ,NG(uk), . . .,
NG(u1), NG(u2), . . ., NG(uk)), where the number of occurrences of each NG(ui) is k.

We are ready to prove the main lemma in the subsection:

Y. -J. Chang 13:7

I Lemma 7. There is a constant c1, depending only on n, k, such that for any t1, t2 ∈ Ck,
t1∪t2 is a 2k-clique iff δLCS(CLG(t1),CNG(t2)) = c1 = mint′1,t′2∈Ck δLCS(CLG(t′1),CNG(t′2)).

Proof. Let t1 = {u1, u2, . . . , uk}, and let t2 = {v1, v2, . . . , vk}.
Let X = (LG(u1), . . . ,LG(u1),LG(u2), . . . ,LG(u2), . . . ,LG(uk), . . . ,LG(uk)), where each

LG(ui) appears k times, and let Y = (NG(v1),NG(v2), . . . ,NG(vk),NG(v1), NG(v2), . . .,
NG(vk), . . ., NG(v1), NG(v2), . . ., NG(vk)), where each NG(vi) appears k times.

In view of Lemma 6, we have minw1,w2∈V δLCS(LG(w1),NG(w2)) ≥ c0, so we can lower
bound minA∈Ak2,k2 δ(A) by k2c0.

If maxi,j δLCS(Xi, Yj) = c0, any alignment has cost k2c0. When maxi,j δLCS(Xi, Yj) > c0,
it is easy to observe that in order to achieve δ(A) = k2c0, all sequences in Y must be aligned
(as the cost for any unaligned sequence in Y is now > c0). Therefore, any alignment A
with δ(A) = k2c0 must be A = {(i, i)|i ∈ {1, 2, . . . , k2}} with δLCS(Xi, Yi) = c0, for all
i ∈ {1, 2, . . . , k2}.

In view of the above, minA∈Ak2,k2 δ(A) = k2c0 iff δLCS(Xi, Yi) = c0 for all i ∈ {1, 2, . . . , k2}.
Since A = {(i, i)|i ∈ {1, 2, . . . , k2}} is structural, minA∈Ak2,k2 δ(A) = k2c0 iff minA∈Sk2,k2

δ(A) = k2c0. Therefore, in view of Lemma 5, there exists a constant C such that:
If minA∈Ak2,k2 δ(A) = k2c0, then δLCS(CLG(t1), CNG(t2)) = k2c0 + C.
If minA∈Ak2,k2 δ(A) > k2c0, then δLCS(CLG(t1), CNG(t2)) > k2c0 + C.

Moreover, the value of C depends only on |X|, |Y|, TX , TY . As these parameters depend
solely on n, k, the number C only depends on n, k.

When t1 ∪ t2 is a 2k-clique, all vertices in t1 are adjacent to all vertices in t2. In
view of Lemma 6, ∀i,jδLCS(Xi, Yj) = c0. Hence minA∈Ak2,k2 δ(A) = k2c0, implying that
δLCS(CLG(t1), CNG(t2)) = k2c0 + C.

When t1 ∪ t2 is not a 2k-clique, there exist ui ∈ t1, vj ∈ t2 such that {ui, vj} 6∈ E.
According to our definition of X and Y, we have Xj+k(i−1) = LG(ui), Yj+k(i−1) = NG(vj),
and hence δLCS(Xj+k(i−1), Yj+k(i−1)) > c0. This implies that minA∈Ak2,k2 δ(A) > k2c0,
which leads to δLCS(CLG(t1), CNG(t2)) > k2c0 + C.

As a result, t1∪t2 is a 2k-clique iff δLCS(CLG(t1), CNG(t2)) = k2c0+C = mint′1,t′2∈Ck δLCS(
CLG(t′1),CNG(t′2)). Setting c1 = k2c0 + C suffices. J

I Lemma 8. There exist four integers `CNG,0, `CNG,1, `CLG,0, `CLG,1 ∈ O(k2n log(n)), such
that for any t ∈ Ck,

`CNG,b = the number of occurrences of b in CNG(t), b ∈ {0, 1}.
`CLG,b = the number of occurrences of b in CLG(t), b ∈ {0, 1}.

Proof. As a consequence of Lemma 5, all CNG(t) have the same type, and all CLG(t) have
the same type. Therefore, the existence of these four integers is guaranteed.

In view of Lemma 5, for all v ∈ V , both LG(v) and NG(v) have length at most (n+ 1) ·
(2dlog(n)e+ 2dlog(n)e) = O(n log(n)). Applying Lemma 5 again, the length of both CNG(t)
and CLG(t) for all t ∈ Ck is (k2 + k2)(O(n log(n)) +O(n log(n))) = O(k2n log(n)).

As a result, the four integers can be bounded by O(k2n log(n)). J

3.2 The RNA sequence SG

In this subsection, we define the RNA sequence SG and show that we can decide whether G
has a 3k-clique according to RNA(SG).

Based on the parameters in Lemma 8, we define `0 = `CNG,0 + `CNG,1 + `CLG,0 + `CLG,1 =
O(k2n log(n)); for i ∈ {1, 2, 3}, we set `i = 100`i−1; and `4 = 100|Ck|`3 = O(k2nk+1 log(n)).

CPM 2016

13:8 Hardness of RNA Folding Problem With Four Symbols

0ℓ4 0′ℓ3 … 0′ℓ3 CG𝛼 𝑡𝛼 0
′ℓ3 … 0′ℓ3 0ℓ4 0′ℓ3 … 0′ℓ3 CG𝛽 𝑡𝛽 0

′ℓ3 … 0′ℓ3 0ℓ4 0′ℓ3 … 0′ℓ3 CG𝛾 𝑡𝛾 0
′ℓ3 … 0′ℓ3

0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛼 𝑡 0′

ℓ3 0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛽 𝑡 0′

ℓ3 0′ℓ3 ⊙𝑡∈𝒞𝑘
 CG𝛾 𝑡 0′

ℓ3

Figure 1 The three selected clique gadgets and the matchings between 0′`3 and 0`4 .

The RNA sequence SG is then defined as below:

SG = 0`4

[
0′`3 ©

t∈Ck

(
CGα(t)0′`3

)]
0`4

[
0′`3 ©

t∈Ck

(
CGβ(t)0′`3

)]
0`4

[
0′`3 ©

t∈Ck

(
CGγ(t)0′`3

)]
,

where

CGα(t) = 1′2`2p(CLG(t)R)0′`11`20`1CNG(t)1`2 ,

CGβ(t) = 1′`2p(CLG(t)R)0′`11′2`20′`1p(CNG(t))1′`2 ,

CGγ(t) = 1`2CLG(t)R0`11`20`1CNG(t)12`2 .

For any t ∈ Ck, x ∈ {α, β, γ}, the string CGx(t) is called a clique gadget.
Note that CGα(t) ∈ (Σ ∪ Σ′)∗, CGβ(t) ∈ Σ′∗, and CGγ(t) ∈ Σ∗.
It is obvious that |SG| = O(|Ck|`0) = O(k2nk+1 log(n)).

I Lemma 9. RNA(SG) = f(n, k) − Q
2 , for Q = mintα,tβ ,tγ∈Ck(δLCS(CLG(tα),CNG(tβ))

+δLCS(CLG(tα),CNG(tγ)) + δLCS(CLG(tβ),CNG(tγ))), and f(n, k) = 6`2 + 3`1 + 3
2`0 +

3(|Ck|+ 1)`3 + (|Ck| − 1)(2`1 + 2`2 + min(`CLG,1, `CNG,1) + `CLG,0 + `CNG,0).

Proof (Sketch). Due to the page limit, we only demonstrate an example of an RNA folding
matching this bound, omitting the proof of optimality:

We link all 0′ in all 0′`3 to some 0 in some 0`4 in such a way that all clique gadgets are
“blocked” (a clique gadget is blocked if its letters can only link to letters in the same
clique gadget or some 0 in some 0`4) except CGα(tα), CGβ(tβ), and CGγ(tγ). This gives
us 3(|Ck|+ 1)`3 amount of pairs. See Fig. 1.
For a clique gadget that is “blocked”, our design of SG ensures that the optimal number
of pairs involving letters in the clique gadget is irrelevant to its corresponding k-clique:

For a blocked CGα(t), since `2 is significantly larger than `1, `0, an optimal way
to pair up the letters is to match as many {1′, 1} as possible. This gives us 2`2 +
min(`CLG,1, `CNG,1) pairs.
For a blocked CGβ(t), since we do not have any 1 here, the best we can do is to match
all 0′ to some 0`4 . This gives us 2`1 + `CLG,0 + `CNG,0 pairs.
For a blocked CGγ(t), no matching can be made.

The total amount of pairs involving blocked clique gadgets is (|Ck| − 1)(2`1 + 2`2 +
min(`CLG,1, `CNG,1) + `CLG,0 + `CNG,0). See Fig. 2 for an illustration.
For the three clique gadgets that are not blocked, the matching described in Fig. 3 has car-
dinality 6`2+3`1+ 1

2 (`0 − δLCS(CLG(tα),CNG(tβ)))+ 1
2 (`0 − δLCS(CLG(tα),CNG(tγ)))+

1
2 (`0 − δLCS(CLG(tβ),CNG(tγ))). Recall that 1

2 (`0 − δLCS(CLG(tx),CNG(ty))) is the
length of the LCS between CLG(tx) and CNG(ty). J

Y. -J. Chang 13:9

 1′2ℓ2 𝑝 CLG 𝑡 𝑅 0′ℓ1 1ℓ2 0ℓ1 CNG 𝑡 1ℓ2 1′ℓ2 𝑝 CLG 𝑡 𝑅 0′ℓ1 1′2ℓ2 0′ℓ1 𝑝 CNG 𝑡 1′ℓ2 1ℓ2 CLG 𝑡 𝑅 0ℓ1 1ℓ2 0ℓ1 CNG 𝑡 12ℓ2

 CG𝛼 𝑡

Σ′

 CG𝛽 𝑡 CG𝛾 𝑡

Σ Σ′ Σ

0ℓ4 0ℓ4 0ℓ4

Figure 2 The matchings between a blocked clique gadget and 0`4 .

By Lemma 7, there exists a number c1 such that:
the number c1 depends only on n, k, and Q ≥ 3c1.
If Q = 3c1, then there exist tα, tβ , tγ ∈ Ck such that tα ∪ tβ , tα ∪ tγ , tβ ∪ tγ are three
2k-cliques. This implies that tα ∪ tβ ∪ tγ is a 3k-clique.
If Q > 3c1, then the graph has no 3k-clique.

Hence we can decide whether G has a 3k-clique according to RNA(SG), which can be
calculated in time T

(
O
(
k2nk+1 log(n)

))
= O

(
T
(
nk+1 log(n)

))
(k is a constant, and T (·) is

the time complexity of computing optimal RNA folding). Theorem 2 is concluded.

4 Hardness of Dyck Edit Distance Problem

In this section, we shift our focus to the Dyck edit distance problem. We will present a
simple reduction from RNA folding problem (with alphabet size 4) to Dyck edit distance
problem (with alphabet size 10). This leads to a much simplified and improved proof for a
conditional lower bound of Dyck edit distance based on the conjectured hardness k-clique.
Recall that the previous proof in [1] requires 48 symbols.

Given S ∈ (Σ ∪ Σ′)n, the goal of the Dyck edit distance problem is to find a minimum
number of edit operations (insertion, deletion, and substitution) that transform S into a
string in the Dyck context free language defined by the grammar: S→ SS, ∀x ∈ Σ,S→ xSx′,
and S→ ε (empty string).

An alternative definition of the Dyck edit distance problem is described as follows: Given
a sequence S ∈ (Σ ∪ Σ′)n, find a minimum cost set A ⊆ {(i, j)|1 ≤ i < j ≤ n} satisfying the
following conditions:

A = AM]AS has no crossing pair.
AM contains only pairs of the form (x, x′), x ∈ Σ (i.e. for all (i, j) ∈ AM , we have
S[i] = x, S[j] = x′, for some x ∈ Σ). AM corresponds to the set of matched pairs.
AS does not contain any pair of the form (y′, x), x, y ∈ Σ (i.e. for all (i, j) ∈ AS we have
either S[i] ∈ Σ or S[j] ∈ Σ′). AS corresponds to the set of pairs that can be fixed by one
substitution operation per each pair.
Let D be the set of letters in S that do not belong to any pair in A. Each letter in D
requires one deletion/insertion operation to fix.

The cost of A is then defined as |AS |+ |D|, and the Dyck edit distance of the string S is
the cost of a minimum cost set meeting the above conditions.

CPM 2016

13:10 Hardness of RNA Folding Problem With Four Symbols

 1′
2ℓ2 𝑝 CLG 𝑡𝛼

𝑅 0′
ℓ1 1ℓ2 0ℓ1 CNG 𝑡𝛼 1

ℓ2 1′
ℓ2 𝑝 CLG 𝑡𝛽

𝑅
 0′

ℓ1 1′
2ℓ2 0′

ℓ1 𝑝 CNG 𝑡𝛽 1
′ℓ2 1ℓ2 CLG 𝑡𝛾

𝑅
 0ℓ1 1ℓ2 0ℓ1 CNG 𝑡𝛾 1

2ℓ2

 CG𝛼 𝑡𝛼

Σ′

 CG𝛽 𝑡𝛽 CG𝛾 𝑡𝛾

Σ Σ′ Σ

Figure 3 The matchings within the three selected clique gadgets.

We can view Dyck edit distance problem as an asymmetric version of RNA folding (both
(x, x′) and (x′, x) are legit aligned pairs in RNA folding) that also handles substitution (in
addition to deletion and insertion). Intuitively, Dyck edit distance is more complicated than
RNA folding. Indeed, the same conditional lower bound as Theorem 1 for Dyck edit distance
problem shown in [1] requires a bigger alphabet size (48 instead of 36) and a longer proof. In
the next, we prove Theorem 3 by showing a simple reduction from RNA folding to Dyck edit
distance with alphabet size 10. This improves upon the hardness result in [1], and justifies
the intuition that Dyck edit distance is a harder problem than RNA folding.

Proof of Theorem 3. For notational simplicity, we let the alphabet for the RNA folding
problem be Σ ∪Σ′ = {0, 0′, 1, 1′} (instead of {A,C,G,U}). Let S be any string in (Σ ∪ Σ′)n.
We define the string SDyck as the result of applying the following operations on S:

Replace each letter 0 with the sequence S0 = aeb′aeb′.
Replace each letter 0′ with the sequence S0′ = bba′a′.
Replace each letter 1 with the sequence S1 = ced′ced′.
Replace each letter 1′ with the sequence S1′ = ddc′c′.

It is clear that SDyck is a sequence of length at most 6n on the alphabet {a, b, c, d, e} ∪
{a′, b′, c′, d′, e′}, though the letter e′ is not used. We claim that the Dyck edit distance of
SDyck is |SDyck|

2 − 2RNA(S).
First, we show that the Dyck edit distance of SDyck is at most |SDyck|

2 − 2RNA(S).
Given an optimal RNA folding of S, we construct a crossing-free matching A with cost
|SDyck|

2 − 2RNA(S) as follows:
For matched pairs in the RNA folding of S:

For each matched pair (0, 0′) in the RNA folding of S, we add two pairs (a, a′), (a, a′)
to AM , and add three pairs (e, b′), (e, b′), (b, b) to AS in its corresponding pair of
substrings (S0 = a(eb′)a(eb′), S0′ = (bb)a′a′) in SDyck.
For each matched pair (0′, 0) in the RNA folding of S, we add two pairs (b, b′), (b, b′)
to AM , and add three pairs (a′, a′), (a, e), (a, e) to AS in its corresponding pair of
substrings (S0′ = bb(a′a′), S0 = (ae)b′(ae)b′) in SDyck.
Similarly, for each matched pair (1, 1′), (1′, 1) in the RNA folding of S, we can add
two pairs to AM and three pairs to AS .

For unmatched letters in S:
For each unmatched letter 0 in S, we add three pairs (a, b′), (e, b′), (a, e) to AS in its
corresponding substring S0 = (a(eb′)(ae)b′). Similarly, for each unmatched letter 1,
we can add three pairs to AS .

Y. -J. Chang 13:11

For each unmatched letter 0′ in S, we add two pairs (b, b), (a′, a′) to AS in its corres-
ponding substring S0 = (bb)(a′a′). Similarly, for each unmatched letter 1′, we can add
two pairs to AS .

The set AM has size 2RNA(S), the set AS has size |SDyck|−4RNA(S)
2 , and D is an empty

set. Therefore, the cost of A is |SDyck|−4RNA(S)
2 = |SDyck|

2 − 2RNA(S).
Second, we show that the Dyck edit distance of SDyck is at least |SDyck|

2 − 2RNA(S).
Given a crossing-free matching A (on the string SDyck) of cost C, we recover an RNA folding
of S that has ≥ |SDyck|

4 − C
2 number of matched pairs.

We build a multi-graph G = (V,E) such that V is the set of all substrings S0, S0′ , S1, S1′

that constitute SDyck, and the number of edges between two substrings in V is the number
of pairs in AM linking letters between these two substrings. Note that |V | = n, |E| = AM .
It is clear that C ≥ |SDyck|−2|E|

2 , since |AS |+ |D| ≥ |SDyck|−2|AM |
2 = |SDyck|−2|E|

2 . Therefore,
we are done if we can recover an RNA folding of size ≥ |E|2 , since |E|2 ≥

|SDyck|
4 − C

2 .
We observe the following:
G has degree at most 2 (due to our definition of S0, S0′ , S1, S1′ , at most two letters in
such a substring can participate in pairings of the form (x, x′), x ∈ {a, b, c, d}, without
crossing).
In the graph G, any edge must either links an S0 with an S0′ or links an S1 with an S1′

(due to our definition of S0, S0′ , S1, S1′ , any pairing of the form (x, x′), x ∈ {a, b, c, d},
must be made between S0, S0′ or between S1, S1′).
G does not contain any cycle of odd length (due to the above observation).

In view of the above second observation, a (graph-theoretic) matching M ⊆ E of G
naturally corresponds to a (size |M |) RNA folding of S: for each edge (a pair of substrings
in SDyck) in M , we add its corresponding pair of letters in S to the RNA folding. Since a
maximum matching has size ≥ |E|2 in a graph of maximum degree 2 without odd cycles, we
conclude the proof. J

We note that for the case substitution is not allowed, the letter e in the above proof is
not needed, and this lowers the required alphabet size to 8.

Acknowledgements. The author thanks Seth Pettie and anonymous reviewers for helpful
comments.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In Proceedings of 56th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 98–117, 2015.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Proceedings of 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 59–78, 2015.

3 Tatsuya Akutsu. Approximation and exact algorithms for RNA secondary structure pre-
diction and recognition of stochastic context-free languages. Journal of Combinatorial
Optimization, 3(2):321–336, 1999.

4 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In Proceedings of 41st International Colloquium Automata, Languages,
and Programming (ICALP), pages 114–125, 2014.

CPM 2016

13:12 Hardness of RNA Folding Problem With Four Symbols

5 Amihood Amir and Gad M. Landau. Fast parallel and serial multidimensional approximate
array matching. Theoretical Computer Science, 81(1):97–115, 1991.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquad-
ratic time (unless SETH is false). In Proceedings of 47th Annual ACM Symposium on
Theory of Computing (STOC), pages 51–58, 2015.

7 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Proceedings of 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 79–97, 2015.

8 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combinat-
orics. In Proceedings of 47th Annual ACM Symposium on Theory of Computing (STOC),
pages 31–40, 2015.

9 Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

10 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique
and dominating set. Theoretical Computer Science, 326(1):57–67, 2004.

11 Yelena Frid and Dan Gusfield. A simple, practical and complete O(n3

logn)-time algorithm for
RNA folding using the Four-Russians speedup. Algorithms for Molecular Biology, 5(1):1–8,
2010.

12 Tamar Pinhas, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Edit distance with du-
plications and contractions revisited. In Proceedings of 22nd Annual Symposium on Com-
binatorial Pattern Matching (CPM), pages 441–454. Springer Berlin Heidelberg, 2011.

13 Tamar Pinhas, Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson. Efficient edit distance
with duplications and contractions. Algorithms for Molecular Biology, 8(1):1–28, 2013.

14 Mihai Pătraşcu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1065–
1075, 2010.

15 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings of 45th ACM Symposium on Theory
of Computing (STOC), pages 515–524, 2013.

16 Barna Saha. The Dyck language edit distance problem in near-linear time. In Proceedings
of 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
611–620, 2014.

17 Barna Saha. Language edit distance and maximum likelihood parsing of stochastic gram-
mars: Faster algorithms and connection to fundamental graph problems. In Proceedings
of 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
118–135, 2015.

18 Yinglei Song. Time and space efficient algorithms for RNA folding with the Four-Russians
technique. Technical Report arXiv:1503.05670, 2015.

19 Leslie G. Valiant. General context-free recognition in less than cubic time. Journal of
Computer and System Sciences, 10(2):308–315, 1975.

20 Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing
Letters, 109(4):254–257, 2009.

21 Balaji Venkatachalam, Dan Gusfield, and Yelena Frid. Faster algorithms for RNA-folding
using the Four-Russians method. Algorithms for Molecular Biology, 9(1):1–12, 2014.

	Introduction
	Preliminaries
	From Cliques to RNA Folding
	Testing 2-cliques via LCS
	The RNA sequence S-G

	Hardness of Dyck Edit Distance Problem

