
Three-in-a-Tree in Near Linear Time∗

Kai-Yuan Lai† Hsueh-I Lu‡ Mikkel Thorup§

Abstract

The three-in-a-tree problem is to determine if a simple undirected graph contains an induced
subgraph which is a tree connecting three given vertices. Based on a beautiful characteriza-
tion that is proved in more than twenty pages, Chudnovsky and Seymour [Combinatorica 2010]
gave the previously only known polynomial-time algorithm, running in O(mn2) time, to solve
the three-in-a-tree problem on an n-vertex m-edge graph. Their three-in-a-tree algorithm has be-
come a critical subroutine in several state-of-the-art graph recognition and detection algorithms.

In this paper we solve the three-in-a-tree problem in Õ(m) time, leading to improved algo-
rithms for recognizing perfect graphs and detecting thetas, pyramids, beetles, and odd and even
holes. Our result is based on a new and more constructive characterization than that of Chud-
novsky and Seymour. Our new characterization is stronger than the original, and our proof im-
plies a new simpler proof for the original characterization. The improved characterization gains
the first factor n in speed. The remaining improvement is based on dynamic graph algorithms.

1 Introduction

The graphs considered in this paper are all assumed to be undirected. Also, it is convenient to think
of them as connected. Let G be such a graph with n vertices and m edges. An induced subgraph
of G is a subgraph H that contains all edges from G between vertices in H. For the three-in-a-tree
problem, we are given three specific terminals in G, and we want to decide if G has an induced tree
T , that is, a tree T which is an induced subgraph of G, containing these terminals. Chudnovsky
and Seymour [28] gave the formerly only known polynomial-time algorithm, running in O(mn2)
time, for the three-in-a-tree problem. In this paper, we reduce the complexity of three-in-a-tree
from O(mn2) to O(m log2 n) = Õ(m) time.

Theorem 1.1. It takes O(m log2 n) time to solve the three-in-a-tree problem on an n-vertex m-edge
simple graph.

To prove Theorem 1.1, we first improve the running time to O(mn) using a simpler algorithm with
a simpler correctness proof than that of Chudnovsky and Seymour. The remaining improvement is
done employing dynamic graph algorithms.

∗An extended abstract to appear in Proceedings of the 52nd Annual ACM Symposium on Theory of Computing, 2020.
†Department of Computer Science and Information Engineering, National Taiwan University. A preliminary version of

the paper appeared as the master’s thesis of this author [63]. baaldiablo3@gmail.com.
‡Corresponding author. Department of Computer Science and Information Engineering, National Taiwan University.

Address: 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC. Research of this author is supported by MOST grants
107–2221–E–002–032–MY3 and 104–2221–E–002–044–MY3. hil@csie.ntu.edu.tw.

§Department of Computer Science, University of Copenhagen, Denmark. mikkel2thorup@gmail.com. Research of this
author is supported by VILLUM Investigator Grant 16582, Basic Algorithms Research Copenhagen (BARC).

1

ar
X

iv
:1

90
9.

07
44

6v
3

 [
cs

.D
S]

 2
1

A
pr

 2
02

0

best previously known results our work

three-in-a-tree O(n4) [28] Õ(n2): Theorem 1.1

theta O(n11) [28] Õ(n6): Theorem 1.2

pyramid O(n9) [18] Õ(n5): Theorem 1.3

perfect graph O(n9) [18] O(n8): Theorem 1.4

odd hole O(n9) [26] O(n8): Theorem 1.4

beetle O(n11) [15] Õ(n6): Theorem 1.5

even hole O(n11) [15] O(n9): Theorem 1.6

Figure 1: Comparing our work with the best previously known results for an n-vertex graph.

1.1 Significance of three-in-a-tree

The three-in-a-tree problem may seem like a toy problem, but it has proven to be of general impor-
tance because many difficult graph detection and recognition problems reduce to it. The reductions
are often highly non-trivial and one-to-many, solving three-in-a-tree on multiple graph instances
with different placements of the three terminals. With our near-linear three-in-a-tree algorithm and
some improved reductions, we get the results summarized Figure 1. These results will be explained
in more detail in Section 1.2.

Showcasing some of the connections, our improved three-in-a-tree algorithm leads to an improved
algorithm to detect if a graph has an odd hole, that is, an induced cycle of odd length above three.
This is via the recent odd-hole algorithm of Chudnovsky, Scott, Seymour, and Spirkl [26]. A highly
nontrivial consequence of odd-hole algorithm is that we can use it to recognize if a graph G is
perfect, that is, if the chromatic number of each induced subgraph H of G equals the clique number
of H. The celebrated Strong Perfect Graph Theorem states that a graph is perfect if and only if
neither the graph nor its complement has an odd hole. An odd-hole algorithm can therefore trivially
test if a graph is perfect. The Strong Perfect Graph Theorem, implying the last reduction was a
big challenge to mathematics, conjectured by Berge in 1960 [6, 7, 8] and proved by Chudnovsky,
Robertson, Seymour, and Thomas [25], earned them the 2009 Fulkerson prize. Our improved three-
in-a-tree algorithm improves the time to recognize if a graph is perfect from O(n9) to O(n8). While
this is a modest polynomial improvement, the point is that three-in-a-tree is a central sub-problem
on the path to solve many other problems.

The next obvious question is why three-in-a-tree? Couldn’t we have found a more general subprob-
lem to reduce to? The dream would be to get something like disjoint paths and graph minor theory
where we detect a constant sized minor or detect if we have disjoint paths connecting of a constant
number of terminal pairs (one path connecting each pair) in O(n2) time. This is using the algorithm
of Kawarabayashi, Kobayashi, and Reed [61], improving the original cubic algorithm of Robertson
and Seymour [71].

In light of the above grand achievements, it may seem unambitious for Chudnovsky and Seymour
to work on three-in-a-tree as a general tool. The difference is that the above disjoint paths and
minors are not necessarily induced subgraphs. Working with induced paths, many of the most
basic problems become NP-hard. Obviously, we can decide if there is an induced path between two
terminals, but Bienstock [9] has proven that it is NP-hard to decide two-in-a-cycle, that is, if two
terminals are in an induced cycle. From this we easily get that it is NP-hard to decide three-in-a-
path, that is if there is an induced path containing three given terminals. Both of these problems
would be trivial if we could solve the induced disjoint path problem for just two terminal pairs. In
connection with the even and odd holes and perfect graphs, Bienstock also proved that it is NP-hard

2

Figure 2: (a) Theta. (b) Pyramid. (c) Beetle.

to decide if there is an even (respectively, odd) hole containing a given terminal.

In light of these NP-hardness results it appears quite lucky that three-in-a-tree is tractable, and of
sufficient generality that it can be used as a base for solving other graph detection and recognition
problems nestled between NP-hard problems. In fact, three-in-a-tree has become such a dominant
tool in graph detection that authors sometimes explained when they think it cannot be used [29, 78],
e.g., Trotignon and Vušković [78] wrote “A very powerful tool for solving detection problems is the
algorithm three-in-a-tree of Chudnovsky and Seymour [...] But as far as we can see, three-in-a-tree
cannot be used to solve ΠH1|1

.”

While proving that a problem is in P is the first big step in understanding the complexity, there has
also been substantial prior work on improving the polynomial complexity for many of the problems
considered in this paper. In the next subsection, we will explain in more detail how our near-linear
three-in-a-tree algorithm together with some new reductions improve the complexity of different
graph detection and recognition problems. In doing so we also hope to inspire more new applications
of three-in-a-tree in efficient graph algorithms.

1.2 Implications

We are now going to describe the use of our three-in-a-tree algorithm to improve the complexity
of several graph detection and recognition problems. The reader less familiar with structural graph
theory may find it interesting to see how the route to solve the big problems takes us through several
toy-like subproblems, starting from three-in-a-tree. Often we look for some simple configuration
implying an easy answer. If the simple configuration is not present, then this tells us something
about the structure of the graph that we can try to exploit.

We first define the big problems in context. A hole is an induced simple cycle with four or more
vertices. A graph is chordal if and only if it has no hole. Rose, Tarjan, and Leuker [72] gave a linear-
time algorithm for recognizing chordal graphs. A hole is odd (respectively, even) if it consists of an
odd (respectively, even) number of vertices. G is Berge if G and its complement are both odd-hole-
free. The celebrated Strong Perfect Graph Theorem, which was conjectured by Berge [6, 7, 8] and
proved by Chudnovsky, Robertson, Seymour, and Thomas [25], states that G is Berge if and only if
G is perfect, i.e., the chromatic number of each induced subgraph H of G equals the clique number
of H.

The big problems considered here are the detection of odd and even holes, but related to this we are
going to look for “thetas”, “pyramids”, and “beetles”, as illustrated in Figure 2. These are different
induced subdivisions where a subdivision of a graph is one where edges are replaced by paths of

3

arbitrary length. A hole is thus an induced subdivision of a length-4 cycle, and a minimal three-in-
a-tree is an induced subdivision of a star with two or three leaves that are all prespecified terminals.

The first problem Chudnovsky and Seymour [28] solved using their three-in-tree algorithm was to
detect a theta which is any induced subdivision of K2,3 [5]. Chudnovsky and Seymour are interested
in thetas because they trivially imply an even hole. They developed the previously only known
polynomial-time algorithm, running in O(n11) time, for detecting thetas in G via solving the three-
in-a-tree problem on O(n7) subgraphs of G. Thus, Theorem 1.1 reduces the time to Õ(n9). Moreover,
we show in Lemma 6.1 that thetas in G can be detected via solving the three-in-a-tree problem on
O(mn2) n-vertex graphs, leading to an Õ(n6)-time algorithm as stated in Theorem 1.2.

Theorem 1.2. It takes O(mn4 log2 n) time to detect thetas in an n-vertex m-edge graph.

The next problem Chudnovsky and Seymour solved using their three-in-tree algorithm was to detect
a pyramid which is an induced subgraph consisting of an apex vertex u and a triangle v1v2v3 and
three paths P1, P2, and P3 such that Pi connects u to vi and touch Pj , j 6= i, only in u, and such that at
most one of P1, P2, and P3 has only one edge. The point in a pyramid is that it must contain an odd
hole. An O(n9)-time algorithm for detecting pyramids was already contained in the perfect graph
algorithm of Chudnovsky et al. [18, §2], but Chudnovsky and Seymour use their three-in-a-tree to
give a more natural “less miraculous” algorithm for pyramid detection, but with a slower running
time of O(n10). With our faster three-in-a-tree algorithm, their more natural pyramid detection also
becomes the faster algorithm with a running time of Õ(n8). Moreover, as for thetas, we improve
the reductions to three-in-a-tree. We show (see Lemma 6.2) that pyramids in G can be detected via
solving the three-in-a-tree problem on O(mn) n-vertex graphs, leading to an Õ(mn3)-time algorithm
as stated in Theorem 1.3.

Theorem 1.3. It takes O(mn3 log2 n) time to detect pyramids in an n-vertex m-edge graph.

We now turn to odd holes and perfect graphs. Since a graph is perfect if and only if it and its
complement are both odd-hole-free, an odd-hole algorithm implies a perfect graph algorithm, but
not vice versa. Cornuéjols, Liu, and Vušković [39] gave a decomposition-based algorithm for rec-
ognizing perfect graphs that runs in O(n18) time, which was reduced to O(n15) time by Charbit,
Habib, Trotignon, and Vušković [17]. The best previously known algorithm, due to Chudnovsky,
Cornuéjols, Liu, Seymour, and Vušković [18], runs in O(n9) time. However, the tractability of de-
tecting odd holes was open for decades [30, 33, 37, 59] until recently. Chudnovsky, Scott, Seymour,
and Spirkl [26] announced an O(n9)-time algorithm for detecting odd holes, which also implies a
simpler O(n9)-time algorithm for recognizing perfect graphs. An O(n9)-time bottleneck of both of
these perfect-graph recognition algorithms was the above mentioned algorithm for detecting pyra-
mids [18, §2].

By Theorem 1.3, the pyramids can now be detected in Õ(mn3)-time, but Chudnovsky et al.’s odd-
hole algorithm has six more O(n9)-time subroutines [26, §4]. By improving all these bottle-neck
subroutines, we improve the detection time for odd holes to O(m2n4), hence the recognition time
for perfect graphs to O(n8).

Theorem 1.4. (1) It takes O(m2n4) time to detect odd holes in an n-vertex m-edge graph, and hence
(2) it takes O(n8) time to recognize an n-vertex perfect graph.

Even-hole-free graphs have been extensively studied [2, 34, 35, 40, 41, 52, 62, 74]. Vušković
[83] gave a comprehensive survey. Conforti, Cornuéjols, Kapoor, and Vušković [32, 36] gave the
first polynomial-time algorithm for detecting even holes, running in O(n40) time. Chudnovsky,
Kawarabayashi, and Seymour [20] reduced the time to O(n31). A prism consists of two vertex-
disjoint triangles together with three vertex-disjoint paths between the two triangles such that the

4

union of every two of the three paths induces a cycle. Chudnovsky et al. [20] also observed that
the time of detecting even holes can be further reduced to O(n15) as long as detecting prisms is not
too expensive, but this turned out to be NP-hard [68]. However, Chudnovsky and Kapadia [19] and
Maffray and Trotignon [68, Algorithm 2] devised O(n35)-time and O(n5)-time algorithms for detect-
ing prisms in theta-free and pyramid-free graphs G, respectively. Later, da Silva and Vušković [41]
improved the time of detecting even holes in G to O(n19). The best formerly known algorithm, due
to Chang and Lu [15], runs in O(n11) time. One of its two O(n11)-time bottlenecks [15, Lemma 2.3]
detects so-called beetles in G via solving the three-in-a-tree problem on O(n7) subgraphs of G. Theo-
rem 1.1 reduces the time to Õ(n9). Moreover, we show in Lemma 6.3 that beetles can be detected via
solving the three-in-a-tree problem on O(m2) n-vertex graphs, leading to an Õ(n6)-time algorithm
as stated in Theorem 1.5.

Theorem 1.5. It takes O(m2n2 log2 n) time to detect beetles in an n-vertex m-edge graph.

Combining our faster beetle-detection algorithm with our O(n9)-time algorithm in §6.3, which is
carefully improved from the other O(n11)-time bottleneck subroutine [15, Lemma 2.4], we reduce
the time of detecting even holes to O(n9) as stated in Theorem 1.6.

Theorem 1.6. It takes O(m2n5) time to detect even holes in an n-vertex m-edge graph.

For other implications of Theorem 1.1, Lévêque, Lin, Maffray, and Trotignon gave O(n13)-time and
O(n14)-time algorithms for certain properties ΠB4

and ΠB6
, respectively [66, Theorems 3.1 and 3.2].

By Theorem 1.1 and the technique of §6.2.1, the time can be reduced by a Θ(n5/log2 n) factor.
Theorem 1.1 also improves the algorithms of van ’t Hof, Kaminski, and Paulusma [81, Lemmas 4
and 5]. We hope and expect that three-in-a-tree with its new near-optimal efficiency will find many
other applications in efficient graph algorithms.

1.3 Other related work

For the general k-in-a-tree problem, we are given k specific terminals in G, and we want to decide
if G has an induced tree T . The k-in-a-tree problem is NP-complete [43] when k is not fixed. With
our Theorem 1.1, it can be solved in near-linear time for k ≤ 3, and the tractability is unknown for
any fixed k ≥ 4 [54]. Solving it in polynomial time for constant k would be a huge result. It is,
however, not clear that k-in-a-tree for k > 3 would be as powerful a tool in solving other problems
as three-in-a-tree has proven to be.

While k-in-a-tree with bounded k is unsolved for general graphs, there has been substantial work
devoted to k-in-a-tree for special graph classes. Derhy, Picouleau, and Trotignon [44] and Liu and
Trotignon [67] studied k-in-a-tree on graphs with girth at least k for k = 4 and general k ≥ 4,
respectively. Dos Santos, da Silva, and Szwarcfiter [48] studied the k-in-a-tree problem on chordal
graphs. Golovach, Paulusma, and van Leeuwen [54] studied the k-in-a-tree, k-in-a-cycle, and k-
in-a-path problems on AT-free graphs [65]. Bruhn and Saito [13], Fiala, Kaminski, Lidický, and
Paulusma [50], and Golovach, Paulusma, and van Leeuwen [55] studied the k-in-a-tree and k-in-a-
path problems on claw-free graphs.

See [1, 4, 11, 14, 16, 21, 22, 23, 24, 27, 37, 46, 47, 49, 51, 53, 57, 70, 73] for more work on
graph detection, recognition, and characterization. Also see [12, Appendix A] for a survey of the
recognition complexity of more than 160 graph classes.

On the hardness side, recall that three-in-a-tree can also be viewed as three in a subdivided star with
two or three terminal leaves. However, detecting such a star with 4 terminal leaves is NP-hard. (This
follows from Bienstock’s NP-hardness of 2-in-a-cycle [9], asking if there exists a hole containing two

5

vertices u and v, which may be assumed to be nonadjacent: Add two new leaves u1 and u2 adjacent
to u and then, for every two neighbors v1 and v2 of v, check if the new graph contains an induced
subdivision of a star with exactly four terminal leaves u1, u2, v1, v2.) Even without terminals, it is
NP-hard to detect induced subdivisions of any graph with minimum degree at least four [4, 66].
Finally, we note that if we allow multigraphs with parallel edges, then even 2-in-a-path becomes NP-
hard. This NP-hardness is an easy exercise since the induced path cannot contain both end-points
of parallel edges.

We note that it is the subdivisions that make induced graph detection hard for constant sized pat-
tern graphs. Without subdivisions, we can trivially check for any induced k-vertex graph in O(nk)
time. Nesetril and Poljak has improved this to roughly O(nkω/3) where ω is the exponent of matrix
multiplication [69]. On the other hand, the ETH hypothesis implies that we cannot detect if a k-
clique is a(n induced) subgraph in no(k) time [60]. A more general understanding of the hardness
of detecting induced graphs has been presented recently in [42].

1.4 Techniques

Chudnovsky and Seymour’s O(n2m)-time algorithm for the three-in-a-tree problem is based upon
their beautiful characterization for when a graph with three given terminals are contained in some
induced tree [28]. The aim is to either find a three-in-a-tree or a witness that it cannot exist. During
the course of the algorithm, they develop the witness to cover more and more of the graph. In each
iteration, they take some part that is not covered by the current witness and try to add it in, but
then some other part of the witness may pop out. They then need a potential function argument to
show progress in each iteration.

What we do is to introduce some extra structure to the witness when no three-in-a-tree is found, so
that when things are added, nothing pops out. This leads to a simpler more constructive algorithm
that is faster by a factor n. Our new witness has more properties than that of Chudnovsky and
Seymour, so our characterization of no three-in-a-tree is strictly stronger, yet our overall proof is
shorter. Essentially the point is that by strengthening the inductive hypothesis, we get a simpler
inductive step. The remaining improvement in speed is based on dynamic graph algorithms.

1.5 Road map

The rest of the paper is organized as follows. Section 2 is a background section where we review
Chudnovsky and Seymour’s characterization for three-in-a-tree, sketch how it is used algorithmi-
cally, as well as the bottleneck for a fast implementation. Section 3 presents our new stronger
characterization as well as a high level description of the algorithms and proofs leading to our Õ(m)
implementation. Section 4 proves the correctness of our new characterization. Section 5 provides
an efficient implementation. Finally, Section 6 shows how our improved three-in-a-tree algorithm,
in tandem with other new ideas, can be used to improve many state-of-the-art graph recognition
and detection algorithms. Section 7 concludes the paper.

6

Figure 3: (a) An X -net H with nodes V1, . . . , V4 and arcs E1, E2, E3, where X consists of the vertices
other than 4,5, 6. Vertices 4 and 5 areH-local. Vertex 6 isH-nonlocal. (b) A nonlocal netH having
a triad ∆(V4, V5, V6) = {6, 8,9}. Vertex 5 is H-local. Vertex 4 is H-nonlocal.

2 Background

2.1 Preliminaries

Let |S| denote the cardinality of set S. Let R\S for sets R and S consist of the elements of R not in S.
Let G and H be graphs. Let V (G) (respectively, E(G)) consist of the vertices (respectively, edges) of
G. Let u and v be vertices. Let U and V be vertex sets. Let NG(u) consist of the neighbors of u in G.
The degree of u in G is |NG(u)|. Let NG[u] = NG(u)∪ {u}. Let NG(U) be the union of NG(u) \ U over
all vertices u ∈ U . Let NG(u, H) = NG(u) ∩ V (H) and NG(U , H) = NG(U) ∩ V (H). The subscript G
in notation NG may be omitted. A leaf of G is a degree-one vertex of G. Let ∇(G) denote the graph
obtained from G by adding an edge between each pair of leaves of G. Let G[H] denote the subgraph
of G induced by V (H). Let G − U = G[V (G) \ U]. Let G − u = G − {u}. Let uv denote an edge with
end-vertices u and v. Graphs H1 and H2 are disjoint if V (H1)∩ V (H2) = ∅. Graphs H1 and H2 are
adjacent in G if H1 and H2 are disjoint and there is an edge uv of G with u ∈ V (H1) and v ∈ V (H2).
A UV-path is either a vertex in U ∩V or a path having one end-vertex in U and the other end-vertex
in V . A UV-rung [28] is a vertex-minimal induced UV -path. If U = {u}, then a UV -path is also
called a uV -path and a Vu-path. If U = {u} and V = {v}, then a UV -path is also called a uv-path.
Let U v-rung, uV -rung, and uv-rung be defined similarly.

For the three-in-a-tree problem, we assume without loss of generality that the three given terminals
of the input n-vertex m-edge simple undirected graph G are exactly the leaves of G. A sapling of G
is an induced tree containing all three leaves of G, so the three-in-a-tree problem is the problem of
finding a sapling.

2.2 Chudnovsky and Seymour’s characterization

Let H be a graph such that each member of V (H) and E(H), called node and arc respectively, is a
subset of X ⊆ V (G). H is an X -net of G if the following Conditions N hold (see Figure 3(a)):

N1: Graph H is connected and graph ∇(H) is biconnected.
N2: The arcs of H form a nonempty disjoint partition of the vertex set X .
N3: Graph H has exactly three leaf nodes, each of which consists of a leaf vertex of G.
N4: For any arc E = UV of H, each vertex of X in E is on a UV -rung of G[E].
N5: For any arc E and node V of H, E ∩ V 6=∅ if and only if V is an end-node of E in H.

7

N6: For any vertices u and v in X contained by distinct arcs E and F of H, uv is an edge of G if and
only if arcs E and F share a common end-node V in H with {u, v} ⊆ V .

An arc E = UV is simple if G[E] is a UV -rung. A net is an X -net for an X . A base net is a net obtained
via the next lemma, for which we include a proof to make our paper self-contained.

Lemma 2.1 (Chudnovsky and Seymour [28]). It takes O(m) time to find a sapling of G or a net of G
whose arcs are all simple.

Proof. Let s1, s2, s3 be the leaves of G. Obtain vertex sets R and S such that G[S] is an s2s3-rung of
G and G[R] is an s1S-rung of G. Let x1 ∈ R \ S be closest to S in G[R]. Let each x j ∈ N(x1, S) with
j ∈ {2, 3} be closest to s j in G[S]. Since s2 and s3 are leaves of G, x2 and x3 are internal vertices of
path G[S]. If x2 = x3, then G[R ∪ S] is a sapling of G. If x2 and x3 are distinct and nonadjacent,
then G[R ∪ S] − I is a sapling of G, where I consists of the internal vertices of the x2 x3-path in
G[S]. If x2 and x3 are adjacent in G, then G admits an R∪S-net having nodes V0 = {x1, x2, x3} and
Vi = {si} with i ∈ {1, 2,3} and simple arcs Ei = V0Vi with i ∈ {1, 2,3} consisting of the vertices of
the si x i-rung of G[R∪ S].

The original definition of Chudnovsky et al. only used nets with no parallel arcs, but for our own
more efficient construction, we need to use parallel arcs. A triad of H is ∆(V1, V2, V3) = (V1 ∩ V2)∪
(V2 ∩ V3) ∪ (V3 ∩ V1) for nodes V1, V2, and V3 that induce a triangle in graph H. A subset S of X is
H-local if S is contained by a node, arc, or triad of H [28]. A set Y ⊆ V (G − X) is H-local if N(Y, X)
is H-local. H is local if every Y ⊆ V (G − X) with connected G[Y] is H-local. See Figure 3. The
following theorem is Chudnovsky and Seymour’s characterization.

Theorem 2.2 (Chudnovsky and Seymour [28, 3.2]). G is sapling-free if and only if G admits a local
net with no parallel arcs.

The proof of Theorem 2.2 in [28] takes up more than 20 pages. We will here present a stronger
characterization with a shorter proof, which moreover leads to a much faster implementation. Our
results throughout the paper do not rely on Theorem 2.2. Moreover, our paper delivers an alternative
self-contained proof for Theorem 2.2.

Chudnovsky and Seymour’s proof of Theorem 2.2 is algorithmic maintaining an X -net H with X ⊆
V (G) having no parallel arcs until a sapling of G is found or H becomes local, implying that G
is sapling-free by the if direction of Theorem 2.2. In each iteration, if H is not local, they find a
minimal set Y ⊆ V (G − X) with connected G[Y] such that Y is H-nonlocal. Their proof for the
only-if direction of Theorem 2.2 shows that if G[X ∪ Y] is sapling-free, then H can be updated to
an X ′-net with Y ⊆ X ′ ⊆ X ∪ Y . Although Y joins the resulting X ′-net H, a subset of X may have to
be moved out ofH to preserve Conditions N forH. To bound the number of iterations, Chudnovsky
and Seymour showed that the potential |X | + (n + 1) · |V (H)| of H stays O(n2) and is increased
by each iteration, implying that the total number of iterations is O(n2). In the next section, we will
present a new stronger characterization that using parallel arcs with particular properties avoids the
aforementioned in-and-out situation. More precisely, our X will grow in each iteration, reducing the
number of iterations to at most n.

3 Our stronger characterization

A base net of G contains only simple arcs. However, we do need other more complex arcs, but we
will show that it suffices that all non-simple arcs are “flexible” in the sense defined below. For vertex
sets S, V1, and V2, an (S, V1, V2)-sprout is an induced subgraph of G in one of the following Types S:

8

Figure 4: A web H. The arcs of ∇(H) between the three leaves of H are in yellow.

S1: A tree intersecting each of S, V1, and V2 at exactly one vertex.
S2: An SV1-rung not intersecting V2 plus a disjoint SV2-rung not intersecting V1.
S3: A V1V2-rung not intersecting S plus a disjoint SV -rung with V = V1 ∪ V2.

Let S = {1, . . . , 7} for the example in Figure 4. Vertex 1 is an (S, V1, V2)-sprout of Type S1. The
set {2,19, 12,11, 13,14, 15,16} induces an (S, V1, U2)-sprout of Type S1. The only (S, U1, U2)-sprout
and (S, W1, W2)-sprout of Type S1 contain vertex 1. The set {23, 4,7, 28} induces an (S, W1, W2)-
sprout of Type S2. The set {19,2, 13,14, 15,16} induces an (S, U1, U2)-sprout of Type S3. An arc
E = UV ofH is flexible if G[E] contains an (S, U , V)-sprout for each nonempty vertex set S ⊆ E. For
the example in Figure 4, arcs E1, E3, E4, E5, E6 are simple and arcs E1, E2, E7 are flexible. An X -net
H is an X -web if all arcs of H are simple or flexible. A web is an X -web for some X . A base net of G
is a web of G. Let H be a net. A split component G for H is either an arc UV of H or a subgraph of
H containing a cutset {U , V} of ∇(H) such that G is a maximal subgraph of ∇(H) in which U and
V are nonadjacent and do not form a cutset [45]. For both cases, we call {U , V} the split pair of G
for H. The split components having split pair {V1, V2} in Figure 4 are (1) the V1V2-path with an arc
E1, (2) the V1V2-path with arcs E3, E2, E4, and (3) the V1V2-path with arcs E5, E7, E6. Thus, even ifH
has no parallel arcs, there can be more than one split components sharing a common split pair. One
can verify that each split component G of H contains at most one leaf node of H and, if G contains
a leaf node V ofH, then V belongs to the split pair of G. A vertex subset C of G is a chunk ofH if C
is the union of the arcs of one or more split components forH that share a common split pair {U , V}
forH. In this case, we call {U , V} the split pair of C forH and call C a UV-chunk ofH. A chunk ofH
is maximal if it is not properly contained by any chunk of H. A node of H is a maximal split node if
it belongs to the split pair of a maximal chunk forH. For the netH of G in Figure 4, E1, E3, E3∪ E2,
E3 ∪ E2 ∪ E4, and E1 ∪ E3 ∪ E2 ∪ E4 are all chunks of H. If we consider only the subsets of V (G) that
intersect the numbered vertices, then E1 ∪ · · · ∪ E7 is the only maximal chunk and V1 and V2 are the
only maximal split nodes. Given an X -net H, a subset S of X is H-tamed if every pair of vertices
from S is either in the same arc or together in some node of H. A set Y ⊆ V (G − X) is H-tamed if
N(Y, X) is H-tamed. H is taming if every Y ⊆ V (G − X) with connected G[Y] is H-tamed. If S ⊆ X
is H-local, then S is H-tamed. The converse does not hold: If H has simple arcs E and F between
nodes U and V , G[E] is an edge uv with u ∈ U and v ∈ V , and G[F] is a vertex w ∈ U ∩ V , then

9

Figure 5: The aiding net of theH in (a) is theH † in (b) with E†
2 = E2∪· · ·∪E8 and E†

3 = E9∪· · ·∪E15.
The net H in (c) aids itself.

{u, v, w} is H-tamed and H-nonlocal. However, if H has no parallel arcs, then each H-tamed subset
of X is H-local, as shown in Lemma 3.5(2).

A non-trivial V1V2-chunk C ofH is one that is not an arc inH. We then define the operation MERGE(C)
which for a V1V2-chunk C of H replaces all arcs of H intersecting C by an arc E = V1V2 with E = C
and deletes the nodes whose incident arcs are all deleted. We shall prove that this MERGE operation
preserves that H is a net (see Lemma 3.4). Let H † denote the X -net obtained from H by applying
MERGE(C) on H for each maximal chunk C of H. We call H † the X -net that aids H. Such an aiding
net has no non-trivial chunks and no parallel arcs. See Figure 5 for examples. The simple graph
∇(H †) is triconnected. V is node of H † if and only if V is a maximal split node of H. E is an
arc of H † if and only if E is a maximal chunk of H (respectively, H †). The next theorem is our
characterization, which is the basis for our much more efficient near-linear time algorithm.

Theorem 3.1. G is sapling-free if and only if G admits a web H with a taming aiding net H †.

Theorem 3.1 is stronger than Chudnovsky and Seymour’s Theorem 2.2 in that our proof of Theo-
rem 3.1 provides as a new shorter proof of Theorem 2.2. To quantify the difference, the proof of
Theorem 2.2 in [28] takes up more than 20 pages while our proof of our stronger Theorem 3.1 is
self-contained and takes up 13 pages (pages 7–19) including the review of their structure, many
more figures, and a simpler O(mn)-time algorithm. For the relation between the two structural the-
orems, we will prove in Lemma 3.5(2) that every taming net of G having no parallel arcs is local.
Since the aiding netH † in Theorem 3.1 has no parallel arcs,H † is local as required by Theorem 2.2.
The algorithmic advantage of Theorem 3.1 is that we know that H † is the aiding net of a web H
which has more structure than an arbitrary net.

To get a self-contained proof of the easy if-direction of Theorem 3.1, we prove more generally that
if G admits a taming net, then G is sapling-free (Lemma 3.5(1)). This proof holds for any net
including nets with parallel arcs like our web H. Proving the only-if direction is the hard part for
both structural theorems. Our new proof follows the same general pattern as the old one stated
after the statement of Theorem 2.2, but with crucial differences to be detailed later.

We grow an X -web H with X ⊆ V (G) until a sapling of G is found or H † becomes taming, implying
that G is sapling-free by the if direction of Theorem 3.1. In each iteration, if H † is not taming, we
find a minimal set Y ⊆ V (G − X) with connected G[Y] such that Y is not H †-tamed. To prove the
only-if direction of Theorem 3.1, we show that if G[X ∪ Y] is sapling-free, then H can be expanded
to an X ′-web with X ′ = X ∪ Y .

10

Figure 6: An X -web H, where X consists of the vertices other than y1, y2, y3, y4. Vertices y1, . . . , y4
are all H-tamed and H †-tamed. Y1 and Y2 are H-wild and H †-nonwild. Y3 is H-wild and H †-wild.
Y1 is H-solid. Y2 and Y3 are H-nonsolid. E1, E1 ∪ E2 ∪ E3, and E1 ∪ E2 ∪ E3 ∪ E4 are pods of Y1 and
Y2 in H. Y3 is H-unpodded. Y1 and Y2 are H-sticky and Y3 is H-nonsticky.

Comparing with the proof of Chudnovsky and Seymour that we sketched below Theorem 2.2, we
note that in their case, their new X ′-net would be for some Y ⊆ X ′ ⊆ X ∪ Y , whereas we get
X ′ = X ∪ Y . This is why we can guarantee termination in O(n) rounds while they need a more
complicated potential function to demonstrate enough progress in O(n2) rounds.

Another important difference is that we operate both on a web H and its aiding net H †. Recall that
the web H is a net allowing parallel arcs, but with the special structure that all arcs are simple or
flexible. This special structure is crucial to our simpler inductive step where we can always add Y as
above to get a new web over X ′ = X ∪Y . If we just usedH, then we would have too many untamed
sets. This is where we use the aiding net H † which generally has fewer untamed sets. It is only
for the minimally H †-untamed sets Y ⊆ V (G − X) that we can guarantee progress as above. Thus
we need the interplay between the well-structured fine grained web H and its more coarse grained
aiding net H † to get our shorter more constructive proof of Theorem 3.1. On its own, our more
constructive characterization buys us a factor n in speed. This has to be combined with efficient
data structures to get down to near-linear time.

3.1 Two major lemmas and our algorithm for detecting saplings

LetH be an X -net. AnH-wild set is a minimallyH-untamed Y ⊆ V (G−X) such that G[Y] is a path.
In Figure 6, Y1∪ Y2 isH-untamed but notH-wild, since Y1 (Y1∪ Y2 isH-untamed. H is not taming
if and only if G admits an H-wild set. An S ⊆ X is H-solid if S is a node of H or S is a subset of
an arc E = UV of H such that G[E] contains no (S, U , V)-sprout. If S is a subset of a simple arc of
H, then S is H-solid if and only if G[S] is an edge, since a sprout has to be an induced subgraph
of G. Let Y ⊆ V (G − X) such that G[Y] is a path. Y is H-solid if (1) N(Y, X) is the union of two
H-solid sets and (2) N(y, X) = ∅ for each internal vertex y , if any, of path G[Y]. A pod of Y in H
is a V1V2-chunk C of H with the following Conditions P:

P1: N(Y, X) ⊆ V1 ∪ C ∪ V2.
P2: For each i ∈ {1,2}, N(y, Vi) ⊆ C or Vi ⊆ C ∪ N(y) holds for an end-vertex y of path G[Y].

Y is H-podded if Y admits a pod in H. Y is H-sticky if Y is H-solid or H-podded. See Figure 6.

Lemma 3.2. Let Y be anH †-wild set for an X -webH. (1) If Y isH-nonsticky, then G[X ∪Y] contains
a sapling. (2) If Y is H-sticky, then H can be expanded to an X ∪ Y -web.

11

By Lemmas 2.1 and 3.2 and Theorem 3.1, the following algorithm detects saplings in G:

Algorithm A

Step A1: If a sapling of G is found (Lemma 2.1), then exit the algorithm.
Step A2: Let X -web H be the obtained base net of G and then repeat the following steps:
(a) If H † is taming, then report that G is sapling-free (if-direction of Theorem 3.1) and exit.
(b) If H † is not taming, then obtain an H †-wild set Y .
(c) If Y is H-nonsticky, then report that G[X ∪ Y] contains a sapling (Lemma 3.2(1)) and exit.
(d) If Y is H-sticky, then expand H to an X ∪ Y -web (Lemma 3.2(2)).

Lemma 3.3. Algorithm A can be implemented to run in O(m log2 n) time.

3.2 Reducing Theorems 1.1, 2.2, and 3.1 to Lemmas 3.2 and 3.3 via aiding net

We need a relationship between simple paths inH and induced paths in G. For any simple UV -path
P ofH (i.e., U and V are the end-nodes ofP inH), we define aP-rung of G as a UV -rung of G where
all edges are contained in the arcs of P. Such a P-rung always exists by Conditions N4 and N6 ofH
as long as U 6= V . For the degenerate case U = V , let P-rung be defined as the empty vertex set. For
any distinct nodes U1 and U2 of H intersecting a V1V2-chunk C of H, there are disjoint UV-rungs
P1 and P2 of H with U = {U1, U2} and V = {V1, V2} by Condition N1 of H. Since P1 and P2 are
disjoint, any P1-rung and P2-rung of G are disjoint and nonadjacent by Conditions N2 and N6 of
H. Consider the V1V2-chunk C = E1∪ · · ·∪ E7 in Figure 4. Let V = {V1, V2}. Let P1 be the path ofH
with arc E3. Let P2 be the path of H with arc E4. Let P3 be the path of H with arcs E6 and E7. Let
P4 be the degenerate path of H consisting of a single node V1. If U= {U1, U2}, then P1 and P2 are
disjoint UV-rungs. If U = {U1, W1}, then P1 and P3 are disjoint UV-rungs of H. If U = {V1, W1},
then P3 and P4 are disjoint UV-rungs of H. The path of G induced by vertex set {11,12} is the
unique P1-rung of G. The path of G induced by vertex set {17,18} is the unique P2-rung of G. The
paths induced by vertex sets {25, 26,27,5, 4,23} and {25,26, 28,7, 6,24} are the two P3-rungs of
G. The empty vertex set is the unique P4-rung of G.

Lemma 3.4. If C is a V1V2-chunk of an X -net H, then applying MERGE(C) on H results in an X -net.

Proof. Let H ′ be the resulting H. Since any node cutset of H ′ is also a node cutset of H, Condi-
tions N1 ofH ′ holds. Conditions N2 and N3 ofH ′ hold trivially. Conditions N5 and N6 ofH ′ follow
from those of H. To see Condition N4 of H ′, let x be a vertex in C . Let E = U1U2 be the arc of H
containing x . There are disjoint UV-rungs P1 and P2 of H with U = {U1, U2} and V = {V1, V2}.
Let each Pi with i ∈ {1, 2} be a Pi-rung of G[C]. Let Q be a U1U2-rung of G[E] containing x .
G[P1 ∪Q ∪ P2] is a V1V2-rung of G[C] containing x .

Lemma 3.5. (1) If G admits a taming net, then G is sapling-free. (2) If an X -net H has no parallel
arcs, then every H-tamed subset of X is H-local.

Since any H-local subset of X for any X -net H is H-tamed, Lemma 3.5(1) implies the if direction of
Chudnovsky et al.’s Theorem 2.2. Moreover, by Lemma 3.5(2), the only-if direction of Theorem 3.1
implies the only-if direction of Theorem 2.2. Thus, our proofs for Lemma 3.5 and the only-if direction
of Theorem 3.1 form a self-contained proof for Theorem 2.2.

Proof of Lemma 3.5. Statement 1: Assume a taming net H and a sapling T of G for contradiction.
By Condition N6 of H, any two adjacent vertices in T contained by distinct arcs of H belong to a
node. If G[Y] is a connected component of T − X , then vertices u and v of T in N(Y, X) belong to

12

an arc of H: If u and v were in distinct arcs, then {u, v} would be contained by a node of H, since
H is taming. By Condition N6 of H, uv is an edge of G, contradicting that T is an induced tree. By
Conditions N2, N3, and N5 ofH, the nodes and arcs ofH intersecting T form a three-leaf connected
subgraph T of H. Thus, T intersects a node of T and three of its incident arcs in T. Condition N6
implies a triangle in T , contradiction.

Statement 2: Assume an H-tamed H-nonlocal S ⊆ X for contradiction. Let E1, . . . , E` with ` ≥ 2 be
the arcs of H intersecting S. Since S is H-tamed, any Ei and E j with 1 ≤ i < j ≤ ` share a common
end-node. If there is a common end-node V of E1, . . . , E`, then the other end-nodes of Ei with
i ∈ {1, . . . ,`} are pairwise distinct, since H has no parallel arcs. Since S is H-tamed, Condition N6
implies S ⊆ V , contradicting that S is H-nonlocal. Thus, ` = 3 and E1, E2, E3 form a triangle of H.
Since S is H-nonlocal, there a vertex x i ∈ Ei \ Vi with i ∈ {1, 2,3} for an end-node Vi of Ei . Let
x j be a vertex of S in the arc E j with j ∈ {1, 2,3} \ {i} incident to Vi . {x i , x j} ⊆ S is H-untamed,
contradicting that S is H-tamed.

Proof of Theorems 1.1 and 3.1. The if direction of Theorem 3.1 follows from Lemma 3.5(1). To see
the only-if direction of Theorem 3.1, letH be an X -web with maximum |X | as ensured by Lemma 2.1.
If H † were not taming, then any H †-wild Y would be H-sticky by Lemma 3.2(1), which in turn
implies an X ∪ Y -web by Lemma 3.2(2), contradicting the maximality of H. Thus Theorem 3.1
follows. By Lemmas 2.1 and 3.2 and the if direction of Theorem 3.1, Algorithm A correctly detects
saplings in G. Thus, Theorem 1.1 follows from Lemma 3.3.

Lemma 3.3 is not needed in the above reduction of Theorem 3.1 or else our proof of Theorem 2.2
would not be shorter than that in [28]. To complete proving Theorems 2.2 and 3.1, we prove
Lemma 3.2 in §4. After that, to complete proving Theorem 1.1, we prove Lemma 3.3 in §5.

4 Proving Lemma 3.2

The following lemma is needed in the proofs of Lemma 3.2(1) in §4.1 and Lemma 3.2(2) in §4.2.
For any chunk C of a net H, the arc set C of H for C consists of the arcs of H that intersect C .

Lemma 4.1. Let H be an X -web. (1) If Y is an H †-wild set, then Y is H †-podded if and only if Y is
H-podded. (2) Each H †-solid subset of X is H-solid.

Proof. Statement 1: The only-if direction is straightforward, since each V1V2-chunk ofH † is a V1V2-
chunk ofH. For the if direction, let C be a V1V2-chunk ofH that satisfies all Conditions P for Y . The
maximal chunk ofH containing C is an arc E† =W1W2 ofH †. By N(Y, X) ⊆ V1∪C∪V2 ⊆W1∪E†∪W2,
Condition P1 holds for E† inH †. Since Y isH †-untamed, N(Y, X) intersects (W1∪W2)\E†, implying
{V1, V2} ∩ {W1, W2} 6= ∅. Let V1 = W1 and W1 \ E† ⊆ V1 \ C ⊆ N(Y, X) without loss of generality.
If N(Y, X) does not intersect W2 \ E†, then Condition P2 holds for Y in H †. Otherwise, we have
V2 =W2 and W2 \ E† ⊆ V2 \ C ⊆ N(Y, X), also implying Condition P2 of Y in H †. Thus, E† is a pod
of Y in H †.

Statement 2: It suffices to consider the case that the H †-solid subset S of X is not a node of H,
implying that S is not a node of H †. Let W = {W1, W2} for the arc C = W1W2 of H † with S ⊆ C .
G[C] contains no (S, W1, W2)-sprout. The rest of the proof lets all sprouts be (S, W1, W2)-sprouts
unless explicitly specified otherwise. Let Ei with 1 ≤ i ≤ |C| be the arcs in the arc set C of H for
C . Let Vi consist of the end-nodes of Ei . For any i and j that may not be distinct, let Pi, j and Qi, j
be disjoint WVi-rung and WV j-rung of H. Let Pi, j be a Pi, j-rung of G. Let Q i, j be a Qi, j-rung of
G. Let Ui, j be the end-node of Pi, j in Vi . Let Vi, j be the end-node of Qi, j in V j . If S ⊆ Ei for an
i ∈ {1, . . . , |C|}, then G[Ei] contains no (S, Ui,i , Vi,i)-sprout T or else G[T ∪ Pi,i ∪Q i,i] would be a

13

sprout of G[C]. Thus, S is H-solid. The rest of the proof assumes for contradiction that S intersects
two or more arcs of C.

We first show that S is contained by a node of H. For any distinct i and j such that S intersects
both Ei and E j , let r be an arbitrary vertex in S ∩ Ei and s be an arbitrary vertex in S ∩ E j . Let
P = G[Pi, j ∪ P ′] and Q = G[Q i, j ∪Q′] for arbitrary rUi, j-rung P ′ of G[Ei] and sVi, j-rung Q′ of G[E j].
By Conditions N2 and N5, P − r and Q − s are disjoint and nonadjacent, implying that r and s are
adjacent or else G[P ∪Q] would contain a sprout of Type S2 in G[C]. Since r and s are arbitrary,
Condition N6 implies S (U for a node U of H: If S is not contained by any node of H, then S is
contained by ∆(V1, V2, V3) and intersects V1 ∪ V2, V2 ∩ V3, and V3 ∩ V1 for nodes V1, V2, V3 of H. Let
V = {V1, V2, V3}. Let Pi and P j with {i, j} ⊆ {1,2, 3} be disjoint VW-rungs of C such that Vi and Vj
are the end-nodes of Pi and P j in V. G[Pi ∪{v}∪ Pj] for v ∈ S∩Vi ∩Vj and Pi-rung Pi and P j-rung
Pj of G[C] is a sprout of Type S1, contradiction.

For any arcs Ei = UVi and E j = UVj of C with Vi 6= Vj , we say that Ei evades E j if there are disjoint
VW-rungs P and Q of H with V = {Vi , Vj} such that P ∪Q does not intersect U . Ei evades E j if
and only if E j evades Ei . If Ei evades E j and Ei intersects S, then E j ∩ U ⊆ S or else G[C] would
contain a sprout G[Pi∪Q j∪P∪Q] of Type S1, where Pi is an Ei-rung intersecting S, Q j is an E j-rung
intersecting U \ S, P is a P-rung, and Q is a Q-rung.

By S (U , E j ∩ U 6⊆ S holds for an arc E j = UVj . If each arc Ei = UVi intersecting S satisfies
Vi = Vj , then G[Pi,i ∪Q i,i ∪ R] for any UVi-rung R of G[Ei] that intersects S is a sprout of Type S1,
contradiction. Thus, an arc Ei = UVi with Vi 6= Vj intersects S. By E j ∩ U * S and Ei ∩ S 6= ∅, Ei
does not evade E j . We show contradiction by identifying an arc Ek = UVk with Vk /∈ {Vi , Vj} such
that Ei evades Ek, implying Ek ∩ U ⊆ S, and Ek evades E j , implying Ek ∩ S = ∅. Let Pi and P j be
disjoint VW-rungs of H with V = {Vi , Vj}. Since Ei does not evade E j , Pi ∪P j intersects U . Let P j
intersect U without loss of generality. U is the neighbor of Vj in P j . Let Ek = UVk be the incident
arc of U in P j with Vk 6= Vj . Let Q= P j −{U , Vj}. Since Pi and Q are disjoint VW-rungs of H with
V = {Vi , Vk} and Pi ∪Q does not intersect U , Ei evades Ek. Let R′ be a rung of (C∪ {W1W2})− U
between Vj and Pi . R

′ does not intersect Q or else Ei would evade E j . Let R be the VjW-rung of
Pi ∪R′. Since Q and R are disjoint VW-rungs ofH with V = {Vk, Vj} and Q∪R does not intersect
U , Ek evades E j .

4.1 Proving Lemma 3.2(1)

A net self-aids if it aids itself. Since the aiding net of any web self-aids, Lemma 3.2(1) is immediate
from Lemma 4.2 by Lemma 4.1.

Lemma 4.2. For self-aiding X -net H0 and H0-wild H0-nonsticky set Y , G[X ∪ Y] contains a sapling.

The rest of the subsection proves Lemma 4.2 using Lemmas 4.3, 4.4, and 4.5. Let L consist of the
leaves of the self-aiding net H in Lemma 4.3, 4.4, or 4.5. Since ∇(H) is triconnected, each nonleaf
node of H has degree at least three in H and any three-node set U of H admits pairwise disjoint
UL-rungsP1,P2,P3 ofH. By Condition N6 ofH, anyPi-rungs Pi of G with i ∈ {1,2, 3} are pairwise
disjoint and nonadjacent.

Lemma 4.3. If Y is an H-wild H-nonsticky set for a self-aiding X -net H of G such that NG(Y, X) =
M1∪M2 and each of M1 and M2 is contained by a node or arc ofH, then G[X ∪ Y] contains a sapling.

Proof. Let N = NG(Y, X). We start with proving the following statement.

Claim 1: If Mi ⊆ U with {i, j} = {1,2} holds for a node U and M j ⊆ U1 ∪ F holds for an end-node U1
of an arc F with U1 6= U, U \ F * Mi , and Mi * F, then G[X ∪ Y] contains a sapling.

14

Let R1 = {U1}. Since the degree of U is at least three, U \ F * Mi and Mi * F imply that the node
set consisting of the neighbors of U other than U1 in H admits a nonempty disjoint partition R2
and R3 such that (a) each arc between U and R2 intersects Mi and (b) each arc between U and R3
intersects U \ Mi . Let H ′ be the triconnected graph obtained from ∇(H) by (1) replacing node U
and its incident arcs with a triangle on a set W = {W1, W2, W3} of three new nodes and (2) adding
an arc between Wi and each node in Ri for all i ∈ {1, 2,3}. There are pairwise disjoint WL-rungs
P1,P2,P3 of H ′ such that each Pi with i ∈ {1,2, 3} is a Wi Li-rung with Li ∈ L. Let Q1 be the path
of H consisting of arc F and path P1 −W1. Let Q1 be the N L1-rung of a Q1-rung of G intersecting
M j . Let Q2 be the L2 L3-path ofH obtained from P2∪P3 by replacing the two arcs W2U2 and W3U3
with the two arcs UU2 and UU3. Let Q2 be a Q2-rung of G intersecting exactly one vertex in Mi ∩U .
N intersects each of Q1 and Q2 at exactly one vertex. Thus, G[Y ∪Q1 ∪Q2] contains a sapling of
G[X ∪ Y]. Claim 1 is proved.

Claim 2: If G[X ∪ Y] is sapling-free, then each Mi with i ∈ {1, 2} is H-solid.

To prove Claim 2 by Claim 1, let each Mi with i ∈ {1, 2} be contained by a node Vi or an arc Ei .
We first show that if M1 ⊆ V1 and M2 ⊆ V2, then V1V2 is not an arc. Assume an arc E = V1V2
for contradiction. Since Y is H-wild and H-unpodded, we have Vi * (E ∪ Mi) and Mi * E for
{i, j}= {1, 2}, contradicting Claim 1 with U = Vi , U1 = Vj , and F = E.

To see Claim 2(a): Mi ⊆ Vi for {i, j} = {1, 2} implies Mi = Vi , assume Vi * Mi . If M j ⊆ Vj , then ViVj
is not an arc, contradicting Claim 1 with U = Vi , U1 = Vj , and F being an incident arc of Vj . M j ⊆ E j
contradicts Claim 1 with U = Vi , F = E j , and U1 being an end-node of E j that is not Vi . To see
Claim 2(b): Mi ⊆ Ei = UV for {i, j} = {1,2} implies that Mi is H-solid, assume an (Mi , U , V)-sprout
T of G[Ei]. If M j ⊆ Vj , then let W = Vj . By Claim 2(a), W is not incident to Ei or else Ei would be
a pod of Y in H. If M j ⊆ E j , then let W be an end-node of E j not incident to Ei . Let U= {U , V, W}.
Let P1,P2,P3 be pairwise disjoint UL-rungs of H. Let each Pk with k ∈ {1,2, 3} be a Pk-rung of G.
G[P1 ∪ P2 ∪ P3 ∪ Y ∪ T ∪ E j] contains a sapling.

To prove the lemma by Claim 2, assume for contradiction that G[X ∪ Y] is sapling-free. Since Y is
H-nonsolid, Claim 2 implies an internal vertex y of path G[Y] with nonempty NG(y, X) ⊆ M1∩M2.
By Condition N2, Mi = Vi holds for {i, j} = {1, 2}. By Condition N5, if M j ⊆ Vj , then H has an arc
E = ViVj , which is a pod of Y in H; and if M j ⊆ E j , then Vi is incident to E j , which is thus a pod of
Y in H. Both cases contradict that Y is H-nonsticky.

If Y is H-wild for an X -net H, then let `(Y,H, G) denote the minimum number of H-tamed subsets
of X whose union is NG(Y, X). A net is simple if all of its arcs are simple. If H is a simple self-aiding
X -net of G, then G[X] is isomorphic to the line graph of a subdivision of H.

Lemma 4.4. If Y is an H-wild set for a simple self-aiding X -net H of G with `(Y,H, G) = 2 such that
NG(Y, X) contains a triad of H, then G[X ∪ Y] contains a sapling.

Proof. Let U = {U1, U2, U3} for nodes with ∆ = ∆(U1, U2, U3) ⊆ N = NG(Y, X). Let P1,P2,P3 be
pairwise disjoint UL-rungs of H. For each i ∈ {1, 2,3}, let Li ∈ L such that the Pi-rung Pi of G is a
Ui Li-rung. Since N is untamed, N \∆ 6=∅. SinceH is simple, each arc intersecting N \∆ is incident
to at most one node of U. By `(Y,H, G) = 2, N \∆ intersects at most one of P1, P2, and P3. If N
intersects Pi for {i, j, k} = {1, 2,3}, then G[Y ∪Q i ∪ (U j ∩ Uk) ∪ Pj ∪ Pk] contains a sapling for the
N Li-rung Q i of Pi . It remains to consider (N \∆)∩ V (P1 ∪ P2 ∪ P3) =∅.

Case 1: Each arc E intersecting N \∆ satisfies |E| = 1 and is incident to Pi and P j for {i, j, k} =
{1,2, 3}. Let E be an arc intersecting N \∆. Let Vi ∈ V (Pi) and Vj ∈ V (P j) be end-nodes of E with
Ui 6= Vi . Let Q1 be the Ui Lk-path ofH consisting of arc E j = UiUk and Pk. Let Q1 be the Q1-rung of
G. Let Q2 be the Li L j-path of H consisting of E, the Vi Li-rung of Pi , and the Vj L j-rung of P j . Let
Q2 be the Q2-rung of G. By Ui 6= Vi , Q1 and Q2 are disjoint. By (N \∆)∩ V (P1 ∪ P2 ∪ P3) = ∅, Q1

15

(respectively, Q2) intersects N exactly at the vertex in arc E j (respectively, E). Thus, G[Y ∪Q1∪Q2]
contains a sapling of G[X ∪ Y].

Case 2: An arc E intersecting N \∆ violates the condition of Case 1. Let Q be a shortest path of H
between V (E) and V (P1 ∪P2 ∪P3). Since E violates the condition of Case 1, we may require that
if U ∈ V (E) and Vi ∈ V (Pi) with {i, j, k}= {1, 2,3} are the end-nodes of Q, then the NU-rung Q i of
G[E] is not adjacent to Pj ∪ Pk. Let Ei = U jUk. Let Q be the Q-rung of G. Let Ri be the Vi Li-rung of
Pi . G[Pj ∪ Pk ∪ Ei ∪Q i ∪Q ∪ Ri] contains a sapling of G[X ∪ Y].

Lemma 4.5. Let Y be an H-wild set for a simple self-aiding X -net H of graph G with `(Y,H, G) ≥ 3.
If G[X ∪ Y] is sapling-free, then Y is H-podded for G.

Proof. Since Y isH-wild with `= `(Y,H, G)≥ 3, Y consists of a vertex y . Let N1, . . . , N` be pairwise
disjoint H-tamed subsets of X whose union is N = NG(Y, X). Let L consist of the leaves of H =
G[X ∪Y]. Let each graph Hi, j with 1≤ i < j ≤ ` be obtained from H by deleting the edges between
y and N \(Ni∪N j). We claim that each Hi, j is sapling-free. SinceH is a simple self-aiding X -net of Hi, j
with `(Y,H, Hi, j) = 2, Y isH-sticky for Hi, j by Lemmas 4.3 and 4.4. Thus, each Ni with i ∈ {1, . . . ,`}
is either contained by a node or arc of H. Assume that N1, . . . , Nk are H-solid and Nk+1, . . . , N` are
not. If k < `, then Y is H-podded for all Hi,` with i ∈ {1, . . . ,`− 1}. If N` is contained by a node
U , then there is exactly one vertex u in U \ N`, implying ` = 3 and that the arc containing u is a
pod of Y in H for G. If N` is not contained by a node, then ` = 3 and the arc containing N` is a
pod of Y in H for G. As for k = `, observe that there cannot be a 3-node set U = {Ui1 , Ui2 , Ui3}
with {i1, i2, i3} ⊆ {1, . . . ,`} such that each node Ui j

with j ∈ {1,2, 3} is either a solid set Ni j
or an

end-node of the arc Ei j
containing a solid set Ni j

: Assume for contradiction that such a U exists.
Let vertex set E be the union of the arcs Ei j

with Ni j
⊆ Ei j

. Let P1, P2, and P3 be pairwise disjoint
UL-rungs of H. For each j ∈ {1, 2,3}, let Pj be a P j-rung of G. G[Y ∪ P1 ∪ P2 ∪ P3 ∪ E] contains a
sapling, contradiction. The observation implies `= 3 and that Y is H-podded for G.

To prove the claim, assume a sapling T of Hi, j . Since any edge in H[T] \ T is between y and Ni, j ,
the following statements hold or else H would contain a sapling in which y is the degree-3 vertex:
(1) The degree of y in T is two. (2) H[T] \ T has exactly one edge e, implying that y and a vertex
u1 ∈ Ni, j are the end-vertices of e. (3) The degree-3 vertex u2 of T is adjacent to y and u1 in T ,
implying u2 ∈ Ni ∪ N j . That is, H[T] consists of a triangle on U = {y, u1, u2} and pairwise disjoint
U L-rungs P1, P2, P3 of T with N ∩ V (P1) = {u1} ⊆ Ni1 , N ∩ V (P2) = {u2} ⊆ Ni2 , and y ∈ V (P3) for
distinct i1 and i2 in {1, . . . ,`}. By Lemma 3.5(2), each Nik with k ∈ {1,2} is contained by a node,
arc, or triad Sk. N ∩ (S1 ∪ S2) is H-untamed or else there would be `− 1 pairwise disjoint H-tamed
subsets of X whose union is N . Let each Ek with k ∈ {1,2} be the simple arc with uk ∈ Ek. We show
that H contains a sapling in which y is the degree-3 vertex.

Case 1: If E1 = E2. Since N ∩ (S1 ∪ S2) is H-untamed, a vertex vk ∈ Sk ∩ (N \ Ek) with k ∈ {1, 2}.
Since H is simple and {uk, vk} ⊆ Sk, Sk is not a triad. Sk is not an arc or else Ek = Sk would
intersect N \ Ek. Thus, Sk is an end-node of Ek with {uk, vk} ⊆ Sk and u3−k /∈ Sk. By uk ∈ Sk and
Condition N6, Sk is not adjacent to (P3 − y) ∪ (P3−k − u3−k) in H. Since H is simple, vk ∈ N ∩ Sk
implies that H[(T − uk)∪ {vk}] is a sapling of H.

Case 2: E1 6= E2. By Condition N5, {u1, u2} ⊆ V for a common end-node V of arcs E1 and E2.
By Condition N6, Ek ⊆ V (Pk) for each k ∈ {1,2}. Since N ∩ (S1 ∪ S2) is H-untamed, a vertex
vk ∈ Sk ∩ (N \ V) with k ∈ {1, 2}. Since H is simple and {uk, vk} ⊆ Sk, Sk is not a triad. Sk is not
an arc or else {uk, vk} ⊆ Sk = Ek ⊆ V (Pk) would contradict N ∩ V (Pk) = {uk}. Thus, Sk is a node.
By uk ∈ Ek ∩ Sk, Sk is an end-node of Ek containing uk. By vk ∈ Sk \ V , Sk 6= V . By uk ∈ Sk and
Condition N6, Sk is not adjacent to V (P3− y)∪ V (P3−k − u3−k) in H. Since H is simple, vk ∈ N ∩ Sk
implies that H[(T − uk)∪ {vk}] is a sapling of H.

16

Proof of Lemma 4.2. Assume for contradiction that G[X ∪ Y] is sapling-free. A vertex set D ⊆ X is
an inducing set ofH0 if G[E0∩D] for each arc E0 = U0V0 is an U0V0-rung of G[E0]. For any inducing
set D of H0, let H0(D) denote the simple self-aiding D-net of graph H0(D) = G[Y ∪ D] obtained
from H0 by replacing each arc E0 of H0 with the arc E = E0 ∩ D and replacing each node V0 of H0
with the node V = V0 ∩ D. Let N = NG(Y, X). Let ` = `(Y,H0, G). If ` = 2, then Lemma 4.3 implies
N * S1 ∪ S2 for any node or arc Si of H0 with i ∈ {1,2}. Thus, N contains a triad ∆ and N \∆
is not contained by any arc of H0 between two nodes of ∆. By ` = 2, there is an inducing set D
of H0 with `(Y,H0(D), H0(D)) = 2 and ∆ ⊆ NH0(D)(Y, D), contradicting Lemma 4.4. Thus, ` ≥ 3,
implying a three-vertex set S ⊆ N such that every two-vertex subset of S is H0-untamed. Let D be
an inducing set of H0 with S ⊆ D, implying `(Y,H0(D), H0(D)) ≥ 3. By Lemma 4.5, there is a pod
E = UV of Y in H0(D) for H0(D) such that NH0(D)(Y) intersects E \ (U ∪ V), U \ E, and V \ E. Let
E0 = U0V0 be the arc ofH0 with E = E0∩D, U = U0∩D, and V = V0∩D. Since E0 is not a pod of Y
inH0 and N intersects E0 \ (U0∪V0), U0 \ E0, and V0 \ E0, a vertex x belongs to N \ (U0∪ E0∪V0) or
(U0∪V0)\(E0∪N). Let D′ be an inducing set (D\E0)∪V (P) ofH0, where E0 = U0V0 is the arc ofH0
containing x and P is a U0V0-rung of G[E0] containing x . One can verify that Y isH0(D′)-unpodded
for H0(D′) with `(Y,H0(D′), H0(D′))≥ 3, contradicting Lemma 4.5.

4.2 Proving Lemma 3.2(2)

This subsection shows that if Y isH-sticky for an X -webH, thenH can be expanded to an X ∪Y -web
via Subroutine B below. Let H be an X -net. For any H-solid subset S of X contained by a simple
arc F = U1U2 of H, define Operation SUBDIVIDE(S) to (1) create a new node S and (2) replace the
simple arc by new simple arcs SUi with i ∈ {1,2} consisting of the vertices of the SUi-rung of G[F].
Define Subroutine B with N = N(Y, X) as follows (see Figure 7):

Subroutine B

Step B1: Y is H-solid. Let S1 and S2 be H-solid sets with N = S1 ∪ S2.

(a) For each i ∈ {1,2}, if Si is contained by a simple arc, then create node Si by SUBDIVIDE(Si).
(b) Add each end-vertex y of path G[Y] into the nodes Si with i ∈ {1,2} and Si ⊆ N(y).
(c) Make a simple arc Y = S1S2.

Step B2: Y is H-nonsolid. Thus, Y is H-podded. Let V1V2-chunk C of H be a minimal pod of Y in
H. Since Y is H †-wild, assume V1 ∈ V (H †) and V1 ⊆ C ∪ N without loss of generality.

(a) If V2 is incident to exactly one arc F = V V2 in the arc set for C , N ∩ V2 ⊆ F , and F is simple,
then N intersects F \ V by the minimality of C . Let v2 be the end-vertex of the NV2-rung P of
G[F] in N . Let v be the neighbor of v2 not in P. Call SUBDIVIDE({v, v2}) to create a new node
V2 = {v, v2}. Delete V (P) from C to preserve that C is a V1V2-chunk that is a minimal pod of
Y in H.

(b) Update H by MERGE(C). Let E = V1V2 be the arc of H with E = C .
(c) Add Y to arc E and add each end-vertex y of path G[Y] to the nodes Vi with Vi ⊆ C ∪ N(y).

Proof of Lemma 3.2(2). The resulting H of Step B1 is an X ∪ Y -web, since all steps preserve Con-
ditions N and all new arcs are simple. The rest of the proof shows that the resulting H of Step B2
is also an X ∪ Y -web. At the beginning of Step B2(b) one can verify that, no matter whether H is
updated by Step B2(a) or not, Y isH-nonsolid andH-podded andH is an X -web with the following
Condition F: If V2 is incident to exactly one arc F in the arc set for the minimal pod C of Y in H and
F is simple, then N(Y, V2) intersects V2 \C . By Lemma 3.4,H is an X -net (respectively, X ∪Y -net) at
the end of Step B2(b) (respectively, Step B2(c)). It remains to show that E = C ∪ Y is a flexible arc
by identifying an (S, V1, V2)-sprout of G[E] for any nonempty subset S of E. The rest of the proof lets

17

Figure 7: Applying Step B1 on the example in (a) results in the example in (b), in which E1∪ E2∪ F
is a minimal pod of the green y1 y2-rung. Applying Step B2(a) on the example in (b) results in the
example in (c), in which E1∪E2∪E3 is a minimal pod of the green y1 y2-rung. Applying Steps B2(b)
and B2(c) on the example in (c) results in the example in (d).

H denote the X -web at the beginning of Step B2(b) and lets all sprouts be (S, V1, V2)-sprouts of G[E]
unless specified otherwise. Let y1 and y2 be the end-vertices of path G[Y] with V1 ⊆ C ∪ N(y1, X).
If |Y | = 1, then y1 = y2. If |Y | ≥ 2, then let Ni = N(yi , X) and Mi = N(Y \ {y3−i}, X) for each
i ∈ {1,2} and let M = M1∩M2. Let SC = S∩C and SY = S∩ Y . If SC 6=∅, then SC is assumed to be
H-solid, since any (SC , V1, V2)-sprout of G[C] is a sprout. If SY 6= ∅, then let each Pi with i ∈ {1,2}
be the S yi-rung of G[Y]. Let C∗ =W1W2 with W1 = V1 be the arc of H † containing C .

Case 1: SC =∅. G[S] is an edge in G[Y] or else a V1V2-rung of G[E] containing Y contains a sprout
of Type S1 or S2. By |S| = 2, |Y | ≥ 2. Since Y is H †-wild, M1 ⊆ V1. We may assume M1 = V1, since
otherwise G[P1∪Q] is a spout of Type S3 for a V1V2-rung Q of G[C] intersecting V1 \M1. Case 1(a):
M2 isH-nonsolid. Lemma 4.1(2) implies an (M2, W1, W2)-sprout T ∗ of G[C∗]. Let T = G[T ∗[C]∪P2].
If T ∗ is of Type S1 or S2, then T contains a sprout of Type S1. If T ∗ is of Type S3, then T is a sprout
of Type S3. Case 1(b): M2 is H-solid. Since M1 is H-solid and Y is H-nonsolid, we have M 6= ∅
and M ⊆ V1 ∩M2. If M2 were contained by a simple arc F of H, then F = V1V2 by V1 ∩M2 6=∅ and
minimality of C , contradicting Condition F. Thus, M2 is a node of H. By V1 ∩M2 6= ∅, F = V1M2 is
an arc ofH. By M ⊆ V1, we have M2 ⊆ F ∪N2. By minimality of C , M2 = V2. By M 6=∅ and |Y | ≥ 3,
G[Y ∪M] contains a sprout of Type S1.

Case 2: SY = ∅. S = SC is H-solid. Let v1 ∈ V1 \ C , v2 ∈ V2 \ C , and a set of new vertices
B = {r, s, u1, u2, w}. Define an X0-net H0 of a graph G0 on X0 ∪ Y with X0 = B ∪ C ∪ {v1, v2} as
follows (see Figure 8): Initially, let G0 = G[C ∪Y ∪{v1, v2}] and letH0 consist of the nodes and arcs
of H that intersect C . For each i ∈ {1,2}, update Vi by deleting all vertices not in C except for vi
and then adding w. Make a new simple arc V1V2 consisting of w. Add a minimum number of edges
to make NG0

(w) = ({y1} ∪ V1 ∪ V2) \ {w}. Make new nodes R = {r}, U1 = {u1}, and U2 = {u2}. If S
is a node, then let S0 = S; otherwise, make a new node S0 via SUBDIVIDE(S). Add s into S0. Make a
simple arc RS0 consisting of r and s. For each i ∈ {1,2}, make a simple arc UiVi consisting of vertices
ui and vi . Add a minimum number of edges to make NG0

(s) = R∪ S, NG0
(r) = {s}, NG0

(u1) = {v1},
and NG0

(u2) = {v2}.

18

Figure 8: An example of H0.

H0 is an X0-net of G0 with leaf nodes R, U1, and U2 and leaf vertices r, u1, and u2. Since H is an
X -web of G and all new arcs of H0 are simple, H0 is an X0-web of G0. Since each Vi with i ∈ {1,2}
is the neighbor of Ui and V1V2 is an arc ofH0, V1 is a maximal split node ofH0. Since Y isH †-wild,
Y is H†

0-wild. Since Y is H-nonsolid, {w} is not a pod of Y in H0 and Y is H0-nonsolid. Since node
S0 is adjacent to leaf R in H0, no V1V2-chunk of H0 intersects S0, implying no pod of Y in H0 that is
a superset of C . The minimality of C implies no pod of Y in H0 that is a proper subset of C . Thus,
Y is H0-unpodded. Lemma 3.2(1) implies a sapling T0 of G0. T0 − (B ∪ {v1, v2}) is a sprout.

Case 3: SY 6= ∅ and SC 6= ∅. SC is H-solid. Assume SY = {y2}, since otherwise G[P1 ∪Q] for an
SC V2-rung Q of G[C] not intersecting V1 is a sprout of Type S2. Assume that any N2V2-rung Q of G[C]
intersects SC exactly at its end-vertex in N2, since otherwise G[P1 ∪Q] contains a sprout of Type S1
or S2. Thus, each vertex v ∈ C admits a vV2-rung Q(v) of G[C] with (V1 ∪ SC) ∩ V (Q(v)) ⊆ {v}:
Assume for contradiction a v ∈ C such that each vV2-rung Q(v) with V1 ∩ V (Q(v)) ⊆ {v} intersects
SC \{v}. If SC is a node V ofH, then graph G(C)−V is disconnected. If SC is contained by a simple
arc F of H, then graph H[C]−{V1, V} is disconnected. Either way, the minimality of C implies that
N2 intersects the connected component of G[C]−SC that intersects V2, implying an N2(V2\SC)-rung
of G[C], contradicting the above assumption.

Case 3(a): a vertex v ∈ N2 \ SC . Q(v) does not intersect SC , so G[Y ∪Q(v)] is a sprout of Type S1.
Case 3(b): a vertex v ∈ SC \ N2. Q(v) does not intersect N2 or else the N2V2-rung of Q(v) does
not intersect SC at its end-vertex in N2, contradiction. Thus, G[Y ∪Q(v)] is a sprout of Type S2.
Case 3(c): N2 = SC . If M1 6= V1, then G[P1 ∪Q(v1)] for a v1 ∈ V1 \M1 contains a sprout of Type S3.
If M1 = V1, then M contains a v1, since Y isH-nonsolid. We have N = M1∪N2. M1 and N2 are both
H-solid. Thus, G[Y ∪Q(v1)] contains a sprout of Type S1.

This completes the proof of our characterization in Theorem 3.1 as well as Chudnovsky and Sey-
mour’s characterization in Theorem 2.2. Subroutine B can be implemented to run in O(m) time,
so Steps A2(c) and A2(d) take O(m) time. Steps A1, A2(a), and A2(b) take O(m) time. Since the
set of vertices of G in H is enlarged by Step A2(d) and not affected elsewhere, Step A2 halts in
O(n) iterations. Thus, Algorithm A can be implemented to run in O(mn) time. To complete proving
Theorem 1.1, it remains to implement Algorithm A to run in O(m log2 n) time in §5 using dynamic
graph algorithms and other data structures.

5 Proving Lemma 3.3

Let G be represented by a static adjacency list. We use a dynamic adjacency list to represent an
incremental biconnected multigraph H∗ with V (H∗) = V (H) that is a supergraph of ∇(H). An

19

Figure 9: An example of H∗ and T. The Q-knots are omitted for brevity. The virtual arc in dark
purple in a nonroot knot K matches a light purple arc in the parent of K in T. They form the
pair of virtual arcs between the poles of K . Each non-purple arc in a knot K is a virtual arc whose
corresponding arc ofH∗ is contained by a child Q-knot of K . A non-purple arc is in yellow if and only
if its corresponding arc ofH∗ is dummy. The dummy nodes ofH∗ are in yellow. H is the multigraph
obtained from H∗ by deleting the yellow nodes and arcs. H † is the simple graph obtained from the
one in the root of T by deleting the yellow arcs. The maximal split nodes ofH, i.e., the nodes ofH †

are in red.

arc or node of H∗ is dummy if it is an empty vertex set of G. For instance, the three arcs of ∇(H)
between the leaves of H are dummy in H∗. Other dummy nodes and arcs are created only via
operation MERGE. The X -webHmaintained by Algorithm A is exactlyH∗ excluding its dummy arcs
and nodes. See Figure 9(a) for an example ofH∗. Each node and arc ofH andH † is associated with
a distinct color that is a positive integer such that two vertices share a common arc color (respectively,
node color) forH andH † if and only if they are contained by a common arc (respectively, node) ofH
and H †. For each vertex v of G, we maintain a set of at most six colors indicating the arc, maximal
chunk, nodes, and maximal split nodes of H that contain v, which are called the H-arc, H †-arc,
H-node, andH †-node colors of vertex v. For each color c, we store its corresponding arc or node for
H or H † and maintain the number of the vertices having the color c without keeping an explicit list
of these vertices. For each node V and each incident arc E of V inH, we maintain the cardinality of
the vertex set E ∩ V . Thus, it takes O(1) time to (1) update and query the colors of a vertex and (2)
add a vertex to an arc or node of H. For each arc of H∗, we mark whether it is dummy, simple, or
flexible and, for each simple arc E = V1V2 of H∗, we use a doubly linked list to store the V1V2-rung
G[E]. For any vertex v and vertex set Y of G, let d(v) = |N(v)| and d(Y) =

∑

y∈Y d(y) throughout
the section.

Based on Lemma 5.1, to be proved in §5.4, Steps A2(a) and A2(b) are implemented in §5.1 to run in
overall O(m log2 n) time throughout Algorithm A. Step A2(c) is implemented in §5.2 to run in overall
O(m) time throughout Algorithm A. Step A2(d), i.e., Subroutine B is implemented in §5.3 to run in
overall O(m log n · α(n, n)) time throughout Algorithm A, where α(n, n) is the inverse Ackermann
function.

20

5.1 Steps A2(a) and A2(b) of Algorithm A

Although vertex colors change only in Step A2(d), the overall number of changes of theH †-arc and
H †-node colors affects the analysis of our implementation of Steps A2(a) and A2(b). Therefore,
this subsection analyzes the time for the change of H †-arc and H †-node colors. The time for the
change of H-arc and H-node colors will be analyzed for Step A2(d) in §5.3. A vertex of G stays
uncolored until it is added into X . Each vertex of X has exactly one H †-arc color and at most two
H †-node colors. Each node V of H † stays a node of H † and each vertex in V stays in V for the
rest the algorithm. Thus, the H †-node colors of each vertex are updated O(1) times throughout
the algorithm, implying that the overall time for updating H †-node colors of all vertices is O(n).
Although theH †-arc color of a vertex may change many times, the overall time for updating theH †-
node colors of all vertices can be bounded by O(n log n). Observe thatH is updated by Subroutine B
only via (1) subdividing a simple arc of H, (2) merging an H-podded Y into a minimal pod of Y in
H, and (3) creating an arc E = Y for an H-solid Y . If the simple graph H † does not change, then
each of these updates takes O(d(Y)) time. If the simple graph H † changes, then Y is H-solid. For
instance, let H be as in Figure 5(a), implying that H † is as in Figure 5(b). If an H-solid Y joins H
as the arc E16 in Figure 5(c), then all nodes and arcs of H become nodes and arcs of H †. However,
once two vertices of X have distinct H †-arc colors, they can no longer share a common arc color
for H † for the rest of the algorithm. Thus, one can bound the overall number of changes of H †-arc
colors of all vertices by O(n log n) as follows: If E is an arc of the original H † and E1, . . . , Ek are
the arcs of the updated H † with E1 ∪ · · · ∪ Ek ⊆ E and |E1| ≤ · · · ≤ |Ek|, then let the vertices in Ek
keep their original H †-arc color and assign a distinct new H †-arc color to the vertices in each Ei
with i ∈ {1, . . . , k − 1}. Since the cardinality of the arc of H † containing a specific vertex of X is
halved each time its H †-arc color changes, its H †-arc color changes O(log n) times, implying that
the H †-arc colors of all vertices change O(n log n) times throughout the algorithm. With the data
structure of Lemma 5.1, to be proved in §5.4, the overall time for Steps A2(a) and A2(b) throughout
the algorithm is O(m log2 n).

Lemma 5.1. If X is an incremental subset of V (G) such that each x ∈ X has exactly one H †-arc color
a and a set of at most two H †-node colors corresponding to a subset of the two end-vertices of a, then
there is an O(m+ n)-time obtainable data structure supporting the following queries and updates:

1. Move a vertex v of G − X to X in amortized O(d(v) · log2 n) time.
2. Update the colors of a vertex v ∈ X in amortized O(d(v) · log n) time.
3. Determine if there is a set Y ⊆ V (G−X) with connected G[Y] such that two vertices of N(Y, X) share

no color and, for the positive case, report a minimal such Y in amortized O(d(Y) · log2 n) time.

5.2 Step A2(c) of Algorithm A

Let S be the O(d(Y))-time obtainable set consisting of the nodes V of H with V ⊆ N(Y, X) and the
simple arcs E ofHwith G[E∩N(Y, X)] being an edge. Y isH-solid if and only if |S|= 2, N(y, X) =∅
for each internal node y of path G[Y], and N(Y, X) is contained by the union of the nodes or arcs
in S. Therefore, it takes O(d(Y)) time to determine whether Y is H-solid. Lemma 4.1(1) implies
that Y is H-podded if and only if both of the following conditions hold: (a) N(Y, X) is contained
by the union of an arc E of H † and its end-nodes V1 and V2 in H † and (b) E is a pod of Y in H †.
Both conditions can be checked in O(d(Y)) time via the H †-arc and H †-node colors of each vertex
in N(Y, X) and the cardinalities of V1 \ E and V2 \ E. Therefore, it takes O(d(Y)) time to determine
whether Y is H-podded. Since the H †-wild sets Y in all iterations of the algorithm are pairwise
disjoint, it takes overall O(m) time for Step A2(c) to determine whether Y is H-sticky throughout
the algorithm.

21

Figure 10: Four examples of the lowest common ancestor K of the Q-knots containing the arcs ofH
in C1 ∪C2, which equals E2 in (a), E1 ∪ E2 in (b), E1 in (c), and E2 ∪ E3 in (d).

5.3 Step A2(d) of Algorithm A, i.e., Subroutine B

This subsection shows how to implement Subroutine B so that the overall time of Step A2(d)
throughout Algorithm A is O(m log n · α(n, n)). Although we may delete nodes and arcs from H

via MERGE(C) for a minimal pod C of Y in H, they stay as dummy nodes and arcs in H∗ in order to
make the multigraph H∗ incremental. One can verify that H † aids H∗, even though H∗ is not an
X -net due to its dummy arcs and nodes. Although Step B1(b) may change H †, the overall time for
updating theH †-colors has been accounted for in §5.1. Therefore, this subsection only analyzes the
time required by the change of H-arc and H-node colors and the cardinalities of E ∩ V1 and E ∩ V2
for each arc E = V1V2 of H.

The SPQR-treeT of the incremental multigraphH∗ is an O(n)-time obtainable O(n)-space tree struc-
ture representing the triconnected components ofH∗ [45, 56]. Each member of V (T), which we call
a knot, is a graph homeomorphic to a subgraph of H∗ [45, Lemma 3] such that the knots induce a
disjoint partition of the arcs of H∗. Specifically, there is a supergraph G of H∗ with V (G) = V (H∗),
where each arc of G \H∗ is called virtual [80], and there are four types of knots of T: (1) S-knot:
a simple cycle on three or more nodes. (2) P-knot: three or more parallel arcs. (3) Q-knot: two
parallel arcs, exactly one of which is virtual. (4) R-knot: a triconnected simple graph that is not a
cycle. The Q-knots are the leaves of T and each arc ofH∗ is contained by a Q-knot. No two S-knots
(respectively, P-knots) are adjacent inT. Each virtual arc is contained by exactly two adjacent knots.
Since H has O(n) arcs by Condition N2, T has O(n) knots. If U and V are nonleaf nodes of H such
that UV is a virtual arc, then {U , V} is a split pair of H. If distinct nodes U and V admit three
internally disjoint UV -paths in H∗, then U and V are contained by a common P-knot or R-knot of
T [45]. By Condition N1 of H, there are three internally disjoint paths in ∇(H) between each pair
of leaves of H∗, implying an R-knot of T containing the leaves of H. Let T be rooted at this unique
R-knot. Figure 9(b) is the T for theH∗ in Figure 9(a). Let K be a nonroot knot of T. The poles [56]
of K are the end-nodes of the unique virtual arc contained by K and its parent knot in T. For the
four nonroot knots K in Figure 10, V1 and V4 (respectively, V2) are the poles of the knots in (a) and
(d) (respectively, (b) and (c)). Let C(K) consist of the arcs of H in the descendant Q-knots of K in
T. Let C(K) consist of the vertices of G contained by the arcs of C(K). If U and V are the poles
of a nonroot knot K of T, then C(K) is a UV -chunk and C(K) is the arc set for C(K). A nonempty
vertex set C is a maximal chunk of H if and only if C = C(K) holds for a child knot K of the root of
T. For instance, the X -net H in Figure 9(a) has six maximal chunks. One of them is C(K) for the
child R-knot (respectively, P-knot and S-knot) K of the root of T. The remaining three are C(K) for
three omitted child Q-knots K of the root of T. For any nonroot knot K of T with C(K) 6= ∅, if K
is a P-knot, then C(K) is the union of the arc sets of all split components of {U , V} (e.g., three splits

22

components of {V1, V2} in the example in Figure 10(b)); otherwise, C(K) is the arc set of a single
split component of {U , V}, where U and V are the poles of K (e.g., exactly one split component for
{V1, V4} in the examples in Figures 10(a) and 10(d) and exactly one split component for {V1, V2} in
the example in Figure 10(c)).

Lemma 5.2 (Di Battista and Tamassia [45]). Each update to T corresponding to the following oper-
ations on the incremental biconnected multigraph H∗ can be implemented to run in amortized α(n, n)
time: (1) Add a new node V to subdivide an arc V1V2 of H∗ into two arcs E1 = V V1 and E2 = V V2.
(2) Add an arc UV between two nodes U and V of H.

We first show that, given a vertex set S contained by a simple arc E = V1V2 such that G[S] is an
edge, Operation SUBDIVIDE(S) in Steps B1(a) and B2(a) can be implemented to run in amortized
O(log n) time: Let each Pi with i ∈ {1,2} be the ViS-rung of G[E]. Let j be an index in {1,2} with
|V (Pj)| ≤ |V (P3− j)|. Using the doubly linked list for the V1V2-rung G[E], it takes O(|V (Pj)|) time
to (1) create a new node V = S with a new H-node color assigned to both vertices in S, (2) create
a new simple arc E j = V Vj consisting of the vertices of Pj , (3) assign a new H-arc color for each
vertex in E j , (4) let arc E3− j take over the H-arc color of E, and (5) obtain the doubly linked lists
of G[E1] and G[E2] from that of G[E]. Each time a vertex x is recolored this way, the cardinality of
the simple arc of H containing x is halved. Therefore, the overall time for Operation SUBDIVIDE(S)
in Steps B1(a) and B2(a) is O(n log n).

Step B1: By the above analysis for SUBDIVIDE, Step B1(a) runs in amortized O(log n) time. As
for Steps B1(b) and B1(c), a new H-arc color is created for the new arc of H. The H-arc and H-
node colors of the vertices in Y and the cardinality of each vertex set that is a node, arc, or the
intersection of a node and its incident arc can be updated in O(d(Y)) time. By Lemma 5.2 and the
fact that Subroutine B is executed O(n) times, the overall time for Step B1 is O(m log n).

Step B2: We first assume that we are given a set C of arcs of H whose union is a minimal pod C of
Y inH and show how to implement Steps B2(a), B2(b), and B2(c) to run in overall O(m log n) time
throughout Algorithm A. Let C be a V1V2-chunk of H.

Step B2(a): It takes O(|C|) time to determine whether V2 is incident to exactly one arc F = V V2 in
C and F is simple. We start from V to traverse the V V2-rung G[F] to obtain the node v2 ∈ N(Y, F)
that is closest to V2 in G[F]. The required time is linear in the number of traversed edges plus d(Y).
Observe that Step B2(a) in any remaining iteration of Algorithm A does not traverse these edges
again. Moreover, the sum of |C| over all iterations of Algorithm A is O(n). Thus, the overall time of
Step B2(a) including that of calling SUBDIVIDE({v, v2}) is O(m log n).

Step B2(b): Let E1, . . . , Ek with |E1| ≤ · · · ≤ |Ek| be the arcs of H in C. We show how to implement
Operation MERGE(C) in Step B2(b) to run in amortized O(log n) time: We create a new arc E = V1V2
inH∗ consisting of all vertices in C and mark the original arcs E1, . . . , Ek ofH∗ intersecting C dummy
so that H∗ is incremental as required by Lemma 5.2. The nodes of H whose incident arcs are all
dummy are also marked dummy. The cardinalities of E, V1, V2, E ∩ V1, and E ∩ V2 can be obtained
in O(k) time. Since we do not keep an explicit list of the vertices in C , we simply let all vertices in C
adopt the H-color of the vertices in Ek. Each time a vertex v is recolored this way, the cardinality of
the arc ofH containing v is doubled. Observe that once a vertex in X loses itsH-node colors, it stays
without any H-node color for the rest of the algorithm. Combining with Lemma 5.2(2), Step B2(b)
takes overall O(n log n) time throughout Algorithm A.

Step B2(c): The H-arc and H-node colors of the vertices of Y and the cardinalities of E ∩ V1 and
E ∩ V2 can be updated in O(d(Y)) time.

Lemma 5.3 (Alstrup, Holm, Lichtenberg, and Thorup [3, §3.3]). For any dynamic rooted n-knot tree,
there is an O(n)-time obtainable data structure supporting the following operations and queries on T
in amortized O(log n) time for any given distinct knots K1 and K2 of T:

23

1. If K2 is not a descendant of K1, then make the subtree rooted at K1 a subtree of K2 such that K2
becomes the parent of K1.

2. Obtain the lowest common ancestor of K1 and K2.
3. If K2 is a descendant of K1, then obtain the child knot of K1 that is an ancestor of K2 in T.

It remains to show that it takes overall O(m log n ·α(n, n)) time to obtain the arc set C of a minimal
pod C of an H-podded Y in all iterations of Algorithm A. We additionally construct a data structure
for T ensured by Lemma 5.3. By Lemmas 5.2 and 5.3(1), the overall time for updating the data
structure reflecting the updates to T throughout algorithm A is O(n log n ·α(n, n)). Let C∗ =W1W2
be the arc of H † with V1 = W1 ⊆ N(Y, W1) ∪ C∗. By Conditions P, C has to contain all arcs E of H
with (1) (E \ V1) ∩ N(Y, X) 6= ∅ or (2) (E ∩ V1) \ N(Y, X) 6= ∅. Let C1 and C2 consist of the arcs
of Types (1) and (2), respectively. It takes O(d(Y)) time to obtain C1 and the incident arcs of V1
that are not of Type (1) or (2). It then takes O(|C2|) time to obtain C2. By Lemma 5.3(2), it takes
O(|C1 ∪C2| · log n) time to obtain the lowest knot K of T with C1 ∪C2 ⊆ C(K). Since all arcs in
C1 ∪ C2 are merged into a single arc of H via MERGE(C) at the end of the current iteration, the
overall time for obtaining K throughout Algorithm A is O(m log n ·α(n, n)). It remains to show that
C can be obtained from K in overall O(m log n ·α(n, n)) time throughout Algorithm A.

Case 1: K is an S-knot. Let V1V2 · · ·V`V1 with ` ≥ 3 be the cycle of K such that V1 and V` are
the poles of K . For each i ∈ {1, . . . ,` − 1}, let Ki be the child knot of K with poles Vi and Vi+1,
Ci = C(K1) ∪ · · · ∪C(Ki), and let Ci be the union of the arcs in Ci . Let j be the smallest index in
{2, . . . ,` − 1} with C1 ∪ C2 ⊆ C j . If N(Y, X) \ (V1 ∪ C j−1) = Vj \ C j−1, then C = C j−1; otherwise,
C= C j . For the example in Figure 10(a), if N(X , Y)\(V1∪E1) = V2 \E1, then E1 is a minimal pod of
Y inH; otherwise, E1∪E2 is a minimal pod of Y inH. By Lemma 5.3(3), the time required to obtain
the index j and determine whether C = C j−1 or C = C j is dominated by the time of obtaining K
plus the time of MERGE(C).

Case 2: K is a P-knot. C equals the union of C(K ′) over all child knots K ′ of K in T with (C1∪C2)∩
C(K ′) 6=∅. For the example in Figure 10(b), E1 ∪ E2 is a minimal pod of Y in C. By Lemma 5.3(3),
the time needed to obtain C is dominated by that of obtaining K .

Case 3: K is a Q-knot. As illustrated by Figure 10(c), C= C(K) can be obtained in O(1) time.

Case 4: K is an R-knot. If there is child knot K ′ of K in T with poles V1 and V2 such that all arcs of
K intersecting C1 ∪C2 are incident to V2 and N(Y, X) \ (V1 ∪ C(K ′)) = V2 \ C(K ′), then C = C(K ′);
otherwise, C = C(K). For the example in Figure 10(d), if N(Y, X) \ (V1 ∪ E1) = V2 \ E1, then E1 is
a minimal pod of Y in H; otherwise, E1 ∪ · · · ∪ E5 is a minimal pod of Y in H. By Lemma 5.3(3),
the time required to identify all possible vertices V2, which can be at most two, is dominated by the
time of identifying K . If there are no possible V2, then we have C = C(K). Otherwise, for each of
the at most two vertices V2, we spend O(d(Y)) time to determine whether the child knot K ′ with
poles V1 and V2 satisfies N(Y, X)\ (V1∪C(K ′)) = V2 \C(K ′). For the positive (respectively, negative)
case, we have C= C(K ′) (respectively, C= C(K)).

Therefore, the overall time for obtaining the arc set of a minimal pod of Y inH is O(m log n·α(n, n)).
To complete our proof of Lemma 3.3, it remains to prove Lemma 5.1 in §5.4.

5.4 Proving Lemma 5.1

The subsection omits H † from the terms H †-wild, H †-tamed, H †-untamed, and H †-node and H †-
arc colors. Recall that each vertex x of X is associated with exactly one arc color and at most two
node colors from which we know which arc E of H † contains x and whether x ∈ E ∩ V holds for
each end-node V of E. For any nonempty S ⊆ X , we say that an R ⊆ S represents S and call R a
representative set of S if |R| ≤ 3 and, for any V ⊆ X , R ∪ V is tamed if and only if S ∪ V is tamed.

24

If S is untamed, then each untamed two-vertex subset of S represents S. If R1 represents S1, R2
represents S2, and R represents R1 ∪ R2, then R represents S1 ∪ S2.

Lemma 5.4. Any nonempty S ⊆ X admits a representative set obtainable from the colors of the vertices
of S in O(|S|) time.

Proof. Let E1, . . . , E` be the arcs ofH † intersecting S. If `= 1, then S is tamed. Let V1 and V2 be the
end-nodes of E1. Choose an arbitrary vertex from each of the sets S ∩ V1, S ∩ V2, and S \ (V1 ∪ V2)
that are nonempty to form a representative set of S. The rest of the proof assumes ` ≥ 2. It takes
O(|S|) time to either (1) identify distinct i and j in {1, . . . ,`} such that Ei and E j do not share a
common end-node or (2) ensure that Ei and E j for any distinct i and j in {1, . . . ,`} share a common
end-node. Case 1 implies that S is untamed and any two-vertex subset of S intersecting both Ei and
E j represents S.

Case 2(a): E1, . . . , E` have a common end-node V . If S * V , then S is untamed and any {u, v} ⊆ S
with u /∈ V intersecting distinct arcs represents S. If S ⊆ V , then S is tamed. If ` = 2, then any
two-vertex subset of S intersecting both of E1 and E2 represents S. If ` ≥ 3, then any three-vertex
subset of S intersecting all of E1, E2, and E3 represents S.

Case 2(b): E1, . . . , E` have no common end-node. Therefore, ` = 3 and E1, E2, and E3 form a
triangle. For indices i, j, k with {i, j, k} = {1, 2,3}, let Vi and Vj be the end-nodes of Ek. If S ⊆
∆(V1, V2, V3), then S is tamed and any three-vertex subset of S intersecting all of E1, E2, and E3
represents S. If S *∆(V1, V2, V3), then S is untamed and {u, v} with u ∈ (S ∩ Ei) \ Vj and v ∈ S ∩ Ek
for {i, j, k}= {1,2, 3} represents S.

For each y ∈ V (G−X), we maintain a balanced binary search tree Ty on N(y, X). For each vertex x
of Ty , we maintain a representative set R y(x) of the vertices in the subtree of Ty rooted at x . Thus,
R y = R y(root(Ty)) represents N(y, X). We also maintain a doubly linked list D1 for the vertices
y ∈ V (G − X) with untamed N(y, X). When a vertex joins N(y, X) or a vertex in N(y, X) changes
color, R y and D1 can be updated in O(log n) time by Lemma 5.4. Thus, as long as D1 6= ∅, H † is
not taming and an H †-wild set consisting of a single vertex can be obtained from D1 in O(1) time,
implying Lemmas 5.1(1), 5.1(2), and 5.1(3). The rest of the subsection handles the case D1 =∅.

Lemma 5.5 (Holm, de Lichtenberg, and Thorup [58]). A spanning forest of an n-vertex dynamic
graph can be maintained in amortized O(log2 n) time per edge insertion and deletion such that each
update to the graph only adds and deletes at most one edge in the spanning forest.

We maintain a spanning forest F of the decremental graph G − X by Lemma 5.5. For each maximal
connected U ⊆ V (F), we maintain a balanced binary search tree TU on U . For each y ∈ U , we
maintain a representative set RU(y) for the union of Rz over all vertices z in the subtree of TU
rooted at y . It takes O(1) time to determine if U is tamed from RU = RU(root(TU)). We also
maintain a doubly linked list D2 for the untamed maximal connected subsets U of V (F). When R y
for a vertex y ∈ V (G − X) changes, D2 and RU for the maximal connected U ⊆ V (F) containing y
can be updated in O(log n) time by Lemma 5.4. If deleting an edge of F decomposes a maximal
connected U ⊆ V (F) into U1 and U2 with |U1| ≤ |U2|, then it takes O(|U1| log n) time to delete the
vertices of U1 from TU , construct TU1

, and obtain RU1
. The resulting TU and RU become TU2

and
RU2

. D2 can be updated in O(1) time. Whenever a vertex y moves to a new connected component,
the number of vertices of the connected component containing y is halved. Hence, the TU for all
maximal connected sets U ⊆ V (F) are changed overall O(n log n) times. Thus, the overall time
throughout the algorithm to maintain D2 and all representative sets RU is O(n log2 n), not affecting
the correctness of Lemmas 5.1(1) and 5.1(2) and the first half of Lemma 5.1(3). It remains to

25

Figure 11: The cases of joining the child clusters A and B with |∂ A| ≥ |∂ B| into their parent cluster
C = A∪ B on a top tree. The first row shows the three cases with |∂ A| = |∂ B|. The second row
shows the two cases with |∂ A| > |∂ B|. The vertex in A∩ B is in purple. The vertices in ∂ C are in
black. If |∂ C | = 2, then the black line indicates Π(C). If |∂ A| = 2, then the red line indicates Π(A).
If |∂ B|= 2, then the yellow line indicates Π(B).

prove the second half of Lemma 5.1(3) for the case D1 = ∅ and D2 6= ∅, i.e., each N(y, X) with
y ∈ V (G − X) is tamed and H † is not taming.

A top tree is defined over a dynamic tree T and a dynamic set ∂ T of at most two vertices of T .
For any subtree C of T , ∂ C = ∂(T,∂ T)C consists of the vertices of C belonging to ∂ T or adjacent to
V (T) \ V (C). A cluster [3] of (T,∂ T) is a subtree C of T with |E(C)| ≥ 1 and |∂ C | ≤ 2. If |∂ C |= 2,
then let Π(C) denote the path of T between the vertices of ∂ C . If |E(T)| = 0, then (T,∂ T) admits
no cluster and the top tree over (T,∂ T) is empty. If |E(T)| ≥ 1, then a top tree T over (T,∂ T) is a
binary tree on clusters of (T,∂ T) such that (1) the root of T is the maximal cluster T of (T,∂ T),
(2) the leaves of T are the edges of T , i.e., the minimal clusters of (T,∂ T), and (3) the children
A and B of any cluster C of (T,∂ T) on T are edge disjoint clusters of (T,∂ T) with C = A∪ B and
|V (A)∩ V (B)|= 1. Figure 11 illustrates all possible cases of joining child clusters A and B into their
parent cluster C on T . If |∂ A| = |∂ C | = 2, then Π(A) ⊆ Π(C). Moreover, Π(A) = Π(C) if and only
if |∂ B| ≤ 1. For each vertex v ∈ V (T) \ ∂ T , let Cv denote the lowest cluster of (T,∂ T) on T with
v ∈ V (Cv)\∂ Cv . If |∂ C |= 2, then v ∈ V (C) is an internal vertex ofΠ(C) if and only if |∂ A|= 2 holds
for every cluster A on the CCv-path of T . A top forestF over a forest F consists of top trees, one for
each maximal subtree of F . According to Lemma 5.5, each update to F either deletes an edge of F
or adds an edge between two maximal subtrees of F . In addition to that, F also needs be modified
if ∂ T for a maximal subtree T of F is updated. To accommodate each update to F or ∂ T , we modify
F via a sequence of operations such that there can be temporary top trees TC rooted at clusters C
that are not maximal subtrees of F . Specifically, F is modified via the following O(1)-time top-tree
operations:

• Create or destroy a top tree on a single cluster that is an edge.
• Split a top tree TC into the two immediate subtrees of TC by deleting the root C .
• Merge top trees TA and TB with |V (A)∩ V (B)|= 1 into a top tree TC rooted at C = A∪ B.

Lemma 5.6 (Alstrup, Holm, de Lichtenberg, and Thorup [3]). An n-vertex forest F admits an O(n)-
space top forest F consisting of O(log n)-height top trees such that for any maximal subtree T of F,

1. it takes O(1) time to obtain on the top tree T for T (a) the cluster Cv for any v ∈ V (T) \ ∂ T, (b)
the parent of a nonroot cluster, (c) the children of a non-leaf cluster, and (d) ∂ C for a cluster C and

2. it takes O(log n) time to identify a sequence of O(log n) top-tree operations with which F can be
modified in O(log n) time with respect to (a) updating ∂ T, (b) deleting an edge of T , or (c) adding
an edge between T and another maximal subtree of F.

26

We use Lemma 5.6 to maintain a top forest F over the spanning forest F of G − X maintained by
Lemma 5.5. For each cluster C on each nonempty top tree T of F , we maintain a representative
set RC of N(V (C)\∂ C , X). We first show that maintaining the representative sets RC does not affect
the complexity of maintaining F stated in Lemma 5.6 and that of maintaining the colors of the
vertices of X stated in Lemmas 5.1(1) and 5.1(2). By Lemma 5.4, the following bottom-up update
for a cluster B on a top tree T of F takes O(log n) time: For each cluster C on the BT -path of T
from B to T , if C is an edge uv of T , then an RC can be obtained from Ru ∪ Rv in O(1) time; if C is
not an edge of T , then an RC can be obtained from RC1

∪RC2
∪Rc in O(1) time, where C1 and C2 are

the children of C on T and c is the vertex in V (C1)∩V (C2). Hence, the initial RC for all clusters C of
all top trees T of F can be obtained in overall O(m log n) time by performing a bottom-up update
for each leaf cluster of each top tree. With respect to each top-tree operation, the representative
sets RC can be updated in O(1) time: For destroy and split, we simply delete RC together with the
root C of TC . For create and merge, we just perform a bottom-up update for C in O(1) time. Thus,
maintaining the representative sets RC does not affect the complexity of maintaining F stated in
Lemma 5.6. If a vertex v ∈ V (G − X) moves to X or a vertex v ∈ X changes color, we update RC for
all O(d(v) log n) clusters C with v ∈ N(V (C) \ ∂ C , X). Specifically, for each of the O(d(v)) vertices
y ∈ V (G − X) with v ∈ N(y, X), we perform a bottom-up update for Cy in O(log n) time. Thus,
maintaining the representative sets RC does not affect the correctness of Lemmas 5.1(1) and 5.1(2).

The rest of the subsection proves the second half of Lemma 5.1(3) for the case D1 = ∅ and D2 6= ∅
in two steps. Let T = F[U] for an arbitrary U kept in D2. Step 1 calls TREE-WILD(T) to obtain {u, w}
for distinct vertices u and w of T such that the vertices of the uw-path of T is a minimal untamed
connected vertex set of T . Step 2 calls GRAPH-WILD({u, w}) to obtain a minimal untamed set Y such
that G[Y] is a uw-path of G.

Step 1: Let T be the top tree of F for T . For any cluster C on T , let R∂ C be the union of Rv over
the vertices v ∈ ∂ C . Let CLOSEST(S, C , c) for

• a tamed set S ⊆ X with |S| ≤ 6,
• a cluster C on T with untamed S ∪ RC ∪ R∂ C , and
• a vertex c ∈ ∂ C such that S ∪ Rc is tamed

be the following O(log n)-time recursive algorithm that outputs a y ∈ V (C) such that

• S ∪ R y is untamed and
• S ∪ Rz is tamed for every internal vertex z of the yc-path of T :

If C is an edge bc, then return b. If C is not an edge, then let C1 and C2 be the children of C and let
b be the vertex in C1 ∩ C2. If there is an i ∈ {1, 2} with c ∈ ∂ Ci such that S ∪RCi

∪R∂ Ci
is untamed,

then return CLOSEST(S, Ci , c). Otherwise, we have b 6= c and that S ∪ RCi
∪ R∂ Ci

is untamed for the
index i ∈ {1,2} with c /∈ ∂ Ci . Return CLOSEST(S, Ci , b).

Let TREE-WILD(C) for a cluster C on T with untamed RC∪R∂ C be the following recursive subroutine:
If C is an edge uw of T , then return {u, w}. Otherwise, let C1 and C2 be the children of C on T . If
there is an i ∈ {1,2} with untamed RCi

∪ R∂ Ci
, then return TREE-WILD(Ci). Otherwise, RC ∪ R∂ C is

untamed and RC1
∪R∂ C1

is tamed. Let c be the vertex in V (C1)∩V (C2). Call CLOSEST(RC1
∪R∂ C1

, C2, c)
to obtain in O(log n) time a w ∈ V (C2) such that

• RC1
∪ R∂ C1

∪ Rw is untamed and
• RC1

∪ R∂ C1
∪ Rv is tamed for every internal vertex v of the wc-path of T .

Call CLOSEST(Rw, C1, c) to obtain in O(log n) time a u ∈ V (C1) such that

27

• Rw ∪ Ru is untamed and
• Rw ∪ Rv is tamed for every internal vertex v of the uc-path of T .

Let P be the uw-path of T . V (P) is a minimally untamed subset of V (T) that is connected in T : Let
u′ and w′ be distinct vertices of V (P) with {u′, w′} 6= {u, w} such that Ru′ ∪ Rw′ is untamed and u′ is
closer to u than w in P. Since RC1

∪ R∂ C1
and RC2

∪ R∂ C2
are both tamed, we have u′ ∈ V (C1) \ ∂ C1

and w′ ∈ V (C2)\∂ C2. Since RC1
∪R∂ C1

∪Rv is tamed for every internal vertex v of the wc-path of T
and u′ ∈ V (C1), we have w′ = w. Since Rw ∪ Rv is tamed for every internal vertex v of the uc-path
of T , we have u′ = u.

Step 2: To obtain in O(d(Y) log n) time a set Y such that G[Y] is a uw-path of G − X , it suffices
to show an O(d(u) log n)-time subroutine JUMP(u, w) returning for any distinct vertices u and w of
T the vertex v ∈ NG(u, V (P)) that is closest to w in the uw-path P of T : With Y = {u} initially,
we repeatedly add v = JUMP(u, w) into Y and let u = v until v = w. The subroutine JUMP(u, w)
starts with updating T for setting ∂ T = {u, w} in O(log n) time by Lemma 5.6(2). Recall that
U = NG(u, V (P − w)) consists of the vertices v ∈ NG(u) such that |∂ B| = 2 holds for every cluster
B on the T Cv-path of T . By Lemma 5.6(1), it takes O(d(u) log n) time for JUMP(u, w) to obtain U
and the set C consisting of the clusters on the T Cv-path of T for all vertices v ∈ U . If U = ∅, then
JUMP(u, w) returns w, since uw is an edge of T . If U 6= ∅, then JUMP(u, w) returns v = NEXT(T, w),
where NEXT(C , w) for a cluster C ∈ C and a vertex w ∈ ∂ C is the following O(log n)-time recursive
subroutine: If w ∈ NG(u), then NEXT(C , w) returns w. If w /∈ NG(u), then C is not an edge of T . Let
C1 and C2 be the children of C on T with w ∈ ∂ C2 \ ∂ C1. Let c be the vertex in V (C1)∩ V (C2). If
C2 ∈ C , then NEXT(C , w) returns NEXT(C2, w); otherwise, NEXT(C , w) returns NEXT(C1, c).

6 Improved graph recognition and detection algorithms

Section 6.1 gives our algorithms for detecting thetas, pyramids, and beetles. Section 6.2 gives our
algorithms for recognizing perfect graphs and detecting odd holes. Section 6.3 gives our algorithm
for detecting even holes.

6.1 Improved theta, pyramid, and beetle detection

Each previous algorithm for detecting a family F of graphs in G via the three-in-a-tree algorithm
identifies a set G of a polynomial number of subgraphs H of G, each associated with a set L(H) of
three terminals, such that G is F-free if and only if each graph H in G does not admit an induced
tree containing L(H). In addition to Theorem 1.1, our improvement are obtained via exploiting
that the graphs H in G need not be subgraphs of G. For instance, if F are thetas, then Chudnovsky
and Seymour [28] obtained a set G of O(n7) subgraphs of G. Each H ∈ G with L(H) = {a1, a2, a3}
is uniquely determined from vertices b, b1, b2, b3, a1, a2, and a3 of G such that bb1, bb2, bb3,
a1 b1, a2 b2, and a3 b3 are the distinct edges of G[{b, b1, b2, b3, a1, a2, a3}]. We observe that the
requirement that a1 b1, a2 b2, and a3 b3 are the distinct edges of G[{a1, a2, a3, b1, b2, b3}] can be
achieved by making the neighbors of each bi with i ∈ {1,2, 3} in V (G) \ {b, b1, b2, b3} a clique. As
a result, each H ∈ G is determined from four vertices b, b1, b2, and b3 such that bb1, bb2, and
bb3 are the distinct edges of G[{b, b1, b2, b3}]. Thus, there is a set G of O(n4) n-vertex graphs
H with L(H) = {b1, b2, b3} such that G is theta-free if and only if each graph H in G does not
admit an induced tree containing L(H). An n3-factor is reduced from the number of the three-in-a-
tree problems to be solved in order to determine whether G is theta-free. Beetle detection can be
improved similarly. Improving the algorithm for pyramid detection needs additional care, since a
pyramid has to contain exactly one triangle.

28

6.1.1 Proving Theorem 1.2

Theorem 1.2 is immediate from Theorem 1.1 and the next lemma.

Lemma 6.1. Thetas in an n-vertex m-edge graph G can be detected by solving the three-in-a-tree prob-
lem on O(mn2) linear-time-obtainable n-vertex graphs.

Proof. Observe that H is a theta of G if and only if there are vertices b, b1, b2, and b3 of H such
that bb1, bb2, and bb3 are the distinct edges of G[{b, b1, b2, b3}] and H − b is an induced subtree
of G− b having exactly three leaves b1, b2, and b3. See Figure 2(a). For each of the O(mn2) choices
of vertices b, b1, b2, and b3 such that bb1, bb2, and bb3 are the distinct edges in G[{b, b1, b2, b3}],
let G(b, b1, b2, b3) denote the graph that is O(m+ n)-time obtainable from G by (1) deleting N[b]\
{b1, b2, b3} and (2) adding edges to make the remaining vertices in each N(bi) with i ∈ {1, 2,3} a
clique. We show that G admits a theta H if and only if one of the O(mn2) graphs G∗ = G(b, b1, b2, b3)
admits an induced subtree T ∗ containing {b1, b2, b3}.
(⇒) G∗ = G(b, b1, b2, b3) exists for the vertices b, b1, b2, and b3 of H. The vertices deleted from
G in Step (1) are not in T = H − b, implying that T is a subtree of G∗ containing {b1, b2, b3}. Since
b1, b2, and b3 are the leaves of T , each edge added by Step (2) is incident to at most one vertex of
T , implying that T is an induced subtree T ∗ of G∗ containing {b1, b2, b3}.
(⇐) The distinct edges of G[{b, b1, b2, b3}] are bb1, bb2, and bb3. By Step (2), b1, b2, and b3 are
the leaves of T ∗. Since each edge deleted in Step (1) is incident to at most one vertex of T ∗, T ∗ is
an induced subtree of G − b, implying that G[T ∗ ∪ {b}] is a theta H of G.

6.1.2 Proving Theorem 1.3

A pyramid [28] of graph G is the subgraph of G induced by the vertices of an induced subtree T
of G − {b1 b2, b2 b3, b3 b1} having exactly three leaves b1, b2, and b3 such that G[{b1, b2, b3}] is the
only triangle of G[T]. See Figure 2(b). Theorem 1.3 is immediate from Theorem 1.1 and the next
lemma.

Lemma 6.2. Pyramids in an n-vertex m-edge graph G can be detected by solving the three-in-a-tree
problem on O(mn) linear-time-obtainable n-vertex graphs.

Proof. For each of the O(mn) choices of distinct vertices b1, b2, and b3 such that G[{b1, b2, b3}]
is a triangle, let G(b1, b2, b3) be the graph obtained from G by (1) adding edges to make each
N(bi) \ {b1, b2, b3} with i ∈ {1, 2,3} a clique, (2) deleting edges b1 b2, b2 b3, and b3 b1, and (3)
deleting (N(bi) ∩ N(b j)) \ {b1, b2, b3} for any distinct indices i and j in {1,2, 3}. We show that G
admits a pyramid H if and only if one of the O(mn) graphs G∗ = G(b1, b2, b3) admits an induced
subtree T ∗ containing {b1, b2, b3}.
(⇒) G∗ exists for the vertices b1, b2, and b3 of H. Since H[{b1, b2, b3}] is the only triangle of
H, H does not intersect any (N(bi) ∩ N(b j)) \ {b1, b2, b3} with 1 ≤ i < j ≤ 3. Hence, Steps (2)
and (3) do not delete any edge of T , implying that T is a subtree of G∗. Since T is an induced tree
of G−{b1 b2, b2 b3, b3 b1} having exactly three leaves b1, b2, and b3, each edge added by Step (1) is
incident to at most one vertex of T . Thus, T is an induced subtree T ∗ of G∗ containing {b1, b2, b3}.
(⇐) By Step (1), vertices b1, b2, and b3 are the leaves of the subtree T ∗ of G. Since each
edge deleted in Step (3) is incident to at most one vertex of T ∗, T ∗ is an induced subtree of
G − {b1 b2, b2 b3, b3 b1} by Step (2). By Steps (2) and (3), G[{b1, b2, b3}] is the only triangle of
G[T ∗]. Thus, G[T ∗] is a pyramid H of G.

29

6.1.3 Proving Theorem 1.5

A beetle [15] of graph G is an induced subgraph of G consisting of a cycle b1 b2 b3 b4 b1 with a chord
b2 b4 (i.e., a diamond [36, 62] of G) and a tree T of G − b4 having exactly three leaves b1, b2, and
b3. See Figure 2(c). Theorem 1.5 is immediate from Theorem 1.1 and the next lemma.

Lemma 6.3. Beetles in an n-vertex m-edge graph G can be detected by solving the three-in-a-tree prob-
lem on O(m2) linear-time-obtainable n-vertex graphs.

Proof. For each of the O(m2) choices of vertices b1, b2, b3, and b4 such that G[{b1, b2, b3, b4}] is a
cycle b1 b2 b3 b4 b1 with exactly one chord b2 b4, let G(b1, b2, b3, b4) be the O(m+n)-time obtainable
graph from G by (1) deleting N[b4] \ {b1, b2, b3} and (2) adding edges to make the remaining
vertices in each N(bi) \ {b1, b2, b3} with i ∈ {1,2, 3} a clique. We show that G admits a beetle H
if and only if one of the O(m2) graphs G(b1, b2, b3, b4) admits an induced subtree T ∗ containing
{b1, b2, b3}.
(⇒) G∗ = G(b1, b2, b3, b4) exists for the vertices b1, b2, b3, and b4 of H. The vertices deleted fro G
in Step (1) are not in T , implying that T is a subtree of G∗ containing {b1, b2, b3}. Since T intersects
each N(bi) \ {b1, b2, b3} with i ∈ {1, 2,3} at exactly one vertex, each edge added by Step (2) is
incident to at most one vertex of T . Thus, T is an induced subtree T ∗ of G∗ containing {b1, b2, b3}.
(⇐) G[{b1, b2, b3, b4}] is a cycle b1 b2 b3 b4 b1 with exactly one chord b2 b4. By Step (2), b1, b2,
and b3 are the leaves of T ∗. Since each edge deleted in Step (1) is incident to at most one vertex of
T ∗, we have G[T ∗] = T ∗ ∪ {b1 b2, b2 b3}, implying that G[T ∗ ∪ {b4}] is a beetle H of G.

6.2 Improved perfect-graph recognition and odd-hole detection

As summarized by Maffray and Trotignon [68, §2], the algorithm of Chudnovsky et al. [18] consists
of two O(n9)-time phases. The first phase (a) detects pyramids in G in O(n9) time, (b) detects the
so-called Ti configurations with i ∈ {1,2, 3} in O(n6) time,1 and (c) detects jewels in Ḡ in O(n6)
time. If any of them is detected, then either G or Ḡ contains odd holes, implying that G is not
perfect. Otherwise, each shortest odd hole C of G is amenable, i.e., any anti-connected component
of the C-major vertices is contained by NG(u) ∩ NG(v) for some edge uv of C . The second phase
(a) computes in O(n5) time a set X of O(n5) subsets of V (G) such that if G contains an amenable
shortest odd hole, then X contains a near cleaner of G and (b) spends O(n4) time on each X ∈ X
to either obtain an odd hole of G or ensure that X is not a near cleaner of G. Theorem 1.3 reduces
the time of detecting pyramids to O(n6). Lemma 6.5 reduces the time of Phase 2(b) from O(n4) to
the time of performing O(n) multiplications of Boolean n× n matrices [38, 64, 82]. Therefore, the
time of recognizing perfect graphs is already reduced to O(n8.377)without resorting to our improved
odd-hole detection algorithm.

Let G be an n-vertex m-edge graph. A k-hole (respectively, k-cycle and k-path) is a k-vertex hole
(respectively, cycle and path). For any odd hole C of G, a vertex x ∈ V (G) \ V (C) is C-major [18] if
NG(x , C) is not contained by any 3-path of C . Let MG(C) consist of the C-major vertices. We have
MG(C) ∩ V (C) = ∅. A shortest odd hole C of G is clean if G does not contain any C-major vertex.
A set X ⊆ V (G) is a near cleaner [18] if there is a shortest odd hole C of G such that (1) C[X] is
contained by a 3-path of C and (2) all C-major vertices of G are in X . A jewel of G is an O(n6)-time
detectable induced subgraph of G [18]. If G contains jewels or beetles, then G contains odd holes.
Let Ḡ denote the complement of graph G.

1in [68] we omit the complicated definitions of Ti configurations, which are not needed by our improved algorithms.

30

Lemma 6.4 (Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković [18, 4.1]). Let u and v be distinct
vertices of a clean shortest odd hole C of a pyramid-free jewel-free graph G. (1) The shortest uv-path
of C is a shortest uv-path of G. (2) The graph obtained from C by replacing the shortest uv-path of C
with a shortest uv-path of G remains a clean shortest odd hole of G.

6.2.1 An improved algorithm for recognizing perfect graphs

Although Theorem 1.4(1) implies Theorem 1.4(2), this subsection shows that we already have an
improved algorithm for recognizing perfect graphs without resorting to Theorem 1.4(1). The next
lemma reduces the time of Chudnovsky et al.’s algorithms [18, 4.2 and 5.1] from O(n4) to O(n3.377).

Lemma 6.5. For any given vertex set X of an n-vertex pyramid-free jewel-free graph G, it takes the
time of performing O(n) multiplications of n× n Boolean matrices to either obtain an odd hole of G or
ensure that X is not a near cleaner of a shortest odd hole of G.

Proof. It takes overall O(n3) time to obtain for any distinct vertices u and v of G that are connected
in G(u, v) = G− (X \{u, v}) (i) the length d(u, v) of a shortest uv-path P(u, v) in G(u, v) and (ii) the
neighbor N(u, v) of u in P(u, v). Assume P(u, v) = P(v, u) for all u and v without loss of generality.
If u and v are not connected in G(u, v), then let d(u, v) =∞. It takes overall O(n3) time to compute
for any distinct vertices x and y of G the set Z(x , y) represented by an n-bit array, consisting of the
vertices z of G with d(z, x) = 1 and d(z, y)> d(x , y). If

d(x1, x2) ≥ 2
d(x1, y1) = d(x2, y2) = d(x1, y2)− 1 = d(x2, y1)− 1

Z(x1, y1)∩ Z(x2, y2) 6= ∅
(1)

with y1 = N(y2, x1) hold for any distinct vertices x1, x2, and y2 with minimum d(x2, y2), then the
O(n2)-time obtainable C = G[P(x1, y1) ∪ P(x2, y2) ∪ {z}] for any z ∈ Z(x1, y1) ∩ Z(x2, y2) is an
odd hole of G: Paths P(x1, y1) and P(x2, y2) are chordless. By z ∈ Z(x1, y1) ∩ Z(x2, y2), the only
neighbors of z in C are x1 and x2. By d(x1, x2) ≥ 2, d(x i , yi) = d(x i , y3−i)− 1 for each i ∈ {1, 2},
and the minimality of d(x2, y2), the only edge between P(x1, y1) and P(x2, y2) is y1 y2. Thus, C
is an odd hole of G. For each y2, we construct a directed acyclic tripartite graph G(y2) on three
n-vertex sets X1, Z , X2 such that (1) x1z with x1 ∈ X1 and z ∈ Z is a directed edge of G(y2) if and
only if z ∈ Z(x1, N(y2, x1)) and (2) zx2 with z ∈ Z and x2 ∈ X2 is a directed edge of G(y2) if and
only if z ∈ Z(x2, y2). It takes the time of multiplying two n×n Boolean matrices to obtain the O(n2)
pairs of reachability in G(y2) from X1 to X2. Thus, the time required to determine whether there
is a choice of x1, x2, and y2 satisfying Equation (1) is that of performing O(n) multiplications for
n× n Boolean matrices.

It remains to show that such a choice of x1, x2, and y2 exists for the case that X is a near cleaner
of a shortest odd hole C of G. Let P be a 3-path of C such that C − V (P) does not intersect the
C-major vertices of G, implying that C is a clean shortest odd hole of H = G − (X \ V (P)). Let x1
and x2 be the end-vertices of P. Let y2 be the vertex of C such that the shortest x1 y2-path of C is
one edge longer than the shortest x2 y2-path of C . By Lemma 6.4, each shortest x i y2-path Pi of C
with i ∈ {1,2} is a shortest x i y2-path of H. Since X does not intersect the interior of P1 and P2,
each P(x i , y2) with i ∈ {1, 2} is a shortest x i y2-path of H. Applying Lemma 6.4(2) on C to replace
Pi with P(x i , y2) for each i ∈ {1,2}, we obtain a clean shortest odd hole C∗ of H, via which one can
verify Equation (1) for the chosen x1, x2, and y2: Let y1 = N(y2, x1). Since C∗ is chordless in G,
d(x1, x2)≥ 2. Since X does not intersect the vertices of C∗ other than x1, x2, and the internal vertex
z of the shortest x1 x2-path of C∗, we have d(x1, y1) = d(x2, y2) = d(x1, y2)− 1 = d(x2, y1)− 1 by
Lemma 6.4(1). We have d(z, x1) = d(z, x2) = 1. By Lemma 6.4(1), d(z, yi) > d(x i , yi) for both

31

i ∈ {1,2} or else the shortest z yi-path of C∗ for an i ∈ {1,2} would not be a shortest z yi-path of H.
Thus, z ∈ Z(x1, y1)∩ Z(x2, y2).

Lemma 6.6 (Chudnovsky, Cornuéjols, Liu, Seymour, and Vušković [18]). Let G be an n-vertex graph
such that G and Ḡ are pyramid-and-jewel-free. It takes O(n6) time to (1) ensure that G contains odd
holes or (2) obtain a set X of O(n5) vertex subsets of G such that if G contains odd holes, then X
contains a near cleaner of G.

By Theorem 1.3, it takes O(n6) time to detect pyramids or jewels in G and Ḡ. If G or Ḡ contains
pyramids or jewels, then G is not perfect. By Lemma 6.6, it suffices to consider the case that we are
given a set X of O(n5) vertex subsets such that if G or Ḡ is not odd-hole-free, then X contains a
near cleaner of G or Ḡ. By Lemma 6.5, it takes overall O(n8.377) time [38, 64, 82] to either obtain
an odd hole of G or Ḡ or ensure that both G and Ḡ are odd-hole-free.

6.2.2 Proving Theorem 1.4

The recent odd-hole detection algorithm of Chudnovsky, Scott, Seymour, and Spirkl has seven O(n9)-
time bottleneck subroutines. One is for pyramid detection, which is eliminated by Theorem 1.3. The
remaining six are in two groups [26, §4]. The first (respectively, second) group handles the case
that the longest x-gap (i.e., a path D of C such that G[D ∪ {x}] is a hole of G) over all C-major
vertices x for a shortest odd hole C is shorter (respectively, longer) than one half of C . We give a
two-phase algorithm to handle both cases in O(n8) time. For the first case, Phase 1 tries all O(n5)
choices of five vertices to obtain an approximate cleaner for C , with which a shortest odd hole can
be identified in O(n3) time via Lemmas 6.5 and 6.8. For the second case, Phase 2 tries all O(n6)
choices of six vertices to obtain an approximate cleaner for C , with which a shortest odd hole can
be identified in O(n2) time via Lemma 6.9.

Lemma 6.7 (Chudnovsky, Scott, Seymour, and Spirkl [26, Theorem 3.4]). Let G be a jewel-free,
pyramid-free, and 5-hole-free graph. Let C be a shortest odd hole in G. If x ∈ MG(C), then there is an
edge of C adjacent to each vertex of MG(C) \ NG(x) in G.

A vertex set X ⊆ V (G) is an approximate cleaner of C if X contains all C-major vertices and X∩V (C) ⊆
{c1, c2} holds for two vertices c1 and c2 with dC(c1, c2) = 3. The second statement of the next lemma
reduces the running time of an O(n8)-time subroutine of Chudnovsky et al. [26, Theorem 2.4] to
O(n5).

Lemma 6.8. For any given vertex set X of an n-vertex m-edge pyramid-free jewel-free 5-hole-free graph
G, (1) it takes O(n3) time to obtain an odd hole of G or ensure that X is not an approximate cleaner
of any shortest odd hole of G and (2) it takes O(mn3) time to either obtain an odd hole of G or ensure
that there is no shortest odd hole C of G such that an edge of C is adjacent to all C-major vertices of G.

Proof. We first show that Statement 1 implies Statement 2: For each edge b1 b2 of G, we apply
Statement 1 with X = (NG(b1)∪NG(b2))\{b1, b2} in overall O(mn3) time. If no odd hole is detected,
then report that there is no shortest odd hole C of G such that an edge of C is adjacent to all C-major
vertices of G. To see the correctness, observe that if C is a shortest odd hole of G such that an edge
b1 b2 is adjacent to all C-major vertices of G, then (NG(b1) ∪ NG(b2)) \ {b1, b2} is an approximate
cleaner of C . Thus, Statement 2 holds.

It remains to prove Statement 1. It takes overall O(n3) time to obtain for any distinct vertices u and
v of G that are connected in G(u, v) = G − (X \ {u, v}) (i) the length d(u, v) of a shortest uv-path
P(u, v) in G(u, v) and (ii) the neighbor N(u, v) of u in P(u, v). Assume P(u, v) = P(v, u) for all u

32

and v without loss of generality. If u and v are not connected in G(u, v), then let d(u, v) =∞. It
takes overall O(n3) time to determine whether C = G[P(c1, c2) ∪ P(c1, b) ∪ P(c2, b)] is a 7-hole or
the following equation holds for any distinct vertices b, c1, and c2 of G:

d(c1, c2) = 3
d(c1, N(c2, b)) > 3
d(c2, N(c1, b)) > 3

d(c1, b) = d(c2, b) = d(c1, N(b, c2))− 1 = d(c2, N(b, c1))− 1.

(2)

If Equation (2) holds for distinct vertices b, c1, and c2 with minimum d(c1, b), then C is an odd
hole of G: Both P(b, c1) and P(b, c2) are chordless. By d(c1, b) = d(c2, b) = d(c1, N(b, c2))− 1 =
d(c2, N(b, c1)) − 1 and the minimality of d(c1, b), paths P(b, c1) − b and P(b, c2) − b are disjoint
and nonadjacent. The interior of P(c1, c2) is disjoint from and nonadjacent to P((c1, b) − c1) ∪
(P(c2, b)− c2), since otherwise d(ci , N(c3−i , b))≤ 3 or d(ci , b)≥ d(ci , N(b, c3−i)) would hold for an
i ∈ {1,2}. Thus, C is an odd hole of G. It remains to show that if X is an approximate cleaner for
a shortest odd hole C of G, then there is a choice of b, c1, and c2 such that Equation (2) holds or
C∗ = G[P(c1, c2)∪ P(c1, b)∪ P(c2, b)] is a 7-hole. Let c1 and c2 be two vertices of C with X ∩V (C) ⊆
{c1, c2}). Thus, C is a clean shortest odd hole of H = G−(X \{c1, c2}). By dC(c1, c2) = 3, |V (C)| ≥ 7,
and Lemma 6.4, we have d(c1, c2) = 3. Let b be the vertex of C with dC(b, c1) = dC(b, c2). Apply
Lemma 6.4 on C to replace the shortest bc1-path of C with P(b, c1), replace the shortest bc2-path of
C with P(b, c2), and replace the shortest c1c2-path of C with P(c1, c2). We obtain the clean shortest
odd hole C∗ of H. Suppose |V (C∗)| ≥ 9. By X ∩ V (C) ⊆ {c1, c2}, |V (C∗)| ≥ 9, and Lemma 6.4, we
have d(c1, b) = d(c2, b) = d(c1, N(b, c2))− 1 = d(c2, N(b, c2))− 1. By Lemma 6.4 and |V (C∗)| ≥ 9,
we have d(ci , N(c3−i , b))> 3 for both i ∈ {1,2}. Thus, Equation (2) holds.

Lemma 6.9. Let d, b1, and b2 be distinct vertices of an n-vertex graph G. Let each Ti with i ∈ {1,2}
be a subtree of G −{b1, b2} containing d. It takes O(n2) time to determine whether there is a leaf ci of
Ti for each i ∈ {1, 2} such that if each Pi with i ∈ {1,2} is the dci-path of Ti , then G[P1∪{b1, b2}∪ P2]
is an odd hole of G.

Proof. For each i ∈ {1,2}, let T ′i (respectively, T ′′i) be the union of all d-to-leaf paths of Ti with odd
(respectively, even) lengths. In order for G[P1 ∪ {b1, b2} ∪ P2] to be an odd hole, if P1 is path of
T ′1 (respectively, T ′′1), then P2 is a path of T ′2 (respectively, T ′′2). Therefore, it suffices to work on
the case that if each ci with i ∈ {1,2} is a leaf of Ti , then (1) the union of path c1 b1 b2c2 and the
dc1-path P1 of T1 is an induced path of G, (2) the union of path c1 b1 b2c2 and the dc2-path P2 of T2
is an induced path of G, and (3) |E(P1)|+ |E(P2)| is even. It remains to show how to determine in
O(n2) time whether there is an induced c1c2-path P1 ∪ P2. For each vertex v of T2 − d, let set S(v),
implemented by an n-bit array associated with a counter for |S(v)|, be initially empty. Perform a
depth-first traversal of T1. When a vertex u of T1 − d is reached from its parent in T1, insert u into
S(v) for each vertex v of T2− d with u= v or uv ∈ E(G) in overall O(n) time. When the traversal is
about to leave a vertex u of T1−d for its parent in T1, run the following O(n)-time steps: If u is a leaf
c1 of T1, then check whether there is a dc2-path P2 of T2 for some leaf c2 of T2 such that S(v) = ∅
holds for all vertices v of P2− d. If there is such a P2, then quit the traversal and report an odd hole
G[P1∪{b1, b2}∪ P2]. If u is not a leaf of T1 or there is no such a P2, then delete u from S(v) for each
vertex v of T2 − d with u ∈ S(v). If the traversal ends normally, then report negatively. The overall
running time is O(n2). To see the correctness, let c1 be a traversed leaf of T1. Let c2 be an arbitrary
leaf of T2. Let each Pi with i ∈ {1,2} be the dci-path of Ti . Consider the moment when the traversal
is about to leave c1 for its parent in T1. By the depth-first nature of the traversal, S(v) ⊆ V (P1) holds
for each vertex v of T2 − d. Therefore, P1 ∪ P2 is an induced c1c2-path if and only if S(v) =∅ holds
for each vertex v of P2 − d.

33

Proof of Theorem 1.4. It suffices to prove Statement 1. By Theorem 1.3 and Lemma 6.8(1), and
the fact that jewels and 5-holes are O(n6)-time detectable, we may assume that G does not contain
pyramids, jewels, 5-holes, and clean shortest odd holes. By Lemma 6.8(2), we may further assume
that G does not contain any shortest odd hole C such that an edge of C is adjacent to all C-major
vertices. The algorithm consists of two O(m2n4)-time phases. If none of them identifies an odd hole
of G, then report that G is odd-hole-free. Let x , d, d1, d2, c1, b1, and b2 be vertices of G that are not
necessarily distinct. Let

X1 = (NG(b1)∪ NG(b2)) \ {b1, b2}
X2 = NG(d1)∩ NG(d2)

S0 = {d1, d2}
S1 = {d1, d2, c1}
S2 = {d1, d2, c1, b1}.

For each k ∈ {0, 1,2}, let
Hk = G − ((X1 ∪ NG(x)) \ Sk),

let Ik consist of the internal vertices of all shortest d1d2-paths of Hk, let Jk consist of vertex d and
the internal vertices of all shortest dd1-paths and dd2-paths of Hk, let Yk = NG(x)∩ NG(Ik), and let
Zk = NG(x)∩NG(Jk). If no odd hole of G is identified via the following two phases, then report that
G is odd-hole-free.

Phase 1:

• For each of the O(m2n) choices of vertices x , d1, d2, b1, b2 with x ∈ NG(d1)∩ NG(d2) and b1 b2 ∈
E(G), apply Lemma 6.8(1) with X = (X1 ∪ X2 ∪ Y0) \ S0 in O(n3) time.

• For each of the O(m2n) choices of vertices x , c1, b1 = d1, b2, d2 with x ∈ NG(d1) ∩ NG(d2) and
b1 b2 ∈ E(G), apply Lemma 6.8(1) on X = (X1 ∪ X2 ∪ Y1) \ S1 in O(n3) time.

• For each of the O(m2n) choices of vertices x , c1, b1, b2 = d1, d2 with x ∈ NG(d1) ∩ NG(d2) and
b1 b2 ∈ E(G), apply Lemma 6.8(1) on X = (X1 ∪ X2 ∪ Y2) \ S2 in O(n3) time.

Phase 2:

• For each of the O(m2n2) choices of vertices x , d, d1, d2, b1, b2 with x ∈ NG(d1) ∩ NG(d2) and
b1 b2 ∈ E(G), apply the following procedure with X = (X1 ∪ X2 ∪ Z0) \ S0 in O(n2) time.

• For each of the O(m2n2) choices of vertices x , d, c1, b1 = d1, b2, d2 with x ∈ NG(d1)∩ NG(d2) and
b1 b2 ∈ E(G), apply the following procedure on X = (X1 ∪ X2 ∪ Z1) \ S1 in O(n2) time.

• For each of the O(m2n2) choices of vertices x , d, c1, b1, b2 = d1, d2 with x ∈ NG(d1)∩ NG(d2) and
b1 b2 ∈ E(G), apply the following procedure on X = (X1 ∪ X2 ∪ Z2) \ S2 in O(n2) time.

Let C1 (respectively, C2) consist of the vertices c such that cb1 b2 (respectively, b1 b2c) is an induced
path of G. Let T ∗1 be a tree that is the union of a shortest dc-path in G− (X \ {c, d}) over all vertices
c ∈ C1. Let each Ti with i ∈ {1,2} be a tree that is the union of a shortest ddi-path and a shortest
dic-path in G − (X \ {c, d}) over all vertices c ∈ Ci . Apply Lemma 6.9 on d, b1, b2, T1 (respectively,
T ∗1), and T2 to identify an odd hole of G in O(n2) time.

The rest of the proof assumes that C is a shortest odd hole of G and shows that the above O(m2n4)-
time algorithm outputs an odd hole of G. Since G does not contain any clean shortest odd hole,
MG(C) 6= ∅. For any x ∈ MG(C), a path D of C is an x-gap [26] if G[D ∪ {x}] is a hole of G. There
is an x ∈ MG(C) with an x-gap or else each edge of C would be adjacent to all vertices of MG(C).
Let x ∈ MG(C)maximize the length of a longest x-gap D. Let b1 b2 be an edge of C adjacent to each
vertex of MG(C) \NG(x) as ensured by Lemma 6.7, implying MG(C) \ X1 ⊆ NG(x). Let d1 and d2 be

34

the end-vertices of D. By the maximality of D, each vertex of MG(C) \ X2 is adjacent to the interior
of D. Thus, each vertex of MG(C) \ (X1 ∪ X2) is adjacent to x and the interior of D. Let c1 and c2 be
the vertices such that c1 b1 b2c2 is a path of C . We have k = |V (D) ∩ {b1, b2}| ∈ {0, 1,2}. If k = 0,
then Sk = {d1, d2} and the interior of D is disjoint from c1 b1 b2c2. If k = 1, then assume without loss
of generality d1 = b1 and that c1 is the neighbor of d1 in D, implying Sk = {c1, b1 = d1, d2}. If k = 2,
then assume without loss of generality d1 = b2, by x ∈ NG(b1)∪NG(b2) and that b1 is the neighbor
of d1 in D, implying Sk = {c1, b1, b2 = d1, d2}.
For each k ∈ {0, 1,2}, D is a path of Hk: We have NG(x) ∩ V (D) = {d1, d2} ⊆ Sk. By X1 ∩ V (D) =
{c1, c2} ∩ V (D) ⊆ Sk, we have D ⊆ Hk. By MG(C) ∩ Sk = ∅ and MG(C) \ X1 ⊆ NG(x), we have
MG(C) ⊆ (X1 ∪ NG(x)) \ Sk, implying Hk ⊆ G −MG(C).

Phase 1 handles the case |E(D)| < 0.5 · |E(C)|: By Lemma 6.4(1), D is a shortest d1d2-path of
G − MG(C), implying that D is a shortest d1d2-path of Hk. Since no edge of C is adjacent to all
C-major nodes of G, we have |E(D)| ≥ 3 by the maximality of D. Thus, all internal vertices of
D are contained by Ik, implying MG(C) \ (X1 ∪ X2) ⊆ Yk by the maximality of D. Let D∗ be an
arbitrary shortest d1d2-path of Hk. By |E(D∗)| = |E(D)| and Hk ⊆ G − MG(C), D∗ is a shortest
d1d2-path of G − MG(C). By Lemma 6.4(2), the graph C∗ obtained from C by replacing D with
D∗ is a clean shortest odd hole of G − MG(C). Therefore, the interior of D∗ is disjoint from and
nonadjacent to C − V (D), implying that Ik is disjoint from and nonadjacent to C − V (D). One can
verify that X = (X1∪X2∪ Yk)\Sk is either an approximate cleaner for C with X ∩V (C) = {c1, c2} or
X ∩ V (C) = {c2}. Thus, Phase 1 outputs an odd hole of G.

Phase 2 handles the case |E(D)| > 0.5 · |E(C)|: Let d be a middle vertex of D. For each index
i ∈ {1, 2}, the ddi-path Di of C is a shortest ddi-path of G − MG(C) by Lemma 6.4(1), implying
that Di is a shortest ddi-path of Hk. Thus, all internal vertices of D are contained by Jk, implying
MG(C) \ (X1 ∪ X2) ⊆ Zk. Let each D∗i with i ∈ {1, 2} be an arbitrary shortest ddi-path of Hk. By
|E(D∗i)| = |E(Di)| and Hk ⊆ G −MG(C), D∗i is a shortest ddi-path of G −MG(C). By Lemma 6.4(2),
the graph C∗ obtained from C by replacing D with D∗1∪D∗2 is a clean shortest odd hole of G−MG(C).
Therefore, the interior of the d1d2-path D∗1∪D∗2 is disjoint from and nonadjacent to C−V (D), implying
that Jk is disjoint from and nonadjacent to C − V (D). One can verify that X = (X1 ∪ X2 ∪ Zk) \ Sk
is an approximate cleaner for C with X ∩ V (C) = {c1, c2} or X ∩ V (C) = {c2}. We have c1 ∈ C1 and
c2 ∈ C2.

• If k = 0, then the dc1-path P1 of T1 is the union of a shortest dd1-path P ′1 and a shortest d1c1-path
P ′′1 of G − (X \ {c1, d}) even if c1 = d1. By MG(C) ⊆ X , X ∩ V (C) ⊆ {c1, c2}, and the fact that
the shortest dd1-path and d1c1-path of C are in G − (X \ {c1, d}), Lemma 6.4(1) implies that P ′1
(respectively, P ′′1) is a shortest dd1-path (respectively, d1c1-path) of G −MG(C).

• If k ∈ {1,2}, then c1 is an internal vertex of D. The dc1-path P1 of T ∗1 is a shortest dc1-path of
G − (X \ {c1, d}). By MG(C) ⊆ X and X ∩ V (C) = {c2}, Lemma 6.4(1) implies that P1 is a shortest
dc1-path of G −MG(C).

The dc2-path P2 of T2 is the union of a shortest dd2-path P ′2 and a shortest d2c2-path P ′′2 of G− (X \
{c2, d}) even if k = 0 and c2 = d2. By MG(C) ⊆ X , X ∩ V (C) ⊆ {c1, c2}, and the fact that the shortest
dd2-path and d2c2-path of C are in G−(X \{c2, d}), Lemma 6.4(1) implies that P ′2 (respectively, P ′′2)
is a shortest dd2-path (respectively, d2c2-path) of G − MG(C). By applying Lemma 6.4(2) at most
four times on C , G[P1 ∪ {b1, b2} ∪ P2] is a clean shortest odd hole of G − MG(C). Thus, Phase 2
outputs an odd hole of G.

35

6.3 Improved even-hole detection

Chang and Lu’s algorithm consists of two O(n11)-time phases. The first phase detects beetles in
O(n11) time, which is now reduced to O(n7) time by Theorem 1.5. The second phase maintains
a set T of induced subgraphs of G with the property that if G is even-hole-free, then so is each
graph in T until either T becomes empty or an H ∈ T is found to contain even holes. The initial
T consists of O(n5) graphs obtained from guesses of (1) a 3-path P on a shortest even hole C of G,
(2) an X ⊆ V (G) that contains the major vertices of C without intersecting C , and (3) a Y ⊆ V (G)
that contains N2,2

G (C) (see §6.3.2 for definition) without intersecting C . Each iteration of Phase 2
takes O(n4) time to either ensure that an H ∈T is an extended clique tree that contains even holes
or replaces H with 0 (respectively, 1 and 2) smaller graphs via ensuring that H is an even-hole-
free extended clique tree (respectively, decomposing H by a star-cutset and decomposing H by a
2-join). The guessed P and Y are crucial in arguing that H can be decomposed by a star-cutset
without increasing |T|, implying that each initial H ∈T incurs O(n) decompositions by star-cutsets.
Therefore, the overall time for decompositions by star-cutsets is O(n10), i.e., O(n5) times the initial
|T|. Each initial H ∈ T incurs O(n2) decompositions by 2-joins, implying that the overall time for
detecting even holes in extended clique trees and decompositions by 2-joins is O(n11), i.e., O(n6)
times the initial |T|. We reduce the time of Phase 2 from O(n11) to O(n9). As in the proof of
Lemma 6.10, a factor of n is removed by reducing the initial |T| from O(n5) to O(n4) via ignoring
Y and the internal vertex of P. Guessing only X and the end-vertices of P does complicate the task
of decomposing H by a star-cutset, but we manage to handle each decomposition by a star-cutset in
the same time bound (see the proof of Lemma 6.11). Another factor of n is removed by reducing the
number of decompositions by 2-joins incurred by each initial H ∈T from O(n2) to O(n) via carefully
handling the boundary cases (see the proof of Lemma 6.12).

Let G be an n-vertex m-edge graph. A major vertex [20] of an even hole C is a v ∈ V (G) \ V (C)
with at least three distinct vertices in NG(v)∩ V (C) that are pairwise nonadjacent in G. Let MG(C)
consist of the major vertices of an even hole C . A hole without major vertices is clear. A v1v2-hole
of G is a clear shortest even hole C of G such that v1 and v2 are the end-vertices of a 3-path of C . A
tracer of G is a triple 〈H, v1, v2〉 such that v1 and v2 are vertices of an induced subgraph H of G. A
tracer 〈H, v1, v2〉 of G is lucky if H contains a v1v2-hole. A setT of tracers of G is reliable ifT satisfies
the condition that if G contains even holes, then T contains lucky tracers.

Lemma 6.10. If G is beetle-free, then it takes O(m2n2) time to either ensure that G contains even holes
or obtain a reliable set of O(mn2) tracers of G.

Subset S of V (H) is a star-cutset [31] of a graph H if S ⊆ NH[s] holds for an s ∈ S and the number
of connected components of H − S is more than that of H.

Lemma 6.11. For any tracer T of a beetle-free graph G, it takes O(mn3) time to complete one of the
following tasks. Task 1: ensure that G contains even holes. Task 2: ensure that T is not lucky. Task 3:
obtain a star-cutset-free induced subgraph H of G such that if T is lucky, then H contains even holes.

The next lemma improves upon the O(mn4)-time algorithm of Chang and Lu. [15, Lemma 4.2].

Lemma 6.12. It takes O(mn3) time to detect even holes in an n-vertex m-edge star-cutset-free graph.

We first reduce Theorem 1.6 via Theorem 1.5 to Lemmas 6.10, 6.11, and 6.12.

Proof of Theorem 1.6. By Theorem 1.5, it takes O(m2n3) time to detect beetles in G. If G contains
beetles, then G contains even holes. Otherwise, we apply Lemma 6.10 on the beetle-free G in
O(m2n2) time. If G is ensured to contain even holes, then the theorem is proved. Otherwise, we

36

have a reliable set T of O(mn2) tracers of G. It takes overall O(m2n5) time to apply Lemma 6.11 on
all T ∈ T. If Task 1 is completed for any T ∈ T, then G contains even holes. If Task 2 is completed
for all T ∈ T, then G is even-hole-free. Otherwise, we apply Lemma 6.12 in overall O(m2n5) time
on each of the O(mn2) star-cutset-free induced subgraphs H of G corresponding to the tracers T ∈T
for which Task 3 is completed. If an H contains even holes, then so does G. Otherwise, G is even-
hole-free.

Lemmas 6.10, 6.11, and 6.12 are proved in §6.3.1, §6.3.2, and §6.3.3, respectively.

6.3.1 Proving Lemma 6.10

Lemma 6.13 (da Silva and Vušković [40]). Let G be an n-vertex m-edge graph. It takes O(mn2) time
to either ensure that G contains even holes or obtain all O(m) maximal cliques of G.

Lemma 6.14 (Chang and Lu [15, Lemma 3.4]). If C is a shortest even hole of a 4-hole-free graph G,
then either MG(C) ⊆ NG(v) holds for a vertex v of C or G[MG(C)] is a clique.

Proof of Lemma 6.10. It takes O(m2) time to detect 4-holes in G, so we assume that G is 4-hole-free.
By Lemma 6.13, it suffices to consider that the set K of O(m) maximal cliques of G is available. It
takes O(m2n2) time to obtain the set T of O(mn2) tracers of G in the form of (1) 〈G − (NG(v) \
{v1, v2}), v1, v2〉 with {v1, v, v2} ⊆ V (G) or (2) 〈G− V (K), v1, v2〉 with K ∈K and {v1, v2} ⊆ V (G). To
see thatT is reliable, let C be a shortest even hole of G. Case 1: MG(C) ⊆ NG(v) holds for a vertex v of
C . Let v1 and v2 be the neighbors of v in C . By MG(C) ⊆ NG(v)\{v1, v2} and (NG(v)\{v1, v2})∩C =∅,
C is a v1v2-hole of G − (NG(v) \ {v1, v2}). Case 2: MG(C) 6⊆ NG(v) holds for all vertices v of C .
By Lemma 6.14, G[MG(C)] is a clique. Let K be a maximal clique with MG(C) ⊆ V (K). We have
V (K)∩C =∅ or else MG(C)∩C =∅would imply MG(C) ⊆ V (K)\{v} ⊆ NG(v) for any v ∈ V (K)∩C ,
contradiction. Thus, C is a v1v2-hole of G − V (K) for any v1v2-path of C with 3 vertices.

6.3.2 Proving Lemma 6.11

Vertex x dominates vertex y in graph H if x 6= y and NH[y] ⊆ NH[x]. Vertex y is dominated in H if
some vertex of H dominates y in H. A star-cutset S of graph H is full if S = NH[s] holds for some
vertex s of S.

Lemma 6.15 (Chvátal [31, Theorem 1]). A graph without dominated vertices and full star-cutsets is
star-cutset-free.

Lemma 6.16 (Chudnovsky, Kawarabayashi, and Seymour [20, Lemma 2.2]). If x is a major vertex
of a shortest even hole C of graph G, then |NG(x , C)| is even.

Let N i
G(C) consist of the vertices x ∈ NG(C) \ MG(C) such that |NG(x , C)| = i and C[NG(x , C)] is

connected. Let N i,i
G (C) consist of the vertices x ∈ NG(C) \ MG(C) such that C[NG(x , C)] has two

connected components, each of which has i vertices.

Lemma 6.17 (Chang and Lu [15, Lemma 2.2]). For any clear shortest even hole C of a beetle-free
graph G, we have

NG(C) ⊆ N1
G(C)∪ N2

G(C)∪ N3
G(C)∪ N1,1

G (C)∪ N2,2
G (C).

Proof of Lemma 6.11. We first prove the lemma using the following two claims for any tracer T =
〈H, v1, v2〉 of an n-vertex m-edge beetle-free connected graph G:

37

Claim 1: It takes O(mn2) time to obtain a tracer T ′ = 〈H ′, v′1, v′2〉 of G, where H ′ is an induced
subgraph of H having no dominated vertices, such that if T is lucky, then so is T ′.

Claim 2: It takes O(mn2) time to (1) ensure that H is full-star-cutset-free, (2) obtain an even hole
of G, or (3) obtain a proper induced subgraph H ′ of H such that if T is lucky, then so is
〈H ′, v1, v2〉.

The algorithm proceeds in O(n) iterations to update T = 〈H, v1, v2〉. Each iteration starts with ap-
plying Claim 1 to update T without destroying its luckiness by replacing 〈H, v1, v2〉 with the ensured
〈H ′, v′1, v′2〉 such that H ′ is an induced subgraph of H that does not contain any dominated vertex.
It then applies Claim 2 on the resulting T = 〈H, v1, v2〉. If H is ensured to be full-star-cutset-free,
then Task 3 is completed by Lemma 6.15. If we obtain an even hole of G, then Task 2 is completed.
Otherwise, it updates T without destroying its luckiness by replacing H with the obtained proper
induced subgraph H ′ of H and proceed to the next iteration. The overall running time is O(mn3).

To prove Claim 1, the O(mn2)-time algorithm outputs the resulting T after iteratively updating the
initial T = 〈H, v1, v2〉 by the following procedure until H contains no dominated vertices: (1) spend
O(mn) time to detect vertices x and y of H such that x dominates y in H, (2) let H = H − {y},
and (3) if y = vi with i ∈ {1,2}, then let vi = x . The resulting H is an induced subgraph of the
initial H. For the correctness, it suffices to prove that if a tracker T is lucky, then so is the resulting
T after an iteration of the loop. Suppose that a v1v2-hole C of H contains y or else C remains a
v1v2-hole of H ′ = H − {y}. Since C is an even hole, we have x /∈ V (C) and |NC[y]|= 3, implying a
connected component of C[NG(x , C)] with at least 3 vertices. By Lemma 6.17, we have x ∈ N3

H(C),
implying that NG(x , C) consists of y and the two neighbors of y in C . Thus, C ′ = H[C ∪ {x} \ {y}]
remains a shortest even hole of H ′. Let v0 be a vertex of C such that v1v0v2 is a 3-path of C . For
each i ∈ {0, 1,2}, if y = vi , then let ui = x; otherwise, let ui = vi . Clearly, u1u0u2 is a 3-path
of C ′. It remains to show that C ′ is clear. Assume for contradiction z ∈ MH ′(C ′), implying y 6= z
and z ∈ MH(C ′). By Lemma 6.16, |NC ′(z)| ≥ 4 and |NC ′(z)| 6= 5. By Lemma 6.17, MH(C) = ∅
implies |NC(z)| ≤ 4. By C − {y} = C ′ − {x}, exactly one of x and y is adjacent to z in H or else
z ∈ MH(C ′) would imply z ∈ MH(C). Thus, z ∈ NH(x) \ NH(y), implying |NC(z)|= |NC ′(z)| − 1= 3.
Lemma 6.17 implies z ∈ N3

H(C). Since C[NG(z, C)] is a 3-path, H[C ′ ∪ {z}] is a beetle B of H in
which B[NB[z] \ {x}] is a diamond, contradiction.

To prove Claim 2, it takes O(mn) time to detect full star-cutsets in H. It suffices to focus on the case
that H contains a full star-cutset S = NH[s]. Let B consist of the connected components of H − S.
It takes O(n3) time to obtain, for every two nonadjacent vertices s1 and s2 of S, the list L(s1, s2) of
elements inB that are adjacent to both s1 and s2. It takes O(m2) time to check whether the following
conditions hold:

1. There are distinct Bi ∈ L(s1, s2) with {s1, s2} ⊆ S for i ∈ {1,2}.
2. There are disjoint edges sisi+2 of H[S] with distinct Bi ∈ L(s2i−1, s2i) for i ∈ {1, 2}.

If Condition 1 holds, then H[P1 ∪ P2 ∪ s] (is a theta and thus) contains even holes for any shortest
s1s2-path Pi in H[Bi ∪{s1, s2}]. If Condition 2 holds, then H[P1 ∪ P2 ∪ s] contains even holes for any
shortest s2i−1s2i-path Pi in H[Bi ∪ {s2i−1, s2i}]. The rest of the proof assumes that neither condition
holds. If there were a v1v2-hole C of H intersecting distinct B1 and B2 of B, then s /∈ C , implying
that C[NG(s, C)] is not connected. By Lemma 6.17, either s ∈ N1,1

H (C), implying Condition 1, or
s ∈ N2,2

H (C), implying Condition 2. Hence, each v1v2-hole C of H intersects at most one element of
B. If a B ∈ B contains one or both of v1 and v2, then the claim is proved with H ′ = H[B ∪ S]. It
remains to consider the case {v1, v2} ⊆ S. Let C be a v1v2-hole intersecting exactly one B ∈ B. If
s ∈ C , then V (C)∩S = {v1, s, v2}, implying B ∈ L(v1, v2). If s /∈ C , then s ∈ N3

H(C)∪N1,1
H (C)∪N2,2

H (C)
by Lemma 6.17, also implying B ∈ L(v1, v2). Since Condition 1 does not hold, |L(v1, v2)| ≤ 1.

38

Figure 12: A 2-join J = (V1, V2, X1, X2, Y1, Y2) of H with V1 = {a1, . . . , a6}, V2 = {b1, . . . , b6},
X1 = {a1, a2}, X2 = {b1, b2} Y1 = {a5, a6}, and Y2 = {b6} and and the parity-preserving blocks
of decomposition H1 and H2 for J .

Therefore, if |L(v1, v2)| = 1, then the claim is proved with H ′ = H[B ∪ S], where B is the only
element in L(v1, v2). If |L(v1, v2)|= 0, then the claim is proved with H ′ = H[S].

6.3.3 Proving Lemma 6.12

(V1, V2, X1, X2, Y1, Y2) is a 2-join [41, §1.3] (which is called a non-path 2-join in, e.g., [15, 77, 79])
of a connected graph H if

1. V1 and V2 form a disjoint partition of V (H) with |V1| ≥ 3 and |V2| ≥ 3,
2. X i and Yi are disjoint nonempty subsets of Vi for each i,
3. H[Vi] is not a minimal X iYi-path for each i, and
4. if vi ∈ Vi for each i, then v1v2 ∈ E(H) if and only if vi ∈ X i for each i or vi ∈ Yi for each i.

See Figure 12(a) for an example.

Lemma 6.18 (Trotignon and Vušković [79, Lemma 3.2]). If (V1, V2, X1, Y1, X2, Y2) is a 2-join of a
star-cutset-free connected graph H, then the following statements hold for each i ∈ {1,2}:

1. Each connected component of H[Vi] intersects both X i and Yi .
2. Each vertex of X i (respectively, Yi) has a non-neighbor of H in Yi (respectively, X i).

Lemma 6.19 (Charbit, Habib, Trotignon, and Vušković [17, Theorem 4.1]). Given an n-vertex m-edge
connected graph H, it takes O(mn2) time to either obtain a 2-join of H or ensure that H is 2-join-free.

Lemma 6.20 (da Silva and Vušković [41, Corollary 1.3]). A connected even-hole-free star-cutset-free
2-join-free graph is an extended clique tree.

Let J = (V1, V2, X1, X2, Y1, Y2) be a 2-join of a star-cutset-free connected graph H. Let Pi with
i ∈ {1,2} be a shortest induced X iYi-path Pi of H[Vi] as ensured by Lemma 6.18(1). If |V (Pi)|
is even (respectively, odd), then let pi = 4 (respectively, pi = 5). The parity-preserving blocks of
decomposition [79] for J are the graphs Hi with i ∈ {1, 2} consisting of H[Vi], a p j-vertex x j y j-
path with j = 3 − i, edges x x j for all vertices x of X i , and edges y y j for all vertices y of Yi . See
Figure 12(b) for an example.

Lemma 6.21 (Trotignon and Vušković [79, Lemma 3.8]). Let H1 and H2 be the parity-preserving
blocks of decomposition for a 2-join of an m-edge star-cutset-free connected graph H.

39

1. Both H1 and H2 are star-cutset-free.
2. Both H1 and H2 are even-hole-free if and only if H is even-hole-free.

Lemma 6.22 (Chang and Lu [15, Lemma 4.12]). Each of the parity-preserving blocks of decomposition
for a 2-join for an n-vertex m-edge star-cutset-free connected graph has at most n vertices and m edges.

Graph H is an extended clique tree [41] if there is a set S of two or fewer vertices of H such that each
biconnected component of H−S is a clique. It takes O(mn2) time to determine whether an n-vertex
m-edge graph is an extended clique tree.

Lemma 6.23 (Chang and Lu [15, Lemma 4.6]). It takes O(n4) time to detect even holes in an n-vertex
connected extended clique tree.

Proof of Lemma 6.12. Let W (H) consist of the v ∈ V (H) with |NH(v)| ≥ 3. Let h(H) = |V (H)| +
|W (H)|. We first prove the claim that if H1 and H2 are the parity-preserving blocks of decomposition
for a 2-join (V1, V2, X1, X2, Y1, Y2) of a star-cutset-free connected graph H, then (a) X i ∪ Vj , Yi ∪ Vj ,
or X i ∪ Yi ∪ Vj with {i, j}= {1,2} induces a 6-hole of H or (b) we have

h(H1) + h(H2) ≤ h(H) + 14 (3)

max{h(H1), h(H2)} ≤ h(H)− 1. (4)

By definition of Hi and H j with {i, j}= {1,2}, (i) if v ∈ Vi , then |NHi
(v)| ≤ |NH(v)|, (ii) if x j ∈W (Hi),

then X j ⊆W (H), and (iii) if y j ∈W (Hi), then Yj ⊆W (H). Thus, |W (Hi)| ≤ |W (H)|. By Lemma 6.22,
h(Hi)≤ h(H). By |V (Hi)|= |Vi|+ p j ≤ |Vi|+5 and W (Hi)\W (H) ⊆ {x j , y j}, Equation (3) holds. To
see Equation (4), assume h(Hi) = h(H), implying

|V (Hi)| = |V (H)| (5)

|W (Hi)| = |W (H)|. (6)

By |V (Hi)|= |V (H)|−|Vj|+p j and Equation (5), |Vj|= p j . If |V (Pj)| ∈ {4, 5}, then |Vj|= p j = |V (Pj)|
contradicts H[Vj] 6= Pj . By p j ∈ {4,5}, we have |V (Pj)| ∈ {2,3}.
Case 1: |V (Pj)| = 2. |Vj| = p j = 4. By Lemma 6.18(2), |X j| = |Yj| = 2. Thus, |X i| = |Yi| = 1 or
else X j ⊆ W (H) or Yj ⊆ W (H), contradicting Equation (6). Hence, |NHi

(x j)| = |NHi
(y j)| = 2. By

Equation (6), X j ∩W (H) = Yj ∩W (H) =∅. By Lemma 6.18(1), H[X i ∪ Yi ∪ Vj] is a 6-hole.

Case 2: |V (Pj)| = 3. |Vj| = p j = 5. Let Z = Vj \ V (Pj). Thus, Z ∩ (X j ∪ Yj) 6= ∅ or else V (Pj)
is a star-cutset of H. Let z ∈ Z ∩ X j without loss of generality. |X i| = 1 or else X j ⊆ W (H) with
|X j| ≥ 2 contradicts Equation (6). Hence, |NHi

(x j)| = 2, implying X j ∩W (H) = ∅ by Equation (6).
By Lemma 6.18(1), |NH(z)| = 2. Let z′ be the neighbor of z in Vj . We know z′ /∈ Yj or else zz′ is
shorter than Pj . By Equation (6), the internal vertex of Pj has degree 2 in H. Thus, Z = {z, z′} and
z′ y j ∈ E(H) by Lemma 6.18(1). H[X i ∪ Vj] is a 6-hole.

It suffices to prove the lemma for any given n-vertex m-edge star-cutset-free connected graph H0.
Let H initially consist of H0. Repeat the following loop until H = ∅ or the current H is ensured to
contain an even hole: Each iteration starts with getting a current H ∈H and deleting H from H. If
w(H) ≤ 15, then detect even holes in H in O(1) time. If H is even-hole-free, then proceed to the
next iteration; otherwise, exit the loop. If w(H)≥ 16, then apply Lemma 6.19 on H in O(mn2) time.

• Case 1: H is 2-join-free. Determine whether H is an extended clique tree in O(mn2) time. If
H is an extended clique tree, then apply Lemma 6.23 to detect even holes in H in O(n4) time;
otherwise, H contains an even hole by Lemma 6.20. If H contains an even hole, then exit the
loop; otherwise, proceed to the next iteration.

40

• Case 2: H admits a 2-join J = (V1, V2, X1, X2, Y1, Y2) of H. Spend O(1) time to detect 6-holes in
H from H[X i ∪ Vj], H[Yi ∪ Vj], or H[X i ∪ Yi ∪ Vj] with {i, j} = {1,2}. If H contains a 6-hole,
then exit the loop. Otherwise, add to H the O(m)-time obtainable parity-preserving blocks of
decomposition for J , each of which has at most n vertices and m edges according to Lemma 6.22,
and proceed to the next iteration.

By Lemma 6.21, if the loop stops with an emptyH, then H0 is even-hole-free; otherwise, H0 contains
an even hole. We bound the number of iterations by O(n) as follows. Let Case 2 occur f (h) times
with h= h(H0). By Equations (3) and (4), if h≤ 15, then f (h) = 0; otherwise,

f (h)≤max{1+ f (h1) + f (h2) : h1, h2 ≤ h− 1, h1 + h2 ≤ h+ 14}.

By induction on h, we prove f (h)≤max(h− 15,0), which holds for h≤ 15. For h≥ 16,

f (h) ≤ max{1+max(h1 − 15,0) +max(h2 − 15,0) : h1, h2 ≤ h− 1, h1 + h2 ≤ h+ 14}
≤ max{max(h1 + h2 − 29, h1 − 14, h2 − 14, 1) : h1, h2 ≤ h− 1, h1 + h2 ≤ h+ 14}
≤ max(h− 15, h− 15, h− 15, 1)

= max(h− 15,0).

Since the number of iterations is O(h) = O(n), the overall running time is O(mn3) except for that of
applying Lemma 6.23. Since each iteration increases the overall number of vertices of graphs in H
by O(1), the overall number of vertices of the graphs inH remains O(n) throughout. Thus, all O(n)
iterations of applying Lemma 6.23 take overall O(n4) = O(mn3) time.

7 Concluding remarks

We solve the three-in-a-tree problem on an n-vertex m-edge undirected graph in O(m log2 n) time,
leading to improved algorithms for recognizing perfect graphs and detecting thetas, pyramids, bee-
tles, and odd and even holes. It would be interesting to see if the complexity of the three-in-a-
tree problem can be further reduced. The amortized cost of maintaining the connectivity informa-
tion for the dynamic graph G − X can be improved to O(log2 n/ log log n) using [84] or even to
O(log n log logO(1) n) using [76]. Since G − X is purely decremental, we can use the randomized
algorithm in [75] for further speedup. However, this is not our only O(log2 n) bottleneck: At the
moment we pay O(log n) time for each neighbor of a vertex in X when it changes color, so if it
changes color O(log n) times, then it will be hard to beat the O(log2 n) factor.

Acknowledgments

We thank the anonymous reviewers of STOC 2020 and Evangelos Kipouridis for helpful comments.
We thank Ho-Lin Chen and Meng-Tsung Tsai for commenting on a preliminary version [63] of the
paper.

References

[1] P. Aboulker, M. Radovanović, N. Trotignon, and K. Vušković. Graphs that do not contain a
cycle with a node that has at least two neighbors on it. SIAM Journal on Discrete Mathematics,
26(4):1510–1531, 2012. doi:10.1137/11084933X.

41

http://dx.doi.org/10.1137/11084933X

[2] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour. Bisimplicial vertices in
even-hole-free graphs. Journal of Combinatorial Theory, Series B, 98(6):1119–1164, 2008.
doi:10.1016/j.jctb.2007.12.006.

[3] S. Alstrup, J. Holm, K. D. Lichtenberg, and M. Thorup. Maintaining information in
fully dynamic trees with top trees. ACM Transactions on Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

[4] J. Bang-Jensen, F. Havet, and A. K. Maia. Finding a subdivision of a digraph. Theoretical
Computer Science, 562:283–303, 2015. doi:10.1016/j.tcs.2014.10.004.

[5] J. Bang-Jensen, F. Havet, and N. Trotignon. Finding an induced subdivision of a digraph.
Theoretical Computer Science, 443:10–24, 2012. doi:10.1016/j.tcs.2012.03.017.

[6] C. Berge. Les problèmes de coloration en théorie des graphes. Publications de l’Institut de
statistique de l’Université de Paris, 9:123–160, 1960.

[7] C. Berge. Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind
(Zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther Universität Halle-Wittenberg,
Mathematisch-Naturwissenschaftliche Reihe, 10:114–115, 1961.

[8] C. Berge. Graphs. North-Holland, Amsterdam, New York, 1985.

[9] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Mathe-
matics, 90(1):85–92, 1991. See [10] for corrigendum, doi:10.1016/0012-365X(91)90098-M.

[10] D. Bienstock. Corrigendum to: D. Bienstock, “On the complexity of testing for odd holes and
induced odd paths” Discrete Mathematics 90 (1991) 85–92. Discrete Mathematics, 102(1):109,
1992. doi:10.1016/0012-365X(92)90357-L.

[11] V. Boncompagni, M. Radovanović, and K. Vušković. The structure of (theta, pyramid, 1-wheel,
3-wheel)-free graphs. Journal of Graph Theory, 90(4):591–628, 2019. doi:10.1002/jgt.22415.

[12] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[13] H. Bruhn and A. Saito. Clique or hole in claw-free graphs. Journal of Combinatorial Theory,
Series B, 102(1):1–13, 2012. doi:10.1016/j.jctb.2011.02.004.

[14] K. Cameron, S. Chaplick, and C. T. Hoàng. On the structure of (pan, even hole)-free graphs.
Journal of Graph Theory, 87(1):108–129, 2018. doi:10.1002/jgt.22146.

[15] H.-C. Chang and H.-I. Lu. A faster algorithm to recognize even-hole-free graphs. Journal of
Combinatorial Theory, Series B, 113:141–161, 2015. doi:10.1016/j.jctb.2015.02.001.

[16] M.-S. Chang, M.-T. Ko, and H.-I. Lu. Linear-time algorithms for tree root problems. Algorith-
mica, 71(2):471–495, 2015. doi:10.1007/s00453-013-9815-y.

[17] P. Charbit, M. Habib, N. Trotignon, and K. Vušković. Detecting 2-joins faster. Journal of Discrete
Algorithms, 17:60–66, 2012. doi:10.1016/j.jda.2012.11.003.

[18] M. Chudnovsky, G. Cornuéjols, X. Liu, P. D. Seymour, and K. Vušković. Recognizing Berge
graphs. Combinatorica, 25(2):143–186, 2005. doi:10.1007/s00493-005-0012-8.

[19] M. Chudnovsky and R. Kapadia. Detecting a theta or a prism. SIAM Journal on Discrete Math-
ematics, 22(3):1164–1186, 2008. doi:10.1137/060672613.

42

http://dx.doi.org/10.1016/j.jctb.2007.12.006
http://dx.doi.org/10.1145/1103963.1103966
http://dx.doi.org/10.1016/j.tcs.2014.10.004
http://dx.doi.org/10.1016/j.tcs.2012.03.017
http://dx.doi.org/10.1016/0012-365X(91)90098-M
http://dx.doi.org/10.1016/0012-365X(92)90357-L
http://dx.doi.org/10.1002/jgt.22415
http://dx.doi.org/10.1016/j.jctb.2011.02.004
http://dx.doi.org/10.1002/jgt.22146
http://dx.doi.org/10.1016/j.jctb.2015.02.001
http://dx.doi.org/10.1007/s00453-013-9815-y
http://dx.doi.org/10.1016/j.jda.2012.11.003
http://dx.doi.org/10.1007/s00493-005-0012-8
http://dx.doi.org/10.1137/060672613

[20] M. Chudnovsky, K.-i. Kawarabayashi, and P. Seymour. Detecting even holes. Journal of Graph
Theory, 48(2):85–111, 2005. doi:10.1002/jgt.20040.

[21] M. Chudnovsky and I. Lo. Decomposing and clique-coloring (diamond, odd-hole)-free graphs.
Journal of Graph Theory, 86(1):5–41, 2017. doi:10.1002/jgt.22110.

[22] M. Chudnovsky, I. Lo, F. Maffray, N. Trotignon, and K. Vušković. Coloring square-
free Berge graphs. Journal of Combinatorial Theory, Series B, 135:96–128, 2019.
doi:10.1016/j.jctb.2018.07.010.

[23] M. Chudnovsky, F. Maffray, P. D. Seymour, and S. Spirkl. Corrigendum to “Even pairs and prism
corners in square-free Berge graphs” [J. Combin. Theory, Ser. B 131 (2018) 12–39]. Journal
of Combinatorial Theory, Series B, 133:259–260, 2018. doi:10.1016/j.jctb.2018.07.004.

[24] M. Chudnovsky, F. Maffray, P. D. Seymour, and S. Spirkl. Even pairs and prism corners in square-
free Berge graphs. Journal of Combinatorial Theory, Series B, 131:12–39, 2018. See [23] for
corrigendum, doi:10.1016/j.jctb.2018.01.003.

[25] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem.
Annals of Mathematics, 164(1):51–229, 2006. doi:10.4007/annals.2006.164.51.

[26] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Detecting an odd hole. Journal of the ACM,
67(1):5:1–5:12, 2020. doi:10.1145/3375720.

[27] M. Chudnovsky, A. Scott, P. D. Seymour, and S. Spirkl. Induced subgraphs of graphs with large
chromatic number. VIII. Long odd holes. Journal of Combinatorial Theory, Series B, 140:84–97,
2020. doi:10.1016/j.jctb.2019.05.001.

[28] M. Chudnovsky and P. Seymour. The three-in-a-tree problem. Combinatorica, 30(4):387–417,
2010. doi:10.1007/s00493-010-2334-4.

[29] M. Chudnovsky, P. D. Seymour, and N. Trotignon. Detecting an induced net subdivision. Journal
of Combinatorial Theory, Series B, 103(5):630–641, 2013. doi:10.1016/j.jctb.2013.07.005.

[30] M. Chudnovsky and V. Sivaraman. Odd holes in bull-free graphs. SIAM Journal on Discrete
Mathematics, 32(2):951–955, 2018. doi:10.1137/17M1131301.

[31] V. Chvátal. Star-cutsets and perfect graphs. Journal of Combinatorial Theory, Series B,
39(3):189–199, 1985. doi:10.1016/0095-8956(85)90049-8.

[32] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Finding an even hole in a graph. In
Proceedings of the 38th Symposium on Foundations of Computer Science, pages 480–485, 1997.
doi:10.1109/SFCS.1997.646136.

[33] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even and odd holes in cap-
free graphs. Journal of Graph Theory, 30(4):289–308, 1999. doi:10.1002/(SICI)1097-
0118(199904)30:4<289::AID-JGT4>3.0.CO;2-3.

[34] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Triangle-free graphs that are signable
without even holes. Journal of Graph Theory, 34(3):204–220, 2000. doi:10.1002/1097-
0118(200007)34:3<204::AID-JGT2>3.0.CO;2-P.

[35] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even-hole-free graphs Part I: Decom-
position theorem. Journal of Graph Theory, 39(1):6–49, 2002. doi:10.1002/jgt.10006.

43

http://dx.doi.org/10.1002/jgt.20040
http://dx.doi.org/10.1002/jgt.22110
http://dx.doi.org/10.1016/j.jctb.2018.07.010
http://dx.doi.org/10.1016/j.jctb.2018.07.004
http://dx.doi.org/10.1016/j.jctb.2018.01.003
http://dx.doi.org/10.4007/annals.2006.164.51
http://dx.doi.org/10.1145/3375720
http://dx.doi.org/10.1016/j.jctb.2019.05.001
http://dx.doi.org/10.1007/s00493-010-2334-4
http://dx.doi.org/10.1016/j.jctb.2013.07.005
http://dx.doi.org/10.1137/17M1131301
http://dx.doi.org/10.1016/0095-8956(85)90049-8
http://dx.doi.org/10.1109/SFCS.1997.646136
http://dx.doi.org/10.1002/(SICI)1097-0118(199904)30:4%3C289::AID-JGT4%3E3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0118(199904)30:4%3C289::AID-JGT4%3E3.0.CO;2-3
http://dx.doi.org/10.1002/1097-0118(200007)34:3%3C204::AID-JGT2%3E3.0.CO;2-P
http://dx.doi.org/10.1002/1097-0118(200007)34:3%3C204::AID-JGT2%3E3.0.CO;2-P
http://dx.doi.org/10.1002/jgt.10006

[36] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. Even-hole-free graphs Part II: Recog-
nition algorithm. Journal of Graph Theory, 40(4):238–266, 2002. doi:10.1002/jgt.10045.

[37] M. Conforti, G. Cornuéjols, X. Liu, K. Vušković, and G. Zambelli. Odd hole recognition in
graphs of bounded clique size. SIAM Journal on Discrete Mathematics, 20(1):42–48, 2006.
doi:10.1137/S089548010444540X.

[38] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

[39] G. Cornuéjols, X. Liu, and K. Vušković. A polynomial algorithm for recognizing perfect graphs.
In Proceedings of the 44th Symposium on Foundations of Computer Science, pages 20–27, 2003.
doi:10.1109/SFCS.2003.1238177.

[40] M. V. G. da Silva and K. Vušković. Triangulated neighborhoods in even-hole-free graphs. Dis-
crete Mathematics, 307(9-10):1065–1073, 2007. doi:10.1016/j.disc.2006.07.027.

[41] M. V. G. da Silva and K. Vušković. Decomposition of even-hole-free graphs with star
cutsets and 2-joins. Journal of Combinatorial Theory, Series B, 103(1):144–183, 2013.
doi:10.1016/j.jctb.2012.10.001.

[42] M. Dalirrooyfard, T. D. Vuong, and V. Vassilevska Williams. Graph pattern detection: hardness
for all induced patterns and faster non-induced cycles. In Proceedings of the 51st Symposium
on Theory of Computing, pages 1167–1178, 2019. doi:10.1145/3313276.3316329.

[43] N. Derhy and C. Picouleau. Finding induced trees. Discrete Applied Mathematics,
157(17):3552–3557, 2009. doi:10.1016/j.dam.2009.02.009.

[44] N. Derhy, C. Picouleau, and N. Trotignon. The four-in-a-tree problem in triangle-free graphs.
Graphs and Combinatorics, 25(4):489–502, 2009. doi:10.1007/s00373-009-0867-3.

[45] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with SPQR-
trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/BF01961541.

[46] E. Diot, M. Radovanović, N. Trotignon, and K. Vušković. The (theta, wheel)-free graphs Part I:
Only-prism and only-pyramid graphs. Journal of Combinatorial Theory, Series B, 143:123–147,
2020. doi:10.1016/j.jctb.2017.12.004.

[47] E. Diot, S. Tavenas, and N. Trotignon. Detecting wheels. Applicable Analysis and Discrete
Mathematics, 8(1):111–122, 2014. doi:10.2298/AADM131128023D.

[48] V. F. dos Santos, V. G. da Silva, and J. L. Szwarcfiter. The k-in-a-tree problem for chordal graphs.
Matemática Contemporânea, 44:1–10, 2015. https://mc.sbm.org.br/volumes/volume-44/.

[49] P. Erdös, M. E. Saks, and V. T. Sós. Maximum induced trees in graphs. Journal of Combinatorial
Theory, Series B, 41(1):61–79, 1986. doi:10.1016/0095-8956(86)90028-6.

[50] J. Fiala, M. Kaminski, B. Lidický, and D. Paulusma. The k-in-a-path problem for claw-free
graphs. Algorithmica, 62(1–2):499–519, 2012. doi:10.1007/s00453-010-9468-z.

[51] F. V. Fomin, I. Todinca, and Y. Villanger. Large induced subgraphs via triangulations and CMSO.
SIAM Journal on Computing, 44(1):54–87, 2015. doi:10.1137/140964801.

[52] D. J. Fraser, A. M. Hamel, and C. T. Hoàng. On the structure of (even hole, kite)-free graphs.
Graphs and Combinatorics, 34(5):989–999, 2018. doi:10.1007/s00373-018-1925-5.

44

http://dx.doi.org/10.1002/jgt.10045
http://dx.doi.org/10.1137/S089548010444540X
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1109/SFCS.2003.1238177
http://dx.doi.org/10.1016/j.disc.2006.07.027
http://dx.doi.org/10.1016/j.jctb.2012.10.001
http://dx.doi.org/10.1145/3313276.3316329
http://dx.doi.org/10.1016/j.dam.2009.02.009
http://dx.doi.org/10.1007/s00373-009-0867-3
http://dx.doi.org/10.1007/BF01961541
http://dx.doi.org/10.1016/j.jctb.2017.12.004
http://dx.doi.org/10.2298/AADM131128023D
https://mc.sbm.org.br/volumes/volume-44/
http://dx.doi.org/10.1016/0095-8956(86)90028-6
http://dx.doi.org/10.1007/s00453-010-9468-z
http://dx.doi.org/10.1137/140964801
http://dx.doi.org/10.1007/s00373-018-1925-5

[53] I. Gitler, E. Reyes, and J. A. Vega. CIO and ring graphs: Deficiency and testing. Journal of
Symbolic Computation, 79(2):249–268, 2017. doi:10.1016/j.jsc.2016.02.007.

[54] P. A. Golovach, D. Paulusma, and E. J. van Leeuwen. Induced disjoint paths in AT-free graphs.
In F. V. Fomin and P. Kaski, editors, Proceedings of the 13th Scandinavian Symposium and Work-
shops on Algorithm Theory, Lecture Notes in Computer Science 7357, pages 153–164, 2012.
doi:10.1007/978-3-642-31155-0_14.

[55] P. A. Golovach, D. Paulusma, and E. J. van Leeuwen. Induced disjoint paths in claw-free graphs.
SIAM Journal on Discrete Mathematics, 29(1):348–375, 2015. doi:10.1137/140963200.

[56] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. Proceedings of the 8th
International Symposium on Graph Drawing, pages 77–90, 2000. doi:10.1007/3-540-44541-
2_8.

[57] C. T. Hoàng. On the structure of (banner, odd hole)-free graphs. Journal of Graph Theory,
89(4):395–412, 2018. doi:10.1002/jgt.22258.

[58] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic al-
gorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. Journal of the
ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

[59] W.-L. Hsu. Recognizing planar perfect graphs. Journal of the ACM, 34(2):255–288, 1987.
doi:10.1145/23005.31330.

[60] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and System
Sciences, 52(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[61] K. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in
quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.
doi:10.1016/j.jctb.2011.07.004.

[62] T. Kloks, H. Müller, and K. Vušković. Even-hole-free graphs that do not contain diamonds: A
structure theorem and its consequences. Journal of Combinatorial Theory, Series B, 99(5):733–
800, 2009. doi:10.1016/j.jctb.2008.12.005.

[63] K.-Y. Lai. Sapling detection. Master’s thesis, Department of Computer Science and Information
Engineering, National Taiwan University, 2018.

[64] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,
F. Winkler, and Á. Szántó, editors, Proceedings of the International Symposium on Symbolic and
Algebraic Computation, pages 296–303, 2014. doi:10.1145/2608628.2608664.

[65] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals on
the real line. Fundamenta Mathematicae, 51(1):45–64, 1962. doi:10.4064/fm-51-1-45-64.

[66] B. Lévêque, D. Y. Lin, F. Maffray, and N. Trotignon. Detecting induced subgraphs. Discrete
Applied Mathematics, 157(17):3540–3551, 2009. doi:10.1016/j.dam.2009.02.015.

[67] W. Liu and N. Trotignon. The k-in-a-tree problem for graphs of girth at least k. Discrete Applied
Mathematics, 158(15):1644–1649, 2010. doi:10.1016/j.dam.2010.06.005.

[68] F. Maffray and N. Trotignon. Algorithms for perfectly contractile graphs. SIAM Journal on
Discrete Mathematics, 19(3):553–574, 2005. doi:10.1137/S0895480104442522.

45

http://dx.doi.org/10.1016/j.jsc.2016.02.007
http://dx.doi.org/10.1007/978-3-642-31155-0_14
http://dx.doi.org/10.1137/140963200
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1002/jgt.22258
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/23005.31330
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1016/j.jctb.2011.07.004
http://dx.doi.org/10.1016/j.jctb.2008.12.005
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.4064/fm-51-1-45-64
http://dx.doi.org/10.1016/j.dam.2009.02.015
http://dx.doi.org/10.1016/j.dam.2010.06.005
http://dx.doi.org/10.1137/S0895480104442522

[69] J. Nesetril and S. Poljak. On the complexity of the subgraph problem. Commentationes Math-
ematicae Universitatis Carolinae, 26(2):415–419, 1985. http://eudml.org/doc/17394.

[70] M. Radovanović, N. Trotignon, and K. Vušković. The (theta, wheel)-free graphs Part II:
Structure theorem. Journal of Combinatorial Theory, Series B, 143:148–184, 2020.
doi:10.1016/j.jctb.2019.07.004.

[71] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

[72] D. Rose, R. Tarjan, and G. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM
Journal on Computing, 5(2):266–283, 1976. doi:10.1137/0205021.

[73] A. Scott and P. D. Seymour. Induced subgraphs of graphs with large chromatic
number. I. Odd holes. Journal of Combinatorial Theory, Series B, 121:68–84, 2016.
doi:10.1016/j.jctb.2015.10.002.

[74] A. Silva, A. A. da Silva, and C. L. Sales. A bound on the treewidth of pla-
nar even-hole-free graphs. Discrete Applied Mathematics, 158(12):1229–1239, 2010.
doi:10.1016/j.dam.2009.07.010.

[75] M. Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229–243, 1999.
doi:10.1006/jagm.1999.1033.

[76] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the 32nd Sympo-
sium on Theory of Computing, pages 343–350, 2000. doi:10.1145/335305.335345.

[77] N. Trotignon. Decomposing Berge graphs and detecting balanced skew partitions. Journal of
Combinatorial Theory, Series B, 98(1):173–225, 2008. doi:10.1016/j.jctb.2007.07.004.

[78] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle with a unique chord
and its consequences. Journal of Graph Theory, 63(1):31–67, 2010. doi:10.1002/jgt.20405.

[79] N. Trotignon and K. Vušković. Combinatorial optimization with 2-joins. Journal of Combina-
torial Theory, Series B, 102(1):153–185, 2012. doi:10.1016/j.jctb.2011.06.002.

[80] W. T. Tutte. Connectivity in graphs. University of Toronto Press, 1966.

[81] P. van ’t Hof, M. Kaminski, and D. Paulusma. Finding induced paths of given parity in claw-free
graphs. Algorithmica, 62(1-2):537–563, 2012. doi:10.1007/s00453-010-9470-5.

[82] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith–Winograd. In
Proceedings of the 44th Symposium on Theory of Computing, pages 887–898, 2012.
doi:10.1145/2213977.2214056.

[83] K. Vušković. Even-hole-free graphs: A survey. Applicable Analysis and Discrete Mathematics,
4(2):219–240, 2010. doi:10.2298/AADM100812027V.

[84] C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Pro-
ceedings of the 24th Symposium on Discrete Algorithms, pages 1757–1769, 2013.
doi:10.1137/1.9781611973105.126.

46

http://eudml.org/doc/17394
http://dx.doi.org/10.1016/j.jctb.2019.07.004
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1137/0205021
http://dx.doi.org/10.1016/j.jctb.2015.10.002
http://dx.doi.org/10.1016/j.dam.2009.07.010
http://dx.doi.org/10.1006/jagm.1999.1033
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1016/j.jctb.2007.07.004
http://dx.doi.org/10.1002/jgt.20405
http://dx.doi.org/10.1016/j.jctb.2011.06.002
http://dx.doi.org/10.1007/s00453-010-9470-5
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.2298/AADM100812027V
http://dx.doi.org/10.1137/1.9781611973105.126

	1 Introduction
	1.1 Significance of three-in-a-tree
	1.2 Implications
	1.3 Other related work
	1.4 Techniques
	1.5 Road map

	2 Background
	2.1 Preliminaries
	2.2 Chudnovsky and Seymour's characterization

	3 Our stronger characterization
	3.1 Two major lemmas and our algorithm for detecting saplings
	3.2

	4
	4.1
	4.2

	5
	5.1 Steps A2(a) and A2(b) of Algorithm A
	5.2 Step A2(c) of Algorithm A
	5.3
	5.4

	6 Improved graph recognition and detection algorithms
	6.1 Improved theta, pyramid, and beetle detection
	6.1.1
	6.1.2
	6.1.3

	6.2 Improved perfect-graph recognition and odd-hole detection
	6.2.1 An improved algorithm for recognizing perfect graphs
	6.2.2 Proving Theorem 1.4

	6.3 Improved even-hole detection
	6.3.1 Proving Lemma 6.10
	6.3.2 Proving Lemma 6.11
	6.3.3 Proving Lemma 6.12

	7 Concluding remarks

