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Abstract
The edit distance between two rooted ordered trees with n nodes labeled from an alphabet Σ

is the minimum cost of transforming one tree into the other by a sequence of elementary oper-
ations consisting of deleting and relabeling existing nodes, as well as inserting new nodes. Tree
edit distance is a well known generalization of string edit distance. The fastest known algorithm
for tree edit distance runs in cubic O(n3) time and is based on a similar dynamic programming
solution as string edit distance. In this paper we show that a truly subcubic O(n3−ε) time
algorithm for tree edit distance is unlikely: For |Σ| = Ω(n), a truly subcubic algorithm for tree
edit distance implies a truly subcubic algorithm for the all pairs shortest paths problem. For
|Σ| = O(1), a truly subcubic algorithm for tree edit distance implies an O(nk−ε) algorithm for
finding a maximum weight k-clique.

Thus, while in terms of upper bounds string edit distance and tree edit distance are highly
related, in terms of lower bounds string edit distance exhibits the hardness of the strong ex-
ponential time hypothesis [Backurs, Indyk STOC’15] whereas tree edit distance exhibits the
hardness of all pairs shortest paths. Our result provides a matching conditional lower bound for
one of the last remaining classic dynamic programming problems.

1 Introduction

Tree edit distance is the most common similarity measure between labelled trees. Algorithms
for computing the tree edit distance are being used in a multitude of applications in various do-
mains including computational biology [24, 37, 52, 58], structured text and data processing (e.g.,
XML) [30,31,36], programming languages and compilation [38], computer vision [22,43], character
recognition [49], automatic grading [14], answer extraction [65], and the list goes on and on.

Let F and G be two rooted trees with a left-to-right order among siblings and where each vertex
is assigned a label from an alphabet Σ. The edit distance between F and G is the minimum cost of
transforming F into G by a sequence of elementary operations (at most one operation per node):
changing the label of a node v, deleting a node v and setting the children of v as the children of
v’s parent (in the place of v in the left-to-right order), and inserting a node v (the complement of
delete1). See Figure 1. The cost of these elementary operations is given by two functions: c

del
(a)

is the cost of deleting or inserting a vertex with label a, and c
match

(a, b) is the cost of changing the
label of a vertex from a to b.
∗Max Planck Institute for Informatics, Saarland Informatics Campus
†University of Haifa. Partially supported by the Israel Science Foundation grant 794/13.
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1Since a deletion in F is equivalent to an insertion in G and vice versa, we can focus on finding the minimum cost

of a sequence of just deletions and relabelings in both trees that transform F and G into isomorphic trees.
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Figure 1: The three editing operations on a tree with vertex labels.

The Tree Edit Distance (TED) problem was introduced by Tai in the late 70’s [55] as a gener-
alization of the well known string edit distance problem [57]. Since then it was extensively studied.
Tai gave an O(n6)-time algorithm for TED which was subsequently improved to O(n4) in the late
80’s [53], then to O(n3 log n) in the late 90’s [41], and finally to O(n3) in 2007 [34]. Many other
algorithms have been developed for TED, see the popular survey of Bille [24] (this survey alone has
more than 600 citations) and the books of Apostolico and Galil [16] and Valiente [56]. For example,
Pawlik and Augsten [48] recently defined a class of dynamic programming algorithms that includes
all the above algorithms for TED, and developed an algorithm whose performance on any input
is not worse (and possibly better) than that of any of the existing algorithms. Other attempts
achieved better running time by restricting the edit operations or the scoring schemes [31,51,54,66],
or by resorting to approximation [12, 17]. However, in the worst case no algorithm currently beats
Ω(n3) (not even by a logarithmic factor).

Due to their importance in practice, many of the algorithms described above, as well as additional
heuristics and optimizations were studied experimentally [39,48]. Solving tree edit distance in truly
subcubic O(n3−ε) time is arguably one of the main open problems in pattern matching, and the
most important one in tree pattern matching.

The fact that, despite the significant body of work on this problem, no truly subcubic time
algorithm has been found, leads to the following natural conjecture that no such algorithm exists.

Conjecture 1. For any ε > 0 Tree Edit Distance on two n-node trees cannot be solved in O(n3−ε)
time.

In the same paper proving the O(n3) upper bound for TED [34], Demaine et al. prove that their
algorithm is optimal within a certain class of dynamic programming algorithms for TED. However,
proving Conjecture 1 seems to be beyond our current lower bound techniques.

A recent development in theoretical computer science suggests a more fine-grained classification
of problems in P. This is done by showing lower bounds conditioned on the conjectured hardness
of certain archetypal problems such as All Pairs Shortest Paths (APSP), 3-SUM, k-Clique, and
Satisfiability, i.e., the Strong Exponential Time Hypothesis (SETH).

The APSP Conjecture. Given a directed or undirected graph with n vertices and integer edge
weights, many classical algorithms for APSP (such as Dijkstra or Floyd-Warshall) run in O(n3) time.
The fastest to date is the recent algorithm of Williams [60] that runs faster than O(n3/ logC n) time
for all constants C. Nevertheless, no truly subcubic O(n3−ε) time algorithm for APSP is known.
This led to the following conjecture assumed in many papers, e.g. [5, 6, 8, 9, 11,18,21,50,61,62].
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Conjecture 2 (APSP). For any ε > 0 there exists c > 0, such that All Pairs Shortest Paths on n
node graphs with edge weights in {1, . . . , nc} cannot be solved in O(n3−ε) time.

The (Weighted) k-Clique Conjecture. The fundamental k-Clique problem asks whether a
given undirected unweighted graph on n nodes and O(n2) edges contains a clique on k nodes.
This is the parameterized version of the famously NP-hard Max-Clique [40]. k-Clique is amongst
the most well-studied problems in theoretical computer science, and it is the canonical intractable
(W[1]-complete) problem in parameterized complexity. A naive algorithm solves k-Clique in O(nk)
time. A faster O(nωk/3)-time algorithm (where ω < 2.373 is the exponent of matrix multiplication)
can be achieved via a reduction to Boolean matrix multiplication on matrices of size nk/3 × nk/3
if k is divisible by 3 [47]2. Any improvement to this bound immediately implies a faster algorithm
for MAX-CUT [59,64]. It is a longstanding open question whether improvements to this bound are
possible [46, 63]. The k-Clique conjecture asserts that for no k ≥ 3 and ε > 0 the problem has an
O(nωk/3−ε) time algorithm, or an O(nk−ε) algorithm avoiding fast matrix multiplication, and has
been used e.g. in [3, 28].

We work with a conjecture on a weighted version of k-Clique. In the Max-Weight k-Clique
problem, the edges have integral weights and we seek the k-clique of maximum total weight. When
the edge weights are small, one can obtain an Õ(nk−ε) time algorithm [13,47]. However, when the
weights are larger than nk, the trivial O(nk) algorithm is the best known (ignoring no(k) improve-
ments). This gives rise to the following conjecture, which has been used e.g. in [10,18,21].

Conjecture 3 (Max-Weight k-Clique). For any ε > 0 there exists a constant c > 0, such that for
any k ≥ 3 Max-Weight k-Clique on n-node graphs with edge weights in {1, . . . , nck} cannot be solved
in O(nk(1−ε)) time.

In 2014, with the burst of the conditional lower bound paradigm, Abboud [1] highlighted seven
main open problems in the field: The first two were to prove quadratic n2−o(1) lower bounds for String
Edit Distance and Longest Common Subsequence, which were soon resolved in STOC’15 [19] and
FOCS’15 [4,29] conditional on SETH. The third problem was to show a cubic n3−o(1) lower bound for
RNA-Folding. Surprisingly, in FOCS’16 [27] it was shown that RNA-Folding can actually be solved
in truly subcubic time, thus ruling out the possibility of such a lower bound. The remaining four
problems remain open. In fact, two of them, showing a cubic lower bound for Graph Diameter and
an ndk/2e−o(1) lower bound for k-SUM, have actually been used as hardness conjectures themselves,
e.g., in SODA’15 [6] and ICALP’13 [8]. Until the present work, no progress has been made on
the last problem posed by Abboud: A cubic lower bound for Tree Edit Distance. In the absence
of progress on either upper bounds or conditional lower bounds for TED, one might think that
Conjecture 1 is yet another fragment in the current landscape of fine grained complexity, and is
unrelated to other common conjectures.

1.1 Our Results

In this paper we resolve the complexity of tree edit distance by showing a tight connection between
edit distance of trees and all pairs shortest paths of graphs. We prove that Conjecture 2 implies
Conjecture 1, and that Conjecture 3 implies Conjecture 1, even for constant alphabet.

2For the case that k is not divisible by 3 see [35].
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Theorem 1. A truly subcubic algorithm for tree edit distance on alphabet size |Σ| = Ω(n) implies a
truly subcubic algorithm for APSP. A truly subcubic algorithm for tree edit distance on sufficiently
large alphabet size |Σ| = O(1) implies an O(nk(1−ε)) algorithm for Max-Weight k-Clique.

Note that the known upper bounds for string edit distance and tree edit distance are highly
related. The O(n2) algorithm for strings and the O(n3) algorithm for trees (and forests) are both
based on a similar recursive solution: The recursive subproblems in strings (forests) are obtained
by either deleting, inserting, or matching the rightmost or leftmost character (root). In strings, it
is best to always consider the rightmost character. The recursive subproblems are then prefixes and
the overall running time is O(n2). In trees however, sticking with the rightmost (or leftmost) root
may result in an O(n4) running time. The specific way in which the recursion switches between
leftmost and rightmost roots is exactly what enables the O(n3) solution. It is interesting that while
the upper bounds for both problems are so similar, the lower bounds string edit distance exhibits
the hardness of the SETH while tree edit distance exhibits the hardness of APSP.

While a considerable share of the recent conditional lower bounds is on string pattern matching
problems [3, 4, 7, 10, 15, 19, 20, 28, 29, 32, 45], the only conditional lower bound for a tree pattern
matching problem is the recent SODA’16 quadratic lower bound for exact pattern matching [2]
(the problem of deciding whether one tree is a subtree of another). We solve the main remaining
open problem in tree pattern matching, and one of the last remaining classic dynamic program-
ming problems. Indeed, apart from the problems discussed above, for most of the classic dynamic
programming problems a conditional lower bound or an improved algorithm have been found re-
cently. This includes the Fréchet distance [25], bitonic TSP [33], context-free grammar parsing [3],
maximum weight rectangle [18], and pseudopolynomial time algorithms for subset sum [26]. Tree
edit distance was one of the few classic dynamic programming problems that so far resisted this
approach. Two notable remaining dynamic programming problems without matching bounds are
the optimal binary search tree problem (O(n2)) [44] and knapsack (pseudopolynomial O(nW )) [23].

1.2 Our Reductions

APSP to TED. In order to prove APSP-hardness, by [61] it suffices to show a reduction from
the negative triangle detection problem, where we are given an n-node graph G with edge weights
w(., .) and want to decide whether there are i, j, k with w(i, j) + w(j, k) + w(i, k) < 0. Our first
result is a reduction from negative triangle detection to tree edit distance, which produces trees
of size O(n) over an alphabet of size O(n). This yields the matching conditional lower bound of
O(n3−ε).

Our reduction constructs trees that are of a very special form: Both trees consist of a single
path (called spine) of length O(n) with a single leaf pending from every node (see Figure 2). Such
instances already have been identified as difficult for a restricted class of algorithms based on a
specific dynamic programming approach [34]. In our setting we cannot assume anything about the
algorithm, and hence need a deeper insight on the structure of any valid sequence of edit operations
(see Figure 2 and Lemma 1). Using this structural understanding, we then show that it is possible
to carefully construct a cost function so that any optimal solution must obey a certain structure
(Figure 3). Namely, for some i, j, k we match the two leaves in depth k, we match the right spine
node in depth k to the left leaf in depth i (which encodes w(i, k)), we match the left spine node in
depth k to the right leaf in depth j (which encodes w(j, k)), and we match as many spine nodes
above depth i and j as possible (which together encode w(i, j) by a telescoping sum).
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Constant alphabet size. The drawback of the above reduction is the large alphabet size |Σ|, as
essentially each node needs its own alphabet symbol. There are two major difficulties to improving
this to constant alphabet size.

First, the instances identified as hard by the above reduction (and by Demaine et al. [34] for a
restricted class of algorithms) are no longer hard for small alphabet! Indeed, in Section 4 we give
an O(n2|Σ|2 log n) algorithm for these instances, which is truly subcubic for constant alphabet size.
This algorithm is the first to break the barrier by Demaine et al. for such trees, and we believe it
is of independent interest. Regarding lower bounds, this algorithm shows that for a reduction with
constant alphabet size our trees necessarily need to be more complicated, making it much harder to
reason about the structure of a valid edit sequence. We will construct new hard instances by taking
the previous ones and attaching small subtrees to all nodes.

The second difficulty is that, since the input size of TED is Õ(n + |Σ|2), a reduction from
negative triangle detection to TED with constant alphabet size would need to considerably compress
the Ω(n2) input size of negative triangle detection. It is a well-known open problem whether such
compressing reductions exist. To circumvent this barrier, we assume the stronger Max-Weight
k-Clique Conjecture, where the input size Õ(n2) is very small compared to the running time O(nk).

Max-Weight k-Clique to TED. Given an instance of Max-Weight k-Clique on an n-node graph
G and weights bounded by nO(k) we construct a TED instance on trees of size O(nk/3+2) over
an alphabet of size O(k). One can verify that an O(n3−ε) algorithm for TED now implies an
O(nk(1−ε/6)) algorithm for Max-Weight k-Clique, for any sufficiently large k = k(ε).

We roughly follow the reduction from negative triangle detection; now each spine node corre-
sponds to a k/3-clique in G. To cope with the small alphabet, we simulate the previous matching
costs with small gadgets. In particular, to each spine node, corresponding to some k/3-clique U , we
add a small subtree T (U) of size O(n2) such that the edit distance between T (U) and T (U ′) encodes
the total weight of edges between U and U ′. This raises two issues. First, we need to represent a
weight w ∈ {0, . . . , nO(k)} by trees over an alphabet of size O(k) (that is, constant). This is solved
by writing w in base n as

∑O(k)
i=0 αin

i and constructing αi nodes of type i, such that the cost of
matching two type i nodes is ni. A second issue is that we need the small subtree T (U) to interact
with every other small subtree T (U ′). So, in a sense, T (U) needs to “prepare” for any possible U ′,
and yet its size needs to be small. We achieve this by creating in T (U ′), for every node u in G, a
separate component responsible for counting the total weight of all edges between u and all nodes
in U ′. Then, in T (U) we have a separate component for every node u ∈ U , and make sure that it
is necessarily matched to the appropriate component in T (U ′).

The final and most intricate component of our reduction is to enforce that in any optimal solution
we have some control on which small subtrees can be matched to which. A similar issue was present
in the negative triangle reduction, when we require control over which spine nodes above depth i
are matched to which spine nodes above depth j. This is handled in the negative triangle reduction
by assigning a different matching cost depending on the node’s depth. Now however, we cannot
afford so many different costs. We overcome this with yet another gadget, called an I-gadget, that
achieves roughly the same goal, but in a more “distributed” manner.

Both of our reductions are highly non-trivial and introduce a number of new tricks that could
be useful for other problems on trees.
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2 Reducing APSP to TED

We re-define the cost of matching two nodes to be the original cost minus the cost of deleting both
nodes. Then, the goal of TED amounts to choosing a subset of red nodes in both trees, so that
the subtrees defined by the red nodes are isomorphic (i.e., their left-right and ancestor-descendant
relation is the same in both trees) and the total cost of matching the corresponding red nodes is
minimized. See Figure 2. We work with this formulation from now on.

fip+1

fi1

fip

fip+2

fip+q+1

fip+q+2

gjp+q+2

gjp+q+1

gjp+2

gjp+1

gjp

gj1

Figure 2: Macro structure of the hard instance for TED: A tree F composed of a single spine with
leaves hanging to the right and a tree G composed of a single spine with leaves hanging to the left.

It turns out that a hard instance for TED is given by two seemingly simple caterpillar trees.
These two trees F and G, also called left and right, are shown in Figure 2. Each tree consists of
spine nodes and leaf nodes. If u is a spine node then we denote by u′ the (unique) leaf node attached
to u. For any such hard instance of TED, the red nodes in any matching have the structure given
by Lemma 1 below. Informally, it states that starting from the top of the left tree and ordering the
nodes by depth, the matching consists of (1) a prefix of a matching subsequence of spine nodes in
both trees, (2) a suffix of a matching subsequence of leaf nodes that are in reverse order in the other
tree, and (3) at most one final spine node in each of the trees matching a leaf node in the other tree
that is located between the prefix part (1) and the suffix part (2).

Lemma 1. Let f1, f2, . . . and g1, g2, . . . denote the spine nodes of F and G, respectively, ordered by
the depth. Then, for some p, q ≥ 0 and some i1 < i2 · · · < ip < ip+1 < · · · < ip+q+1 < ip+q+2 and
j1 < j2 · · · < jp < jp+1 < · · · < jp+q+1 < jp+q+2 the set of red nodes consists of:

(1) Spine nodes fi1 , fi2 , . . . , fip matched respectively to spine nodes gj1 , gj2 , . . . , gjp ,

(2) Leaf nodes f ′ip+2
, f ′ip+3

, . . . , f ′ip+q+1
matched respectively to leaf nodes g′jp+q+1

, g′jp+q
, . . . , g′jp+2

(note
the reversed order),

(3) Optionally, a spine node fip+q+2 matched to leaf node g′jp+1
. Also optionally, a spine node gjp+q+2

matched to a leaf node f ′ip+1
.
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Proof. Consider the subtree defined by the red nodes. It has two isomorphic copies, one in F and
one in G. Its nodes are all the red nodes. The children of node u are all red nodes v1, v2, . . . , vk
whose lowest red ancestor is u. The order is such that vi precedes vi+1 in a left-to-right preorder
traversal of F (or equivalently of G). Let u be a red node with two or more children v1, v2, . . . , vk,
k ≥ 2. Observe that u must correspond to spine nodes in both F and G. Further observe that
at most one vi can correspond to a spine node (otherwise, for two spine nodes one must be an
ancestor of the other). Consider any ` ∈ {1, 2, . . . , k− 1}. It is not hard to see that node v`+1 must
correspond to a leaf node in F and node v` must correspond to a leaf node in G. This implies that
both v` and v`+1 are leaves in the red subtree. Moreover, v1 is the only node that may correspond to
a spine node in F and vk is the only node that may correspond to a spine node in G. Consequently,
the red subtree has a particularly simple structure: it consists of nodes u1, u2, . . . , up such that for
every ` = 1, 2, . . . , p− 1 the only child of u` is u`+1, and nodes v1, v2, . . . , vk (for some k ≥ 1) that
are all children of up.

For every ` = 1, 2, . . . , p, the node u` must correspond to a spine node fi` ∈ F and gj` ∈ G.
We immediately obtain (1) that i1 < i2 < . . . < ip and that j1 < j2 < . . . < jp. The nodes
v1, v2, . . . , vk are all children of up in the subtree. It is possible that all vi are mapped to leaf nodes
f ′ip+2

, f ′ip+3
, . . . , f ′ip+q+1

and g′jp+2
, g′jp+3

, . . . , g′jp+q+1
. In this case, they must be mapped in reverse

order since a left-to-right preorder traversal visits the leaves of G in order of their depth and in
reverse-depth order in F . This implies (2) that ip ≤ ip+2 < . . . < ip+q+1 and jp ≤ jp+2 < . . . <
jp+q+1. Recall however that v1 may be mapped to a spine node fip+q+2 in F and a leaf node g′jp+1

in G. The requirement that ip+q+2 > ip+q+1 and that jp+2 > jp+1 ≥ jp follows from the fact that
these nodes correspond to a leftmost leaf in the subtree. For symmetric reasons, vk may be matched
to a spine node gjp+q+2 ∈ G for some jp+q+2 > jp+q+1 and ip+2 > ip+1 ≥ ip. This implies (3) and
concludes the proof.

The above lemma characterizes the structure of a solution to what we call the hard instance of
TED. We next show how to reduce the negative triangle detection problem to TED on the hard
instance. Negative triangle detection is known to be subcubic equivalent to APSP [61]. Given a
complete weighted n-node undirected graph, where w(i, j) denotes the weight of the edge (i, j), the
problem asks whether there are i, j, k such that w(i, j) + w(j, k) + w(i, k) < 0. To solve negative
triangle detection, we clearly only need to find i, j, k that minimize w(i, j) + w(j, k) + w(i, k). We
will show how to construct, given such a graph, a hard instance of TED of size O(n), such that
mini,j,k w(i, j) + w(j, k) + w(i, k) can be extracted from the edit distance.

Lemma 2. Given a complete undirected n-node graph G with weights w(., .) in {1, . . . , nc}, we
construct, in linear time in the output size, an instance of TED of size O(n) with alphabet size
|Σ| = O(n) such that the minimum weight of a triangle in G can be extracted from the edit distance.

Consequently, an O(n3−ε) time algorithm for TED implies an O(n3−ε) algorithm for negative
triangle detection, and thus an O(n3−ε/3) algorithm for APSP by a reduction in [61].

We create a hard instance of TED consisting of two trees F and G as in Figure 3. Every tree is
divided into a top and a bottom part. The spine nodes of these parts are denoted by a1, a2, . . . , an
for the top left part, b1, b2, . . . , bn+1 for the bottom left part, c1, c2, . . . , cn for the top right part, and
d1, d2, . . . , dn+1 for the bottom right part. The labels of all nodes are distinct (hence the alphabet
size |Σ| is Θ(n)). We set the cost c

match
(u, v) of matching two nodes u and v as described below,

where M denotes a sufficiently large number to be specified later. Intuitively, our assignment of
costs ensures that any valid solution to TED must match b′k to d′k, bk+1 to c′j , and dk+1 to a′i for
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a1

a2

an

b1

b2

bn

c1

c2

cn

d1

d2

dn

ai

cj

bk dk

bn+1 dn+1

Figure 3: A hard instance of TED constructed for a given instance of negative triangle detection.
Appropriately chosen costs ensure that any optimal solution has a specific structure.

some i, j, k (as shown in Figure 3). Furthermore, the optimal solution (i.e., of minimum cost) must
choose i, j, k that minimize w(i, k) + w(k, j) + w(i, j). The costs are assigned as follows:

(1) c
match

(b′k, d
′
k) = −M2 − 2M · k for every k = 1, 2, . . . , n.

(2) c
match

(bk+1, c
′
j) = −M2 +M · k+M · j +w(k, j) for every k = 1, 2, . . . , n and j = 1, 2, . . . , n.

(3) c
match

(a′i, dk+1) = −M2 +M · k +M · i+w(i, k) for every i = 1, 2, . . . , n and k = 1, 2, . . . , n.

(4) c
match

(ai, cj) = −2M + w(i, j)− w(i− 1, j − 1) for every i = 2, 3, . . . , n and j = 2, 3, . . . , n.

(5) c
match

(ai, c1) = −M(i+ 1) + w(i, 1) for every i = 1, 2, . . . , n.

(6) c
match

(a1, cj) = −M(j + 1) + w(1, j) for every j = 1, 2, . . . , n.

All the remaining costs c
match

(u, v) are set to ∞. The following theorem proves that these costs
imply the required structure on the optimal solution as described above. Intuitively, by choosing
sufficiently large M , because of the −M2 addend in (1), (2) and (3) we can ensure that any optimal
solution matches b′k to d′k, bk′+1 to c′j , and dk′′+1 to a′i, for some i, j, k and k′, k′′ ≤ k. Then, because
of the M · k in (2) and (3), in any optimal solution actually k = k′ = k′′ and the total cost of all
these matchings is w(k, j) +w(i, k). Finally, because of the −2M in (4), the −M(i+ 1) in (5), and
the −M(j + 1) in (6), in any optimal solution ai is matched to cj , ai−1 to cj−1, ai−2 to cj−2 and so
on. The total cost of these matching is w(i, j) since the w(i, j)− w(i− 1, j − 1) terms in (4) form
a telescoping sum.
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Theorem 2. For sufficiently large M , the total cost of an optimal matching in a hard instance with
costs (1)-(6) is −3M2 + mini,j,k w(i, k) + w(k, j) + w(i, j).

Proof. Consider i, j, k minimizing w(i, k) + w(k, j) + w(i, j). We assume without loss of generality
that i ≥ j. It is easy to see that it is possible to choose the following matching (see Figure 3):

1. b′k to d′k with cost −M2 − 2M · k.

2. bk+1 to c′j with cost −M2 +M · k +M · j + w(k, j).

3. dk+1 to a′i with cost −M2 +M · k +M · i+ w(i, k).

4. ai to cj , ai−1 to cj−1, ai−2 to cj−2, . . . , ai−j+2 to c2 with costs −2M + w(i, j)− w(i− 1, j −
1),−2M + w(i− 1, j − 1)− w(i− 2, j − 2), . . . ,−2M + w(i− j + 2, 2)− w(i− j + 1, 1).

5. ai−j+1 to c1 with cost −M · (i− j + 2) + w(i− j + 1, 1).

Summing up and telescoping, the total cost is −M2−2M ·k−M2+M ·k+M ·j+w(k, j)−M2+M ·k+
M ·i+w(i, k)−2M ·(j−1)+w(i, j)−M ·(i−j+2) which is equal to −3M2+w(i, k)+w(k, j)+w(i, j).

For the other direction, we need to prove that every solution has cost at least −3M2 +
mini,j,k w(i, k) + w(k, j) + w(i, j). We first observe that, by Lemma 1, a solution can match b′k
to d′k at most once for some k. Similarly, it can match bk′+1 to c′j at most once for some j and k′,
and dk′′+1 to a′i at most once for some i and k′′. Furthermore, for M large enough, either the cost
is larger than −3M2 or all three such pairs of nodes are matched for some k, i, j, and k′, k′′ ≥ k.
Furthermore, if k′ > k and M is large enough then we can decrease k′ by one thus decreasing the
total cost, and similarly if k′′ > k. It is enough to consider an optimal solution and hence we can
assume that k = k′ = k′′.

Again by Lemma 1, the only possible additional matched pairs of nodes are a subsequence of
spine nodes a1, . . . , ai and c1, . . . , cj . We show that an optimal solution matches ai with cj , ai−1 with
cj−1, ..., ai−j+1 with c1. To this end, suppose that axz is matched to cyz , for every z = 1, 2, . . . , L,
where 1 ≤ x1 < . . . < xL ≤ i and 1 ≤ y1 < . . . < yL ≤ j. For every z this contributes, up to lower
order terms less than M , −2M if xz, yz > 1, or −M(yz + 1) if xz = 1, or −M(xz + 1) if yz = 1. In
an optimal solution we have x1 = 1 or y1 = 1, as otherwise we can match a1 to c1 to decrease the
total cost. First, assume that y1 = 1. Then, if xz′ + 1 < xz′+1 for some z′ ∈ {1, . . . , L} (where we
define xL+1 = i+ 1), we can increase all x1, x2, . . . , xz′ by 1 to decrease the total cost by M , up to
lower order terms. So xL = i, xL−1 = i−1, . . . , x1 = i−L+1. Now if L < j then x1 > 1 (recall that
we assumed i ≥ j) and also yz′ + 1 < yz′+1 for some z′ ∈ {1, . . . , L} (again, we define yL+1 = j+ 1).
This means that we can increase all y1, y2, . . . , yz′ by 1 and then additionally match ax1−1 with c1
to decrease the total cost by M , up to lower order terms. Second, if x1 = 1 a symmetric argument
applies. We obtain that indeed L = min(i, j) = j, and ai−j+1 is matched to c1, ai−j+2 is matched
to c2, ..., ai is matched to cj . Now, by the same calculations as in the previous paragraph, the total
cost is −3M2 + w(i, k) + w(k, j) + w(i, j).

3 Reducing Max-Weight k-Clique to TED

The drawback of the reduction described in Section 2 is the large size of the alphabet. That is, given
a complete weighted n-node undirected graph it creates two trees of size O(n) where labels of nodes
are distinct, and therefore |Σ| = Θ(n). We would like to refine the reduction so that |Σ| = O(1).
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However, as the input size of TED on n-node trees and alphabet Σ with O(log n)-bit integer weights
is Õ(n + |Σ|2), such a reduction would need to compress the Õ(n2) input size of negative triangle
detection considerably. To circumvent this barrier, we assume the stronger Max-Weight k-Clique
Conjecture, where the input size Õ(n2) is very small compared to the running time bound O(nk).

Lemma 3. Given a complete undirected n-node graph G with weights in {1, . . . , nck}, we construct,
in linear time in the output size, an instance of TED of size O(nk/3+2) with alphabet size |Σ| = O(ck)
such that the maximum weight of an k-clique in G can be extracted from the edit distance.

Thus, an O(n3−ε
′
) time algorithm for TED for sufficiently large |Σ| = O(1) implies an

O(n(k/3+2)(3−ε′)) time algorithm for max-weight k-Clique. Setting ε = ε′/6, we obtain that, for
every c > 0, there exists k = d6/εe such that max-weight k-Clique can be solved in time

O(n(k/3+2)(3−ε′)) = O(nk−ε
′k/3+6−2ε′) = O(nk(1−ε)−kε+6) = O(nk(1−ε)),

so Conjecture 3 is violated.
The reduction starts with enumerating all k

3 -cliques in the graph and identifying them with
numbers 1, 2, . . . , N , where N ≤ nk/3. Let Q(i) denote the set of nodes in the i-th clique. Then,
for i, j such that Q(i) ∩ Q(j) = ∅, W (i, j) is the total weight of all edges connecting two nodes in
the i-th clique or a node in the i-th clique with a node in the j-th clique. Our goal is to calculate
the maximum value of W (i, z) + W (z, j) + W (j, i) over i, j, z such that Q(i), Q(j) and Q(z) are
pairwise disjoint. If we define w(u, u) = 0 and increase every other weight w(u, v) by Λ := k2nck,
this is equivalent to maximising over all i, j, z. Indeed, if Q(i), Q(j), Q(z) are pairwise disjoint, the
total weight is at least

(
k
2

)
Λ, and otherwise it is at most

((
k
2

)
− 1
)
(Λ + nck) <

(
k
2

)
Λ. Note that the

new weights are still bounded by nO(ck).
Our construction of a hard instance of size O(N · poly(n)) is similar to Section 2, however, the

costs are set up differently and we attach small additional gadgets to some of the nodes (which is
necessary, cf. Section 4). The original two trees (with some extra spine nodes without any leaves)
are called the macro structure and all small gadgets are called the micro structures. With notation
as in Section 2, the following micro structures are created for every i = 1, 2, . . . , N (see Figure 4):

1. A′i attached to the leaf a′i,

2. a copy of I attached as the left child of the leaf c′i,

3. C ′i attached as the right child of the leaf c′i,

4. Ai attached to the spine node ai−1 between the previously existing children ai and a′i−1,

5. Bi attached to the spine node bi between the previously existing children bi+1 and b′i,

6. Ci attached to the spine node ci−1 as the rightmost child,

7. Di attached to the spine node di between the previously existing children d′i and di+1.

Notice that Ai is attached above ai (and similarly Cj is attached above cj). Therefore, we need to
create dummy spine nodes a0 and c0. We also insert an additional spine node b′′i between bi and
bi+1 and similarly d′′i between di and di+1, for every i = 1, 2, . . . , N − 1. See Figure 4.

The costs in the macro structure are chosen as follows, where again M is a sufficiently large
value (picking M = nO(ck) will suffice):
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Figure 4: A hard instance of TED constructed for a given instance of max-weight k-clique.

1. c
match

(bz, c
′
j) = −M8 for every z = 1, 2, . . . , N and i = 1, 2, . . . , N ,

2. c
match

(a′i, dz′) = −M8 for every i = 1, 2, . . . , N and z′ = 1, 2, . . . , N ,

3. c
match

(b′z, d
′
z′) = −M7 · 2 for every z = 1, 2, . . . , N and z′ = 1, 2, . . . , N ,

4. c
match

(ai, cj) = −M3 · 2 +M2 for every i = 1, 2, . . . , N and j = 1, 2, . . . , N .

Additionally, the extra spine nodes b′′i and d′′i can be matched to some of the nodes of I. Each
copy of I is a path consisting of k/3 segments I0, I1, . . . , Ik/3−1 of length n − 1, where the root
of the whole I belongs to I0. The label of every u ∈ Ii is the same and the costs are set so that
c
match

(u, u) = −M7 · ni. The label of every b′′z (and also d′′z′) is chosen as the label of every u ∈ Im,
where nm is the largest power of n dividing N − z. The cost of matching any other two labels used
in the macro structure is set to infinity. For the nodes belonging to the other micro structures, the
cost of matching is at least −M6 and will be specified precisely later. This is enough to enforce the
following structural property.
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Lemma 4. For sufficiently large M , any optimal matching has the following structure: there exist
i, j, z such that a′i is matched to dz, c′j is matched to bz, b′1 is matched to d′z−1, b

′
2 is matched to

d′z−2, . . . , b
′
z−1 is matched to d′1. Furthermore, if z < N then b′′z is matched to a descendant of c′j

and d′′z is matched to a descendant of a′i. Ignoring the spine nodes a1, . . . , ai, c1, . . . , ci and all micro
structures that are not copies of I the cost of any such solution is −M8 · 2−M7 · 2(N − 1).

Proof. For sufficiently large M , any optimal solution must match a′i to dz and c′j to bz′ , for some
i, j, z, z′, as otherwise its cost is larger than −M8 · 2. By the reasoning described in Lemma 1, these
i, j, z, z′ are uniquely defined for any optimal solution.

Nodes from the copy of I attached as the left child of the leaf c′j can be matched to some spine
nodes below bz, nodes from the copy of I attached as the right child of the leaf a′i can be matched to
some spine nodes below dz′ , and no other nodes from the copies of I can be matched. We claim that
the total contribution of these nodes is −M7(N − z) and −M7(N − z′), respectively. By symmetry,
it is enough to justify the former. Observe that the cost of matching a single u ∈ Ii is smaller
than the total cost of matching all nodes from I0 ∪ . . . Ii−1, therefore an optimal solution must
match as many nodes to nodes from Ik/3−1 as possible. Looking at the expansions of all numbers
N − z,N − (z + 1), . . . , N − (N − 1) in base n, where N − z =

∑k/3−1
i=0 αin

i, we see that there are
αk/3−1 such nodes, namely the nodes b′N−z′ with z ≤ z′ < N and N − z′ divisible by nk/3−1. Then,
an optimal solution must match as many nodes to nodes from Ik/3−2 as possible to nodes above the
topmost node matched to a node from Ik/3−1. Looking again at the same expression, we see that
there are αk/3−2 such nodes, namely the nodes b′N−z′ with z ≤ z′ < N − αk/3−1nk/3−1 and N − z′

divisible by nk/3−2. Continuing in the same fashion, we obtain that there are αi nodes matched to
nodes from Ii, making the total cost −M7(N − z) as claimed.

We assume without loss of generality that z ≥ z′. Then, an optimal solution must match d′z′−1
to b′xz′−1

, d′z′−2 to b′xz′−2
, . . . , and d′1 to b′x1 , for some z ≥ x1 > . . . > xz′−1 ≥ 1, as otherwise its

cost is larger than −M8 · 2 −M7(2N − z − z′) −M7 · 2(z′ − 1). Rewriting the cost we obtain
−M8 · 2 −M7(2N − 2 − z + z′), so recalling our assumption z ≥ z′ we see that in fact z = z′ as
otherwise its cost is larger than −M8 · 2−M7 · 2(N − 1).

We are now ready to state properties of the remaining micro structures. Let c
match

(T1, T2) denote
the cost of matching two trees T1 and T2. Then, we require that:

1. c
match

(A′i, Dz′) = −M6 −M3(N − i)−W (i, z′) for every i = 1, 2, . . . , N and z′ = 1, 2, . . . , N ,

2. c
match

(Bz, C
′
j) = −M6 −M3(N − j)−W (z, j) for every z = 1, 2, . . . , N and j = 1, 2, . . . , N .

3. c
match

(Ai, Cj) = −M2−W (j, i) +W (j− 1, i− 1) for every i = 2, 3, . . . , N and j = 2, 3, . . . , N .

4. c
match

(Ai, C1) = −M5 −M3(i− 1)−W (1, i) for every i = 1, 2, . . . , N ,

5. c
match

(A1, Cj) = −M5 −M3(j − 1)−W (j, 1) for every j = 1, 2, . . . , N .

The labels of the nodes in the micro structures should be partitioned into disjoint subsets corre-
sponding to the following micro structures:

1. {A′1, A′2, . . . , A′N , D1, D2, . . . , DN},

2. {B1, B2, . . . , BN , C
′
1, C

′
2, . . . , C

′
N},
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3. {A1, A2, . . . , AN , C1, C2, . . . , CN},

so that two nodes can be matched only if their labels belong to the same subset. The cost of
matching any node of A′i, Dz′ , Bz, C

′
j should be at least −M6. The cost of matching any node of

Ai, Cj should be at least −M2, except that the root of Ai (Cj) can be matched to the root of C1

(A1) with cost larger than −M5−M but at most −M5, and, for any non-root node of Ai (Cj) and
for any non-root node of C1 (A1), the cost of matching is larger than −M4. Finally, every Ai and
Cj should consist of O(n2) nodes. Now we can show that, assuming these properties, any optimal
solution has a specific structure.

Lemma 5. For sufficiently large M , the total cost of an optimal matching is

−M8 · 2−M7 · 2(N − 1)−M6 · 2−M5 −M3 · 2N +M2 −max
i,j,z
{W (i, z) +W (z, j) +W (j, i)}.

Proof. Consider i, j, z maximizing W (i, z) + W (z, j) + W (j, i). We may assume that i ≥ j. Then,
it is possible to choose the following matching:

1. bk to c′j with cost −M8,

2. some nodes from the copy of I being the left child of c′j to some spine nodes below bz with
total cost −M7(N − z),

3. a′i to dk with cost −M8,

4. some nodes from the copy of I being the right child of a′i to some spine nodes below dz with
total cost −M7(N − z),

5. b′1 to d′z−1, b′2 to d′z−2, . . . , b′z−1 to d′1 with cost −M7 · 2 each,

6. ai to cj , ai−1 to cj−1, . . . , ai−j+1 to c1 with cost −M3 · 2 +M2 each,

7. A′i to Dz with cost −M6 −M3(N − i)−W (i, z),

8. Bz to C ′j with cost −M6 −M3(N − j)−W (z, j),

9. Ai to Cj , Ai−1 to Cj−1, . . . , Ai−j+2 to C2 with costs −M2 − W (j, i) + W (j − 1, i − 1),
−M2 −W (j − 1, i− 1) +W (j − 2, i− 2), . . . , −M2 −W (2, i− j + 2) +W (1, i− j + 1).

10. Ai−j+1 to C1 with cost −M5 −M3(i− j)−W (1, i− j + 1).
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Summing up and telescoping, the total cost is

−M8

−M7(N − z)
−M8

−M7(N − z)
−M7 · 2(z − 1)

−M3 · 2j +M2 · j
−M6 −M3(N − i)−W (i− z)
−M6 −M3(N − j)−W (z, j)

−M2(j − 1)−W (j, i)−M5 −M3(i− j)
=−M8 · 2−M7 · 2(N − 1)−M6 · 2−M5 −M3 · 2N +M2 −W (i, z)−W (z, j)−W (j, i).

For the other direction, we need to argue that every solution has cost at least −M8 · 2 −M7 ·
2(N−1)−M6 ·2−M5−M3 ·2N+M2−maxi,j,z{W (i, z)+W (z, j)+W (j, i)}. We start with invoking
Lemma 4 and analyse the remaining small micro structures. Due to leaves b′1, . . . , b′z−1, d′1, . . . , d′z−1
being already matched, no node from B1, . . . , Bz−1, D1, . . . , Dz−1 can be matched (as they can in
general only be matched to A′∗’s and C ′∗’s). Then, due to b′′z and d′′z being already matched (or
z = N) no node from Bz+1, . . . , BN , Dz+1, . . . , DN can be matched, and nodes from Bz or Dz

can be only matched to nodes from C ′j or A′i, respectively. The cost incurred by all such nodes is
c
match

(A′i, Dz)+c
match

(Bz, C
′
j), making the total cost −M8 ·2−M7 ·2(N−1)−M6 ·2−M3(2N− i−

j)−W (i, z)−W (z, j). It remains to analyse the contribution of all spine nodes a1, . . . , aN , b1, . . . , bN
and nodes from micro structures A1, . . . , AN , C1, . . . , CN .

Consider the micro structures C1 and A1. Matching their roots to roots of some Ai′ and Cj′ ,
respectively, decreases the total cost by at least −M5, which is much smaller than the cost of
matching the remaining nodes. Furthermore, it is not possible to match both the root of C1 to the
root of some Ai′ and the root of A1 to the root of some Cj′ at the same time, unless the root of
A1 is matched to the root of C1. Therefore, an optimal solution matches exactly one of them or
both to each other, say we match the root of C1 to the root of some Ai′ , thus adding cmatch

(Ai′ , C1)
to the total cost. Due to a′i being matched to dz, i′ ≤ i holds. Now, unless i′ = 1, no node from
A1 can be matched to a node from Cj′ , so the cost of matching any ai′ to cj′ is now much smaller
than the cost of matching nodes in the remaining micro structures (for each such node, the cost is
at least −M2, and there are at most O(n2) of them in a single micro structure, so the total cost
contributed by a single micro structure is larger than −M3 for M large enough) and, by Lemma 1,
only nodes a1, . . . , ai, c1, . . . , cj can be matched, so an optimal solution matches as many such pairs
as possible. Due to the root of C1 being matched to the root of Ai′ , only nodes ai′ , ai′+1, . . . , ai and
c1, . . . , cj can be matched, so there are min(i − i′ + 1, j) such matched pairs. If i − i′ + 1 < j and
i′ > 1 then C1 can be matched with Ai′−1 instead of Ai′ which allows for an additional pair and
decreases the total cost (because matching a pair (a∗, c∗) adds −M3 · 2 to the cost while decreasing
i′ by one adds M3 to the cost c

match
(Ai′ , C1), up to lower order terms). If i − i′ + 1 < j and

i′ = 1 then A1 can be matched with C2 instead of C1 while keeping the number of matched pairs
intact to decrease the total cost. So i − i′ + 1 ≥ j (implying i ≥ j, which is due to our initial
assumption that the root of C1 is matched to the root of some Ai′). Then, if i′ < i− j + 1, C1 can
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be matched with Ai′+1 instead of Ai′ without changing the number of matched pairs to decrease
the total cost. Thus, i′ = i − j + 1 and ai is matched to cj , ai−1 to cj−1, . . . , and ai−j+1 to c1,
Then nodes from Ai can be only matched to nodes from Cj , nodes from Ai−1 only to nodes from
Cj−1, and so on. By the same calculations as in the previous paragraph, the total cost is therefore
−M8 · 2−M7 · 2(N − 1)−M6 · 2−M5−M3 · 2N +M2−maxi,j,z{W (i, z) +W (z, j) +W (j, i)}.

To complete the proof we need to design the remaining micro structures. We start with describing
some preliminary gadgets that will be later appropriately composed to obtain the micro structures
Ai, A

′
i, Bz, Cj , C

′
j , Dz′ with the required properties. Each such gadget consists of two trees, called

left and right, and we are able to exactly calculate the cost of matching them. The main difficulty
here is that we need to keep the size of the alphabet small, so for instance we are not able to create
a distinct label for every node of the original graph. At this point it is also important to note that
we can assume M = nO(ck), i.e., there is a constant d = O(ck) such that all weights constructed
above have absolute value less than nd.

Decrease gadget D(x). For any x ∈ {0, . . . , nd − 1}, the edit distance of the left and right tree
of D(x) is −x, and furthermore the right tree does not depend on the value of x.

This is obtained by representing x in base n as x =
∑d−1

i=0 αin
i. The left tree is a path composed

of d segments, the i-th segment consisting of αi nodes. The right tree is a path composed of d
segments, each consisting of n − 1 nodes. Nodes from the i-th segment of the left tree can be
matched with nodes from the i-th segment of the right tree with cost −ni, so the total cost is −x,
see Figure 5 (left). We reuse the same set of distinct labels in every decrease gadget of the same
type, hence we need only O(d) distinct labels in total. Furthermore, note that the cost of matching
the left tree of D(x) with any tree is at least −x and the cost of matching any node of D(x) is −ni
for some i ∈ {0, 1, . . . , d− 1}.

Equality gadget E(u, v, c=). For any u, v ∈ {1, . . . , n} and c= ∈ {0, . . . , nd−1}, the edit distance
of the left and right tree of E(u, v, c=) is −c= · n if u = v and at least −c= · n+ c= otherwise. Also,
the left tree does not depend on v and the right tree does not depend on u.

The left tree is a path composed of a segment of length u and a segment of length n − u. The
right tree is a path composed of a segment of length v and a segment of length n− v. Nodes from
the first segment of the left tree can be matched with nodes from the first segment of the right tree
with cost −c=, and similarly for the second segments. Then, if u = v we can match all nodes in
both trees, so the total cost is −c= · n. Otherwise, we can match at most n − 1 nodes, making
the total cost at least −c= · n + c=, see Figure 5 (right). Furthermore, note that the total cost of
matching the left tree of E(u, v, c=) with any tree is at least −c= · n and the cost of matching any
node of E(u, v, c=) is −c=.

Connection gadget C(i, j,M). For any i, j ∈ {1, . . . , N} and sufficiently large M ∈ {0, . . . , nd−
1}, the edit distance of the left and right tree of C(i, j,M) is −M −W (i, j). The left tree does not
depend on j and the right tree does not depend on i.

Let {u1, . . . , uk/3} and {v1, . . . , vk/3} be the k/3-cliques corresponding to i and j, respectively,
where u1 < u2 < . . . , uk/3 and v1 < v2 < . . . < vk/3. Recall that W (i, j) denotes the total weight of
all edges connecting two nodes in the i-th clique or a node in the i-th clique with a node in the j-th
clique, where we assume that w(u, u) = 0. We construct the gadget C(i, j,M) as follows. The root
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Figure 5: Left: Decrease gadget built for d = 3, n = 6 and x = n2 · 2 + n · 4 + 3. Right: Equality
gadget for u = 3, v = 6.

of the left tree has degree 1 + k/3 and the root of the right tree has degree 1 + n. Their rightmost
children correspond to the root of the left and the right trees of D(

∑
x<y w(ux, uy)), respectively.

Every other child of the left root can be matched with every other child of the right root with cost
−M2 (we fix M1 and M2 later). Intuitively, we would like the x-th child of the the left root to
be matched with the ux-th child of the right root, and then contribute −

∑
y w(ux, vy) to the total

cost, so that summing up over x = 1, 2, . . . , k/3 we obtain the desired sum. To this end, we attach
the left tree of E(ux, ·,M1) and the right tree of D(·) to the x-th child of the left root. Similarly, we
attach the right tree of E(·, t,M1) and the left tree of D(

∑
y w(t, vy)) to the t-th child of the right

root. Here we use · to emphasise that a particular tree does not depend on the particular value of
the parameter. All decrease gadgets are of the same type. See Figure 6.

We can clearly construct a solution with total cost −M2 · k/3−M1 · n · k/3−W (i, j) (because
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Figure 6: Schematic illustration of a connection gadget for k/3 = 2 and n = 8.

we have enumerated the clique corresponding to i so that u1 < u2 < . . . < uk/3). We claim that,
for appropriately chosen M1 and M2, no better solution is possible. Let W =

∑
u,v w(u, v). We

fix M1 = W · (k/3 + 1). This is enough to guarantee that the total cost contributed by nodes in
all decrease gadgets is at least −M1. The total cost contributed by nodes in all equality gadgets is
at least −M1 · n · k/3. Consequently, setting M2 = M1 · n · k/3 +M1 guarantees that any optimal
solution must match all children of the left root, so in fact, for every x = 1, 2, . . . , k/3 we must
match the x-th child of the left root to some child of the right root. Because matching the left tree
of any decrease gadget contributes at least −W to the total cost, by the choice of M1 an optimal
solution in fact must match the x-th child of the left root with the ux-th child of the right root, as
otherwise we lose at leastM1 due to the corresponding equality gadget that cannot be compensated
by matching its accompanying decrease gadget. Finally, the corresponding decrease gadget adds
−
∑

y w(ux, vy) to the total cost. Therefore, as long as M ≥M2 · k/3 +M1 · n · k/3 the total cost is
indeed −M−W (i, j) after choosing the cost of matching the roots to be −M+M2 ·k/3+M1 ·n ·k/3.
For any node in a decrease gadget, the cost of matching is at least −W , for any node in an equality
gadget, the cost of matching is −M1, and finally the cost of matching the children of the roots is
−M2, so the cost of matching any node of C(i, j,W ) is at least −M . For the correctness of the
construction it is enough that M is at least

M2 · k/3 +M1 · n · k/3 =M1((nk/3 + 1)k/3 + nk/3)

=W (k/3 + 1)k/3(nk/3 + 1 + n)

=W (k/3 + 1)k/3(n(k/3 + 1) + 1)

≤W · n(k/3 + 1)3 = nO(ck).

Micro structures A′i, Dz′ , Bz, C
′
j. We only explain how to construct A′i and Dz′ , for any i =

1, 2, . . . , N and z′ = 1, 2, . . . , N , as the construction of Bz and C ′j is symmetric. Recall that we
require c

match
(A′i, Dz′) = −M6−M4(N − i)−W (i, z′) and for every node in A′i and Dz′ the cost of

matching should be at least −M6.
A′i consists of a root to which we attach the left tree of D(M6 +M4(N − i)−M) and the left

tree of C(i, ·,M), while Dz′ consists of a root to which we attach the right tree of D(·) and the right
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tree of C(·, z′,M). All decrease gadgets attached as the left children of A′i and Dz′ are of the same
type, and all decrease gadgets used inside the connection gadgets attached as the right children
are also of the same but other type. This guarantees that the total cost of matching A′i to Dz′ is
simply −M6−M4(N − i) +M −M −W (i, j) = −M6−M4(N − i)−W (i, j). For sufficiently large
M ≥W · n(k/3 + 1)3, the cost of matching any node in D(M6 +M4(N − i)−M) is at least −M6

and the cost of matching any node in C(i, j,M) is at least M .

Micro structures Ai, Cj. Here the situation is a bit more complex, as we simultaneously require
that c

match
(Ai, Cj) = −M2 −W (j, i) +W (j − 1, i− 1) for every i = 2, 3, . . . , N and j = 2, 3, . . . , N

and c
match

(Ai, C1) = −M5−M3(i− 1)−W (1, i), and c
match

(A1, Cj) = −M5−M3(j − 1)−W (j, 1)
for every i = 1, 2, . . . , N and j = 1, 2, . . . , N . We must also make sure that the cost of matching a
node of Ai to a node of Cj should be at least −M2, except that the root of Ai (Cj) can be matched
to the root of C1 (A1) with cost larger than −M5 −M but at most −M5 and, for any non-root
node of Ai (Cj) and for any non-root node of C1 (A1), the cost of matching is larger than −M4.

For every i > 1 (j > 1), Ai (Cj) consists of two subtrees, called left and right, attached to
the common root, while A1 (C1) consists of a single subtree connected to a root. For every i > 1
(j > 1), the left subtree of Ai (the right subtree of Cj) consists of a root with two subtrees, called
left-right and left-right (right-left and right-right). For every i > 1, nodes of the right subtree of
Ai can only be matched to nodes of C1 and nodes of the left subtree of Ai can only be matched to
nodes of the right subtree of Cj for any j > 1. For every j > 1, nodes of the left subtree of Cj can
only be matched to nodes of A1 and nodes of the right subtree of Cj can only be matched to nodes
of the left subtree of Ai for any i > 1. Nodes of A1 can be matched to nodes of the left subtree of
Cj , for any j > 1. Nodes of C1 can be matched to nodes of the right subtree of Ai, for any i > 1.
Additionally, the root of A1 can be matched to the root of C1 with cost −M5−W (1, 1) > −M5−M ,
and for any i > 1 (j > 1), the root of Ai (Cj) can be matched to the root of C1 (A1) with cost
−M5. The subtrees are constructed as follows:

1. the right subtree of Ai is the left tree of D(M3(i− 1) +W (1, i)),

2. the only subtree of A1 is the right tree of D(·),

3. the left subtree of Cj is the left tree of D(M3(j − 1) +W (j, 1)),

4. the only subtree of C1 is the right tree of D(·).

It remains to fully define the left subtree of every Ai and the right subtree of every Cj , for i, j > 1.
Recall that the goal is to ensure c

match
(Ai, Cj) = −M2 −W (j, i) + W (j − 1, i − 1). We define a

new n-node graph with weight function w′(u, v) = M −w(u, v) for any u 6= v (for sufficiently large
M , the new weights are positive). Then, let C ′(i, j,M) denote the connection gadget C(i, j,M)
constructed for the new graph. Nodes of the left-left (left-right) subtree of Ai can be only matched
to nodes of the right-left (right-right) subtree of Cj . The subtrees are constructed as follows:

1. the left-left subtree of Ai is the left tree of C(i, ·,M · (k/3)2),

2. the right-left subtree of Cj is the right tree of C(·, j,M · (k/3)2),

3. the left-right subtree of Ai is the left tree of C ′(i− 1, ·,M2),

4. the right-right subtree of Cj is the right tree of C ′(·, j − 1,M2).
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See Figure 7. For the construction of C(i, j,M · (k/3)2) and C(i − 1, j − 1,M2) to be correct we
need that M · (k/3)2 ≥ W · n(k/3 + 1)3 and M2 ≥ M · n2 · n(k/3 + 1)3, respectively, which holds
for sufficiently large M .

Now we calculate c
match

(Ai, Cj). C(i−1, j−1,M2) contributes −M2 minus the total cost of edges
connecting two subsets of k/3 nodes in the new graph. As the weights in the new graph are defined
as w′(u, v) = M −w(u, v), this is exactly −M2 − (M · (k/3)2 −W (i− 1, j − 1)). C(i, j,M · (k/3)2)
contributes −M · (k/3)2 −W (i, j), so c

match
(Ai, Cj) = −M · (k/3)2 −W (i, j)−M2 − (M · (k/3)2 −

W (i− 1, j − 1)) = −M2 −W (i, j) +W (i− 1, j − 1) as required.
It remains to bound the cost of matching nodes. Nodes in the left subtree of Ai (Cj) can be

matched only to nodes of C1 (A1) with cost at least −M3 · n > −M4, except that the roots can
be matched with cost −M5. The cost of matching a node of Ai to a node of Cj , for i, j > 1, is
either at least −M · (k/3)2 (for the nodes of C(i, j,M · (k/3)2) or at least −M2 (for the nodes of
C(i, j,M2)), so for sufficiently large M at least −M2.

C(i, j,M3 · (k/3)2)

C1A1

Ai Cj

D(M3(i− 1) +W (1, i))

rig
h
t

left
D(M3(j − 1) +W (j, 1))

ri
g
h
t

left

C ′(i− 1, j − 1,M4)

left
righ

t left rig
ht

−M
5−M

5

−M5 −W (1, 1)

Figure 7: Micro structures A1, C1 and Ai, Cj for i, j > 1.

Wrapping up. We have shown how to construct, given a complete undirected n-node graph G,
two trees such that the weight of the max-weight k-clique in G can be extracted from the cost of
an optimal matching (and, as mentioned in the beginning of Section 2, by a simple transformation
this is equal to the edit distance). To complete the proof of Lemma 3, we need to bound the size of
both trees and also the size of the alphabet used to label their nodes.
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Initially, each tree consists of 2N original spine nodes, where N ≤ nk/3, 2N leaf nodes, and N
additional spine nodes. Then, we attach appropriate microstructures to the original spine nodes
and leaf nodes. The microstructures are A′i, I, C

′
j , Ai, Bz, Cj , Dz′ . Every copy of I consists of k/3 ·n

nodes. To analyse the size of the remaining microstructures, first note that if x ∈ {0, . . . , nd} then
the decrease gadget D(x) consists of O(d · n) nodes. The equality gadget always consists of O(n)
nodes. Finally, the connection gadget E(·, ·,M) withM ∈ {0, . . . , nd} consists of O(n(n+d ·n)+d ·
n) = O(d ·n2) nodes. Let M = nd with d to be specified later. Now, the size of the microstructures
can be bounded as follows: A′i and Dz′ (and also Bz and C ′j) consist of O(6d ·n+ d ·n2) = O(d ·n2)
nodes. The right subtree of Ai (and the left subtree of Cj) consists of O(3d · n) nodes, while the
left subtree of Ai (and the right subtree of Cj) consist of O(k2d · n2 + 2d · n2) = O(k2d · n2) nodes.
Thus, the total size of all microstructures is O(N · k2d · n2). It remains to bound M . Recall that
we require M ≥ W · n(k/3 + 1)3, M · (k/3)2 ≥ W · n(k/3 + 1)3 and M ≥ n3(k/3 + 1)3, where
W ≤ n2 ·nO(ck) = nO(ck). Hence, it is sufficient that M ≥ 8W ·n3k3. Setting d = Θ(ck) is therefore
enough. The size of the whole instance thus is O(nk/3+2 · ck) = O(nk/3+2).

We also have to bound the size of the alphabet. We need k/3 distinct labels for the nodes of I.
We need O(d) distinct labels for the nodes of all decrease gadgets of the same type. There is a
constant number of types, and all other nodes require only a constant number of distinct labels
(irrespectively on c and k), so the total size of the alphabet is O(ck) = O(1).

4 Algorithm for Caterpillars on Small Alphabet

In this section, we show that the hard instances of TED from Section 2 can be solved in time
O(n2|Σ|2 log n), where n is the size of the trees and Σ is the alphabet. Recall that in such an
instance we are given two trees F and G both consisting of a single path (called spine) of length
O(n) with a single leaf pending from every node, and all these leafs are to the right of the path in
F and to the left of the path in G (see Figure 2). In the following we use the same notation as in
Lemma 1. At a high level, we want to guess the rootmost non-spine node in the left tree f ′ip+1

and
the rootmost non-spine node in the right tree g′jp+1

. The optimal matching of spine nodes above
these non-spine nodes can be precomputed in O(n2) total time with a simple dynamic programming
algorithm. It might be tempting to say the same about the situation below, but this is much more
complicated due to the fact that leaf nodes in this part are matched in reversed order. To overcome
this difficulty, we need the following tool.

Lemma 6. For strings s[1..n] and t[1..m] over alphabet Σ and matching cost c
match

(c, d) for any
two letters c, d ∈ Σ, we define the optimal matching of s and the reverse of t as

min
{ k∑
`=1

c
match

(s[i`], t[j`])
∣∣∣ k ≥ 0, 1 ≤ i1 < . . . < ik ≤ n, 1 ≤ jk < . . . < j1 ≤ m

}
.

Given two strings s[1..n], t[1..n], in O(n2 log n) total time we can calculate, for every i and j, the
optimal matching of s[1..i] and the reverse of t[1..j].

Proof. We construct an (n+ 1)× (n+ 1) grid graph on nodes vi,j , where i, j = 0, 1, . . . , n as follows.
For every i, j = 0, 1, . . . , n, we create a directed edge from vi,j to vi+1,j and vi,j+1 with length zero.
Also, we create a directed edge from vi,j to vi+1,j+1 with length c

match
(s[i], t[n+1− j]). Then, paths
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from v1,n+1−j to vi,n+1 are in one-to-one correspondence with matchings of s[1..i] to the reverse of
t[1..j]. Therefore, the cheapest such path corresponds to the optimal matching.

The grid is a planar directed graph, and all starting nodes v1,n+1−j lie on the external face, so
we can use the multiple-source shortest paths algorithm of Klein [42] to compute, in O(n2 log n)
time, a representation of shortest paths from all starting nodes v1,n+1−j to all nodes of the grid.3

This representation can be then queried in O(log n) time to extract the length of any path from
v1,n+1−j to vi,n+1. Thus, the total time is O(n2 log n).

To see how Lemma 6 can be helpful, consider the (simpler) case when there are no additional
spine nodes fip+q+2 and gjp+q+2 . We construct two strings s and t by writing down the labels of leaf
nodes f ′n, f ′n−1, . . . , f ′1 and g′n, g′n−1, . . . , g′1, respectively, and preprocess them using Lemma 6. Then,
to find the optimal matching we guess ip+2 and jp+2. As explained above, optimal matching of spine
nodes above f ′ip+2

and g′jp+2
can be precomputed in O(n2) time in advance. Then, we need to match

some of the leaf nodes f ′ip+2
, f ′ip+2+1, f

′
ip+2+2, . . . to some of the leaf nodes g′jp+2

, g′jp+2+1, g
′
jp+2+2, . . .

in the reversed order. This exactly corresponds to matching s[1, n + 1 − ip+2] to the reverse of
t[1, n + 1 − jp+2] and thus is also precomputed. Iterating over all possible ip+2 and jp+2 gives us
the optimal matching in O(n2 log n) total time.

Now consider the general case. We assume that both optional spine nodes fip+q+2 and gjp+q+2

exist; if only one of them is present the algorithm is very similar. As in the simpler case, we iterate
over all possible ip+1 and jp+1. The natural next step would be to iterate over all possible ip+q+2

and jp+q+2, but this is too expensive. However, because no spine nor leaf nodes below fip+q+2 (or
gjp+q+2) are matched, we can as well replace fip+q+2 with the lowest spine node with the same label
(and similarly for gjp+q+2). Thus, instead of guessing ip+q+2 we can guess the label of fip+q+2 and
choose the lowest spine node with such label (and similarly for jp+q+2). Now we retrieve the pre-
computed optimal matching of spine nodes above f ′ip+1

and g′jp+1
. Then we need to find the optimal

matching of leaf nodes f ′ip+1+1, f
′
ip+1+2, . . . , f

′
ip+q+2−1 and g′ip+1+1, g

′
ip+1+2, . . . , g

′
jp+q+2−1. This can

be precomputed in O(n2|Σ|2 log n) time with Lemma 6. Indeed, there are only |Σ| possibilities
for ip+q+2 − 1 and also |Σ| possibilities for jp+q+2 − 1, as both of them are defined by the lowest
occurrence of a label among the spine nodes of the left and the right tree, respectively. For each
such combination, we construct two strings s and t by writing down the labels of leaf nodes above
f ′p+q+2 and g′p+q+2 in the bottom-up order and preprocess them in O(n2 log n) time. This allows us
to retrieve the optimal matching of leaf nodes and then we only have to add c

match
(f ′ip+1

, gjp+q+2) and
c
match

(fip+q+2 , g
′
jp+1

) to obtain the total cost. Thus, after O(n2|Σ|2 log n) preprocessing, we can find
the optimal matching by iterating over n2|Σ|2 possibilities and checking each of them in constant
time.
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