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Abstract

The CFG recognition problem is: given a context-free grammar G and a string w of length
n, decide if w can be obtained from G. This is the most basic parsing question and is a core
computer science problem. Valiant’s parser from 1975 solves the problem in O(nω) time, where
ω < 2.373 is the matrix multiplication exponent. Dozens of parsing algorithms have been
proposed over the years, yet Valiant’s upper bound remains unbeaten. The best combinatorial
algorithms have mildly subcubic O(n3/ log3 n) complexity.

Lee (JACM’01) provided evidence that fast matrix multiplication is needed for CFG parsing,
and that very efficient and practical algorithms might be hard or even impossible to obtain.
Lee showed that any algorithm for a more general parsing problem with running time O(|G| ·
n3−ε) can be converted into a surprising subcubic algorithm for Boolean Matrix Multiplication.
Unfortunately, Lee’s hardness result required that the grammar size be |G| = Ω(n6). Nothing
was known for the more relevant case of constant size grammars.

In this work, we prove that any improvement on Valiant’s algorithm, even for constant size
grammars, either in terms of runtime or by avoiding the inefficiencies of fast matrix multipli-
cation, would imply a breakthrough algorithm for the k-Clique problem: given a graph on n
nodes, decide if there are k that form a clique.

Besides classifying the complexity of a fundamental problem, our reduction has led us to
similar lower bounds for more modern and well-studied cubic time problems for which faster
algorithms are highly desirable in practice: RNA Folding, a central problem in computational
biology, and Dyck Language Edit Distance, answering an open question of Saha (FOCS’14).

http://arxiv.org/abs/1504.01431v2


1 Introduction

Context-free grammars (CFG) and languages (CFL), introduced by Chomsky in 1956 [Cho59], play
a fundamental role in computability theory [Sip96], formal language theory [HMU06], programming
languages [ASU86], natural language processing [JM00], and computer science in general with
applications in diverse areas such as computational biology [DEKM98] and databases [KSSY13].
They are essentially a sweet spot between very expressive languages (like natural languages) that
computers cannot parse well, and the more restrictive languages (like regular languages) that even
a DFA can parse.

In this paper, we will be concerned with the following very basic definitions. A CFG G in
Chomsky Normal Form over a set of terminals (i.e. alphabet) Σ consists of a set of nonterminals
T , including a specified starting symbol S ∈ T , and a set of productions (or derivation rules) of
the form A → B C or A → σ for some A,B,C ∈ T and σ ∈ Σ. Each CFG G defines a CFL
L(G) of strings in Σ∗ that can be obtained by starting with S and recursively applying arbitrary
derivation rules from the grammar. The CFG recognition problem is: given a CFG G and a string
w ∈ Σ∗ determine if w can be obtained from G (i.e. whether w ∈ L(G)). The problem is of most
fundamental and practical interest when we restrict G to be of fixed size and let the length of the
string n = |w| to be arbitrary.

The main question we will address in this work is: what is the time complexity of the CFG
recognition problem?

Besides the clear theoretical importance of this question, the practical motivation is overwhelm-
ing. CFG recognition is closely related to the parsing problem in which we also want to output a
possible derivation sequence of the string from the grammar (if w ∈ L(G)). Parsing is essential:
this is how computers understand our programs, scripts, and algorithms. Any algorithm for parsing
solves the recognition problem as well, and Ruzzo [Ruz79] showed that CFG recognition is at least
as hard as parsing, at least up to logarithmic factors, making the two problems roughly equivalent.

Not surprisingly, the critical nature of CFG recognition has led to the development of a long
list of clever algorithms for it, including classical works [Val75, Ear70, CS70, You67, Kas65, Knu65,
DeR69, Bak79, Lan74], and the search for practical parsing algorithms, that work well for varied
applications, is far from over [PK09, RSCJ10, SBMN13, CSC13]. For example, the canonical CYK
algorithm from the 1960’s [CS70, Kas65, You67] constructs a dynamic programming table D of size
n×n such that cell D(i, j) contains the list of all nonterminals that can produce the substring of w
from position i to position j. The table can be computed with linear time per entry, by enumerating
all derivation rules A → B C and checking whether for some i ≤ k ≤ j, D(i, k) contains B and
D(k + 1, j) contains C (and if so, add A to D(i, j)). This gives an upper bound of O(n3) for the
problem. Another famous algorithm is Earley’s from 1970 [Ear70] which proceeds by a top-down
dynamic programming approach and could perform much faster when the grammar has certain
properties. Variants of Earley’s algorithm were shown to run in mildly subcubic O(n3/ log2 n) time
[GRH80, Ryt85]. 1

In 1975 a big theoretical breakthrough was achieved by Valiant [Val75] who designed a sophisti-
cated recursive algorithm that is able to utilize many fast boolean matrix multiplications to speed
up the computation of the dynamic programming table from the CYK algorithm. The time com-
plexity of the CFG problem decreased to O(g2nω), where ω < 2.373 is the matrix multiplication

1As typical, we distinguish between “truly subcubic” runtimes, O(n3−ε) for constant ε > 0, and “mildly subcubic”
for all other subcubic runtimes.
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exponent [Wil12, Gal14] and g is the size of the grammar; because in most applications g = O(1),
Valiant’s runtime is often cited as O(nω). In 1995 Rytter [Ryt95] described this algorithm as
“probably the most interesting algorithm related to formal languages” and it is hard to argue with
this quote even today, 40 years after Valiant’s result. Follow-up works proposed simplifications
of the algorithm [Ryt95], generalized it to stochastic CFG parsing [BS07], and applied it to other
problems [Aku98, ZTZU10].

Despite its vast academic impact, Valiant’s algorithm has enjoyed little success in practice.
The theoretically fastest matrix multiplication algorithms are not currently practical, and Valiant’s
algorithm can often be outperformed by “combinatorial” methods in practice, even if the most
practical truly subcubic fast matrix multiplication algorithm (Strassen’s [Str69]) is used. Theoret-
ically, the fastest combinatorial algorithms for Boolean Matrix Multiplication (BMM) run in time
O(n3/ log4 n) [Cha15, Yu15]. To date, no combinatorial algorithm for BMM or CFG recognition
with truly subcubic running time is known.

In the absence of efficient algorithms and the lack of techniques for proving superlinear uncon-
ditional lower bounds for any natural problem, researchers have turned to conditional lower bounds
for CFG recognition and parsing. Since the late 1970’s, Harrison and Havel [HH74] observed that
any algorithm for the problem would imply an algorithm that can verify a Boolean matrix multipli-
cation of two

√
n×√

n matrices. This reduction shows that a combinatorial O(n1.5−ε) recognition
algorithm would imply a breakthrough subcubic algorithm for BMM. Ruzzo [Ruz79] showed that
a parsing algorithm that says whether each prefix of the input string is in the language, could
even compute the BMM of two

√
n × √

n matrices. Even when only considering combinatorial
algorithms, these Ω(n1.5) lower bounds left a large gap compared to the cubic upper bound. A
big step towards tight lower bounds was in the work of Satta [Sat94] on parsing Tree Adjoining
Grammars, which was later adapted by Lee [Lee02] to prove her famous conditional lower bound
for CFG parsing. Lee proved that BMM of two n × n matrices can be reduced to “parsing” a
string of length O(n1/3) with respect to a CFG of size Θ(n2), where the parser is required to say
for each nonterminal T and substring w[i : j] whether T can derive w[i : j] in a valid derivation of
w from the grammar. This reduction proves that such parsers cannot be combinatorial and run in
O(gn3−ε) time without implying a breakthrough in BMM algorithms.

Lee’s result is important, however suffers from significant limitations which have been pointed
out by many researchers (e.g. [Ruz79, Lee02, Sah14a, Sah14b]). We describe a few of these below.
Despite the limitations, however, the only progress after Lee’s result is a recent observation by Saha
[Sah15] that one can replace BMM in Lee’s proof with APSP by augmenting the production rules
with probabilities, thus showing an APSP-based lower bound for Stochastic CFG parsing. Because
Saha uses Lee’s construction, her lower bound suffers from exactly the same limitations.

The first (and most major) limitation of Lee’s lower bound is that it is irrelevant unless the size
of the grammar is much larger than the string, in particular it is cubic only when g = Ω(n6). A
CFG whose description needs to grow with the input string does not really define a CFL, and as
Lee points out, this case can be unrealistic in many applications. In programming languages, for
instance, the grammar size is much smaller than the programs one is interested in, and in fact the
grammar can be hardcoded into the parser. A parsing algorithm that runs in time O(g3n), which is
not ruled out by Lee’s result, could be much more appealing than one that runs in O(gn2.5) time.

The second limitation of both Lee’s and Ruzzo’s lower bounds is the quite demanding require-
ment from the parser to provide extra information besides returning some parse tree. These lower
bounds do not hold for recognizers nor any parser with minimal but meaningful output.
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Theoretically, it is arguably more fundamental to ask: what is the time complexity of CFG
recognition and parsing that can be obtained by any algorithm, not necessarily combinatorial?
Lee’s result cannot give a meaningful answer to this question. To get a new upper bound for BMM
via Lee’s reduction, one needs a parser that runs in near-linear time. Lee’s result does not rule
out, say, an O(n1.11) time parser that uses fast matrix multiplication; such a parser would be an
amazing result.

Our first observation is that to answer these questions and understand the complexity of CFG
recognition, we may need to find a problem other than BMM to reduce from. Despite the apparent
similarity in complexities of both problems - we expect both to be cubic for combinatorial algorithms
and O(nω) for unrestricted ones - there is a big gap in complexities because of the input size. When
the grammar is fixed, a reduction cannot encode any information in the grammar and can only use
the n letters of the string, i.e. O(n) bits of information, while an instance of BMM requires Θ(n2)
bits to specify. Thus, at least with respect to reductions that produce a single instance of CFG
recognition, we do not expect BMM to imply a higher than Ω(n1.5) lower bound for parsing a fixed
size grammar.

Main Result In this paper we present a tight reduction from the k-Clique problem to the recog-
nition of a fixed CFG and prove a new lower bound for CFG recognition that overcomes all the
above limitations of the previously known lower bounds. Unless a breakthrough k-Clique algorithm
exists, our lower bound completely matches Valiant’s 40-year-old upper bound for unrestricted al-
gorithms and completely matches CYK and Earley’s for combinatorial algorithms, thus resolving
the complexity of CFG recognition even on fixed size grammars.

Before formally stating our results, let us give some background on k-Clique. This fundamental
graph problem asks whether a given undirected unweighted graph on n nodes and O(n2) edges con-
tains a clique on k nodes. This is the parameterized version of the famously NP-hard Max-Clique
(or equivalently, Max-Independent-Set) [Kar72]. k-Clique is amongst the most well-studied prob-
lems in theoretical computer science, and it is the canonical intractable (W[1]-complete) problem
in parameterized complexity.

A naive algorithm solves k-Clique in O(nk) time. By a reduction from 1985 to BMM on matrices
of size nk/3×nk/3 it can be solved with fast matrix multiplication in O(nωk/3) time [NP85] whenever
k is divisible by 3 (otherwise, more ideas are needed [EG04]). No better algorithms are known, and
researchers have wondered if improvements are possible [Woe04, Aut84]. As is the case for BMM,
obtaining faster than trivial combinatorial algorithms, by more than polylogarithmic factors, for k-
Clique is a longstanding open question. The fastest combinatorial algorithm runs in O(nk/ logk n)
time [Vas09].

Let 0 ≤ F ≤ ω and 0 ≤ C ≤ 3 be the smallest numbers such that 3k-Clique can be solved
combinatorially in O(nCk) time and in O(nFk) time by any algorithm, for any (large enough)
constant k ≥ 1. A conjecture in graph algorithms and parameterized complexity is that C = 3
and F = ω. It is known that an algorithm refuting this conjecture immediately implies a faster
exact algorithm for MAX-CUT [Wil05, Woe08]. Note that even a linear time algorithm for BMM
(ω = 2) would not prove that F < 2. A well known result by Chen et al. [CCF+05, CHKX06]
shows that F > 0 under the Exponential Time Hypothesis. A plausible conjecture about the
parameterized complexity of Subset-Sum implies that F ≥ 1.5 [ALW14]. There are many other
negative results that intuitively support this conjecture: Vassilevska W. and Williams proved that
a truly subcubic combinatorial algorithm for 3-Clique implies such algorithm for BMM as well
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[WW10]. Unconditional lower bounds for k-Clique are known for various computational models,
such as Ω(nk) for monotone circuits [AB87]. The planted Clique problem has also proven to be
very challenging (e.g. [AAK+07, AKS98, HK11, Jer92]). Max-Clique is also known to be hard to
efficiently approximate within nontrivial factors [Has99].

Formally, our reduction from k-Clique to CFG recognition proves the following theorem.

Theorem 1. There is context-free grammar GC of constant size such that if we can determine if
a string of length n can be obtained from GC in T (n) time, then k-Clique on n node graphs can be
solved in O

(

T
(

nk/3+1
))

time, for any k ≥ 3. Moreover, the reduction is combinatorial.

To see the tightness of our reduction, let 1 ≤ f ≤ ω and 1 ≤ c ≤ 3 denote the smallest numbers
such that CFG recognition can be solved in O(nf ) time and combinatorially in O(nc) time. An
immediate corollary of Theorem 1 is that f ≥ F and c ≥ C. Under the plausible assumption
that current k-Clique algorithms are optimal, up to no(1) improvements, our theorem implies that
f ≥ ω and c ≥ 3. Combined with Valiant’s algorithm we get that f = ω and with standard CFG
parsers we get that c = 3. Because our grammar size g is fixed, we also rule out O(h(g) ·n3−ε) time
combinatorial CFG parsers for any computable function h(g).

In other words, we construct a single fixed context-free grammar GC for which the recognition
problem (and therefore any parsing problem) cannot be solved any faster than by Valiant’s algo-
rithm and any combinatorial recognizer will not run in truly subcubic time, without implying a
breakthrough algorithm for the Clique problem. This (conditionally) proves that these algorithms
are optimal general purpose CFG parsers, and more efficient parsers will only work for CFL with
special restricting properties. On the positive side, our reduction might hint at what a CFG should
look like to allow for efficient parsing.

The online version of CFG recognition is as follows: preprocess a CFG such that given a string
w that is revealed one letter at a time, so that at stage i we get w[1 · · · i], we can say as quickly as
possible whether w[1 · · · i] can be derived from the grammar (before seeing the next letters). One
usually tries to minimize the total time it takes to provide all the |w| = n answers. This problem
has a long history of algorithms [Wei76, GRH80, Ryt85] and lower bounds [HS65, Gal69, Sei86].
The current best upper bound is O(n3/ log2 n) total running time, and the best lower bound is
Ω(n2/ log n). Since this is a harder problem, our lower bound for CFG recognition also holds for it.

1.1 More Results

The main ingredient in the proof of Theorem 1 is a lossless encoding of a graph into a string that
belongs to a simple CFL iff the graph contains a k-Clique. Besides classifying the complexity of a
fundamental problem, this construction has led us to new lower bounds for two more modern and
well-studied cubic time problems for which faster algorithms are highly desirable in practice.

RNA Folding The RNA folding problem is a version of maximum matching and is one of the
most relevant problems in computational biology. Its most basic version can be neatly defined as
follows. Let Σ be a set of letters and let Σ′ = {σ′ | σ ∈ Σ} be the set of “matching” letters, such
that for every letter σ ∈ Σ the pair σ, σ′ match. Given a sequence of n letters over Σ∪Σ′ the RNA
folding problem asks for the maximum number of non-crossing pairs {i, j} such that the ith and
jth letter in the sequence match.

The problem can be viewed as a Stochastic CFG parsing problem in which the CFG is very re-
stricted. This intuition has led to many mildly subcubic algorithms for the problem [Son15, Aku98,
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BTZZU11, PTZZU11, VGF13, FG09, ZTZU10]. The main idea is to adapt Valiant’s algorithm by
replacing his BMM with a (min,+)-matrix product computation (i.e. distance or tropical prod-
uct). Using the fastest known algorithm for (min,+)-matrix multiplication it is possible to solve
RNA folding in O(n3/2

√
logn) time [Wil14]. The fastest combinatorial algorithms, however, run in

roughly O(n3/ log2 n) time [Son15, BTZZU11], and we show that a truly subcubic such algorithm
would imply a breakthrough Clique algorithm. Our result gives a negative partial answer to an
open question raised by Andoni [And14].

Theorem 2. If RNA Folding on a sequence of length n can be solved in T (n) time, then k-Clique
on n node graphs can be solved in O

(

T
(

nk/3+O(1)
))

time, for any k ≥ 3. Moreover, the reduction
is combinatorial.

Besides a tight lower bound for combinatorial algorithms, our result also shows that a faster than
O(nω) algorithm for RNA Folding is unlikely. Such an upper bound is not known for the problem,
leaving a small gap in the complexity of the problem after this work. However, we observe that
the known reductions from RNA Folding to (min,+)-matrix multiplication produce matrices with
very special “bounded monotone” structure: the entries are bounded by n and every row and
column are monotonically increasing. This exact structure has allowed Chan and Lewenstein to
solve the “bounded monotone” (min,+)-convolution problem in truly subquadratic time [CL15].
Their algorithm uses interesting tools from additive combinatorics and it seems very plausible that
the approach will lead to a truly subcubic (non-combinatorial) algorithm for “bounded monotone”
(min,+) product and therefore for RNA Folding.

Dyck Edit Distance The lower bound in Theorem 1 immediately implies a similar lower bound
for the Language Edit Distance problem on CFLs, in which we want to be able to return the
minimal edit distance between a given string w and a string in the language. That is, zero if w is
in the language and the length of the shortest sequence of insertions, deletions, substitutions that
is needed to convert w to a string that is in the language otherwise. This is a classical problem
introduced by Aho and Peterson in the early 70’s with cubic time algorithms [AP72, Mye95] and
many diverse applications [KSSY13, GCS+00, FM80]. Very recently, Rajasekaran and Nicolae
[RN14] and Saha [Sah14b] obtained truly subcubic time approximation algorithms for the problem
for arbitrary CFGs.

However, in many applications the CFG we are working with is very restricted and therefore
easy to parse in linear time. One of the simplest CFGs with big practical importance is the Dyck
grammar which produces all strings of well-balanced parenthesis. The Dyck recognition problem
can be easily solved in linear time with a single pass on the input. Despite the grammar’s very
special structure, the Dyck Edit Distance problem is not known to have a subcubic algorithm.
In a recent breakthrough, Saha [Sah14a] presented a near-linear time algorithm that achieves a
logarithmic approximation for the problem. Dyck edit distance can be viewed as a generalization of
the classical string edit distance problem whose complexity is essentially quadratic [CLRS09, BI15],
and Saha’s approximation algorithm nearly matches the best known approximation algorithms for
string edit distance of Andoni, Krauthgamer, and Onak [AKO10], both in terms of running time
and approximation factor. This naturally leads one to wonder whether the complexity of (exact)
Dyck edit distance might be also quadratic. We prove that this is unlikely unless ω = 2 or there
are faster clique finding algorithms.

5



Theorem 3. If Dyck edit distance on a sequence of length n can be solved in T (n) time, then
3k-Clique on n node graphs can be solved in O

(

T
(

nk+O(1)
))

time, for any k ≥ 1. Moreover, the
reduction is combinatorial.

Our result gives an answer to an open question of Saha [Sah14a], who asked if Lee’s lower
bound holds for the Dyck Edit Distance problem, and shows that the search for good approximation
algorithms for the problem is justified since efficient exact algorithms are unlikely.

Remark A simple observation shows that the longest common subsequence (LCS) problem on
two sequences x, y of length n over an alphabet Σ can be reduced to RNA folding on a sequence of
length 2n: if y = y1 . . . yn then let ŷ := y′n . . . y

′
1 and then RNA(x ◦ ŷ) = LCS(x, y). A quadratic

lower bound for LCS was recently shown under the Strong Exponential Time Hypothesis (SETH)
[ABV15, BK15], which implies such a lower bound for RNA folding as well (and, with other ideas
from this work, for CFG recognition and Dyck Edit Distance). However, we are interested in higher
lower bounds, ones that match Valiant’s algorithm and basing such lower bounds on SETH would
imply that faster matrix multiplication algorithms refute SETH - a highly unexpected breakthrough.
Instead, we base our hardness on k-Clique and devise more delicate constructions that use the
cubic-time nature of our problems.

Proof Outlines In our three proofs, the main approach is the following. We will first preprocess
a graph G in O(nk+O(1)) time in order to construct an encoding of it into a string of length
O(nk+O(1)). This will be done by enumerating all k-cliques and representing them with carefully
designed gadgets such that a triple of clique gadgets will “match well” if and only if the triple make
a 3k-clique together, that is, if all the edges between them exists. We will use a fast (subcubic)
CFG recognizer, RNA folder, or an Dyck Edit Distance algorithm to speed up the search for such
a “good” triple and solve 3k-Clique faster than O(n3k). These clique gadgets will be constructed
in similar ways in all of our proofs. The main differences will be in the combination of these cliques
into one sequence. The challenge will be to find a way to combine O(nk) gadgets into a string in a
way that a “good” triple will affect the overall score or parse-ability of the string.

Notation and Preliminaries All graphs in this paper will be on n nodes and O(n2) undirected
and unweighted edges. We associate each node with an integer in [n] and let v̄ denote the encoding
of v in binary and we will assume that it has length exactly 2 log n for all nodes in V (G). When
a graph G is clear from context, we will denote the set of all k-cliques of G by Ck. We will denote
concatenation of sequences with x ◦ y, and the reverse of a sequence x by xR. Problem definitions
and additional problem specific preliminaries will be given in the corresponding section.

2 Clique to CFG Recognition

This section we show our reduction from Clique to CFG recognition and prove Theorem 1.
Given a graph G = (V,E), we will construct a string w of length O(k2 · nk+1) that encodes

G. The string will be constructed in O(k2 · nk+1) time which is linear in its length. Then, we will
define our context free grammar GC which will be independent of G or k and it will be of constant
size, such that our string w will be in the language defined by GC if and only if G contains a 3k
clique. This will prove Theorem 1.

6



Let Σ = {0, 1, $,#, astart, amid, aend, bstart, bmid, bend, cstart, cmid, cend} be our set of 13 terminals
(alphabet). As usual, ε will denote the empty string. We will denote the derivation rules of a
context free grammar with → and the derivation (by applying one or multiple rules) with =⇒ .

The string First, we will define node and list gadgets:

NG(v) = # v̄ # and LG(v) = # ©u∈N(v) ($ ūR $) #

Consider some t = {v1, . . . , vk} ∈ Ck. We now define “clique node” and “clique list” gadgets.

CNG(t) = ©v∈t(NG(v))k and CLG(t) = (©v∈tLG(v))k

and our main clique gadgets will be:

CGα(t) = astart CNG(t) amid CNG(t) aend

CGβ(t) = bstart CLG(t) bmid CNG(t) bend

CGγ(t) = cstart CLG(t) cmid CLG(t) cend

Finally, our encoding of a graph into a sequence is the following:

w = (©t∈CkCGα(t)) (©t∈CkCGβ(t)) (©t∈CkCGγ(t))

The Clique Detecting Context Free Grammar. The set of non-terminals in our grammar
GC is:

T = {S,W,W′,V,Sαγ ,Sαβ ,Sβγ ,S
⋆
αγ ,S

⋆
αβ ,S

⋆
βγ ,Nαγ ,Nαβ ,Nβγ}.

The “main” rules are:

S → W astart Sαγ cend W

S⋆
αγ → amid Sαβ bmidSβγ cmid

S⋆
αβ → aend W bstart

S⋆
βγ → bend W cstart

And for every xy ∈ {αβ, αγ, βγ} we will have the following rules in our grammar. These rules
will be referred to as “listing” rules.

Sxy → S⋆
xy

Sxy → # Nxy $ V #

Nxy → # Sxy # V $

Nxy → σ Nxy σ ∀σ ∈ {0, 1}

Then we also add “assisting” rules:

W → ε | σ W ∀σ ∈ Σ

W′ → ε | σ W′ ∀σ ∈ {0, 1}
V → ε | $ W′ $ V

Our Clique Detecting grammar GC has 13 non-terminals T , 13 terminals Σ, and 38 derivation
rules. The size of GC , i.e. the sum of the lengths of the derivation rules, is 132.

7



The proof. This proof is essentially by following the derivations of the CFG, starting from the
starting symbol S and ending at some string of terminals, and showing that the resulting string
must have certain properties. Any encoding of a graph into a string as we describe will have these
properties iff the graph contains a 3k-clique. The correctness of the reduction will follow from the
following two claims.

Claim 1. If GC =⇒ w then G contains a 3k-clique.

Proof. The derivation of w must look as follows. First we must apply the only starting rule,

S =⇒ w1 astart Sαγ cend w2

where astart appears in CGα(tα) for some tα ∈ Ck and cstart appears in CGγ(tγ) for some tγ ∈ Ck,
and w1 is the prefix of w before CG(tα) and w2 is the suffix of w after CG(tγ). Then we can get,

Sαγ =⇒ CNG(tα) S
⋆
αγ CLG(tγ)

by repeatedly applying the xy-“listing” rules where xy = αγ and finally terminating with the rule
Sαγ → S⋆

αγ . By Lemma 1 below, this derivation is only possible if the nodes of tα ∪ tγ make a
2k-clique (call this observation (*)). Then we have to apply the derivation:

S⋆
αγ =⇒ amid Sαβ bmidSβγ cmid

and for some tβ ∈ Ck we will have,

Sαβ =⇒ CNG(tα) S
⋆
αβ CLG(tβ), and Sβγ =⇒ CNG(tβ) S

⋆
βγ CLG(tγ),

where in both derivations we repeatedly use “listing” rules before exiting with the Sxy → S⋆
xy rule.

Again, by Lemma 1 we get that the nodes of tα ∪ tβ are a 2k clique in G, and that the nodes of
tβ ∪ tγ are a 2k clique as well (call this observation (**)). Finally, we will get the rest of w using
the derivations:

S⋆
αβ =⇒ aend w3 bstart, and S⋆

βγ =⇒ bend w4 cstart,

where w3 is the substring of w between CG(tα) and CG(tβ), and similarly w4 is the substring of w
between CG(tβ) and CG(tγ).

Combining observations (*) and (**), that we got from the above derivation scheme and
Lemma 1, we conclude that the nodes of tα ∪ tβ ∪ tγ form a 3k-clique in G, and we are done.

To complete the proof we will now prove Lemma 1.

Lemma 1. If for some t, t′ ∈ Ck and xy ∈ {αβ, αγ, βγ} we can get the derivation Sxy =⇒
CNG(t) S⋆

xy CLG(t′), only using the “listing” rules, then t ∪ t′ forms a 2k clique in G.

Proof. Any sequence of derivations starting at Sxy and ending at S⋆
xy will have the following form.

From Sxy we can only proceed to non-terminals V and Nxy. The non-terminal V does not produce
any other non-terminals. A single instantiation of Sxy can only produce (via the second “listing”
rule) a single instantiation of Nxy. In turn, from Nxy we can only proceed to non-terminals V and
Sxy, and again, a single instantiation of Nxy can produce a single instantiation of Sxy. Thus, we
produce some terminals (on the left and on the right) from the set {#, $, 0, 1} and then we arrive
to Sxy again. This can repeat an arbitrary number of times, until we apply the rule Sxy → S⋆

xy.
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Thus, the derivations must look like this:

Sxy =⇒ ℓ S⋆
xy r

for some strings ℓ, r of the form {#, $, 0, 1}∗, and our goal is to prove that ℓ, r satisfy certain
properties.

It is easy to check that V can derive strings of the following form p = ($ {0, 1}∗ $)∗, that is,
it produces a list (possibly of length 0) of binary sequences (possibly of length 0) surrounded by
$ symbols (between every two neighboring binary sequences there are two $). A key observation
is that repeated application of the fourth “listing” rule gives derivations Nxy =⇒ s Nxy sR, for
any s ∈ {0, 1}∗. Combining these last two observations, we see that when starting with Sxy we can
only derive strings of the following form, or terminate via the rule Sxy → S⋆

xy.

Sxy =⇒ # Nxy $ p1 # =⇒ # s Nxy sR $ p1 # =⇒ # s # Sxy # p2 $ sR $ p1 # (1)

for some p1, p2 of the form ($ {0, 1}∗ $)∗.
Now consider the assumption in the statement of the lemma, and recall our constructions of

“clique node gadget” and “clique list gadget” . By construction, CNG(t) is composed of k2 node
gadgets (NG) separated by # symbols, and CLG is composed of k2 list gadgets (LG) separated by
# symbols. Note also that the list gadgets contain O(n) node gadgets within them and those are
separated by $ symbols, and there are no # symbols within the list gadgets.

For every i ∈ [k2], let ℓi be the ith NG in CNG(t) and let ri be the ith LG in CLG(t′). Then,
for every 2 ≤ i ≤ k, in the derivation Sxy =⇒ CNG(t) S⋆

xy CLG(t′), we must have had the
derivation

Sxy =⇒ ℓ1 · · · ℓi−1 ( Sxy ) rk2−i+2 · · · rk2 =⇒ ℓ1 · · · ℓi−1 ( ℓi Sxy rk2−i+1 ) rk2−i+2 · · · rk2

and by (1) this implies that the binary encoding of the node v ∈ t that appears in the ith NG
in CNG(t) must appear in one of the NGs that appear in the (k2 − i + 1) LG in CLG(t′) which
corresponds to a node u ∈ t′. Since LG(u) contains a list of neighbors of the node u, this implies
that v ∈ N(u) and {u, v} ∈ E. Also note that u /∈ N(u) and therefore u does not appear in LG(u)
and therefore v cannot be equal to u if this derivation occurs.

Now, consider any pair of nodes v ∈ t, u ∈ t′. By the construction of CNG and CLG, we must
have an index i ∈ [k2] such that the ith NG in CNG(t) is NG(v) and the (k2 − i + 1) LG in
CLG(t′) is CLG(u). By the previous argument, we must have that u 6= v and {u, v} ∈ E is an
edge. Given that t, t′ are k-cliques themselves, and any pair of nodes v ∈ t, u ∈ t′ must be neighbors
(and therefore different), we conclude that t ∪ t′ is a 2k-clique.

Claim 2. If G contains a 3k-clique, then GC =⇒ w.

Proof. This claim follows by following the derivations in the proof of Claim 1 with any triple
tα, tβ , tγ ∈ Ck of k-cliques that together form a 3k-clique.

We are now ready to prove Theorem 1.

Reminder of Theorem 1 There is context-free grammar GC of constant size such that if we
can determine if a string of length n can be obtained from GC in T (n) time, then k-Clique on
n node graphs can be solved in O

(

T
(

nk/3+1
))

time, for any k ≥ 3. Moreover, the reduction is
combinatorial.

9



Proof. Given an instance of 3k-Clique, a graph G = (V,E) we construct the string w as described
above, which will have length O(k2 · nk+1), in O(k2 · nk+1) time. Given a recognizer for GC as in
the statement, we can check whether GC =⇒ w in O

(

T
(

nk/3+1
))

time (treating k as a constant).
By Claims 1 and 2, GC =⇒ w iff the graph G contains a 3k-clique.

3 Clique to RNA folding

In this section we prove Theorem 2 by reducing k-Clique to RNA folding, defined below.
Let Σ be an alphabet of letters of constant size. For any letter σ ∈ Σ there will be exactly one

“matching” letter which will be denoted by σ′. Let Σ′ = {σ′ | σ ∈ Σ} be the set of matching letters
to the letters in Σ. Throughout this section we will say that a pair of letters {x, y} match iff y = x′

or x = y′.
Two pairs of indices (i1, j1), (i2, j2) such that i1 < j1 and i2 < j2 are said to “cross” iff at

least one of the following three conditions hold: (i) i1 = i2 or i1 = j2, or j1 = i2, or j1 = j2; (ii)
i1 < i2 < j1 < j2; (iii) i2 < i1 < j2 < j1. Note that by our definition, non-crossing pairs cannot
share any indices.

Definition 1 (RNA Folding). Given a sequence S of n letters from Σ ∪ Σ′, what is the maximum
number of pairs A = {(i, j) | i < j and i, j ∈ [n]} such that for every pair (i, j) ∈ A the letters
S[i] and S[j] match and there are no crossing pairs in A. We will denote this maximum value by
RNA(S).

It is interesting to note that RNA can be seen as a language distance problem with respect
to some easy to parse grammar. Because of the specific structure of this grammar, our reduction
from Section 2 does not apply. However, the ideas we introduced allow us to replace our clique
detecting grammar with an easier grammar if we ask the parser to return more information, like
the distance to a string in the grammar. At a high level, this is how we get the reduction to RNA
folding presented in this section.

To significantly simplify our proofs, we will reduce k-Clique to a more general weighted version
of RNA folding. Below we show that this version can be reduced to the standard RNA folding
problem with a certain overhead.

Definition 2 (Weighted RNA Folding). Given a sequence S of n letters from Σ∪Σ′ and a weight
function w : Σ → [M ], what is the maximum weight of a set of pairs A = {(i, j) | i < j and i, j ∈
[n]} such that for every pair (i, j) ∈ A the letters S[i] and S[j] match and there are no crossing
pairs in A. The weight of A is defined as

∑

(i,j)∈A w(S[i]). We will denote this maximum value by
WRNA(S).

Lemma 2. An instance S of Weighted RNA Folding on a sequence of length n, alphabet Σ ∪ Σ′,
and weight function w : Σ → [M ] can be reduced to an instance Ŝ of RNA Folding on a sequence
of length O(Mn) over the same alphabet.

Proof. Let S = S1 · · ·Sn, we set Ŝ := S
w(S1)
1 · · ·Sw(Sn)

n , that is, each symbol Si is repeated w(Si)
times. First, we can check that WRNA(S) ≤ RNA(Ŝ). This holds because we can replace each
matching pair {a, a′} in the folding achieving weighted RNA score of WRNA(S) with w(a) such
pairs in the (unweighted) RNA folding instance Ŝ giving the same contribution to RNA(Ŝ).
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Now we will show that RNA(Ŝ) ≤ WRNA(S). Suppose thet there are symbols a and a′ in Ŝ
that are paired. The symbol a comes from a sequence s1 of a symbols of length w(a). The sequence
s1 was produced from a single symbol a when transforming S into Ŝ. Similarly, the symbol a′

comes from a sequence s2 of a′ symbols of length w(a). Also, assume that there exists a symbol in
s1 that is paired to a symbol that is outside of s2 or there exists a symbol in s2 that is paired to a
symbol outside of s1. While we can find such symbols a and a′, we repeat the following procedure.
Choose a and a′ that satisfy the above properties. And choose them so that the number of other
symbols between a and a′ is as small as possibly. Break ties arbitrarily. We match all symbols in
s1 to their counterparts in s2. Also, we rematch all symbols that were previously matched to s1
or s2 among themselves. We can check that we can rematch these symbols so that the number of
matched pairs do not decrease.

Therefore, we can assume that in some optimal folding of Ŝ, for any pair a ∈ Σ, a′ ∈ Σ′ that is
matched the corresponding substrings s1 and s2 are completely paired up. Thus, to get a folding
of S that achieves WRNA(S) at least RNA(Ŝ) we can now simply fold the corresponding symbols
to s1 and s2, for any such pair a, a′.

3.1 The Reduction

Given a graph G = (V,E) on n nodes and O(n2) unweighted undirected edges, we will describe
how to efficiently construct a sequence SG over an alphabet Σ of constant size, such that the RNA
score of SG will depend on whether G contains a 3k-clique. The length of SG will be O(kdnk+c)
for some small fixed constants c, d > 0 independent of n and k, and the time to construct it from
G will be linear in its length. This will prove that a fast (e.g. subcubic) RNA folder can be used
as a fast 3k-clique detector (one that runs much faster than in O(n3k) time).

Our main strategy will be to enumerate all k-cliques in the graph and then search for a triple of
k-cliques that have all the edges between them. We will be able to find such a triple iff the graph
contains a 3k-clique. An RNA folder will be utilized to speed up the search for such a “good”
triple. Our reduction will encode every k-clique of G using a “short” sequence of length O(nc) such
that the RNA folding score of a sequence composed of the encodings of a triple of sequences will
be large iff the triple is “good”. Then, we will show how to combine the short encodings into our
long sequence SG such that the existence of a “good” triple affects the overall score of an optimal
folding.

The RNA Sequence Our sequence SG will be composed of many smaller gadgets which will be
combined in certain ways by other padding gadgets. We construct these gadgets now and explain
their useful properties. The proofs of these properties are postponed until after we present the
whole construction of SG.

For a sequence s ∈ Σ∗ let p(s) ∈ (Σ′)∗ be the sequence obtained from s by replacing every letter
σ ∈ Σ with the matching letter σ′ ∈ Σ′. That is, if s = s1 · · · sn then p(s) = s′1 · · · s′n.

Our alphabet Σ will contain the letters 0, 1 and some additional symbols which we will add as
needed in our gadgets. We will set the weights so that w(0) = w(1) = 1, and the extra symbols
we add will be more “expensive”. For example, we will add the $ symbol to the alphabet and set
w($) = 10 · log n. We define node gadgets as,

NG(v) = $2n v̄ $2n
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and list or neighborhood gadgets as,

LG(v) = ©u∈N(v)($ ū $) ◦ ©u/∈N(v)($ $).

These gadget are constructed so that for any two nodes u, v ∈ V (G), the RNA folding score of
the sequence NG(v)◦p (LG(u))R is large (equal to some fixed value E1) if v is in the neighborhood
of u, that is (u, v) ∈ E(G), and smaller otherwise (at most E1 − 1). This is because the more
expensive $ symbols force an optimal folding to match v̄ with exactly one p(w̄)R, since otherwise a
$′ will remain unmatched while many $ are free. The construction also allows the folding to pick
any w ∈ N(u) to fold together with v̄, without affecting the score from the $ symbols. Then, we
use the fact that v̄ ◦ p(w̄)R achieves maximal score iff v = w. This is formally proved in Claim 3.

Let ℓ1 = 10k2 ·n log n and note that ℓ1 is an upper bound on the total weight of all the symbols
in the gadgets NG(v) and LG(v), for any node v ∈ V (G). Let Ck be the set of k-cliques in G and
consider some t = {v1, . . . , vk} ∈ Ck. We will now combine the node and list gadgets into larger
gadgets that will be encoding k-cliques.

We will add the # symbol to the alphabet and set w(#) = ℓ1, i.e. a single # letter is more
expensive than entire k2 node or list gadget. We will encode a clique in two ways. The first one is,

CNG(t) = ©v∈t(#NG(v)#)k

and the second one is,
CLG(t) = (©v∈t(#LG(v)#))k .

These clique gadgets are very useful because of the following property. For any two k-cliques
t1, t2 ∈ Ck, the RNA folding score of the sequence CNG(t1) ◦ p (CLG(t2))

R is large (equal to some
fixed value E2) if t1 and t2, together, form a 2k-clique, and is smaller otherwise (at most E2 − 1).
That is, the RNA folding score of the sequence tells us whether any pair of nodes u ∈ t1, v ∈ t2
are connected (u, v) ∈ E(G). There are two ideas in the construction of these gadgets. First, we
copy the gadgets corresponding to the k nodes of the cliques k times, resulting in k2 gadgets, and
we order them in a way so that for any pair of nodes u ∈ t1, v ∈ t2 there will be a position i such
that the gadget of u in CNG(t1) and the gadget of v in p(CLG(t2))

R are both at position i. Then,
we use the expensive # separators to make sure that in an optimal RNA folding of CNG(t1) and
p(CLG(t2))

R, the gadgets at positions i are folded together, and not to other gadgets - otherwise
some # symbol will not be paired. This is formally proved in Claim 4.

Let ℓ2 = 10 · k2 · ℓ1 = O(n log n) and note that it is an upper bound on the total weight of
all the symbols in the CNG(t) and CLG(t) gadgets. Finally, we introduce a new letter to the
alphabet g and set its weight to w(g) = ℓ2, which is much more expensive than the entire gadgets
we constructed before, and then define our final clique gadgets. Moreover, we will now duplicate our
alphabet three times to force only “meaningful” foldings between our gadgets. It will be convenient
to think of α, β, γ as three types such that we will be looking for three k-clique, one from type α one
from β and one from γ. For any pair of types xy ∈ {αβ, αγ, βγ} we will construct a new alphabet
Σxy = {σxy | σ ∈ Σ} in which we mark each letter with the pair of types it should be participating
in. For a sequence s ∈ (Σ∪Σ)∗ we use the notation [s]xy to represent the sequence in (Σxy ∪Σ′

xy)
∗

in which we replace every letter σ with the letter σxy.
We will need three types of these clique gadgets in order to force the desired interaction between

them.
CGα(t) = [g CNG(t) g]αγ ◦ [g′ p(CLG(t))R g′]αβ
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CGβ(t) = [g CNG(t) g]αβ ◦ [g′ p(CLG(t))R g′]βγ

CGγ(t) = [g CNG(t) g ]βγ ◦ [g′ p(CLG(t))R g′]αγ

These clique gadgets achieve exactly what we want: for any three k-cliques tα, tβ, tγ ∈ Ck the
RNA folding score of the sequence CGα(tα)◦CGβ(tβ)◦CGγ(tγ) is large (equal to some value E3) if
tα∪ tβ∪ tγ is a 3k-clique and smaller otherwise (at most E3−1). In other words, an RNA folder can
use these gadgets to determine if three separate k-cliques can form a 3k-clique. This is achieved by
noticing that the highest priority for an optimal folding would be to match the gxy letters with their
counterparts g′xy, which leaves us with three of sequences to fold: Sαγ = [CNG(tα)◦p(CLG(tγ))

R]αγ
and Sαβ = [p(CLG(tα))

R ◦ CNG(tβ)]αβ and Sβγ = [p(CLG(tβ))
R ◦ CNG(tγ)]βγ . The maximal

score (E2) in each one of these three sequences can be achieved iff every pair of our k-cliques form
a 2k-clique which happens iff they form a 3k-clique. This is formally proved in Claim 5.

The only remaining challenge is to combine all the sequences corresponding to all the O(nk)
k-cliques in the graph into one sequence in a way that the existence of a “good” triple, one that
makes a 3k-clique, affects the RNA folding score of the entire sequence. Note that if we naively
concatenate all the clique gadgets into one sequence, the optimal sequence will choose to fold clique
gadgets in pairs instead of triples since folding a triple makes other gadgets unable to fold without
crossings. Instead, we will use the structure of the RNA folding problem again to implement a
“selection” gadget that forces exactly three clique gadgets to fold together in any optimal folding.
We remark that the implementation of such “selection” gadgets is very different in the three proofs
in this paper: In Section 2 we use the derivation rules, in this section we use the fact that even
when folding all expensive separators in a sequence to the left or right we are left with an interval
that is free to fold with other parts of the sequence, and in Section 4 we rely on the restriction of
Dyck that an opening bracket can match only to closing brackets to its right.

Towards this end, we introduce some extremely expensive symbols α, β, γ. Let ℓ3 = 10ℓ2 be
an upper bound on the total weight the CGx(t) gadgets, and set w(α) = w(β) = w(γ) = ℓ3. Our
“clique detecting” RNA sequence is defined as follows.

SG = α2nk ©t∈Ck
(

α′ CGα(t) α
′) α2nk

◦ β2nk ©t∈Ck
(

β′ CGβ(t) β
′) β2nk

◦ γ2n
k ©t∈Ck

(

γ′ CGγ(t) γ
′) γ2n

k

The added padding makes sure that all but one CGα gadget are impossible to fold without
giving up an extremely valuable α,α′ pair, and similarly all but one CGβ and one CGγ cannot be
folded. To see this, assume all the α′ are paired (left or right) and note that if both α′ symbols
surrounding a clique gadget CGα(t) are paired to one side (say, left) then the only non crossing
pairs that the gadget could participate in are either with α symbols (but those cannot be matches)
or within itself. Our marking of symbols with pairs of types xy make it so that a clique gadget
cannot have any matches with itself. Therefore, if all α′ symbols are matched, then all but one
CGα(t) gadgets do not participate in any foldings. The argument for β, γ is symmetric. We are left
with a folding of a sequence of three clique gadgets CGα(tα), CGβ(tβ), CGγ(tγ) which can achieve
maximal score iff tα ∪ tβ ∪ tγ is a 3k-clique.

This proves our main claim that the (weighted) RNA folding score of our clique detecting
sequence SG is large (equal to some fixed value EC) if the graph contains a 3k-clique and smaller
(at most EC − 1) otherwise. See Claim 6 for the formal proof.
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Our final alphabet Σ has size 18 (together with Σ′ this makes 36 symbols).

Σ = {α, β, γ} ∪
⋃

xy∈{αβ,αγ,βγ}
{0, 1, $,#, g}xy

Observe that SG can be constructed from G in O(nk+1) time, by enumerating all subsets of
k nodes and that it has length O(nk+1). The construction of SG should be seen as a heavy
preprocessing and encoding of the graph, after which we only have to work with k-cliques. The
largest weight we use in our construction is ℓ3 = O(kO(1)n log n) and therefore using Lemma 2
we can reduce the computation of the weighted RNA of SG to an instance of (unweighted) RNA
folding on a sequence of length O(|SG|kO(1)n log n) = Õ(kO(1)nk+2) which proves Theorem 2.

Formal Proofs We will start with the proof that the list and node gadgets have the desired
functionality. Let E1 = (10n + 1) · log n.

Claim 3. For any xy ∈ {αβ, αγ, βγ} and two nodes u, v ∈ V (G) we have that the weighted RNA
folding score WRNA([NG(u) ◦ p(LG(v))R]xy) is E1 if u ∈ N(v) and at most E1 − 1 otherwise.

Proof. Since all letters in the sequence we are concerned with have the same mark xy, we will omit
the subscripts. If u ∈ N(v) then p(ū)R appears in LG(v) and we can completely match it with
the sequence ū in NG(u), giving a score of 2 log n, then we match all the n $′ symbols in LG(v)
to some $ symbols in NG(u) and gain an extra score of n · 10 log n. Therefore, in this case, the
weighted RNA score is E1 = log n+ 10n log n.

Now we assume that u /∈ N(v) and show that in the optimal folding the score is at most E1−1.
First, note that the sequence p(LG(v))R has fewer $′ symbols (it has 2n such symbols) than the
sequence NG(u) (which has 4n such symbols). By not pairing a symbol $′ in p(LG(v))R, we lose a
score of w($) which is much more than the entire weight of the non-$ symbols in NG(u). Therefore,
any matching which leaves some $′ unmatched is clearly sub-optimal, and we can assume that all
the $′ symbols are matched. Given this, the substring ū can only be folding to at most one of
the substrings p(v̄i)

R in LG(v) for some vi ∈ N(v). This folding can only achieve score 2 log n− 1
because u /∈ N(v). Thus, the total score of the optimal matching is no more than E1 − 1.

Next, we prove that the “clique node gadgets” and “clique list gadgets” check that two k-cliques
form one bigger 2k-clique. Let E2 = 2k2 · ℓ1 + k2 ·E1.

Claim 4. For any xy ∈ {αβ, αγ, βγ} and two k-cliques t1, t2 ∈ Ck we have that the weighted RNA
folding score WRNA([CNG(t1)◦p(CLG(t2))

R]xy) is E2 if t1∪ t2 is a 2k-clique and at most E2−1
otherwise.

Proof. We will omit the irrelevant xy subscripts. First, note that the sequences CNG(t1) and
p(CLG(t2))

R have the same number of # and #′ symbols, respectively. By not pairing a single
one of them with its counterpart, we lose a contribution of w(#) to the WRNA score, which is
much more than we could gain by pairing all the symbols in all the node and list gadgets (that is,
the rest of the sequence). Therefore, we assume that all the # and #′ symbols are paired. Let
t1 = {u1, . . . , uk} and t2 = {v1, . . . , vk}. We can now say that

WRNA(CNG(t1) ◦ p(CLG(t2))
R) = (2k2)w(#) +

∑

i∈[k]

∑

j∈[k]
WRNA(NG(ui) ◦ p(LG(vj))

R).
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and by Claim 3 we know that WRNA(NG(ui) ◦ p(LG(vj))
R) = E1 if ui and vj are connected and

less otherwise. Therefore, we can only get the maximal E2 = 2k2 · ℓ1 + k2 · E1 iff every pair of
nodes, one from t1 and one from t2 are connected. Since u /∈ N(u) for all u ∈ V (G) and since t1, t2
are k-cliques, we conclude that t1 ∪ t2 is a 2k-clique.

We are now ready to prove the main property of our clique gadgets: a sequence of three
clique gadgets (one from each type) achieves maximal score iff they form a 3k-clique together. Let
E3 = 6ℓ2 + 3E2.

Claim 5. For any xy ∈ {αβ, αγ, βγ} and three k-cliques tα, tβ, tγ ∈ Ck we have that the weighted
RNA folding score WRNA(CGα(tα) ◦ CGβ(tβ) ◦ CGγ(tγ)) is E3 if t1 ∪ t2 ∪ t3 is a 3k-clique and
at most E3 − 1 otherwise.

Proof. If for some xy ∈ {αβ, αγ, βγ} there is a symbol gxy which is not paired up with its coun-
terpart, we lose a contribution to the WRNA score that is more than we could get by pairing up
all symbols that are not gxy. Therefore, we have the equality

WRNA(CGα(tα) ◦ CGβ(tβ) ◦ CGγ(tγ)) = 3 · 2ℓ2
+WRNA([CNG(tα) ◦ p(CLG(tγ))

R]αγ)

+WRNA([CNG(tβ) ◦ p(CLG(tγ))
R]βγ)

+WRNA([p(CLG(tα))
R ◦ CNG(tβ)]αβ)).

By Claim 4, the last three summands are equal to E2 if all our three k-cliques are pairwise 2k-
cliques and otherwise at least one of the summands is less than E2. The claim follows by noticing
that tα ∪ tβ ∪ tγ is a 3k-clique iff the three k-cliques are pairwise 2k-cliques.

We are now ready to prove our main claim about SG. This proof shows that our “selection”
gadgets achieve the desired property of having exactly one clique from each type fold in an optimal
matching. Let N = O(nk) be the size of Ck which is the number of k-cliques in our graph and
therefore the number of clique gadgets we will have from each type. We will set EC = 6N + E3.

Claim 6. The weighted RNA score of SG is EC if G contains a 3k-clique and at most EC − 1
otherwise.

Proof. Let x ∈ {α, β, γ} and define tx ≥ 0 denote the number of x′ symbols in SG that are not
paired. Because any clique gadget CGx can only have matches with letters from clique gadgets
CGy for some y ∈ {α, β, γ} such that y 6= x, we can say that at most tx/2 + 1 clique gadget
sequences CGx can have letters that participate in the folding.

Recall that by definition of our weights, the total weight of any clique gadget is much less than
ℓ3/10 where ℓ3 is the weight of a letter α, β, γ and recall the definition of N = |Ck|. We will use
the inequalities:

WRNA(SG) ≤ ((tα/2+1)+ (tβ/2+1)+ (tβ/2+1)) · ℓ3/10+ ((2N − ta)+ (2N − tb)+ (2N − tc))ℓ3,

and:
WRNA(SG) ≥ ((2N − ta) + (2N − tb) + (2N − tc))ℓ3.
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Since ℓ3 ≫ ℓ3/10, we must have that tα = tβ = tγ = 0 in any optimal folding of SG. Now we get
that:

WRNA(SG) = 6Nℓ3 +WRNA(CGα(tα) ◦ CGβ(tβ) ◦ CGγ(tγ))

for some k-cliques tα, tβ , tγ ∈ Ck. By Claim 5, the last summand can be equal to E3 iff the graph
has a 3k-clique, and must be at most E3 − 1 otherwise. This, and the fact that EC = 6Nℓ3 + E3

completes the proof.

We are now ready to show that the construction of SG from graph G proves Theorem 2.

Reminder of Theorem 2 If RNA Folding on a sequence of length n can be solved in T (n) time,
then k-Clique on n node graphs can be solved in O

(

T
(

nk/3+O(1)
))

time, for any k ≥ 3. Moreover,
the reduction is combinatorial.

Proof. Given a graph G on n nodes we construct the sequence SG as described above. The sequence
can be constructed in O(kO(1) · nk+1) time, by enumerating all subsets of k nodes and that it has
length O(kO(1) · nk+1). The largest weight we use in our construction is ℓ3 = O(kO(1)n log n) and
therefore using Lemma 2 we can reduce the computation of the weighted RNA of SG to an instance
of (unweighted) RNA folding on a sequence of length O(|SG|kO(1)n log n) = Õ(kO(1)nk+2). Thus,
an RNA folder as in the statement returns the weighted RNA folding score of SG in T (nk/3+2) time
(treating k as a constant) and by Claim 6 this score determines whether G contains a 3k-clique.
All the steps in our reduction are combinatorial.

4 Clique to Dyck Edit Distance

In this section we prove Theorem 3 by reducing k-Clique to the Dyck Edit Distance problem,
defined below.

The Dyck grammar is defined over a fixed size alphabet of opening brackets Σ and of closing
brackets Σ′ = {σ′ | σ ∈ Σ}, such that σ can only be closed by σ′. A string S belongs to the Dyck
grammar if the brackets in it are well-formed. More formally, the Dyck grammar is defined by the
rules S → SS and S → σ S σ′ for all σ ∈ Σ and S → ε. This grammar defines the Dyck context
free language (which can be parsed in linear time).

The Dyck Edit Distance problem is: given a string S over Σ∪Σ′ find the minimum edit distance
from S to a string in the Dyck CFL. In other words, find the shortest sequence of substitutions
and deletions that is needed to convert S into a string that belongs to Dyck. We will refer to this
distance as the Dyck score or cost of S.

Let us introduce alternative ways to look at the Dyck Edit Distance problem that will be useful
for our proofs. Two pairs of indices (i1, j1), (i2, j2) such that i1 < j1 and i2 < j2 are said to “cross”
iff at least one of the following three conditions hold

• i1 = i2 or i1 = j2, or j1 = i2, or j1 = j2;

• i1 < i2 < j1 < j2;

• i2 < i1 < j2 < j1.

Note that by our definition, non-crossing pairs cannot share any indices. We define an alignment
A of a sequence S of length n to be a set of non-crossing pairs (i, j), i < j, i, j ∈ [n]. If (i, j) is in
our alignment we say that letter i and letter j are aligned. We say that an aligned pair is a match
if S[i] = σ for some σ ∈ Σ and S[j] = σ′, i.e. an opening bracket and the corresponding closing
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bracket. Otherwise, we say that the aligned pair is a mismatch. Mismatches will correspond to
substitutions in an edit distance transcript. A letter at an index i that does not appear in any
of the pairs in the alignment is said to be deleted. We define the cost of an alignment to be the
number of mismatches plus the number of deleted letters. One can verify that any alignment of
cost E corresponds to an edit distance transcript from S to a string in Dyck of cost E, and vice
versa.

4.1 The Reduction

Given a graph G = (V,E) on n nodes and O(n2) unweighted undirected edges, we will describe
how to efficiently construct a sequence SG over an alphabet Σ of constant size, such that the Dyck
score of SG will depend on whether G contains a 3k-clique. The length of SG will be O(kdnk+c)
for some small fixed constants c, d > 0 independent of n and k, and the time to construct it from
G will be linear in its length. This will prove that a fast (e.g. subcubic) algorithm for Dyck Edit
Distance can be used as a fast 3k-clique detector (one that runs much faster than in O(n3k) time).

As in the other sections, our main strategy will be to enumerate all k-cliques in the graph and
then search for a triple of k-cliques that have all the edges between them. We will be able to find
such a triple iff the graph contains a 3k-clique. A Dyck Edit Distance algorithm will be utilized
to speed up the search for such a “good” triple. Our reduction will encode every k-clique of G
using a “short” sequence of length O(nc) such that the Dyck score of a sequence composed of the
encodings of a triple of sequences will be large iff the triple is “good”. Then, we will show how to
combine the short encodings into our long sequence SG such that the existence of a “good” triple
affects the overall score of an optimal alignment.

The Sequence Our sequence SG will be composed of many smaller gadgets which will be com-
bined in certain ways by other padding gadgets. We construct these gadgets now and explain their
useful properties. The proofs of these properties are postponed until after we present the whole
construction of SG.

Recall that we associate every node in V (G) with an integer in [n] and let v̄ denote the encoding
of v in binary and we will assume that it has length exactly 2 log n for all nodes. We will use the
fact that there is no node with encoding 0̄. For a sequence s ∈ Σ∗ let p(s) ∈ (Σ′)∗ be the sequence
obtained from s by replacing every letter σ ∈ Σ with the closing bracket σ′ ∈ Σ′. That is, if
s = s1 · · · sn then p(s) = s′1 · · · s′n.

Our alphabet Σ will contain the letters 0, 1 and some additional symbols which we will add as
needed in our gadgets like $,#. We will use the numbers ℓ0, . . . , ℓ5 such that ℓi = (1000 · n2)i+1,
which can be bounded by nO(1). We define node gadgets as,

NG(v) = $ℓ1 v̄ $ℓ1

and list or neighborhood gadgets as,

LG(v) = ©u∈N(v)($
ℓ0 ū $ℓ0) ◦ ©u/∈N(v)($

ℓ0 0̄ $ℓ0).

These gadget are constructed so that for any two nodes u, v ∈ V (G), the Dyck score of the
sequence NG(v) ◦ p (LG(u))R is small (equal to some fixed value E1) if v is in the neighborhood of
u, that is (u, v) ∈ E(G), and larger otherwise (at least E1 +1). This is proved formally in Claim 7,
by similar arguments as in Section 3.
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Note that ℓ2 is an upper bound on the total length of all the symbols in the gadgets NG(v)
and LG(v), for any node v ∈ V (G). Let Ck be the set of k-cliques in G and consider some
t = {v1, . . . , vk} ∈ Ck. We will now combine the node and list gadgets into larger gadgets that will
be encoding k-cliques. We will encode a clique in two ways. The first one is,

CNG(t) = ©v∈t (#
ℓ2 NG(v) #ℓ2)k

and the second one is,
CLG(t) = (©v∈t (#

ℓ2 LG(v) #ℓ2))k.

Note that ℓ3 is an upper bound on the total length of all the symbols in the CNG(t) and CLG(t)
gadgets. We will add the symbol g to the alphabet. Moreover, we will now duplicate our alphabet
three times to force only “meaningful” alignments between our gadgets. It will be convenient to
think of α, β, γ as three types such that we will be looking for three k-cliques, one from type α one
from β and one from γ. For any pair of types xy ∈ {αβ, αγ, βγ} we will construct a new alphabet
Σxy = {σxy | σ ∈ Σ} in which we mark each letter with the pair of types it should be participating
in. For a sequence s ∈ (Σ∪Σ′)∗ we use the notation [s]xy to represent the sequence in (Σxy ∪Σ′

xy)
∗

in which we replace every letter σ with the letter σxy.
We will need three types of these clique gadgets in order to force the desired interaction between

them.

CGα(t) = aℓ4 (x′α)
ℓ5 [gℓ3 CNG(t) gℓ3 ]αγ ◦ [gℓ3 p(CNG(t))R gℓ3 ]αβ yℓ5α (a′)ℓ4

CGβ(t) = bℓ4 (x′β)
ℓ5 [(g′)ℓ3 CLG(t) (g′)ℓ3 ]αβ ◦ [gℓ3 p(CNG(t))R gℓ3 ]βγ yℓ5β (b′)ℓ4

CGγ(t) = cℓ4 (x′γ)
ℓ5 [(g′)ℓ3 CLG(t) (g′)ℓ3 ]βγ ◦ [(g′)ℓ3 p(CLG(t))R (g′)ℓ3 ]αγ yℓ5γ (c′)ℓ4

These clique gadgets achieve exactly what we want: for any three k-cliques tα, tβ, tγ ∈ Ck
the Dyck score of the sequence CGα(tα) ◦ CGβ(tβ) ◦ CGγ(tγ) is small (equal to some value E3)
if tα ∪ tβ ∪ tγ is a 3k-clique and larger otherwise (at least E3 + 1). This is formally proved in
Claim 9, again by similar arguments as in Section 3 (but more complicated because of the possible
mismatches).

The main difference over the proof of Section 3 is the way we implement the “selection” gadgets.
We want to combine all the clique gadgets into one sequence in a way that the existence of a “good”
triple, one that makes a 3k-clique, affects the Dyck score of the entire sequence. The ideas we used in
the RNA proof do not immediately work here because of “beneficial mismatches” of the separators
we add with themselves and because in Dyck (σ, σ′) match but (σ′, σ) do not (while in RNA we do
not care about the order). We will use some new ideas.

Our “clique detecting” sequence is defined as follows.

SG = xα
ℓ5 (©t∈CkCGα(t)) y′α

ℓ5

◦ xβ
ℓ5 (©t∈CkCGβ(t)) y′β

ℓ5

◦ xγ
ℓ5 (©t∈CkCGγ(t)) y′γ

ℓ5

As the xα, y
′
α symbols are very rare and “expensive” an optimal alignment will match them to

some of their counterparts within the α part of the sequence. However, when the x′α, yα letters are
matched, we cannot match the adjacent a, a′ symbols - which are also quite expensive. Therefore,
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the optimal behavior is to match the xα, y
′
α from exactly one “interval” from the α part. A similar

argument holds for the β, γ parts. This behavior leaves exactly one clique gadget from each type
to be aligned freely with each other as a triple. By the construction of these gadgets, an optimal
score can be achieved iff there is a 3k-clique.

This proves our main claim that the Dyck score of our clique detecting sequence SG is small
(equal to some fixed value EC) if the graph contains a 3k-clique and larger (at least EC + 1)
otherwise. See Claim 10 for the formal proof.

When k is fixed, SG can be constructed from G in O(nk+O(1)) time, by enumerating all subsets
of k nodes and that it has length O(nk+O(1)). This proves Theorem 3.

Our final alphabet Σ has size 24 (together with Σ′ this makes 48 symbols).

Σ = {a, b, c} ∪
⋃

xy∈{αβ,αγ,βγ}
{0, 1, $,#, g, x, y}xy

Formal Proofs Let E1 = log n · (n− 1) + (2ℓ1 − n · 2ℓ0)/2.

Claim 7. For any xy ∈ {αβ, αγ, βγ}, if v ∈ N(u), then

Dyck([NG(v) ◦ p(LG(u))]xy) = E1

and > E1 otherwise.

Proof. We will omit the subscripts xy since they do not matter for the proof. We want to claim that
the binary sequence v̄ is aligned to at most one binary sequence p(z̄R). If this is not so, then there
are 2ℓ0 symbols $′ from p(LG(u)) that will be mismatched or deleted thus contributing at least
S1 = ℓ0 to the Dyck score. There will be at least 2ℓ1−(n−1)2ℓ0 symbols $ that are not matched to
their counterparts $′. Those will contribute at least S2 = ℓ1 − (n− 1)ℓ0 to the Dyck score. We get
that the Dyck score is at least S1+S2 > E1. Now we assume that the binary sequence v̄ is aligned
to exactly one other binary sequence which we denote by p(z̄1

R). There are S2 = 2 log(n) · (n− 1)
symbols from binary sequences from p(LG(u)) that are not matched to their counterparts. Also,
there are S3 = 2ℓ1−n ·2ℓ0 symbols $ that are not matched to their counterparts. The contribution
of the unmatched symbols is ≥ (S2 + S3)/2 = E1 to the Dyck cost. We want to show that the
equality can be achieved iff v ∈ N(u). From the proof it is clear that, if v ∈ N(u), then we can
achieve equality by choosing z1 to be the element from N(u) that is equal to v. Also, if we achieve
equality, the symbols corresponding to S2 and S3 contribute ≥ (S2 + S3)/2 to the Dyck score.
These symbols contribute (S2 + S3)/2 to the Dyck cost iff the mismatches happen only between
themselves and all symbols $′ are matched to their counterparts. The only remaining symbols that
could potentially contribute to the score correspond to v and z1. They contribute 0 to the Dyck
score iff v̄ = z̄1

R, that is, v ∈ N(u).

For the next proofs we will use the following definition.

Definition 3. Given two sequences P and T , we define

pattern(P, T ) := min
Q is a contiguous
subsequence of T

Dyck(P ◦Q).

Let E2 = k2 ·E1.
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Claim 8. For any xy ∈ {αβ, αγ, βγ} and two k-cliques t1, t2 ∈ Ck, if t1 ∪ t2 is a 2k clique then

Dyck([CNG(t1) ◦ CLG(t2)]xy) = E2

and > E2 otherwise.

Proof. We will omit the subscripts xy since they do not matter for the proof. We have that

Dyck(CNG(t1) ◦ CLG(t2)) ≥
∑

v∈t1
k · pattern(NG(v), CLG(t2)).

Suppose that for some v ∈ t1, NG(v) is aligned to more than one gadget p(LG(u)). Then symbols
# between these gadgets p(LG(u)) will be substituted or deleted. The cost of these operations is
≥ ℓ2 > E2. Therefore, we have that any one of k2 gadgets NG(v) is aligned to at most one gadget
p(LG(u)) for some u ∈ t2. By the construction of CNG and CLG, we have that

Dyck(CNG(t1) ◦ CLG(t2))

≥
∑

v∈t1

∑

u∈t2
pattern(NG(v), (#′)2ℓ2p(LG(u))(#′)2ℓ2)

=
∑

v∈t1

∑

u∈t2
Dyck(NG(v) ◦ p(LG(u))),

where the last equality follows because # does not appear among symbols of NG(v). Now we have
that

Dyck(CNG(t1) ◦ CLG(t2)) ≥
∑

v∈t1

∑

u∈t2
E1 = k2 · E1 = E2,

where we use Claim 7. If we have equality, it means that we have equality in all k2 invocations of
Claim 7, which implies that v ∈ N(u) for all v ∈ t1, u ∈ t2. And this gives that there is a biclique
between vertices of t1 and t2. Also, it is possible to verify that we can achieve the equality if there
is a biclique.

Let E3 = 3(ℓ4 + E2).

Claim 9. For any triple of k-cliques tα, tβ, tγ ∈ Ck, the union tα ∪ tβ ∪ tγ is a 3k-clique, then

Dyck( xα
ℓ5CGα(tα)(yα

′)ℓ5

◦ xβ
ℓ5CGβ(tβ)(yβ

′)ℓ5

◦ xγ
ℓ5CGγ(tγ)(yγ

′)ℓ5 ) = E3

and > E3 otherwise.

Proof. We need to lower bound

Dyck( xα
ℓ5aℓ4(xα

′)ℓ5gℓ3αγ CNGαγ(tα)g
ℓ3
αγg

ℓ3
αβ CNGαβ(tα)g

ℓ3
αβyα

ℓ5(a′)ℓ4(yα
′)ℓ5

xβ
ℓ5bℓ4(xβ

′)ℓ5(g′αβ)
ℓ3 CLGαβ(tβ)(g

′
αβ)

ℓ3gℓ3βγ CNGβγ(tβ)g
ℓ3
βγyβ

ℓ5(b′)ℓ4(yβ
′)ℓ5

xγ
ℓ5cℓ4(xγ

′)ℓ5(g′βγ)
ℓ3 CLGβγ(tγ)(g

′
βγ)

ℓ3(g′αγ)
ℓ3 CLGαγ(tγ)(g

′
αγ)

ℓ3yγ
ℓ5(c′)ℓ4(yγ

′)ℓ5 ).
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Assume that some symbol a is aligned to a symbol to the right of xα
′. Then sequence (xα

′)ℓ5

will contribute ≥ ℓ5/2 > E3 to the Dyck score and we are done. (We prove later that we can
achieve Dyck score E3 if there is a clique.) Now let r denote the number of symbols from sequence
j = xα

ℓ5aℓ4(xα
′)ℓ5 that are aligned to a symbol that does not belong to sequence j. Let s denote

the set of these r symbols. Let l denote symbols xα that are aligned to a symbol xα
′. There are

2ℓ5 + ℓ4 − r − 2l symbols from j that are not considered yet. These symbols are not matched
to their counterparts and, therefore, contribute at least ⌈(2ℓ5 + ℓ4 − r − 2l)/2⌉ to the Dyck score
(we divide by 2 because the symbols can be mismatched among themselves in pairs). We have
that ⌈(2ℓ5 + ℓ4 − r − 2l)/2⌉ + r ≥ ℓ4/2 + ⌈r/2⌉ by the definition of l (it implies that l ≤ ℓ5).
We note that ℓ4/2 = Dyck(j). Dyck(j) ≤ ℓ4/2 can be obtained by aligning symbols xα with
symbols xα

′ and mismatching symbols a in pairs. The reverse inequality follows by observing that
all symbols a will be mismatched. Also we note that, if we mismatch symbols from s among
themselves, this costs ⌈r/2⌉. All this gives that we can assume that symbols in j do not interact
with symbols that are not in j when we want to bound the Dyck score. Similarly, we can argue
when j = yα

ℓ5(a′)ℓ4(yα′)ℓ5 , xγℓ5bℓ4(xγ ′)ℓ5 , yβT (b′)ℓ4(yβ ′)ℓ5 , xγℓ5cℓ4(xγ ′)ℓ5 , yγℓ5(c′)ℓ4(yγ ′)ℓ5 . Thus, we
need to show that

Dyck( gℓ3αγ CNGαγ(tα) gℓ3αγ gℓ3αβ CNGαβ(tα) gℓ3αβ

(g′αβ)
ℓ3 CLGαβ(tβ) (g′αβ)

ℓ3 gℓ3βγ CNGβγ(tβ) gℓ3βγ

(g′βγ)
ℓ3 CLGβγ(tγ) (g′βγ)

ℓ3 (g′αγ)
ℓ3 CLGαγ(tγ) (g′αγ)

ℓ3 ) ≥ 3E2

with equality iff there is a biclique between vertices of tα and tβ, between vertices of tα and tγ and
between vertices of tβ and tγ . Let h be the argument to Dyck function, that is, we want to show
that Dyck(h) ≥ 3E2 with the stated condition for the equality.

Consider three gadgets CNG and three gadgets CLG as above. We can assume that no symbol
of any of these six gadgets is aligned to any symbol gxy or g′xy. Assume that it is not the case. Then
we can delete all symbols from the gadgets that are aligned to symbols gxy or g′xy. After this, we
rematch gxy or g′xy among themselves. We can check that we can always make this rematching of
symbols gxy or g′xy so that the cost do not increase. Furthermore, if some CNGxy gadget is aligned
with a CNGx′y′ (or CLGx′y′) for (x, y) 6= (x′, y′), then there are two substrings of the type gab or
g′ab that don’t have their counterpart between CNGxy and CNGx′y′ (or CLGx′y′). Hence, their
contribution to the Dyck score is at least 2ℓ3/2 = ℓ3 ≫ 3E2. Thus for all (x, y) the only gadget
that CNGxy can be aligned with is CLGxy and vice versa. This means that we can assume that
all the g and g′ symbols are completely aligned.

We have shown that the Dyck cost of the string is exactly

Dyck(CNGαγ(tα) ◦ CLGαγ(tα))

+Dyck(CNGαβ(tβ) ◦ CLGαβ(tβ))

+Dyck(CNGβγ(tγ) ◦ CLGβγ(tγ)).

We want to show that this is ≥ 3E2 with equality iff tα ∪ tβ ∪ tγ is a 3k-clique. This was shown
in Claim 8.

We now turn to the proof of the claim about the behavior of our “selection gadgets”. Let EC

be a fixed integer to be defined later that depends on n, N , and k.
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Claim 10. If the G contains a 3k-clique, then Dyck(SG) = EC and Dyck(SG) > EC otherwise.

The proof of this claim will require several claims and lemmas. We start with some lemmas
about general properties of Dyck Edit Distance.

Lemma 3. Let Z1 be a substring of sequence Z. Assume that Z1 is of even length. If all symbols
symbols from Z1 participate in mismatches and deletions only, then we can modify the alignment
so that there is no symbol in Z1 that is aligned to a symbol that is not in Z1.

Proof. Let l denote number of symbols from Z1 that are aligned to symbols that are outside of Z1.
Let s denote the set of all these symbols outside of Z1 that are aligned to Z1. There are two cases
to consider.

• l is even. Then the Dyck cost induced by symbols in s and in Z1 is at least S1 := l+(|Z1|−l)/2
by the properties from the statement of the lemma. We do the following modification to the
alignment. We align all symbols in s among themselves in pairs. This induces cost S2 := l/2.
We align all symbols in Z1 among themselves. This induces cost S3 = |Z1|/2. The total
induced cost after the modification is S2 + S3 ≤ S1 and we satisfy the requirement in the
lemma.

• l is odd. Then the Dyck cost induced by symbols in s and in Z1 is at least S1 := l + (|Z1| −
l + 1)/2. We do the following modification to the alignment. We align all symbols in s
among themselves in pairs except one symbol, which we delete (remember that l is odd). This
induces cost S2 := (l+1)/2. We align all symbols in Z1 among themselves. This induces cost
S3 = |Z1|/2. The total induced cost after the modification is S2 + S3 ≤ S1 and we satisfy the
requirement in the lemma.

Consider optimal alignment of some string w ∈ (Σ ∪ Σ′)∗.

Lemma 4. Let Z be a maximal substring of w consisting entirely of symbols z (for some symbol
z appearing in w). Let Z0 be a maximal substring of w consisting entirely of symbols z0. Let
|Z| = |Z0| and let there are matches between Z and Z0. Also, there are no other maximal substrings
of w containing z other than Z. Then we can increase the Dyck score by at most 2 by modifying
the alignment and get that the symbols of Z0, that are matched to z, form a substring of Z0 and
the substring is suffix or prefix of Z0 (we can choose whether it is a suffix of a prefix). We can also
assume that the rest of symbols in Z0 are deleted or mismatched among themselves.

Proof. Wlog, we will show that we can make the substring to be the suffix. We write Z0 = Z1Z2Z3

so that the first symbol of Z2 is the first symbol of Z0 that is aligned to some symbol z and the
last symbol of Z2 is the last symbol of Z0 that is aligned to some symbol z. First, we modify the
alignment as follows. If the length of Z1 is even, we don’t do anything. Otherwise, consider the first
symbol of Z1. If it is aligned to some symbol, delete the first symbol of Z1 and the symbol aligned
to it by increasing the Dyck cost by 1. Similarly delete the last symbol of Z3 and the symbol
aligned to it if Z3 is of odd length. Now, by Lemma 3, we can assume that all symbols in Z1 and Z3

are mismatched among themselves (except, possibly, the first symbol of Z1 and the last symbol of
Z3). Now we are at the state when all symbols from Z0 are mismatched among themselves except
few that are matched with symbols z from Z. Now we can rematch these symbols from Z with
symbols z0 from Z0 so that z0 come from suffix of Z0. We see that this do not increase the Dyck
score besides two possible deletions.
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Now we prove some claims about the properties of the optimal alignment of SG. These claims
essentially show that any “bad behaviour”, in which we do not align exactly one clique gadget of
each type, is suboptimal.

Let El be some value that depends only on n and k.

Claim 11. For any gadget CGβ(t) from the sequence, if none of the x′β, yβ symbols are matched
to their counterparts, then all the b symbols from CGβ(t) must be matched to their counterparts b′

from CGβ(t), and in this case, the gadget contributes El to the Dyck score. Analogous claims hold
for α, γ.

Proof. By Lemma 3 we can assume that all symbols x′β are mismatched among themselves. The
same we can say about symbols yβ. Let Z be the substring of the gadget between symbols x′β
and yβ. If Z has matches with some symbols, then, by the construction of w, no symbol b or
b′ is matched to its counterpart and by Lemma 3, we get that b and b′ are mismatched within
themselves. But now we can decrease the Dyck score by deleting all symbols from Z and all symbols
that Z is aligned to outside the gadget. This increases the Dyck score but then we can decrease
it substantially by matching all symbols b to their counterparts b′ from the gadget. In the end we
get smaller Dyck score because ℓ4 ≥ 100|Z|. Now it remains to consider the case when symbols
in Z do not participate in matches. But then by Lemma 3, we again conclude that symbols in Z
participate only in mismatches and only among themselves. Let s be the union of all symbols b
and b′ of the gadget and all symbols that these symbols are aligned to outside the gadget. Let l
denote the number of symbols from s that are not coming from the gadget. Consider two cases.

• l = 0. We satisfy requirements of the claim by matching all symbols b to their counterparts
b′.

• There is no symbol among the l ≥ 1 symbols that participate in a match. We have that all
symbols in s contribute at least l to the Dyck score. We modify the alignment as follows.
We match all symbols b to their counterparts b′. We match the rest l symbols from s among
themselves. If there is odd number of them, we delete one. This contributes at most S1 :=
(l + 1)/2 to the Dyck score after the modification. We have that S1 ≤ l for l ≥ 1.

• Complement of the previous two cases: there is a symbol among the l ≥ 1 symbols that
participates in a match. Wlog, symbols b from the gadget participate in at least one matching.
Then all symbols b′ from the gadget do not participate in any matching and by Lemma 3 we
have that all symbols b′ from the gadget are mismatched among themselves. Therefore, we
can assume that l ≤ ℓ4. We need to consider two subcases.

– l is even. The symbols in s contribute at least S1 = (2ℓ4 − l)/2 to the Dyck score. We do
the following modification to the algorithm. We match all symbols b to their counterparts
b′. We mismatch l symbols in pairs among themselves. After the modification, the Dyck
contribution of symbols from s is S2 := l/2. We see that S2 ≤ S1.

– l is odd. The symbols in s contribute at least S1 = (2ℓ4 − l + 1)/2 to the Dyck score (at
least one symbol is deleted because 2ℓ4 − l is odd). We do the following modification to
the algorithm. We match all symbols b to their counterparts b′. We mismatch l symbols
in pairs among themselves except that we delete one symbol. After the modification, the
Dyck contribution of symbols from s is S2 := (l + 1)/2. We see that S2 ≤ S1.

Because symbols in between b and b′ don’t have their counterparts among themselves, the gadget
contributes El := (|CGβ(t)|− 2ℓ4)/2 to the Dyck cost. This quantity only depends on n and k and
this can be verified from the construction of SG.
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Claim 12. In some optimal alignment, we can assume that there is some symbol xβ that is aligned
to its counterpart x′β. Analogous statements can be proved about symbols yβ, y

′
β, xα, x

′
α, yα, y

′
α,

xγ, x
′
γ, yγ, y

′
γ.

Proof. Suppose that xβ is not aligned to any symbol x′β. We will modify the alignment so that
all symbols xβ are aligned to x′β coming from the first substring f of SG consisting entirely of
x′β. From the statement we have that all symbol xβ and all symbols from f are mismatched or
deleted. Therefore, by Lemma 3 we get that all symbols xβ are mismatched among themselves and
all symbols in f are mismatched among themselves. Now we modify the alignment as follows to
achieve our goal. We delete all symbols b between xβ and f . Also, we delete all the symbols that
the deleted bs were aligned to before the deletion. This increases Dyck cost by at most 2ℓ4. Then
we match all symbols xβ to x′β in pairs. This decreases Dyck cost by ℓ5. As a result we decreases
the Dyck cost because ℓ5 ≫ 2ℓ4.

Claim 13. In some optimal alignment, there is a symbol x′β that is matched to a symbol xβ and
there is a symbol yβ that is matched to a symbol y′β so that the symbols x′β and yβ come from the
same gadget CGβ(t). Analogous statements can be proved about symbols xα, x

′
α, yα, y

′
α, xγ, x

′
γ,

yγ, y
′
γ.

Proof. By Claim 12, xβ is aligned to some sequence consisting of x′β. Suppose that the sequence
comes from gadget CGβ(t1) for some t1. Also, by Claim 12, y′β is aligned to some sequence consisting
of yβ. Suppose that the sequence comes from gadget CGβ(t2) for some t2. We want to prove that
t1 = t2. Suppose that this is not the case and CGβ(t1) comes to the left of CGβ(t2) (the order
can’t be reverse by the construction of SG and because the alignments can’t cross). Suppose that
there is some other gadget CGβ(t3) in between CGβ(t1) and CGβ(t2). Then we can verify that
CGβ(t1) satisfy the conditions of Claim 11 and we can assume that all symbols in CGβ(t3) are
aligned with symbols in CGβ(t3). Therefore, we can remove gadget CGβ(t3) from SG (because it
does not interact with symbols outside it) and this decreases the Dyck cost by El. We do that until
CGβ(t1) is to the left from CGβ(t2) and they are neighboring. Now we will change the alignment
so that xβ is aligned to a symbol x′β from CGβ(t2) and as a result we will decrease Dyck cost. Now
we can verify from the construction of SG that symbols b, yβ, b

′ from CGβ(t1) do not participate
in matches. Also, symbols b and x′β from CGβ(t2) do not participate in matches. By Lemma 3, we
conclude that all these symbols have mismatches among themselves. Let g be the sequence between
symbols x′β and yβ in CGβ(t1). Now we modify the alignment so that the symbols in sequence g
have mismatches only among themselves and the symbols that were aligned to symbols in g are
deleted. This increases Dyck cost by at most 10|g| ≤ 100ℓ3 =: S1. Some symbols x′β are aligned
to symbols outside CGβ(t1). We transfer these alignmets of symbols x′β from CGβ(t1) to symbols
x′β in CGβ(t2) so that we only have mismatches among x′β in CGβ(t1) and we don’t change the
Dyck cost. Now we can align all symbols b in CGβ(t1) to b′ in CGβ(t1) in pairs. This decreases
the Dyck cost by ℓ4. In the end, we decreased the Dyck cost by ℓ4 − S1 > 0 and we proved what
we wanted.

Claim 14. In some optimal alignment, the only symbols x′β that symbols xβ are matched to, come
from the same gadget CGβ(t), and the only symbols yβ that symbols y′β are matched to, come from
the same gadget CGβ(t). In both cases it is the same gadget CGβ(t). Analogous statements can be
proved about symbols xα, x

′
α, yα, y

′
α, xγ, x

′
γ , yγ, y

′
γ .

24



Proof. Suppose that xβ is matched to symbols x′β coming from two different gadgets CGβ(t1) and
CGβ(t2). CGβ(t1) comes earlier in SG than CGβ(t2). Assume that there is no gadget CGβ(t3) in
between CGβ(t1) and CGβ(t2) in sequence SG. We can make this assumption because otherwise we
can remove CGβ(t3) as in Claim 11. We can check that all symbols x′β and yβ from CGβ(t3) do not
participate in matches and thus we satisfy the requirements of Claim 11. Now we can check that
symbols b, yβ, b

′ in CGβ(t1) do not participate in matches. Also, symbols between x′β and yβ in
CGβ(t1) do not participate in matches. Also, symbols b′ do not participate in matches. Therefore,
by Lemma 3 we conclude that all these symbols participate in mismatches only among themselves.
Let X1 denote sequence of x′β from CGβ(t1) and X2 denote sequence of x′β from CGβ(t2). By
Lemma 4, we can assume that symbols x′β from X1 and X2 that are matched to xβ form suffix in
both sequences and the rest of symbols in both sequences are mismatched among themselves or
deleted. The corresponding modifications increases the Dyck cost by at most ≤ 4 =: S1. Let Z1

be the suffix of X1 and Z2 be the suffix of X2. |Z1| + |Z2| is less or equal to the total number of
symbols xβ in SG by the construction of SG. Suppose that |Z1| is even. We mismatch all symbols
in Z1 among themselves and match resulting unmatched |Z1| symbols xβ to x′β from X2. This does
not change Dyck cost. Suppose that |Z1| is odd, then there is a deletion among symbols in X1 that
are not in Z1. We do mismatches among symbols Z1 and the one deleted. We match the resulting
unmatched |Z1| symbols xβ to x′β from X2. We can check that we can do this matching so that the
Dyck cost do not increase. Now we can match all symbols b from CGβ(t1) to their counterparts
b′ in CGβ(t1). This decreases the Dyck cost by S2 := ℓ4. In total, we decrease the Dyck cost by
≥ S2 − S1 > 0.

We note that in the proof of Claim 14 we remove 3N − 3 cliques from the graph (N is the
number of k-cliques in the graph), each removal costing El. After all the removals, we arrive to a
sequence of form as required in Claim 9. Thus, we set EC := (3N − 3)El + Ec and our proof for
Claim 10 is finished.

We are now ready to show that the construction of SG from the graph G proves Theorem 3.

Reminder of Theorem 3 If Dyck edit distance on a sequence of length n can be solved in T (n)
time, then 3k-Clique on n node graphs can be solved in O

(

T
(

nk+O(1)
))

time, for any k ≥ 1.
Moreover, the reduction is combinatorial.

Proof. Given a graph G on n nodes we construct the sequence SG as described above. The sequence
can be constructed in O(kO(1) ·nk+O(1)) time, by enumerating all subsets of k nodes and that it has
length O(kO(1) · nk+O(1)). Thus, an algorithm for Dyck Edit Distance as in the statement returns
Dyck score of SG in T (nk/3+O(1)) time (treating k as a constant) and by Claim 10 this score
determines whether G contains a 3k-clique. All the steps in our reduction are combinatorial.

Acknowledgements. We would like to thank Piotr Indyk for a discussion that led to this work,
and Roy Frostig for introducing us to many modern works on CFG parsing. We also thank Alex An-
doni, Ryan Williams, and the anonymous reviewers for comments. A.B. was supported by NSF and
Simons Foundation. A.A. and V.V.W. were supported by a Stanford School of Engineering Hoover
Fellowship, NSF Grant CCF-1417238, NSF Grant CCF-1514339, and BSF Grant BSF:2012338.

25



References

[AAK+07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and
Ning Xie. Testing k-wise and almost k-wise independence. In Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June
11-13, 2007, pages 496–505, 2007.

[AB87] Noga Alon and Ravi B Boppana. The monotone circuit complexity of boolean func-
tions. Combinatorica, 7(1):1–22, 1987.

[ABV15] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness
results for lcs and other sequence similarity measures. In 56th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, 2015. to appear.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic ap-
proximation for edit distance and the asymmetric query complexity. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 377–386.
IEEE, 2010.

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique
in a random graph. Random Struct. Algorithms, 13(3-4):457–466, 1998.

[Aku98] Tatsuya Akutsu. Approximation and exact algorithms for RNA secondary structure
prediction and recognition of stochastic context-free languages. In Algorithms and
Computation, 9th International Symposium, ISAAC ’98, Taejon, Korea, December
14-16, 1998, Proceedings, pages 337–346, 1998.

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges.
In Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland,
September 8-10, 2014. Proceedings, pages 1–12, 2014.

[And14] Alexandr Andoni. Question on RNA folding.
http://sublinear.info/index.php?title=Open_Problems:61, 2014. [Online;
accessed 31-March-2015].

[AP72] Alfred V Aho and Thomas G Peterson. A minimum distance error-correcting parser
for context-free languages. SIAM Journal on Computing, 1(4):305–312, 1972.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[Aut84] Miscellaneous Authors. Queries and problems. SIGACT News, 16(3):38–47, 1984.

[Bak79] James K Baker. Trainable grammars for speech recognition. The Journal of the
Acoustical Society of America, 65(S1):S132–S132, 1979.

[BI15] Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly
Subquadratic Time (unless SETH is false). In STOC’15, 2015.
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