
6.890 HOMEWORK 4 Due: November 10, 2021
Submit by email to 6890mit@gmail.com Handed out: October 28, 2021

Instructions: Everyone needs to submit their own write-up. If you work together with other students,
indicate their names on your write-up.

The maximum number of points in the problem set is 26.

Problem 1: Radius approximation. [10pt = 5 check+s, one per bullet]

The radius of a graph is given by R = minv maxu d(u, v). In this problem we will adapt the diameter
approximation algorithm given in class to obtain an Õ(m

√
n) time 3/2-approximation algorithm for the

radius R of any given undirected graph on n nodes and m edges, whenever R is even.
The eccentricity ε(v) of a node v is defined as the maximum distance from v to another node, i.e.

ε(v) := maxu∈V d(u, v).
The center c of a graph G is the node in G of minimum eccentricity, i.e. c := arg minv∈V ε(v).
Assume below that the radius of the given graph G is even. For simplicity, you can also assume that the

graph is unweighted.
Let S be a random sample of O(

√
n log n) nodes, let w be the node furthest from S and Tw be the closest√

n nodes to w, just as in the diameter algorithm from class. You can assume that S hits Tw, as we showed
in class that it will do so with high probability.

� Show that if for some node s in the random sample S, d(s, c) ≤ R/2, then R ≤ mins∈S ε(s) ≤ 3R/2,
and hence one can return an estimate R′ of the radius so that R ≤ R′ ≤ 3R/2.

� Show that if for all nodes s ∈ S, d(s, c) > R/2, then all nodes at distance R/2 from w are in Tw.

� Show that if d(w, c) ≤ R/2, then R ≤ ε(w) ≤ 3R/2.

� Show that if d(w, c) > R/2 and for all nodes s ∈ S, d(s, c) > R/2, then there is some node x in Tw
with ε(x) ≤ 3R/2, and hence R ≤ minx∈Tw

ε(x) ≤ 3R/2.

� Give pseudocode for the radius approximation algorithm.

Problem 2: Emulators. [8pts = 4 check+s: 2 for construction, 1 for sparsity
bound, 1 for error bound]

Give an algorithm that given an undirected, unweighted graph G = (V,E) on n nodes, creates a graph H
(called an emulator) on the same vertex set V as G and with O(n4/3 log2 n) edges with edge weights in
{1, . . . , n− 1} so that for all u, v ∈ V , d(u, v) ≤ dH(u, v) ≤ d(u, v) + 4.

Here d(u, v) and dH(u, v) are the distances between u and v in G and H, respectively.

Problem 3: Distance Oracle Creation. [8pt= 4 check+s, one per subpart]

Consider the construction for 2k − 1-approximate distance oracles from class. There we constructed sets
Ak−1 ⊆ Ak−2 ⊆ . . . ⊆ A1 ⊆ A0 = V so that each Ai was random of size Õ(|Ai−1|/n1/k). Then we
constructed the distance oracle by finding for each vertex v,

� for j ∈ {0, . . . , k − 1}, the closest vertex pj(v) in Aj to v,

� for i < k − 1, Bi(v) = {x ∈ Ai | d(x, v) < d(pi+1(v), v)}, and Bk−1(v) = Ak−1,

� setting B(v) = Ak−1 ∪
⋃k−2

i=0 Bi(v) =
⋃

iBi(v)
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In order to compute B(v), we assumed that we knew d(v, x) for every v ∈ V and x ∈ B(v).
In this problem we will show how to compute these distances in Õ(mn1/k) time, given the setsA0, . . . , Ak−1.

(a) Design an O(m+ n log n) time algorithm that given i ∈ {0, . . . , k − 1}, computes for every v ∈ V , the
quantity minx∈Ai d(x, v) and the closest node pi(v) ∈ Ai to v.

(b) Consider any w ∈ Ai \Ai+1. Let C(w) = {v ∈ V | d(v, w) < d(v, pi+1(v))}. Show that for every v ∈ V
and w ∈ Ai \Ai+1 (for some i), w ∈ B(v) if and only if v ∈ C(w).

In the following problems, let C(w) = V for any w ∈ Ak−1.

(c) Let C(w) be as above. Show that
∑

w∈V
∑

x∈C(w) deg(x) =
∑

x∈V deg(x) (
∑

i |Bi(x)|) and conclude

that with high probability,
∑

w∈V
∑

x∈C(w) deg(x) ≤ Õ(kmn1/k).

(d) Show how to modify Dijkstra’s algorithm so that for any w ∈ V , one can compute C(w) and the
distances from w to every x ∈ C(w) in Õ(

∑
x∈C(w) deg(x)) time. This together with part (c) shows

that the preprocessing time of the distance oracles from class can be made Õ(mn1/k) (with high
probability).
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