
6.890 Lecture 1 Matrix multiplication and matrix inversion; BMM
Scribes: Jessica Su, Kathy Cooper, Nicole Wein, VVW Date: Sept. 9, 2021

This class is about matrix multiplication and how it can be applied to graph algorithms. We will also
consider faster approximation algorithms that solve problems without resorting to matrix multiplication
technique.

1 Prior work on matrix multiplication

Definition 1.1. (Matrix multiplication) Let A and B be n-by-n matrices with entries over a field K. Then
the product C, where AB = C is an n-by-n matrix defined by C[i, j] =

∑n
k=1 A(i, k) ·B(k, j). Here + and ·

are operations over K.

If K is an arbitrary field, we will assume that addition and multiplication of field elements takes O(1)
time. Later on, if K is the field of rationals, we will assume that operations (addition and multiplication)
on O(log n) bit numbers takes O(1) time, i.e. we’ll be working in a word-RAM model of computation with
word size O(log n).

There has been much effort to improve the runtime of matrix multiplication. The trivial algorithm follows
the definition and multiplies n× n matrices in O(n3) time. Strassen (1969) surprised everyone by giving an
O(n2.81) time algorithm. This began a long line of improvements until in 1986, Coppersmith and Winograd
achieved O(n2.376). After 24 years of no progress, in 2010 Andrew Stothers, a graduate student in Edinburgh,
improved the running time to O(n2.374). In 2011, Virginia Vassilevska Williams got O(n2.37288), which was
the best bound until Le Gall got O(n2.37287) in 2014. This bound was only recently (in 2021) improved by
Alman and Vassilevska Williams to O(n2.37286). Many believe that the ultimate bound will be n2+o(1), but
this has yet to be proven. There are no nontrivial lower bounds except in specialized models of computation.

Matrix multiplication is an extremely useful tool that can be used to solve systems of linear equations
and solve linear programs among many other linear algebraic and graph problems.

Today we’ll discuss the relationship between the problems of matrix inversion and matrix multiplication,
and also that between Boolean matrix multiplication and triangle detection.

2 Matrix multiplication is equivalent to matrix inversion

Matrix inversion is important because it is used to solve linear systems of equations. Multiplication is
equivalent to inversion, in the sense that any multiplication algorithm can be used to obtain an inversion
algorithm with similar runtime, and vice versa.

2.1 Multiplication can be reduced to inversion

The following theorem is due to Winograd (1970) and it holds over arbitrary fields.

Theorem 2.1. If one can invert a nonsingular n-by-n matrix in T (n) time, then one can multiply n-by-n
matrices in O(T (3n)) time.

Proof. Let A and B be matrices. Consider the following 3n× 3n matrix:

D =

I A 0
0 I B
0 0 I

1

where I is the n-by-n identity matrix. One can verify by direct calculation that

D−1 =

I −A AB
0 I −B
0 0 I

Inverting D takes O(T (3n)) time and we can find AB by inverting D. Note that D is always invertible

since its determinant is 1. �

2.2 Inversion can be reduced to multiplication

Here we will show that using an algorithm for matrix multiplication we can get an algorithm to invert
matrices. The proof will work for matrices over the reals. It can be extended for matrices over the complex
numbers by looking the natural extensions of the properties we want for complex matrices (e.g. symmetric
becomes Hermitian etc.).

Theorem 2.2. Let T (n) be such that T (2n) ≥ (2 + ε)T (n) for some ε > 0 and all n. If one can multiply
n-by-n matrices in T (n) time, then one can invert n-by-n matrices in O(T (n)) time.

Notice that since T (n) ≥ Ω(n2), we have that T (n) = n2 · f(n). If f(n) is nondecreasing, e.g. if T (n) is
of the form nw, then we actually have that T (2n) ≥ 4T (n) and the above condition T (2n) ≥ (2 + ε)T (n) is
satistied for ε = 2. This is since T (2n) = (2n)2f(2n) ≥ 4n2f(n) = 4T (n) as f is nondecreasing. Thus for
most natural functions T (n), the condition holds easily.

2.2.1 Proof outline

First, we give an algorithm to invert symmetric positive definite (spd) matrices. Then we use this to invert
arbitrary invertible matrices. That is, we will prove the following claim:

Claim 1. If we can invert spd matrices in T (n) time and can do matrix multiplication in O(T (n)) time,
then we can invert any invertible matrix in O(T (n)) time.

First, we define an spd matrix.

Definition 2.1. A matrix A is symmetric positive definite (spd) if

1. A is symmetric, i.e. A = At, so A(i, j) = A(j, i) for all i, j

2. A is positive definite, i.e. for all x 6= 0, xtAx > 0.

We prove Claim 1 in 4 steps:

1. Compute AtA using matrix multiplication.

2. Show that for every invertible matrix A, AtA is spd (Claim 4 below).

3. Use our spd inversion algorithm to compute (AtA)−1.

4. Compute (AtA)−1At = A−1(At)−1At = A−1 using matrix multiplication.

2.2.2 Properties of symmetric positive definite matrices

In this section we will prove some properties of spd matrices that are useful for both step 2 above and the
next section where we reduce inversion of spd matrices to matrix multiplication.

Claim 2. All symmetric positive definite matrices are invertible.

2

Proof. Suppose that A is not invertible. Then there exists a nonzero vector x such that Ax = 0. But then
xtAx = 0 and A is not symmetric positive definite. So we conclude that all symmetric positive definite
matrices are invertible. �

Claim 3. Any principal submatrix of a symmetric positive definite matrix is symmetric positive definite.
(An m-by-m matrix M is a principal submatrix of an n-by-n matrix A if M is obtained from A by removing
its last n−m rows and columns.)

Proof. Let x be a vector with m entries. We need to show that xtMx > 0. Consider y, which is x padded
with n−m trailing zeros. Since A is symmetric positive definite, ytAy > 0. But ytAy = xtMx, since all but
the first m entries are zero. �

Claim 4. For any invertible matrix A, AtA is symmetric positive definite.

Proof. Let x be a nonzero vector. Consider xt(AtA)x = (Ax)t(Ax) = ||Ax||2 ≥ 0. We now show ||Ax||2 > 0.
For any x 6= 0, Ax is nonzero, since A is invertible. Thus, ||Ax||2 > 0 for any x 6= 0. So AtA is positive
definite. Furthermore, it’s symmetric since (AtA)t = AtA. �

Claim 5. Let n be even and let A be an n×n symmetric positive definite matrix. Divide A into four square
blocks (each one n/2 by n/2):

A =

[
M Bt

B C

]
.

Then the Schur complement, S = C −BM−1Bt, is symmetric positive definite.

The proof of the above claim will be in the homework.

Note: We can invert an n × n matrix for any n, using a matrix inversion algorithm that only works when
n is a power of 2. To do this, simply let N be the smallest power of 2 that is at most n, let I be the

(N − n)× (N − n) identity matrix and invert the following matrix:

[
A 0
0 I

]
.

This completes the proof of Claim 1.

2.2.3 Reduction for symmetric positive definite matrices

We will show that we can invert an spd matrix using matrix multiplication, which completes the proof of
Theorem 2.1

Let A be an n by n symmetric positive definite matrix. Divide A into the n/2 by n/2 blocks M , Bt, B,
and C. Again, let S = C −BM−1Bt. By direct computation, we can verify that

A−1 =

[
M−1 + M−1BtS−1BM−1 −M−1BtS−1

−S−1BM−1 S−1

]
Therefore, we can compute A−1 recursively, as follows: (let the runtime be t(n))

Algorithm 1: Inverting a symmetric positive definite matrix A

If n = 1, return 1/A as A is a scalar.
Compute M−1 recursively (we know M is invertible since A is spd, this takes t(n/2) time)
Compute S = C −BM−1Bt using matrix multiplication (this takes O(T (n)) time)
Compute S−1 recursively (we know S is invertible since A is spd, this takes t(n/2) time)
Compute all entries of A−1 (this takes O(T (n)) time)

The total runtime of the procedure is

t(n) ≤ 2t(n/2) + O(T (n)) ≤ O(
∑
j

2jT (n/2j)).

3

If T (2n) ≥ (2 + ε)T (n) for some ε > 0, then

t(n) ≤ O(
∑
j

(2/(2 + ε))jT (n)) ≤ O(T (n)).

3 Boolean Matrix Multiplication

Given two n×n matrices A,B over {0, 1}, we define Boolean Matrix Multiplication (BMM) as the following:

(AB)[i, j] =
∨
k

(A(i, k) ∧B(k, j))

Note that BMM can be computed using an algorithm for integer matrix multiplication, and so we have
that BMM for n × n matrices is in nω+o(1) time, where ω < 2.373 (the current bound for integer matrix
multiplication).

Most theoretically fast matrix multiplication algorithms are impractical. Therefore, so called “combi-
natorial algorithms” are desirable. “Combinatorial algorithm” is loosely defined, but one has the following
properties:

� Doesn’t use subtraction

� All operations are relatively practical (like a lookup tables)

Remark 1. No O(n3−ε) time combinatorial algorithms for matrix multiplication are known for ε > 0, even
for BMM! Such an algorithm would be known as “truly subcubic.”

Next lecture we will see some slightly subcubic combinatorial algorithms for BMM and some relationships
between BMM and graph problems such as triangle detection.

4

