1 Preliminaries

We recall several definitions and lemmas from previous lectures.

Definition 1.1. t is a restriction of tensor t', denoted $t \leq t'$, if there exist homomorphisms A, B, and C, such that $t = (A \otimes B \otimes C)t'$.

Lemma 1.1. A tensor t is the restriction of the $r \times r \times r$ diagonal tensor (i.e. $t \leq \langle r \rangle$) if and only if $R(t) \leq r$.

Lemma 1.2. If $t \leq t'$ then $t \otimes t'' \leq t' \otimes t''$. The same is true for \otimes replaced by \oplus.

Definition 1.2. Tensor t is isomorphic to tensor t', denoted $t \sim t'$, if $t \leq t'$ and $t' \leq t$. Note that in this case A, B, and C are isomorphisms.

Lemma 1.3. The isomorphism classes of tensors form a ring.

Definition 1.3. If a is an integer, we let $a \triangleleft t$ denote the direct sum of t with itself a times. Also, we let $t \otimes a$ denote the Kronecker product of t with itself a times.

Lemma 1.4. For any $s \geq 1$, $R(\langle K^{s+1}, M^{s+1}, N^{s+1} \rangle) \leq \langle K^s, M^s, N^s \rangle \otimes \langle K, M, N \rangle$.

Lemma 1.5. If $R(\langle K, M, N \rangle) \leq r$, then $\omega \leq 3 \log r / \log(KMN)$.

Lemma 1.6. $(\langle K, M, N \rangle) \otimes (\langle K', M', N' \rangle) = \langle KK', MM', NN' \rangle$.

2 Schönhage’s τ theorem

Theorem 2.1 (Schönhage’s τ theorem). Suppose $r > p$ and the border rank $R(\oplus_{i=1}^p \langle k_i, m_i, n_i \rangle) \leq r$. Then $\omega \leq 3\tau$ where τ is the solution to $\sum_{i=1}^p (k_i \cdot m_i \cdot n_i)^r = r$.

Schönhage’s τ theorem suggests a new approach to matrix multiplication: identify the direct sum of matrix multiplication tensors, show that its border rank is at most r, and then solve for τ, which bounds ω.

Proof. We begin with a lemma.

Lemma 2.1. Suppose the rank (not to be confused with border rank) $R(a \circ \langle K, M, N \rangle) \leq b$. Then for all integers $s \geq 1$, $R(a \circ \langle K^s, M^s, N^s \rangle) \leq [b/a]^s \cdot a$.

Proof. We proceed by induction on s.

Base case: $s = 1$. In this case, $R(a \circ \langle K^s, M^s, N^s \rangle) = R(a \circ \langle K, M, N \rangle) \leq b \leq [b/a]^s \cdot a$.

Inductive hypothesis: Suppose that $R(a \circ \langle K^s, M^s, N^s \rangle) \leq [b/a]^s \cdot a$. By lemma 1.1, this is equivalent to supposing that $a \circ \langle K^s, M^s, N^s \rangle \leq \langle [b/a]^s \cdot a \rangle$.
Inductive step: Our goal is to show that \(R(a \circ \langle K^{s+1}, M^{s+1}, N^{s+1} \rangle) \leq [b/a]^{s+1} \cdot a \). By Lemma 1.4, we have

\[
a \circ \langle K^{s+1}, M^{s+1}, N^{s+1} \rangle \cong (a \circ \langle K^s, M^s, N^s \rangle) \circ \langle K, M, N \rangle
\]

\[
\leq ([b/a]^s \cdot a) \circ \langle K, M, N \rangle \quad \text{by the inductive hypothesis and Lemma 1.2}
\]

\[
\cong ([b/a]^s \cdot a) \circ \langle K, M, N \rangle
\]

\[
\cong ([b/a]^s) \circ (a \cdot \langle K, M, N \rangle)
\]

\[
\leq ([b/a]^s) \circ \langle b \rangle
\]

\[
\cong ([b/a]^s \cdot b).
\]

Thus, \(R(a \circ \langle K^{s+1}, M^{s+1}, N^{s+1} \rangle) \leq [b/a]^s \cdot b \leq [b/a]^{s+1} \cdot a \).

Now we prove a corollary of Lemma 2.1, which we will use to prove Schönhage’s τ theorem.

Corollary 2.1. If \(R(a \circ \langle K, M, N \rangle) \leq b \), then \(\omega \leq 3 \log [b/a] / \log (KMN) \).

Proof. By Lemma 2.1, for all \(s \), \(R((K^s, M^s, N^s)) \leq [b/a]^s \cdot a \). Thus, by Lemma 1.5, for all \(s \),

\[
\omega \leq \frac{3 \log ([b/a]^s \cdot a)}{\log (K^sM^sN^s)}
\]

\[
= \frac{3s \log [b/a]}{s \log (KMN)} + \frac{3 \log a}{s \log (KMN)}
\]

\[
= \frac{3 \log [b/a]}{\log (KMN)} + O(1/s).
\]

Since \(1/s \to 0 \) as \(s \to \infty \) and \(\omega \) is an infimum, we have that \(\omega \leq \frac{3 \log [b/a]}{\log (KMN)} \). □

Now we will use Corollary 2.1 to prove Schönhage’s τ theorem. Note that we will need to overcome the fact that Corollary 2.1 is about rank while Schönhage’s τ theorem is about border rank. We will use a similar trick to last lecture.

Let \(t = \bigoplus_{i=1}^p \langle k_i, m_i, n_i \rangle \) and let \(h \) be an integer such that \(R_h(t) \leq r \). Let \(s \) be a large integer. Then we have \(R_{h,s}(t^\otimes s) \leq r^s \). Last lecture we saw how to turn a border rank expression into a rank expression; we have

\[
R(t^\otimes s) \leq r^s \cdot \text{poly}(h \cdot s).
\] (1)

Now, by Lemmas 1.6 and 1.3, and the distributive property of rings, we have

\[
t^\otimes s \equiv (\bigoplus_{i=1}^p \langle k_i, m_i, n_i \rangle)^\otimes s
\]

\[
\cong \bigoplus_{s_1, s_2, \ldots, s_p : \sum_{i=1}^p s_i = s} \frac{s!}{s_1!s_2! \ldots s_p!} \cdot \langle k_1^{s_1} \cdot m_1^{s_1} \cdot n_1^{s_1}, \ldots, k_p^{s_p} \cdot m_p^{s_p} \cdot n_p^{s_p} \rangle.
\]

Now we will pick one of the summands from the above expression and apply Corollary 2.1 on it. Let \(\tau \) with \(2/3 < \tau < 1 \) be the solution to

\[
\sum_{s_1, s_2, \ldots, s_p : \sum_{i=1}^p s_i = s} \frac{s!}{s_1!s_2! \ldots s_p!} \cdot \langle k_1^{s_1} \cdot m_1^{s_1} \cdot n_1^{s_1}, \ldots, k_p^{s_p} \cdot m_p^{s_p} \cdot n_p^{s_p} \rangle^\tau = r^s \cdot \text{poly}(h \cdot s).
\]

Such a \(\tau \) exists but we will not prove it.

Let \(\bar{s}_1, \bar{s}_2, \ldots, \bar{s}_p \) be such that \(\sum_{i=1}^p \bar{s}_i = s \) and the inner summand \(\frac{s!}{s_1!s_2! \ldots s_p!} \cdot \langle k_1^{s_1} \cdot m_1^{s_1} \cdot n_1^{s_1}, \ldots, k_p^{s_p} \cdot m_p^{s_p} \cdot n_p^{s_p} \rangle^\tau \) is maximized.
The number of choices s_1, s_2, \ldots, s_p such that $\sum_{i=1}^{p} s_i = s$ is $\binom{s+p-1}{p-1}$. Thus, the entire summation above is at most $\binom{s+p-1}{p-1} \cdot \left(\frac{n!}{s_1!s_2!\ldots s_p!} \right) \cdot \left(\prod_i k_i^r \cdot \prod_i m_i^r \cdot \prod_i n_i^r \right)^\tau$.

Let $K = \prod_{i=1}^{p} k_i^r$, let $M = \prod_{i=1}^{p} m_i^r$, and let $N = \prod_{i=1}^{p} n_i^r$. Then, the entire summation above is at most $\binom{s+p-1}{p-1} \cdot \left(\frac{n!}{s_1!s_2!\ldots s_p!} \right) \cdot (KMN)^\tau$. That is,

$$r^s \cdot \text{poly}(h \cdot s) < \left(\frac{s + p - 1}{p - 1} \right) \cdot \left(\frac{n!}{s_1!s_2!\ldots s_p!} \right) \cdot (KMN)^\tau. \quad (2)$$

Let $a = \left(\frac{n!}{s_1!s_2!\ldots s_p!} \right)$ and $b = \binom{s+p-1}{p-1} \cdot (KMN)^\tau$. Then, by Equations 1 and 2, we have $R(a \odot (K, M, N)) \leq b$.

Then, by Corollary 2.1,

$$\omega \leq \frac{3\log[b/a]}{\log(KMN)} \leq \frac{3\log(KMN)^\tau}{\log(KMN)} + \frac{3\log\binom{s+p-1}{p-1} + 1}{\log(KMN)} = 3\tau + \frac{3\log\binom{s+p-1}{p-1} + 1}{\log(KMN)}. \quad (3)$$

We claim that as $s \to \infty$, $\frac{3\log\binom{s+p-1}{p-1} + 1}{\log(KMN)} \to 0$.

By Equation 2, we have

$$\log(KMN)^\tau \geq \log\left(\frac{r^s}{\text{poly}(s) \left(\frac{n!}{s_1!s_2!\ldots s_p!} \right)} \right) \geq \log\left(\frac{(r/p)^s}{\text{poly}(s)} \right) = s\log(r/p) - O(\log s).$$

Thus, we have

$$\frac{3\log\binom{s+p-1}{p-1} + 1}{\log(KMN)} \leq \frac{3\log(\text{poly}(s))}{\log(KMN)} \leq \frac{\log s}{s\log(r/p) - O(\log s)} \leq \frac{\log s}{s} \text{ since } r > p.$$

Since $\frac{\log s}{s} \to 0$ as $s \to \infty$, we have that $\frac{3\log\binom{s+p-1}{p-1} + 1}{\log(KMN)} \to 0$ as $s \to \infty$, so by Equation 3, $\omega \leq 3\tau$. \hfill \square

The Schönhage’s τ theorem was used to bound ω below 2.5, and subsequently also used in the Coppersmith-Winograd approach, which achieves nearly the best known bound on ω.

3 Introduction to Coppersmith-Winograd

Coppersmith-Winograd use the following special case of Schönhage’s τ theorem.

Theorem 3.1 (Special case of Schönhage’s τ theorem). If $R(p \odot (k_i, m_i, n_i)) \leq r$ and for all i, $k_i \cdot m_i \cdot n_i = V$, then $\omega \leq \frac{3\log(r/p)}{\log V}$.

3
3.1 Trilinear notation

Recall that a bilinear problem is to compute \(z_k = \sum_{i,j} t_{i,j,k} \cdot x_i \cdot y_j \). Similarly, trilinear notation is \(\sum_{i,j,k} t_{i,j,k} \cdot x_i \cdot y_j \cdot z_k \), where the goal is to find for every \(z_k \) the coefficient \(\sum_{i,j} t_{i,j,k} \cdot x_i \cdot y_j \) in front of \(z_k \).

For example, the bilinear problem for matrix multiplication is \(z_{ij} = \sum_k x_{ik} y_{kj} \), which in trilinear notation is \(\sum_{i,j,k} x_{ik} y_{kj} z_{ij} \). In research on matrix multiplication, it is written slightly differently as \(\sum_{ijk} x_{ik} y_{kj} z_{ji} \) (the difference is that we take the transpose of \(z \)). The reason for this is that the new version is “super symmetric” i.e. the order of the variables is \(ik, kj, ji \), which forms a cycle. This way, it’s easier to see that permutations of the matrix multiplication tensor preserve the rank and border rank.

3.2 The Coppersmith-Winograd tensors

Coppersmith-Winograd use several families of tensors. We present them in trilinear notation.

Easy tensors One type of Coppersmith-Winograd tensor is known as the “easy tensor” or “small tensor”. For any integer \(q \geq 1 \) we define the easy tensor \(cw_q \in K^{(q+1)\times(q+1)\times(q+1)} \) as

\[
cw_q = \sum_{i=1}^{q} x_0 y_i z_i + x_i y_0 z_i + x_i y_i z_0.
\]

Note that the portion of the tensor \(\sum_{i=1}^{q} x_0 y_i z_i \) is \(\langle 1, 1, q \rangle \), \(\sum_{i=1}^{q} x_i y_0 z_i \) is \(\langle q, 1, 1 \rangle \), and \(\sum_{i=1}^{q} x_i y_i z_0 \) is \(\langle 1, q, 1 \rangle \). That is, the easy tensor is the sum of three matrix products, but it’s not a direct sum since the terms are not independent of each other e.g. \(x_0 y_i z_i \) and \(x_i y_0 z_i \) share the variable \(z_i \).

The following is a representation of the easy tensor:

\[
\begin{array}{cccc}
 y_q & z_q & 0 & 0 \\
 \ldots & \ldots & 0 & z_0 \\
 y_1 & z_1 & z_0 & 0 \\
 y_0 & z_1 & \ldots & z_q \\
 x_0 & x_1 & \ldots & x_q \\
\end{array}
\]

Complicated tensors The second type of Coppersmith-Winograd tensor is known as the “complicated tensor” or “big tensor”. For any integer \(q \geq 1 \) we define the complicated tensor \(CW_q \in K^{(q+2)\times(q+2)\times(q+2)} \) as

\[
CW_q = cw_q + x_0 y_0 z_{q+1} + x_0 y_{q+1} z_0 + x_{q+1} y_0 z_0.
\]

The following is a representation of the complicated tensor:

\[
\begin{array}{cccc}
 y_{q+1} & z_0 & 0 & 0 \\
 y_q & z_q & 0 & 0 \\
 \ldots & \ldots & 0 & z_0 \\
 y_1 & z_1 & z_0 & 0 \\
 y_0 & z_{q+1} & z_1 & \ldots \\
 x_0 & x_1 & \ldots & x_{q+1} \\
\end{array}
\]

There’s also a “rotated” version of \(CW_q \), where the diagonal of \(z_0 \)’s is rotated, as follows:
Using the Coppersmith-Winograd tensors Coppersmith-Winograd showed that the border rank of the easy, complicated, and rotated complicated tensors are all $q+2$. For the complicated and rotated complicated tensors, this is tight since they are both in $\mathbb{K}^{(q+2)\times(q+2)\times(q+2)}$. However, $cw_q \in \mathbb{K}^{(q+1)\times(q+1)\times(q+1)}$ and it is not known if this is tight. In particular, if one could show that $R(cw_q) = q+2$, then one might be able to show that $\omega = 2$.

One reason for defining the rotated complicated tensor is that it is easier to show that its border rank is at most $q+2$. In particular, the rotated complicated tensor is similar to the tensor for multiplying polynomials, which we saw in a previous lecture, as well as similar to the tensor for addition mod q. In particular, the rotated complicated tensor has a subset of the entries of the tensor for addition mod q. More specifically, the rotated complicated tensor is a degeneration of the tensor for addition mod q. Degeneration is like restriction except it preserves border rank instead of rank. One can show via FFT that the addition mod q tensor has rank q, and using degeneration it follows that the rotated complicated tensor has border rank $q+2$.

Next lecture we will see how to get a bound on ω using the easy tensor. An outline is as follows. We take a sum of cw_q’s, take this to a large tensor power, and use distributive property in a similar way to our proof of Schönhage’s τ theorem. This yields a huge sum of matrix products (but not direct sum). Now, we want to make this huge sum into a direct sum since Schönhage’s τ theorem is about direct sums. To do this, we set some variables to 0 in the huge sum. This does not change the border rank. If we choose these variables very carefully, we end up with a huge direct sum of matrix multiplication tensors. This allows us to apply the special case of Schönhage’s τ theorem to get a bound on ω.

We will not see how to get a bound on ω using the complicated tensor. The reason it is more difficult than the easy tensor is because it is no longer true that for all $i k_i \cdot m_i \cdot n_i = V$ for some V, which is a precondition for the special case of Schönhage’s τ theorem. As a result, we use the general version of Schönhage’s τ theorem rather than just the special case, which makes the proof more involved. To bound ω in this case, Coppersmith-Winograd define the “value function” of a tensor, which captures how big of a matrix multiplication tensor you can handle in a big power of your tensor.