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1 Graph Transitive Closure and BMM

Definition 1.1. The Transitive Closure (TC) of a directed graph G = (V,E) on n nodes is an n×n matrix

such that ∀u, v ∈ E (T (u, v) =

{
1 if v is reachable from u

0 otherwise

Transitive Closure on an undirected graph is trivial in linear time– just compute the connected compo-
nents. In contrast, we will show that for directed graphs the problem is equivalent to BMM.

Theorem 1.1. Transitive closure is equivalent to BMM

Proof. We prove equivalence in both directions.

Claim 1. If TC is in T (n) time then BMM on n× n matrices is in O(T (3n)) time.

Proof. Given two boolean matrices A and B, construct the following graph. Create here are three rows of n
vertices and add a directed edge from the ith vertex of the first row to the jth of the second row iff Aij == 1.
Construct edges between the second and third rows in a similar fashion for B. Thus, the product AB can
be computed by taking the transitive closure of this graph. It is equivalent to BMM by simply taking the ∧
of ij → jk. Since the graph has 3n nodes, given a T (n) algorithm for TC, we have an O(T (3n)) algorithm
for BMM. (Of course, it takes n2 time to create the graph, but this is subsumed by T (n) as T (n) ≥ n2 as
one must at least print the output of AB.)

�

Claim 2. If BMM is in T (n) time, such that T (n/2) ≤ T (n)/(2 + ε) , then TC is in O(T (n)) time.

We note that the condition in the claim is quite natural. For instance it is true about T (n) = nc for any
c > 1.

Proof. Let A be the adjacency matrix of some graph G. Then (A+ I)n is the transitive closure of G. Since
we have a T (n) algorithm for BMM, we can compute (A + I)n using log n successive squarings of A + I in
O(T (n) log n) time. We need to get rid of the log term to show equivalence.

We do so using the following algorithm:

1. Compute the strongly connected components (SCCs) of G. This takes time O(n2).

2. Build the SCC DAG G′: there is one node for each SCC and there is a directed edge (u, v) ∈ G′ if
there is a directed edge in G between a node in the SCC corresponding to u and a node in the SCC
corresponding to v. Note that G′ is a DAG because if there were a cycle then every vertex in that
cycle would actually be in the same connected component. Compute the topological order of G′ and
reorder vertices according to it. This takes O(n2) time.

3. Compute the TC of G′.

4. Uncollapse the SCCs. This takes O(n2) time.
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All parts except (3) take O(n2) time. We examine part (3).
Let A be the adjacency matrix of G′. Note that (A+ I) is upper triangular since G′ is a DAG. Consider

the matrix (A+ I) split into four sub-matrices M,C,B, and 0 each of size n/2× n/2.

(A+ I) =

[
M C
0 B

]
For any matrix Z, let Z∗ denote the transitive closure of A. We claim that (A+ I)∗ =

[
M∗ M∗CB∗

0 B∗

]
The reasoning behind this is as follows. Let U be the first n/2 nodes in the topological order, and let

V be the rest of the nodes. Then M is the adjacency matrix of the subgraph induced by U , and B is the
adjacency matrix induced by V . The only edges between U and V go from U to V . Thus, M∗ and U∗

represents the transitive closure restricted to U × U and V × V . For the TC entries for u ∈ U and v ∈ V ,
we note that the only way to get from u to v is to go from u to possibly another u′ ∈ U using a path within
U , then take an edge (u′, v′) to a node v′ ∈ V and then to take a path from v′ to v within V . I.e. the U ×V
entries of the TC matrix are exactly M∗CB∗.

Suppose that the runtime of our algorithm on n node graphs is TC(n). To calculate the transitive closure
matrix, we recursively compute M∗ and B∗. Since each of these matrices have dimension n/2, this takes
2TC(n/2) time.

We then compute M∗CB∗, which takes O(T (n)) time, where T (n) was the time to compute the boolean
product of n× n matrices.

Finally, we have TC(n) ≤ 2TC(n
2 ) + O(T (n)). If we assume that there is some ε > 0 such that

T (n/2) ≤ T (n)/(2 + ε), then the recurrence solves to TC(n) = O(T (n)).
�

It follows from claim 1 and claim 2 that BMM of n× n matrices is equivalent in asymptotic runtime to
TC of a graph on n nodes. �

2 Introduction to APSP

In this lecture, we will talk about the problem of computing all-pairs shortest paths (APSP) using matrix
multiplication. Formally, given a graph G = (V,E), the goal is to compute the distance d(u, v) for all pairs
of nodes u, v ∈ V . Given that G has n nodes and m edges, it is easy to come up with algorithms that run
in Õ(mn) time 1 – for example, on graphs with nonnegative edge weights, we can run Dijkstra’s Algorithm
from each node. When G is dense, this time is on the order of n3; the natural question is can we do better?

For weighted graphs, the best known algorithm for APSP runs in O
(

n3

2Ω(
√

log n)

)
time, by Ryan Williams

(2014). A major open problem is whether there exist “truly subcubic” algorithms for this version of APSP,
namely, algorithms running in time O(n3−ε) for some constant ε > 0.

For unweighted graphs, we know of algorithms that achieve this subcubic performance. In particular,
for undirected graphs there is an algorithm running in O(nω log n) time by Seidel (1992), and for directed
graphs there is an algorithm running in O(n2.529) time by Zwick (2002), using the current best algorithm for
rectangular matrix multiplication by Le Gall and Urrutia (2015). This difference in runtime persists even
with improvements in the matrix multiplication exponent, ω. For instance, if ω = 2, then Seidel’s algorithm
would run in Õ(n2) time, whereas Zwick’s algorithm would run in Õ(n2.5) time. In this lecture, we will talk
about the algorithms for unweighted graphs. In particular, we discuss a baseline algorithm using a hitting
set which will work for directed or undirected graphs, and then describe Seidel’s algorithm for undirected
graphs.

1Õ(T (n)) = O(T (n) · polylog n). In other words, the poly-logarithmic terms have been dropped.
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3 Hitting Set Algorithm

Theorem 3.1. If BMM is in O(nc) time then there is a randomized algorithm for APSP in directed un-

weighted graphs is in O(n
3+c

2 log n) time that is correct with high probability (i.e. probability ≥ 1− 1/nc).

Proof. Given G, and particularly the adjacency matrix A which represents G, we would like to compute
distances between all pairs of nodes. A natural first algorithm would be to compute the distances by
successive boolean matrix multiplication of A with itself. The (i, j)th entry in Ak is 1 if and only if i has a
path of length k to j. Thus, if the graph has finite diameter, then for all i, j, d(i, j) = min{k | Ak[i, j] = 1}.

If the diameter of G is small, then we have found a fast algorithm for computing APSP, but D can be
O(n) in which case we have no improvement from O(n3) run time. Nevertheless, we can compute all short
distances less than some k in O(knc) time, and then employ another technique to compute longer distances.
The key idea is to use a “hitting set”.

Lemma 3.1. (Hitting Set) Let S be a collection of m sets of size ≥ k over V = [n]. Fix any constant C ≥ 1.
With probability at least 1 − 1/mC , a uniformly random subset T ⊆ V of size (C + 1)n

k logm intersects all
the sets in S nontrivially.

We will not prove the Hitting Set lemma but it follows from carrying out the probabilistic calculations.
With this hitting set lemma in mind, we can use Algorithm 1 to compute distances that are greater than

or equal to k.

Algorithm 1: LongDist(V,E)

Pick T ⊆ V randomly s.t. |T | = C · nk log n for large enough constant C
foreach t ∈ T do

Compute BFSG(t) and BFSGrev (t) 2

foreach u, v ∈ V do
Compute d(u, v) = mint∈T d(u, t) + d(t, v)

With high probability, this algorithm will compute distances ≥ k correctly (as these paths involve at
least k nodes, so with high probability T hits the path). The algorithm requires running BFS from and to
O(n

k log n) nodes so takes Õ(n
kn

2) time. If we use this algorithm to compute long distances and the iterative
matrix multiplication to compute short distances, we have an algorithm for all-pairs shortest paths.

When we optimize for a choice of k, we set k = n(3−c)/2, the runtime comes out to be Õ
(
n

3+c
2

)
. This is

roughly Õ(n2.69) if we set c to be the current best bound for ω. �

We will later see how Zwick’s algorithm for APSP, which vastly improves upon this algorithm.

4 Seidel’s Algorithm

While this first algorithm gives us a fast algorithm for computing APSP, the question remains, can we do
better? In particular, can we avoid computing short and long distances separately? Can we leverage matrix
multiplication to compute all the shortest paths?

In fact, we can improve on the hitting set algorithm for undirected graphs as follows. Given a graph
G with adjacency matrix A, consider its boolean square A2 = A · A, where · represents boolean matrix
multiplication. Consider a graph G′ with adjacency matrix A′ = A2 ∨A.

Fact 4.1. dG′(s, t) =
⌈
d(s,t)

2

⌉
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To see this fact, note that edges in A2 represent paths of length 2 in the original graph G, and G′ also
contains the edges of G. Thus, any path of length 2k in G induces a path of length k in G′ using only edges
of A2, and also any path of length 2k + 1 induces a path of length k (from A2) followed by a single original
edge, thus forming a path of length k + 1.

Now suppose that we have a way of determining the parity of the distance between all pairs of nodes.
Then we can use the following recursive strategy to compute APSP.

Algorithm 2: APSP Idea

Given an adjacency matrix A
Compute A2 ∨A
Recursively compute d′ ← APSP(A2 ∨A)
foreach u, v ∈ V do

if d(u, v) is even then
d(u, v) = 2d′(u, v)

else
d(u, v) = 2d′(u, v)− 1

Note that in each recursive call, the diameter of the graph halves, and that after log n iterations, A will
be the all 1s matrix with 0s along the diagonal, which we can detect (assuming the graph is connected to
begin with, which we can ensure by processing each connected component separately). Thus, if we can find
a way to determine the parity of the distances efficiently, we would obtain an efficient recursive algorithm
for APSP.

Consider any pair of nodes i, j ∈ V and another node which is a neighbor of j, k ∈ N(j). By the triangle
inequality (which holds in unweighted, undirected graphs), we know d(i, j)− 1 ≤ d(i, k) ≤ d(i, j) + 1.

Claim 3. If d(i, j) ≡ d(i, k) mod 2, then d(i, j) = d(i, k).

Proof. By the triangle inequality, d(i, j) and d(i, k) differ by at most 1. Thus, if their parity is the same,
they must also be equal. �

Claim 4. Let dG2(i, j) be the distance between i and j in G2 defined by A2 ∨A. Then, (a) if d(i, j) is even
and d(i, k) is odd then dG2(i, k) ≥ dG2(i, j). (b) If d(i, j) is odd and d(i, k) is even, dG2(i, k) ≤ dG2(i, j) and
there exists a k′ ∈ N(j) such that dG2(i, k′) < dG2(i, j).

Proof of (a).

dG2(i, j) =
d(i, j)

2

dG2(i, k) =
d(i, k) + 1

2
≥ d(i, j)

2

so dG2(i, k) ≥ dG2(i, j). �
Proof of (b).

dG2(i, j) =
d(i, j) + 1

2
≥ d(i, k)

2
= dG2(i, k)

so in general, dG2(i, k) ≤ dG2(i, j), and for the neighbor of j along the shortest path from i to j, which we
call k′, we know that d(i, k′) = d(i, j)− 1 and since d(i, j) is odd, dG2(i, k′) = dG2(i, j)− 1. �

Claim 5. If d(i, j) is even, then ∑
k∈N(j)

dG2(i, k) ≥ deg(j)dG2(i, j)
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and if d(i, j) is odd, then ∑
k∈N(j)

dG2(i, k) < deg(j)dG2(i, j)

This third claim follows directly from the first two. Additionally, if we can compute the sums here in
O(nω) time, then the overall runtime will be O(nω log n) as desired. The right expression can be computed
in O(n2) time, which will be subsumed by the O(nω) term.

Consider D, an n × n matrix where D(i, j) = dG2(i, j). We want to decide for each i, j pair whether∑
k∈N(j) dG2(i, k) < deg(j)dG2(i, j). Consider the integer matrix product DA. Note that

(D ·A)[i, j] =
∑

k∈N(j)

dG2(i, k)

so this matrix product allows us to compute the left expression.
Now we are ready to state Seidel’s Algorithm in full.

Algorithm 3: Seidel(A)

if A is all 1s except the diagonal then
return A

else
Compute boolean product A2

D ← Seidel(A2 ∨A)
Compute integer product D ·A
R← 0n×n

foreach i, j ∈ V do
if DA(i, j) < deg(j)D(i, j) then

R(i, j)← 2D(i, j)− 1
else

R(i, j)← 2D(i, j)

return R

Claim 6. Seidel’s Algorithm runs in O(nω log d) time where d refers to the diameter of the graph.

Proof. The run time can be expressed as the following recurrence relation.

T (n, d) ≤ T
(
n,
d

2

)
+O(nω)

=⇒ T (n, d) ≤ O(nω log d)

Because d ≤ n, this run time is upper bounded by O(nω log n). �

Note that Seidel’s Algorithm, as presented, relies on fast integer matrix multiplicaion, which runs in
O(nω), but for which no known fast combinatorial algorithms exist. As an exercise, try to show that one
can use BMM instead of integer matrix multiplication. Hint: also consider the distances modulo 3.
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