The goal of this lecture is to show algorithms for APSP in directed graphs, where the edge weights are integers in \([-M, \ldots, M]\) for an integer \(M \geq 1\). In the previous lecture we gave an \(O(n^2 \log n)\) time algorithm for APSP in undirected unweighted graphs (by Seidel). Shoshan and Zwick showed how to extend Seidel’s algorithm to obtain an \(\tilde{O}(Mn^2)\) time algorithm for undirected graphs with integer weights in \([-M, \ldots, M]\).

Let \(G = (V, E)\) be a given directed graph with weights \(w(\cdot) \in \{-M, \ldots, M\}\) on its edges. We assume that the graph does not have negative cycles.

In the first part of the lecture, we give an algorithm that runs in \(\tilde{O}(\sqrt{M}n^{(3+\omega)/2})\) time. For the second part, we will show Zwick’s algorithm that improves the previous algorithm. The running time of Zwick’s algorithm is \(\tilde{O}(M^{1/2}n^{3/2 + 1/\omega})\), which is faster than \(\tilde{O}(\sqrt{M}n^{(3+\omega)/2})\) when \(M = O(1)\) and \(\omega > 2\). Zwick’s algorithm can be improved to \(O(M^{0.752}n^{2.5286})\), using rectangular matrix multiplication, but we won’t cover the rectangular matrix multiplication part.

1 An \(\tilde{O}(\sqrt{M}n^{(3+\omega)/2})\) Algorithm

Given a parameter \(k\), we call a path short if it uses at most \(k\) vertices, and long otherwise. At a high level, the algorithm we present considers short longest paths and short shortest paths separately. For long paths, it uses matrix multiplication; for short paths, it uses sampling and single source shortest paths (SSSP).

Throughout this lecture, we use \(d(i, j)\) to denote the distance from \(i\) to \(j\), and use \(\ell(i, j)\) to denote the number of vertices on a fixed shortest path from \(i\) to \(j\). If there are multiple shortest paths from \(i\) to \(j\), then we pick one of the shortest paths \(P_{i,j}\) and we let \(\ell(i, j)\) be the number of nodes on \(P_{i,j}\).

1.1 Handling Long Paths

Recall that for every pair of vertices \(i, j\) we have picked a representative shortest path \(P_{i,j}\), and \(\ell(i, j)\) is the number of nodes on \(P_{i,j}\). Here we consider all \(P_{i,j}\) with \(\ell(i, j) > k\).

We use the following “Hitting Set Lemma”:

Lemma 1.1. Let \(S = \{S_1, \ldots, S_N\}\) be a collection of \(N\) sets where for every \(i \in [N]\), we have \(S_i \subseteq [L]\) for an integer \(L\) and \(|S_i| > k\). Then a uniformly random subset \(T\) of \([L]\) of size at least \(C \cdot (L/k)\ln N\), with probability at least \(1 - 1/NC^{-1}\) will have \(S_i \cap T \neq \emptyset\) for every \(i \in [N]\).

Let’s apply the Hitting Set Lemma where \(N = n^2\), and \(S\) is the set of \(S_i\) where \(|S_i| > k\). We think of the paths as subsets of the vertex set \(V\) which we associate with \([n]\). From the lemma, we know that if \(T \subseteq V\) is a uniformly random subset of \(\Theta(n^2 \log n)\) nodes, then \(T \cap P_{i,j} \neq \emptyset\) for every pair of \(i, j\), with high probability.

Thus, after picking a random \(T\), we know that it contains a node on every long shortest path (with high probability). We can run SSSP to and from every vertex \(s \in T\) to compute \(d(i, s)\) and \(d(s, i)\) for every \(i \in V\). Then for every pair \(i, j \in V\) with a long shortest path \(P_{i,j}\), we have \(d(i, j) = \min_{s \in T} d(i, s) + d(s, j)\). Thus, for long paths, it suffices to perform \(O(|T|)\) SSSP calls, and use \(O(n^2 \log n)\) time to use the SSSP results to compute \(d(i, j)\) where \(\ell(i, j) \geq k\). It remains to discuss how to perform SSSP.

If all edge weights are nonnegative, we can run Dijkstra’s algorithm to and from every vertex in \(T\), which will take \(O(n^2 |T|)\) time. In order to handle any negative weight edges in the graph, we can use Johnson’s trick.

Claim 1. For every \(i, j \in V\), \(w'(i, j) \geq 0\).

Proof. By the triangle inequality, \(d(q, j) \leq d(q, i) + w(i, j)\), so \(w'(i, j) = w(i, j) + d(q, i) - d(q, j) \geq 0\).
Definition 1.1. For two matrices \(A,B \) of the same dimension, the (min,+) product \(A \ast B = C \) is defined by

\[
C_{i,j} = \min_k \{ A_{i,k} + B_{k,j} \}, \forall i,j \in [n].
\]

Although we will not prove it, a theorem of Fischer and Meyer’1971 states that (min,+) product is asymptotically equivalent to APSP: if \(A \ast B \) can be computed in \(T(n) \) time, then APSP in weighted graphs can be done in \(O(T(n)) \) time, and vice-versa. It is not hard to show that APSP can be used to solve (min,+) product, and that APSP can be solved using (min,+) product with successive squaring, at a cost of a logarithmic factor. Fisher and Meyer’s result removes the logarithmic overhead.

It turns out that (min,+) product can be computed relatively quickly when the matrix entries are integers with small absolute values.

Theorem 1.1. If \(A,B \) are \(n \times n \) matrices with entries in \(\{-M, \ldots, M\} \cup \{\infty\} \), then \(A \ast B \) can be computed in \(\tilde{O}(Mn^2) \) time.

Proof. First note that we can assume that there are no infinite entries - replace each \(\infty \) with \(3M + 1 \). These entries can never be used in a (min,+) product entry (unless that entry is \(\infty \) itself) since any finite (min,+) product entry is at most \(2M \) and even if one uses a \(-M \) entry together with the \(3M + 1 \), one would get \(2M + 1 > 2M \).

Now assume that the matrix entries of \(A \) and \(B \) are in \(\{-M, \ldots, M\} \). We will work in the word-RAM model of computation with \(O(\log n) \) bit words.

<table>
<thead>
<tr>
<th>Algorithm 1: Johnson’s trick, (G = (V,E)), with edge weights (w : E \rightarrow {-M, \ldots, M})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a new node (q).</td>
</tr>
<tr>
<td>Add an edge with weight 0 from (q) to every vertex (v \in V).</td>
</tr>
<tr>
<td>Compute SSSP from (q) (Look for an (\tilde{O}(Mn^2)) time algorithm in the next lecture).</td>
</tr>
<tr>
<td>foreach ((i,j) \in E) do</td>
</tr>
<tr>
<td>(w'(i,j) := w(i,j) + d(q,i) - d(q,j))</td>
</tr>
</tbody>
</table>

Let \(d'(i,j) \) be the distance from \(i \) to \(j \) using weights \(w' \).

Claim 2. For every \(i,j \in V \), \(d'(i,j) = d(i,j) + d(q,i) - d(q,j) \).

Proof. For any path \(v_1 \to \cdots \to v_l \), we have

\[
w'(P_{i,j}) = \sum_{k=1}^{l-1} w'(v_k, v_{k+1}) = \sum_{k=1}^{l-1} w(v_k, v_{k+1}) + d(q, v_k) - d(q, v_{k+1}) = w(P_{i,j}) + d(q, v_1) - d(q, v_l).
\]

This means that for any path, its weight under \(w' \) only depends on the start, end, and its weight under \(w \), so the shortest path between \(i \) and \(j \) remains the same. Thus, \(d'(i,j) = d(i,j) + d(q,i) - d(q,j) \). \(\square \)

Claim 2 suggests that we can compute SSSP under \(w' \) and then recover \(d \) from \(d' \), and Claim 1 suggests that we can use Dijkstra’s algorithm to compute SSSP under \(w' \). It takes \(O(Mn^2) \) time to perform Johnson’s trick using the algorithm you will see in the next lecture, and \(\tilde{O}(n^2|T|) \) time to run Dijkstra’s algorithm to and from every vertex in \(T \).

Overall, it takes \(O(Mn^2 + n^2|T|) \) time to handle long paths. Recall that \(|T| = \Theta(\frac{n}{T} \log n) \), so the running time becomes \(\tilde{O}(Mn^2 + \frac{n}{T}) \).

1.2 Handling Short Paths

For short paths, we want to compute \(d(i,j) \) for \(i,j \in V \) where \(\ell(i,j) < k \). For this purpose, we define the (min,+) product (a.k.a distance-product or funny product).

Definition 1.1. For two \(n \times n \) matrices \(A,B \), the (min,+) product \(C = A \ast B \) is defined by

\[
C_{i,j} = \min_k \{ A_{i,k} + B_{k,j} \}, \forall i,j \in [n].
\]
Define matrices \(A' \) and \(B' \) with entries
\[
A'(i, j) = (n + 1)^{M-A(i,j)},
\]
\[
B'(i, j) = (n + 1)^{M-B(i,j)}.
\]
Computing the integer product of \(A' \) and \(B' \) we obtain \(C' \) with entries
\[
C'(i, j) = \sum_k (n + 1)^{2M-(A(i,k)+B(k,j))}.
\]
Observe that \((n + 1)^{2M-C(i,j)} \leq C'(i, j)\) because \((n + 1)^{2M-C(i,j)}\) is a summand in \(C'(i, j) \). At the same time, \(C'(i, j) \leq (n + 1)^{2M-C(i,j)} \cdot n\) because \((n + 1)^{2M-C(i,j)}\) is the largest summand in \(C'(i, j) \) and \(C'(i, j) \) has only \(n \) summands. Therefore, we can set \(C(i, j) \) to be the unique integer \(L \) such that \((n + 1)^{2M-L} \leq C'(i, j) \leq n \cdot (n + 1)^{2M-L}\).
Note that we are dealing with integers having \(O(M \log n) \) bits in \(C' \), for which arithmetic operations take \(\tilde{O}(M) \) time (both additions and multiplications). Bearing this in mind, it is straightforward to see that the above algorithm computes \(A \ast B \) in \(\tilde{O}(Mn^\omega) \) time. \(\square \)

To handle the short paths, we define the weighted adjacency matrix \(A \) of the graph as follows
\[
A(i, j) = \begin{cases}
0 & \text{if } i = j \\
w(i, j) & \text{if } (i, j) \in E \\
\infty & \text{otherwise}.
\end{cases}
\]
We want to compute \(A^k \) where the powering is under \((\min, +)\)-product. Assume \(k \) is a power of 2, we can successively square the matrix \(A \) to get \(A^2 = A^{2^{1-1}} \ast A^{2^{2-1}} \). The running time depends on how large the entries of \(A^{2^{1-1}} \) could be. Since \(A^{2^{1-1}} \) represents the distance matrix for paths up to length \(2^{1-1} \), the absolute values of the entries are bounded by \(2^{1-1} M \). Thus, by Theorem 1.1, the running time is
\[
\sum_{i=1}^{\log k} 2^{i-1} M n^\omega = O(2^{\log k} M n^\omega) = O(k M n^\omega).
\]

1.3 Combining the Long/Short Path Algorithms

The overall running time is \(\tilde{O}(M n^\omega + n^3 / \sqrt{M} + M n^\omega) \). The \(M n^\omega \) term is dominated by the \(M n^\omega \) term, so we can ignore it. To balance the remaining two terms, we set \(k = n^{(3+\omega)/2} / \sqrt{M} \), which gives an \(\tilde{O}(\sqrt{M} n^{(3+\omega)/2}) \) time algorithm.
Note that if \(\omega = 2 \), the above algorithm runs in time \(\tilde{O}(\sqrt{M} n^{2.5}) \). When \(M = O(n^{1-\epsilon}) \) for some constant \(\epsilon > 0 \), the running time is \(\tilde{O}(n^{3-\epsilon/2}) \). It is an open problem whether we can achieve a truly sub-cubic time \((O(n^{3-\delta}) \) for positive \(\delta \)) algorithm for directed APSP when \(M = \Theta(n) \).

2 Zwick’s Algorithm

In this section, we describe Zwick’s Algorithm.

Theorem 2.1. All-Pairs Shortest Paths (APSP) on directed graphs, where edge weights are integers in \(\{-M, \ldots, M\} \) can be solved in \(\tilde{O}(M^{1/(4-\omega)} n^{2+1/(4-\omega)}) \) time.

Similar to the previous algorithm, Zwick’s Algorithm handles paths that use at least \(k \) nodes, and paths that use fewer than \(k \) nodes separately. For long paths, the running time is the same as the previous algorithm, which is \(\tilde{O}(M n^\omega + n^3 / \sqrt{M}) \) time. Zwick’s Algorithm improves on the short paths.

In order to handle shortest paths of length less than \(k \), we combine fast computations of \((\min, +)\) products with the idea of a hitting set argument.
Proposition 1. Let \(G \) be a directed graph, where edge weights are integers in \(\{-M, \ldots, M\} \), and \(k \) be a fixed parameter. We can compute \(d(u, v) \) for every pair \((u, v)\) where \(d(u, v) \leq k \) in time

\[
\tilde{O}(k^{3-\omega} M n^\omega) .
\]

Proof. We will have \(\lceil \log_{3/2} P \rceil \) stages. Let \(V_j \) be the set of pairs of vertices \((u, v)\) such that \(d(u, v) \in ((3/2)^j-1, (3/2)^j] \), and let \(V_{\leq j} \) denote \(\cup_{j=1}^P V_j \). In stage \(j \), we will compute \(d(u, v) \) for every \((u, v) \in V_{\leq j}\)

More specifically, we will compute a matrix \(D_j \) such that with high probability,

\[
D_j(x, y) = \begin{cases}
= d(x, y) & \text{if } (x, y) \in V_{\leq j} \\
\geq d(x, y) & \text{otherwise}.
\end{cases}
\]

Note that \(D_1 \) can easily be obtained from the edge weights of \(G \).

One could easily obtain a valid \(D_j \) from \(D_{j-1} \) by simply computing \(D_{j-1} \star D_{j-1} \). However, it won’t give the running time we desire. Instead, we will take advantage of the hitting set lemma.

For every \((u, v) \in V_j\), consider a shortest path \(P_{u,v} \) from \(u \) to \(v \). The middle third of \(P_{u,v} \) is a set of \(\lfloor (3/2)^{j-1} \rfloor \) nodes appearing consecutively in \(P_{u,v} \) such that at most \((3/2)^{j-1}\) nodes precede them, and at most \((3/2)^{j-1}\) nodes follow them.

At stage \(j \), we take a random \(S_j \subseteq V \) with \(|S_j| = \Theta(\frac{n}{(3/2)^j} \log n) \) so that with high probability, \(V \) hits a node \(s_{u,v} \) in the middle third of \(P_{u,v} \) for every \((u, v) \in V_j\). Observe that because \(s_{u,v} \) is in the middle third of \(P_{u,v} \), we get that \((u, s_{u,v}), (s_{u,v}, v) \in D_{\leq j-1} \).

It follows that with high probability, for all \((u, v) \in V_j\),

\[
d(u, v) = \min_{s \in S_j} \{D_{j-1}(u, s) + D_{j-1}(s, v)\}.
\]

Thus we can compute \(D_j(u, v) \) via

\[
D_j(u, v) = \min \left\{ D_{j-1}(u, v), \min_{s \in S_j} \{D_{j-1}(u, s) + D_{j-1}(s, v)\} \right\}.
\]

This is easy to do in \(O(n^2) \) time once we have already computed \(\min_{s \in S} \{D_{j-1}(u, s) + D_{j-1}(s, v)\} \) for every \((u, v) \). It can be obtained by computing the product \(X \star Y \) where \(X \) contains the columns in \(D_{j-1} \) corresponding to the elements of \(S_j \), and \(Y \) contains the rows in \(D_{j-1} \) corresponding to the elements of \(S_j \). In other words, by selecting a hitting set \(S_j \), we are able to use the \(\min, + \)-product of matrices much smaller than \(D_{j-1} \) in order to compute \(D_j \).

Breaking \(X \) and \(Y \) into square blocks of side-length approximately \(n/(3/2)^j \), so that there are approximately \((3/2)^j\) blocks in \(X \) and \(Y \). We can use the \(\min, + \)-products of all \((3/2)^{2j}\) pairs of blocks to easily recover \(X \star Y \). By theorem 1.1, since \(D_j \) has entries in \(\{-3(3/2)^j, \ldots, (3/2)^j M\} \cup \{\infty\} \), this takes time

\[
\tilde{O} \left((3/2)^{2j} \cdot (3/2)^j \cdot M \cdot \left(\frac{n}{(3/2)^j} \right)^\omega \right) = \tilde{O} \left(((3/2)^{3-\omega}j M n^\omega) \right).
\]

Summing over the \(\lceil \log_{3/2} k \rceil \) stages, we get a running time of

\[
\tilde{O} \left(n^\omega M \sum_{j:(3/2)^j < k} ((3/2)^j)^{3-\omega} \right) = \tilde{O} \left(k^{3-\omega} M n^\omega \right).
\]

We are now in a position to complete the proof of Zwick’s Theorem. Indeed, combining the long distance algorithm and Proposition 1 and optimizing for \(k \) at \(k = \frac{n^{(3-\omega)/(4-\omega)}}{M^{1/(4-\omega)} n^{2+1/(4-\omega)}} \), we get a total running time of \(\tilde{O}(M^{1/(4-\omega)} n^{2+1/(4-\omega)}) \). Observe that both the algorithm for long paths and for short paths compute either the correct distances or overestimate for distances between pairs of nodes; thus minimizing the outputted distances of the two, one can obtain the exact \(d(u, v) \) for all \(u, v \in V \).