
6.890 Lecture 5 Yuster-Zwick Distance Oracle; Node Weighted APSP
Scribe: Vaggos Chatziafratis
Edited by: Yinzhan Xu Date: September 22, 2021

Last time we gave an Õ(
√
Mn(3+ω)/2) time algorithm for APSP in directed graphs with edge weights in

{−M, . . . ,M}.
Today we will give Zwick’s APSP algorithm and will then extend it to give Yuster-Zwick’s Distance

Oracle.
Last time we defined the (min,+)-product of n × n matrices:

(A ⋆B)[i, j] = min
k

{A(i, k) +B(k, j)}

We stated this theorem:

Theorem 0.1. Given two n×n matrices A,B over {−M, . . . ,M}∪{∞}, A⋆B can be computed in Õ(Mnω)

time.

1 Zwick’s Algorithm

We will show the following.

Theorem 1.1. All-Pairs Shortest Paths (APSP) on n-node directed graphs, where the edge weights are
integers in {−M, . . . ,M} can be solved in Õ(M1/(4−ω)n2+1/(4−ω)) time by a randomized algorithm, where the
distances are correct with high probability.

There is a way to derandomize Zwick’s algorithm, so that the same bounds can be obtained by a deter-
ministic algorithm.

Similar to the algorithm from the previous lecture, Zwick’s Algorithm handles paths that use at least k
nodes, and paths that use fewer than k nodes separately. For long paths, the running time is the same as

the previous algorithm, which is Õ(Mnω + n3

k
) time. Zwick’s Algorithm improves on the short paths part.

In order to handle shortest paths of length less than k, we combine fast computations of (min,+) products
with the idea of a hitting set argument.

Recall that for every u, v we have picked a representative shortest path Pu,v, and `(u, v) is the number
of nodes in Pu,v.

Proposition 1. Let G be a directed graph, where edge weights are integers in {−M, . . . ,M}, and k be a
fixed parameter. We can compute for every pair of vertices u, v, an estimate d̃(u, v) such that for all u, v,
d̃(u, v) ≥ d(u, v) and with high probability, d̃(u, v) = d(u, v) for every pair (u, v) where `(u, v) ≤ k. The
algorithm runs in time

Õ (k3−ωMnω) .

Proof. We will have ⌈log3/2 k⌉ stages. Let Vj be the set of pairs of vertices (u, v) such that `(u, v) ∈

((3/2)j−1, (3/2)j], and let V≤j denote ∪
j
i=1Vi. In stage j, we will compute d(u, v) for every (u, v) ∈ V≤j .

More specifically, we will compute a matrix Dj such that with high probability,

Dj(x, y){
= d(x, y) if (x, y) ∈ V≤j
≥ d(x, y) otherwise.

Note that D2 can easily be obtained from the edge weights of G.
One could easily obtain a valid Dj from Dj−1 by simply computing Dj−1 ⋆Dj−1. However, it won’t give

the running time we desire. Instead, we will take advantage of the hitting set lemma.

1

For every (u, v) ∈ Vj , consider the representative shortest path Pu,v from u to v. The middle third of Pu,v

is a set of ⌊(1/3)(3/2)j⌋ nodes appearing consecutively in Pu,v such that at most (1/3)(3/2)j nodes precede
them, and at most (1/3)(3/2)j nodes follow them.

Here’s a figure showing the middle third as the portion of Pu,v between nodes c and d:

u c d v
< 1

3
(3
2
)j = 1

3
(3
2
)j < 1

3
(3
2
)j

At stage j, we take a random Sj ⊆ V with ∣Sj ∣ = Θ(n
(3/2)j−1 logn) so that with high probability, V hits a

node su,v in the middle third of Pu,v for every (u, v) ∈ Vj . Observe that because su,v is in the middle third
of Pu,v, we get that (u, su,v), (su,v, v) ∈D≤j−1.

It follows that with high probability, for all (u, v) ∈ Vj ,

d(u, v) = min
s∈Sj

{Dj−1(u, s) +Dj−1(s, v)}.

Thus we can compute Dj(u, v) via

Dj(u, v) = min{Dj−1(u, v),min
s∈Sj

{Dj−1(u, s) +Dj−1(s, v)}} .

This is easy to do in O(n2) time once we have already computed mins∈S{Dj−1(u, s) + Dj−1(s, v)} for
every (u, v). It can be obtained by computing the product X ⋆ Y where X contains the columns in Dj−1

corresponding to the elements of Sj , and Y contains the rows in Dj−1 corresponding to the elements of Sj . In
other words, by selecting a hitting set Sj , we are able to use the (min,+)-product of matrices much smaller
than Dj−1 in order to compute Dj .

Breaking X and Y into square blocks of side-length approximately n/(3/2)j , so that there are approxi-
mately (3/2)j blocks in X and Y . We can use the (min,+)-products of all (3/2)2j pairs of blocks to easily
recover X ⋆ Y . By Theorem 0.1, since Dj has entries in {−(3/2)jM, . . . , (3/2)jM} ∪ {∞}, this takes time

Õ ((3/2)2j ⋅ (3/2)j ⋅M ⋅ (
n

(3/2)j
)

ω

) = Õ (((3/2)3−ω)jMnω) .

Summing over the ⌈log3/2 k⌉ stages, we get a running time of

Õ
⎛

⎝
nωM ∑

j∶(3/2)j<k

((3/2)j)3−ω
⎞

⎠
= Õ (k3−ωMnω) .

◻

We are now in a position to complete the proof of Zwick’s Theorem. Indeed, combining the long dis-

tance algorithm and Proposition 1 and optimizing for k at k = n(3−ω)/(4−ω)

M1/(4−ω) , we get a total running time of

Õ(M1/(4−ω)n2+1/(4−ω)). Observe that both the algorithm for long paths and for short paths compute either
the correct distances or overestimate for distances between pairs of nodes; thus minimizing the outputted
distances of the two, one can obtain the exact d(u, v) for all u, v ∈ V .

2 Yuster-Zwick Distance Oracle

Our goal here is to construct a “distance oracle”, faster than computing APSP. The distance oracle is a
graph data structure that can answer distance queries for any given pair of vertices, in some small amount
of time. This query time is not necessarily constant.

The theorem we prove is as follows.

2

Theorem 2.1 (Yuster, Zwick ’05). Let G be a directed graph with edge weights in {−M, . . . ,M} . Then in
Õ(Mnω) time, we can compute an n × n matrix D such that for every u, v ∈ V , with high probability:

(D ⋆D)[u, v] = d(u, v),

where d(u, v) is the minimum weight of a shortest path from i to j using n hops. (If the graph does not have
negative cycles, then d(⋅, ⋅) are just the shortest paths distances.)

Recall that the fastest algorithm for APSP in directed graphs requires Õ(
√
Mn2.5) time even if ω = 2,

whereas the algorithm in the theorem obtains a much faster runtime of Õ(Mnω), at the cost that now to
extract any particular distance, one might need to spend O(n) time.

Note that the theorem above does not imply a faster APSP algorithm, because D may have large entries,
making computing D ⋆D expensive. However, if one only cares about a small number q of distances, one
can extract them from D in O(qn) time. (A straightforward way to extract q distances would require q
iterations of Dijkstra’s algorithm, which would give a runtime of Ω(qn2).)

Thus, for single source shortest paths (SSSP) we have the following corollary:

Corollary 2.1. Let G = (V,E) be a directed graph with edge weights in {−M, . . . ,M} and no negative cycles.
Let s ∈ V . Then single-source shortest paths from s can be computed in Õ(Mnω) time.

Proof. By Theorem 2.1, we can compute an n×n matrix D such that D ⋆D is the correct all-pairs shortest-
paths matrix, in Õ(Mnω) time.

Then for all v ∈ V , we know that:

d(s, v) = min
k

{D[s, k] +D[k, v]}.

Computing this for all v ∈ V only takes O(n2) time. Since ω ≥ 2, this entire computation is in Õ(Mnω)

time. ◻

Similarly, we can show that detecting negative cycles is fast since any negative cycle contains a simple
cycle of negative weight, and thus corresponds to a path from i to i for some i of length ≤ n and negative
weight.

Corollary 2.2. Let G be a directed graph with edge weights in {−M,M}. Then negative cycle detection can
be computed in Õ(Mnω) time.

We use the following notations for the proof of the main theorem.

Notation: For u, v ∈ V , let Pu,v be an arbitrary shortest path from u to v using at most n hops, and
let `(u, v) be the number of hops on Pu,v. Suppose that A is an n × n matrix and that S,T ⊆ {1, . . . , n}.
Then A[S,T] is the submatrix of A consisting of rows indexed by S and columns indexed by T .

The main algorithm again uses randomness and the hitting set lemma but now we do not take freshly
random samples every time, instead we take each successive random sample Bj+1 to be a random sample
from the previous random sample Bj .
Proof of Theorem 2.1.

We claim that Algorithm 1 is our desired algorithm.

Running Time: In iteration j, we multiply an n × Õ (n
(3/2)j−1) matrix by a Õ (n

(3/2)j−1) × Õ (n
(3/2)j

)

matrix, where all entries are at most (3/2)jM in absolute value (we will show iteration j only needs to
consider paths with at most (3/2)j nodes).

3

Algorithm 1: YZ(A)

A is the weighted adjacency matrix;
Set D ← A;
Set B0 ← V ;
for j = 1, . . . , log3/2 n do

Let D′ be D but with all entries larger than M(3/2)j replaced by ∞;
Choose Bj to be a random subset of Bj−1 of size c⋅n

(3/2)j
logn;

Compute Dj ←D′[V,Bj−1] ⋆D
′[Bj−1,Bj];

Compute Dj ←D′[Bj ,Bj−1] ⋆D
′[Bj−1, V];

foreach u ∈ V, b ∈ Bj do
Set D[u, b] = min(D[u, b],Dj[u, b]);

Set D[b, u] = min(D[b, u],Dj[b, u]);

return D;

We can split the matrices to blocks of size around n
(3/2)j

by n
(3/2)j

, and compute the Min-Plus product be-

tween every pair of blocks. Hence the runtime for iteration j is Õ (M(3/2)j(3/2)j(n
(3/2)j

)ω) = Õ (Mnω

((3/2)j)ω−2
).

Over all iterations, the running time is, asymptotically, ignoring polylog factors,

Mnω
∑
j

((3/2)ω−2)j ≤ Õ(Mnω
).

If ω > 2, one of the log factors in the Õ can be omitted.
Correctness: We will prove the correctness by proving two claims.
Claim 1: For all j = 0, . . . , log3/2 n, v ∈ V , b ∈ Bj , if `(v, b) < (3/2)j then w.h.p. after iteration j,

D[v, b] = d(v, b)
Proof of Claim 1: We will prove it via induction. The base case (j = 0, `(v, b) < (3/2)0 = 1) is

trivial, since the distance is for one-hop paths is exactly the adjacency matrix. Now, assume the inductive
hypothesis is true for j − 1, that is we have stored correctly D[u, b] = d[v, b] if the shortest path (v, b) has
length `(v, b) < (3/2)j−1. We will show correctness for j. Consider some v ∈ V and b ∈ Bj . We consider two
possible cases depending on how far node b is from v.

Case I: `(v, b) < (3/2)j−1 (b is near)
But then b ∈ Bj ⊂ Bj−1. By our inductive hypothesis, D[v, b] = d(v, b) w.h.p.!
Case II: `(v, b) ∈ [(3/2)j−1, (3/2)j) (b is far)
We will need to use our “middle third” technique from Zwick’s algorithm.

v c d b
< 1

3
(3
2
)j = 1

3
(3
2
)j < 1

3
(3
2
)j

We can choose c, d ∈ V on the path Pv,b such that:

`(v, c) <
1

3
(

3

2
)

j

`(d, b) <
1

3
(

3

2
)

j

`(c, d) =
1

3
(

3

2
)

j

< (
3

2
)

j−1

4

By a hitting set argument, if c is a large enough constant, Bj−1 ∩ “middle third” /= ∅ (w.h.p. depending
on c) since ∣Bj−1∣ = c n

(3/2)j−1 logn.

Let x in Bj−1 ∩ “middle third”. Then `(v, x) ≤ `(v, c) + `(c, d) < 2
3
(3
2
)j = (3

2
)j−1. Since x ∈ Bj−1, by

induction D[v, x] = d(v, x) w.h.p. at iteration j. By a similar argument we get that w.h.p. D[x, b] = d(x, b)
at iteration j (at the beginning of iteration j).

Hence after this iteration, D[v, b] ≤D[v, x] +D[x, b] = d(v, b).
As a small technical note, we will need to actually remove entries larger than (3/2)jM from D before

multiplying, but they are not needed.
Claim 2: For all u, v ∈ V , w.h.p. (D ⋆D)[u, v] = d(u, v).
Proof of Claim 2: Fix u, v ∈ V , and let j be such that `(u, v) ∈ ((3/2)j−1, (3/2)j]. Look at a shortest

path between u and v. Its middle third hence has a length of (1/3)(3/2)j . Then w.h.p. Bj hits this path at
some x ∈ V such that `(u,x), `(x, v) < (3/2)j−1. By Claim 1, D(u,x) = d(u,x) and D(x, b) = d(x, b). Hence:

d(u, v) ≤ (D ⋆D)[u, v] ≤minx∈Bj−1D(u,x) +D(x, v) ≤ d(u, v).

This completes the proof.
◻

References

[1] Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast matrix
multiplication. In FOCS, pages 389–396, 2005.

5

