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Today we will present and solve two more variants of All Pairs Shortest Paths (APSP) in O(n3−δ)
time for some constant δ > 0. In doing so, we will also introduce some more matrix products, namely the
(max,min)-product, the (min,≤) product and the dominance product.

1 Earliest Arrivals

The first variant of APSP we will study is the Earliest Arrivals problem. We are given a set V consisting
of n airports and a set F of n flights. Each flight f ∈ F consists of a a source airport s ∈ V , a destination
airport t ∈ V , a departure time, and an arrival time.

Definition 1.1. A valid itinerary from s to t is a sequence of flights f1, . . . fk such that, for all i ∈ {1, . . . , k},
source(fi+1) = destination(fi) and departure(fi+1) ≥ arrival(fi).

The All-Pairs Earliest Arrivals (APEA) problem is to compute, for all airports u, v ∈ V , the earliest arrival
time over all valid itineraries. This problem has a natural graph interpretation. Consider a bipartite graph
G = (V ∪F,E). For each flight f ∈ F , we add a directed edge (source(f), f) to E with weight departure(f).
Then, we add another directed edge (f, destination(f)) with weight arrival(f).

On this graph, a valid itinerary is a s→ t path such that all of the edges form a nondecreasing sequence,
and the arrival time is given by the last edge weight. Therefore, APEA is equivalent to finding, ∀s, t ∈ V ,
the minimum last edge weight over all nondecreasing s→ t paths.

Let’s consider the special case of APEA restricted to 2-hop paths. Consider two nodes x and y. The best
2-hop path between them has arrival time which is the minimum of w(z, y) over all mid-points z such that
both (x, z) and (z, y) are edges and w(x, z) ≤ w(z, y). This gives rise to a new matrix product.

Definition 1.2. Let A,B be n × n matrices. The (min,≤) product of A and B, denoted A<B is given by

(A<B)(i, j) = min
k

{B(k, j) ∣ A(i, k) ≤ B(k, j)}

or ∞ if no such k exists.

If we define the adjacency matrix A of G in the natural way,

A(i, j) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

w(i, j) (i, j) ∈ E
0 if i = j
∞ otherwise

then we find that (A < A)(i, j) is the minimum last edge weight over paths of length 2. Iterating this
relationship, we find that (A< ⋅ ⋅ ⋅<A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
` − 1 times

) <A(i, j) is the minimum last edge over all paths of length `.

We must be careful, however, because the (min,≤) product is not associative in general, as the following
example demonstrates. Consider the following graph.
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Observe that (A<A)<A(i, `) = 10, but A<(A<A)(i, `) =∞. Consequently, we cannot simply use successive
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squaring to solve the Earliest Arrivals problem. Instead, our approach will be to compute Earliest Arrivals
for “short paths” and use the random sampling technique developed in previous lectures to handle “long
paths.” For paths that have at most s hops (for a parameter s), we iterate the < product with the adjacency
matrix A on the right s times. To handle paths on > s hops, we sample O(n/s logn) nodes S - these hit
for each u, v with long hop best path π(u, v), one of the nodes on π(u, v), with high probability. Then we
utilize an algorithm that given any node s can compute All-Pairs Earliest arrivals for G but restricted only
to those nondecreasing paths that pass through s. (We will show in the homework that this latter problem
can be solved in O(n2 logn) time.) We use this algorithm for each node in S and then for each u, v we take
the minimum value obtained in the short-paths part and in all Õ(n/s) executions that handle the long-path
part.

Consider the algorithm below.

Algorithm 1: Earliest Arrivals(G)

Form adjacency matrix A
Set D = A

for i ∶= 1 to s do
Compute D =D <A

end for
Compute a random sample, S, of size c ∗ n

s
logn

for all x ∈ S do
Compute All Pairs Earliest Arrivals for paths through x

end for
for all i, j ∈ V do

EA(i, j) =minx∈S min last edge weight over valid itineraries of the form i→ x→ j
EA(i, j) =min{EA(i, j),D(i, j)}

end for
Return EA

Lemma 1.1. If the (min,≤) product of n × n matrices can be computed in O(nc) time, then we can solve

APEA in O(n
3+c
2 ) time.

Proof of Lemma 1.1. Using the algorithm sketched above, we obtain a runtime of O(n
3

s
+s(nc)). Optimizing

over s, we set s = n
3−c
2 and obtain a total runtime of O(n

3+c
2 ), as required. ◻

2 All Pairs Bottleneck Paths

Let graph G = (V,E) be a graph with edge weights given by w ∶ E → Z.

Definition 2.1. Given a path p in G, its bottleneck edge is the edge of minimum weight.

Definition 2.2. The All Pairs Bottleneck Paths problem (APBP) is to find, for all pairs u, v ∈ V , the
maximum bottleneck weight over all u→ v paths.

For example, imagine the weight of each edge represents the height of a tunnel. Then we want to find
the maximum height of a truck that can get from s to t and fit through all the tunnels.

In order to tackle this problem, we need to define another matrix product.

Definition 2.3. Let A and B be n × n matrices. The (max,min) product of A and B, denoted A ⍟ B is
given by

(A⍟B)(i, j) = max
k

min{A(i, k),B(k, j)}
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Observe that that (max,min) product is precisely the bottleneck path problem in graphs with diameter
2. It is left as an exercise to verify that ⍟ is associative and is in fact a matrix product defined over a
semiring. Thus, A⍟A gives the maximum bottleneck for length 2 paths, we can solve All Pairs Bottleneck
Paths (APBP) using successive squaring. This gives us the following lemma.

Lemma 2.1. If the (max,min) product of two n × n matrices can be computed in Õ(nc) time, then we can
solve All Pairs Bottleneck Paths in Õ(nc) time.

Using the general theorem of Fischer and Meyer about transitive closure of matrices over semirings,
one can also get that the extra log due to the successive squaring isn’t even necessary so that APBP and
(max,min)-product are equivalent.

Let us now see that computing ⍟ is equivalent to two < product computations. This will give us that
APBP can be computed in truly subcubic time provided we get a truly subcubic algorithm for < product.

Lemma 2.2. If there is an O(nc) algorithm for computing (min,≤) products, there is an O(nc) algorithm
for computing (max,min) products.

Proof. Consider the matrix product defined by (A=B)(i, j) = maxk{A(i, k) ∣ A(i, k) ≤ B(i, k)}. Note that
this product is in fact a (min,≤) product. In particular, it is the product −B<−A obtained by negating all of
the entries ai,j in A and bi,j in B and then swapping matrices A and B, i.e. (A=B)(i, j) = −(−B<−A)(i, j).
Using this product, we can compute

(A⍟B)(i, j) = max{(A=B)(i, j), (B =A)(i, j)}.

Therefore, we can compute A⍟B using two (min,≤) computations, as required. ◻

An interesting note is that there is no known reduction in the other direction, so it is possible that there
is a faster algorithm for (max,min) product than for (min,≤) product.

By the above discussion, we can solve both the All Pairs Earliest Arrivals problem and the All Pairs
Bottleneck Path problem with a fast algorithm for computing (min,≤) products. The rest of this writeup is
dedicated to finding such an algorithm.

3 A Fast Algorithm for Computing (min,≤) Products

We will use another special matrix product in our algorithm for computing (min,≤).

Definition 3.1. The dominance product of n × n matrices A and B, denoted A⊙B, is given by

(A⊙B)(i, j) = ∣{k ∣ A(i, k) ≤ B(k, j)}∣

Theorem 3.1. (Matoušek’91) The dominance product of two n × n matrices can be computed in O(n
3+ω
2 )

time.

Theorem 3.2. If dominance product can be computed in O(nd) time, then the (min,≤) product can be

computed in O(n
3+d
2 ) time.

Assuming 3.1, we first prove 3.2.

Proof of Theorem 3.2. Let A,B be two n × n matrices. We will compute A<B as follows.

1. Sort each column j of matrix B

2. Fix parameter p. Partition each sorted column into n
p

consecutive buckets of p elements each. Name

the buckets so that for all buckets b ≤ b′, ∀B(i, j) in bucket b of column j, and ∀B(`, j) in bucket b′ of
j, we have B(i, j) ≤ B(`, j).

3



3. For each b ∈ {1, . . . , n
p
}, create an n × n matrix Bb such that

Bb(i, j) = {
B(i, j) if B(i, j) in bucket b of column j
−∞ otherwise

4. Compute for all buckets b, A⊙Bb, which is

(A⊙Bb)(i, j) = {
≠ 0 if ∃k such that Bb(k, j) ≠ −∞ and A(i, k) ≤ B(k, j)
0 otherwise

5. For all i, j determine bi,j = smallest b such that (A⊙Bb)(i, j) ≠ 0. This is equivalent to

min{B[k, j] ∣ B(k, j) in bucket b(i, j) and A(i, k) ≤ B(k, j)}.

Therefore, we can use brute force, as follows. For all i, j examine each B(k, j) in bucket bi,j of j,
compare it with A(i, k) and output the minimum B(k, j) for which A(i, k) ≤ B(k, j). Observe that
this is (A<B)(i, j).

The running time of this algorithm is dominated by computing the dominance product in step 4 and brute

force in step 5. Using 3.1, we can compute dominance product in O(nd) time. Therefore, it takes O(n
d+1

p
)

time to compute the required n
p

dominance products. The brute force step takes O(n2p) time. Choosing

p = n
d−1
2 , we obtain a total runtime of O(n

3+d
2 ), as desired. ◻

It remains to prove 3.1

Proof of Theorem 3.1. Let A,B be n × n matrices. We compute A⊙B as follows.

1. For all j, sort the set of entries of column j of A and row j of B together. This produces a list of 2n
elements.

2. Partition this list into buckets of p elements each. There are 2n
p

buckets for each j.

3. For all b ∈ {1, . . . , 2n
p
}, create n × n matrices

Ab(i, j) = {
1 if A(i, j) is in bucket b of j
0 otherwise

Bb(j, k) = {
1 if ∃b′ > b such that B(j, k) is in bucket b′ of j
0 otherwise

4. For distinct buckets b, compute the integer matrix product

(AbBb)(i, j) = ∣{k ∣ A(i, k) ∈ b,A(i, k) ≤ B(k, j), and B(k, j) /∈ b}

We handle identical buckets b using brute force search. For all i, j and buckets b, compare A(i, k) with
all B(k, j) in the same bucket as A(i, k) and update the sum in the output.

The brute force step requires O(n2p) time. Then, we require n
p
nω time to perform matrix multiplications.

We minimize p by taking p = n
3−ω
2 to obtain a final running time of O(n

3+ω
2 ), as desired. ◻

It is an open problem whether (min,≤) product can be computed in O(nω) time.
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4 Conclusions

In this lecture we saw several different matrix products that are useful for many applications. The (min,≤)
product (which is not associative) is useful when searching for nondecreasing paths and has applications in
the All Pairs Earliest Arrivals problem (APEA). The (max, min) product is used when searching for All
Pairs Bottleneck Paths (APBP). Finally, we defined the dominance product. Using all these, we concluded,
similar to the node-weighted APSP from last lecture, that APEA and APBP are in truly subcubic time.
However, it remains a major open question to find a truly subcubic algorithm for general APSP.
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