

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2013 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 892–909

COUNTING AND DETECTING SMALL SUBGRAPHS VIA
EQUATIONS∗

MIROS�LAW KOWALUK† , ANDRZEJ LINGAS‡ , AND EVA-MARTA LUNDELL‡

Abstract. We present a general technique for detecting and counting small subgraphs. It
consists of forming special linear combinations of the numbers of occurrences of different induced
subgraphs of fixed size in a graph. These combinations can be efficiently computed by rectangular
matrix multiplication.
Our two main results utilizing the technique are as follows. Let H be a fixed graph with k vertices
and an independent set of size s.

1. Detecting if an n-vertex graph contains a (not necessarily induced) subgraph isomorphic
to H can be done in time O(nω(�(k−s)/2�,1,�(k−s)/2�)), where ω(p, q, r) is the exponent of
fast arithmetic matrix multiplication of an np × nq matrix by an nq × nr matrix.

2. When s = 2, counting the number of (not necessarily induced) subgraphs isomorphic to H
can be done in the same time, i.e., in time O(nω(�(k−2)/2�,1,�(k−2)/2�)).

It follows in particular that we can count the number of subgraphs isomorphic to any H on four
vertices that is not K4 in time O(nω), where ω = ω(1, 1, 1) is known to be smaller than 2.373.
Similarly, we can count the number of subgraphs isomorphic to any H on five vertices that is not
K5 in time O(nω(2,1,1)), where ω(2, 1, 1) is known to be smaller than 3.257. Finally, we derive input-
sensitive variants of our time upper bounds. They are partially expressed in terms of the number m
of edges of the input graph and do not rely on fast matrix multiplication.

Key words. subgraph and induced subgraph isomorphism, counting and detection of subgraphs,
linear equations, exact algorithms, rectangular matrix multiplication

AMS subject classifications. 68W01, 68W40, 68Q25, 68R10, 05C50

DOI. 10.1137/110859798

1. Introduction. The problems of detecting subgraphs or induced subgraphs of
a graph that are isomorphic to another given graph are classical in algorithmics. They
are generally termed subgraph isomorphism and induced subgraph isomorphism prob-
lems, respectively. Their decision, finding, counting, and even enumeration versions
(see the preliminaries) have been extensively investigated in the literature. In partic-
ular, the decision versions include as special cases such well-known NP-hard problems
as the independent set, clique, Hamiltonian cycle, or Hamiltonian path problems [12].
For arbitrary graphs, they are known to admit polynomial-time solutions solely when
the other graph, often termed a pattern graph, is of fixed size.

In this paper we study the complexity of the decision and counting versions of
subgraph isomorphism and induced subgraph isomorphism under the assumption that
the pattern graph is of a fixed size k and the input graph has n vertices and m edges.

∗Received by the editors December 21, 2011; accepted for publication (in revised form) February
12, 2013; published electronically May 2, 2013. A preliminary and shorter version of this paper
appeared in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2011), San Francisco, CA, 2011.

http://www.siam.org/journals/sidma/27-2/85979.html
†Institute of Informatics, Warsaw University, Warsaw, Poland (kowaluk@mimuw.edu.pl). This

author’s research was supported by grant N20600432/0806 from the Polish Ministry of Science and
Higher Education.

‡Department of Computer Science, Lund University, 22100 Lund, Sweden (Andrzej.Lingas@
cs.lth.se, Eva-Marta.Lundell@cs.lth.se). The second author’s research was supported in part by
VR grant 621-2008-4649.

892

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 893

1.1. Related results on subgraph isomorphism with a fixed pattern
graph. Three decades ago, Itai and Rodeh [15] demonstrated that detection and
counting in the case when the pattern graph is a triangle can be done in O(nω) time,
or alternatively in O(m3/2) time. The finding variant can be solved within O(nω)
time by self-reducibility, e.g., partition the vertex set into four roughly equal parts
and run detection on all four possible unions of three parts and then recourse on one
of the unions that returns yes.

Next, Chiba and Nishizeki [7] provided an input-sensitive algorithm for listing all
triangles in a graph G running in time O(a(G)m), where a(G) is the arboricity of G,
i.e., the minimum number of edge-disjoint forests into which G can be decomposed.
They also generalized their result to include listing of copies of all Kk, k ≥ 3, in G in
O(ka(G)k−2m) time.

Furthermore, Nes̆etr̆il and Poljak [19] presented reductions of the variants of the
k-clique problem to those of the triangle problem and its generalization to include
other k-subgraphs besides k-cliques. Recall that ω(p, q, r) denotes the exponent of
fast arithmetic matrix multiplication of an np × nq matrix by an nq × nr matrix and
ω stands for ω(1, 1, 1) (see [8, 9, 14, 18, 24, 21]). Subsequently, Kloks, Kratsch, and
Müller [16] and finally Eisenbrand and Grandoni [10] improved on the reductions to
show that generally these problems for k-vertex pattern graphs can be solved in time
O(nω(�k/3�,�(k−1)/3�,�k/3�), or alternatively in time O(mω(�k/3�,�(k−1)/3�,�k/3�)/2) for
k ≥ 6. This is substantially faster than the O(nk) time required by an exhaustive
enumeration. Recently, Vassilevska and Williams [25] showed that the number of
occurrences of a pattern graph with an independent set of size s can be computed in
2snk−s+3kO(1) time. Importantly, their method is combinatorial, and hence it does
not rely on fast matrix multiplication.

There are also known examples of pattern graphs where the decision and finding
versions can be solved much faster. Namely, at the beginning of 1990s, Plehn and
Voight [20] showed that if the fixed pattern graph has treewidth t, then the deci-
sion and finding versions of subgraph isomorphism admit an O(nt+1)-time solution
while those of induced subgraph isomorphism also admit an O(nt+1)-time solution
in the case when the maximum degree in the input graph is constant. Yuster, and
Zwick [28] showed in particular that cycles of given even length can be found in
O(n2) time for any fixed even length. In [2] Alon, Yuster, and Zwick introduced
the now classical technique of color coding to detect cycles or paths of constant
length roughly in matrix multiplication time, i.e., in time Õ(nω), where the nota-

tion Õ suppresses polylogarithmic factors. The same authors showed in [3] how to
find a triangle in O(m2ω/(ω+1)) time and how to find a cycle of given length k in
an unweighted, directed or undirected, graph in O(m2−2/k) time for even k and in
O(m2−2/(k+1)) time for odd k. For even cycles in unweighted, undirected graphs, they
also demonstrated that C4k can be found in O(m2−(1/k−1/(2k+1))) time and C4k−2 in
O(m2−(1+1/k)/2k) time. In particular, their time upper bounds for C3 through C6 are
O(m1.41), O(m1.34), O(m1.67), and O(m1.63), respectively. They also showed in [3]
that for k = 3, . . . , 7, the number of Ck can be counted in O(nω) time, extending on the
classical result of Itai and Rodeh [15] for triangles. In [16], Kloks, Kratsch, and Müller
showed for the induced variant that the occurrences of K4 can be counted in time
O(m(ω+1)/2) = O(nω+1), and if the occurrences of some pattern graph on four vertices
can be counted in time T (n), then the occurrences of any other pattern graph on four
vertices can be counted in O(nω+T (n)) time. They also showed that counting occur-
rences of four-vertex pattern graphs different from K4 can be done in time O(nω +
m(ω+1)/2) [16].

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

894 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

Table 1.1

Selected time upper bounds on detecting, finding, and counting small subgraphs in an undirected,
unweighted graph G on n vertices and m edges. Hk stands for the class of pattern graphs on k
vertices, and additional subscripts s and t denote the size of an independent set and the treewidth,
respectively.

Subgraph Time Complexity Problem Reference

K3 O(nω) finding Itai–Rodeh [15]

K3 O(nω) counting Itai–Rodeh [15]

K4 O(m(ω+1)/2) counting Kloks et al. [16]

H4 O(nω + m(ω+1)/2) counting Kloks et al. [16]

Hk O(nω(�k/3�,�(k−1)/3�,�k/3�) detection Eisenbrand–Grandoni [10]

Hk,s O(nk−s+3) counting Vassilevska–Williams [25]

Hk,t O(nt+1) finding Plehn–Voight [20]

Ck, k ≤ 7 O(nω) counting Alon et al. [3]

Ck O(nω logn) finding Alon et al. [2]

Kk\e O(nk−1) detection Vassilevska [23]

Pk O∗(2k) detection Williams [26]

Pk O∗(
(n
k/2

)
) counting Björklund et al. [5]

Hk,t O∗(
(n
k/2

)
n2t) counting Fomin et al. [11]

More recently, Vassilevska [23] demonstrated that an induced subgraph
isomorphic to Kk\e, i.e., Kk with a single edge removed, can be detected in time
O(m(k−1)/2) = O(nk−1), where m is the number of edges in the input graph, by
incorporating, among other things, earlier results on induced K4\e from [10, 16].
She also presented relatively fast algorithms for the so-called semicliques in [22].
Williams [26] showed how to find a path of length k in time O∗(2k), while Björklund
et al. [5] obtained an algorithm for counting the number of k-paths running in time
O∗(

(
n

k/2

)
), where O∗ suppresses polynomial factors. For a subgraph with treewidth t,

Fomin et al. [11] derived algorithms for the decision and counting versions that run
in time O∗(2kn2t) and

(
n

k/2

)
nO(t log k), respectively.

Table 1.1 presents some of the aforementioned time upper bounds for detecting,
finding, and counting small subgraphs.

1.2. Our contributions. We present a general technique for deriving indepen-
dent linear dependencies among the numbers of occurrences of different induced sub-
graphs of fixed size in a host graph. The coefficients at the unknowns corresponding
to these numbers in the dependencies are easily computable, while the computation
of the right-hand sides of the dependencies reduces to the following l-neighborhood
problem.

Determine for each (ordered) l-tuple of vertices of G and each binary vector b
with l coordinates the number of vertices v in G outside the l-tuple such that v is a
neighbor of the ith vertex in the l-tuple iff b(i) = 1.

We show that the latter problem can be relatively efficiently solved via rectangular
matrix multiplication [8, 14, 18].

In [16], Kloks, Kratsch, and Müller described some of the dependencies in the
special case of some subgraphs of size 4. Our technique can be seen as a far-reaching
generalization and systematization of their idea. (On the other hand, the dependencies
and matrix computations used by Alon, Yuster, and Zwick [3] to derive their results
on counting k-cyclic graphs for k = 3, . . . , 7 rely on a different idea of computing
traces of matrix powers.)

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 895

Let Hk denote the family of single representatives of all isomorphism classes of
undirected graphs on k vertices, and let Hk(l) stand for its subfamily comprising all
graphs in Hk having an independent set of size at least k − l.

Assume k = O(1). We show that if for all graphs in Hk\Hk(l) their numbers of oc-
currences either as an induced or a not necessarily induced subgraph of the input graph
are known, then the number of occurrences of any H ∈ Hk both as an induced and
a not necessarily induced subgraph can be computed in time O(nω(�l/2�,1,�l/2�)). The
upper bound stands for the time required to solve the aforementioned l-neighborhood
problem.

In the case l = k − 2, we show that the knowledge of the number of occur-
rences of any given graph in the whole Hk as an induced subgraph is sufficient to
compute the number of occurrences of any H ∈ Hk both as an induced and a not
necessarily induced subgraph in time O(nω(�(k−2)/2�,1,�(k−2)/2�)). (This generalizes the
corresponding fact shown for k = 4 in [16].)

Our main results utilizing this technique are two new time upper bounds on de-
tecting and counting occurrences of H ∈ Hk(l) as (not necessarily induced) subgraphs
in the host graph on n vertices. We show that

1. detecting if an n-vertex graph contains a (not necessarily induced) subgraph
isomorphic to H can be done in time O(nω(�l/2�,1,�l/2�)), and that

2. when l = k − 2, counting the number of (not necessarily induced)
subgraphs isomorphic to H can be done in the same time, i.e., in time
O(nω(�(k−2)/2�,1,�(k−2)/2�)). (This improves, but only for k − l = 2, on the
aforementioned general combinatorial counting algorithm of Vassilevska and
Williams [25], the running time of which can be rephrased as O(nl+3) in terms
of our notation. By straightforward calculations, our upper bound is never
worse than roughly nk+ω−4, and if ω = 2, then it’s roughly nk−2. By gener-
alizing the method of Nes̆etr̆il and Poljak [19], one can also count the number
of occurrences of H in time O(nr+zω), where k = 3z + r and r ∈ {0, 1, 2}.
This yields better time upper bounds than ours for k > 10.)

It follows in particular that the counting version can be solved for any H ∈
H4\{K4} in time O(nω) and for any H ∈ H5\{K5} in time O(nω(2,1,1)), where ω <
2.373 [21, 24] and ω(2, 1, 1) < 3.257 [18].

Finally, we derive input-sensitive variants of our time upper bounds expressed
also in terms of the number m of edges of the input graph. Importantly, they do not
rely on fast matrix multiplication.

1.3. Organization. In the next section we briefly introduce notation corre-
sponding to our counting versions of induced subgraph isomorphism and subgraph
isomorphism and a related known fact. In section 3, we present our aforementioned
general technique. In section 4, we derive our general results on counting and detect-
ing copies of graphs from Hk(l), including our first main result on detection. Section 5
is devoted to our second main result on fast counting of small nonclique subgraphs.
In section 6, we present our solution to the aforementioned problem of l-neighborhood
which allows us to compute the right-hand sides of our equations efficiently. In conse-
quence, we can obtain upper bounds on the run-times in our main theorems and derive
concrete corollaries on counting copies of graphs from the sets H4(2) and H5(3), re-
spectively. In section 7, we present the input-sensitive counterparts of our time upper
bounds. We conclude with final remarks.

2. Preliminaries. An isomorphism between two graphs F and G is a one-to-one
mapping f of the vertices of F onto vertices of G such that {u, v} is an edge of F

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

896 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

iff {f(u), f(v)} is an edge of G. If F = G, then an isomorphism between F and G is
called an automorphism of F. F is isomorphic to G if there is an isomorphism between
F and G.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E. Such a subgraph G′ of G is induced if E′ = (V ′ × V ′) ∩ E.

A subgraph isomorphism between two graphs F and G is an isomorphism between
F and a subgraph of G.

The detection version or, equivalently, the decision version of the subgraph iso-
morphism problem is to decide for a host graph and a pattern graph if the host graph
has a subgraph isomorphic to the pattern graph. The finding version of subgraph iso-
morphism asks for returning a subgraph of the host graph isomorphic to the pattern
graph. Finally, the counting version of subgraph isomorphism asks for reporting the
total number of subgraphs of the host graph isomorphic to the pattern graph. The
corresponding versions of induced subgraph isomorphism are defined analogously by
replacing “subgraph” with “induced subgraph”.

Recall that for a positive integer k, Hk denotes a family of single representatives
of all isomorphism classes for graphs on k vertices, while for l ∈ {1, 2, . . . , k − 1},
Hk(l) denotes the family of all graphs in Hk that contain an independent set on k− l
vertices.

Definition 2.1. For a graph H ∈ Hk and a host graph G on at least k vertices,
the number of sets of k vertices in G that induce a subgraph of G isomorphic to H is
denoted by NI(H,G). Similarly, the number of not necessarily induced subgraphs of
G that are isomorphic to H (where all automorphic transformations of a subgraph are
counted as one) is denoted by N(H,G). Finally, for a vertex v of G and a subgraph
F of G, the neighborhood of v in F is the set of all neighbors of v in F.

It is well known that computingN(H,G) forH ∈ Hk can be reduced to computing
NI(H,G) for H ∈ Hk and vice versa (e.g., see Theorem 2.3 in [17]). We rephrase this
known result in terms of our notation as follows.

Fact 2.1. For H ∈ Hk, the equalities N(H,G) =
∑

H′∈Hk
N(H,H ′)NI(H ′, G)

hold. The |Hk| × |Hk| matrix M = [N(H,H ′)]H,H′∈Hk
is nonsingular and M−1 has

integer entries.

3. Forming equations in terms of NI(H ′, G). In this section, we formulate
equations with variables corresponding to the number of occurrences of particular
induced subgraphs and give a reduction of the problem of computing the right-hand
sides of these equations to the l-neighborhood problem (Propositions 3.2 and 3.3,
Lemma 3.5). We also simplify the definition of the coefficients in the equations for
noncliques (Lemma 3.6) and prove that appropriate sets of such equations are linearly
independent (Lemma 3.7).

Let H be a graph on k vertices and let Hsub be an induced subgraph of H on l
vertices such that the k − l vertices in H\Hsub form an independent set. Consider
the family of all supergraphs H ′ of H (including H) in Hk such that H ′ has the
same vertex set as H , Hsub is also an induced subgraph of H ′, and the set of edges
between Hsub and H ′\Hsub is the same as that between Hsub and H\Hsub. We denote
this family by Hk(Hsub, H) and its subfamily of single representatives of all isomor-
phism classes in Hk(Hsub, H), i.e., its intersection with Hk, by SHk(Hsub, H). For
an illustration see Figure 3.1(a), (b).

The main idea of our method relies on the fact that a linear combination of the
numbers NI(H ′, G) of induced copies of H ′ ∈ SHk(Hsub, H) in the host graph G can
be computed relatively efficiently without the explicit knowledge of these numbers.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 897

v1v1

v2 v3
v2 v3

G sub α

i−1β

iβ

i+1β

v’1 v’2
v’3

)b()a(

H

H

sub H sub

H’

(d)

(c)

G sub

β

α

G’

Fig. 3.1. (a) An example of a graph H composed of the induced subgraph Hsub and the vertex
set {v1, v2, v3} that forms an independent set in H. (b) An example of a supergraph H′ of Hsub

in Hk(Hsub,H). (c) An example of a subgraph G′ of G induced by an l-tuple α of vertices in G
corresponding to Hsub jointly with a (k−l)-tuple β of vertices in G corresponding to the independent
set {v1, v2, v3} in H. (d) An example of a set of (k− l)-tuples of vertices in G which are connected
with the l-tuple α by edges corresponding to those between H\Hsub and Hsub.

Definition 3.1. For H ′ ∈ SHk(Hsub, H), let B(Hsub, H
′) denote the number

of isomorphisms between Hsub and an induced subgraph of H ′, say, Hf
sub, that can be

extended to an isomorphism between H and the subgraph of H ′ consisting of Hf
sub, all

edges of H ′ incident to Hf
sub, and all the remaining vertices of H ′.

B(Hsub, H
′) is the coefficient of the corresponding term NI(H ′, G) in the afore-

mentioned linear combination. This coefficient can be easily calculated in O(1)-time
by enumerating subgraph isomorphisms betweenH andH ′ (see proof of Theorem 4.1).

To form an equation, we shall place the linear combination∑
H′∈SHk(Hsub,H)

B(Hsub, H
′)NI(H ′, G)

on the left-hand side, treatingNI(H ′, G) as unknowns, and its value for explicit values
ofNI(H ′, G) on the right-hand side of the equality. (In a latter formal definition of our
equations, i.e., in Definition 3.4, we replace NI(H ′, G) with corresponding variables
on the left-hand side.)

Example 3.1. Let H be a graph on three vertices with exactly two edges, and let
Hsub be just K1, i.e., a single vertex graph. Then SH3(Hsub, H) consists ofH and K3.
Let T2 and T3 be unknowns that represent NI(H,G) and NI(K3, G), respectively.
Since B(K1, H) = 1 and B(K1,K3) = 3, we obtain the following linear combination
on the left-hand side of the corresponding equation: T2 + 3T3.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

898 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

We prove that the right-hand side of such an equation can be computed efficiently
in three stages. First, in Proposition 3.2, we prove that the right-hand side can be
expressed as the number of equivalence classes of (k− l)-tuples of vertices in G. Then,
in Proposition 3.3, we show that the latter number can be efficiently reduced to the
l-neighborhood problem defined in the introduction. Later, in section 6, we show that
the l-neighborhood problem can be solved in time O(2lnω(�l/2�,1,�l/2�)) for l ≥ 2.

We shall call relevant an (ordered) l-tuple α of vertices of G such that the mapping
assigning the jth vertex in the tuple to the jth vertex in Hsub is an isomorphism
between Hsub and the subgraph Gsub of G induced by the tuple.

For all relevant l-tuples α, we shall count the number of equivalence classes of
(ordered) (k− l)-tuples β of vertices v′1, . . . , v

′
k−l in G\Gsub, where the neighborhood

of v′i in Gsub corresponds to that of the ith vertex of H\Hsub in Hsub under the
isomorphism between Gsub and Hsub. (Equivalently, we shall count the number of
equivalence classes of (ordered) (k − l)-tuples β of vertices G\Gsub such that the
mapping assigning the jth vertex of the k-tuple resulting from the concatenation of
α with β to the jth vertex of H , where the vertices of Hsub have numbers 1 through
l, is a subgraph isomorphism between H and an induced subgraph of G isomorphic
to a graph in SHk(Hsub, H).)

Two (k − l)-tuples β1 and β2 belong to the same equivalence class with respect
to α iff one of them can be obtained from the other by permutations of vertices v′i
having the same neighborhood in Gsub.

Proposition 3.2. The total number of the equivalence classes of (k − l)-tuples
summed over all relevant l-tuples α is equal to

∑
H′∈SHk(Hsub,H) B(Hsub, H

′) ×
NI(H ′, G).

Proof. Consider an equivalence class C for a relevant l-tuple α. It follows from
the definition of the equivalence classes that for any β ∈ C, the vertices in α and
β induce the same subgraph G′ of G. Next, consider the mapping assigning the jth
vertex of the combined k-tuple αβ to the jth vertex of H, where vertices of Hsub

have numbers 1 through l. By the definition of the equivalence classes, this mapping
is a subgraph isomorphism between H and G′ extending the isomorphism between
Hsub and the subgraph of G induced by α. Hence, G′ is isomorphic to a graph H ′ in
SHk(Hsub, H). It follows also that the mapping assigning the ith vertex of Hsub to
the ith vertex of the l-tuple which is the image of α under the isomorphism between
G′ and H ′ is one of the isomorphisms accounted into the value of B(Hsub, H

′).
On the contrary, consider a set of k vertices in G which induces a subgraph G′ of

G isomorphic to a graph H ′ in SHk(Hsub, H).

By Definition 3.1, there are B(Hsub, H
′) l-tuples α such that the mapping assign-

ing the ith vertex of Hsub to the ith vertex of α is an isomorphism between Hsub and
the subgraph of G′ induced by α that can be extended to a subgraph isomorphism
between H and G′. For each such subgraph isomorphism f , let βf be the (k− l)-tuple
whose qth element is the image of the (l + q)th vertex in H. All such (k − l)-tuples
βf can be obtained one from another by a collection of permutations applied to the
groups of vertices that have the same neighborhood in Gsub. Thus, they fall in the
same equivalence class C with respect to α.

Furthermore, any (k − l)-tuple γ which is a permutation of β ∈ C, where the
neighborhood of ith vertex of γ in the subgraph Gsub induced by α corresponds to
that of the ith vertex of H\Hsub in Hsub under the isomorphism between Hsub and
Gsub, jointly with α defines one of the subgraph isomorphisms f and falls in the class
C with respect to α.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 899

Finally, no other (k− l)-tuple δ that together with the l-tuple α yields a subgraph
isomorphism between H and a k-vertex induced subgraph of G different from G′ can
fall in the class C with respect to α. Simply, such a δ had to consist of a different set
of k − l vertices.

We conclude that each k-vertex set inducing a subgraph isomorphic to H ′ ∈
SHk(Hsub, H) contributes B(Hsub, H

′) distinct equivalence classes.
We shall show that computing the total number of the equivalence classes easily

reduces to the l-neighborhood problem defined in the introduction. We shall denote
the time required to solve the l-neighborhood problem by Tl(n).

Proposition 3.3. The total number of the equivalence classes of (k − l)-tuples
summed over all relevant l-tuples α can be computed in time O(nl(k − l) + Tl(n)).

Proof. There are at most k − l different neighborhoods of v′i ∈ G\Gsub in the
subgraph Gsub induced by a relevant l-tuple α, corresponding to those vi ∈ H\Hsub

for i = 1, . . . , k − l in the subgraph Hsub under the isomorphism between Gsub and
Hsub (see Figure 3.1). Each of these neighborhoods can be identified with a binary
vector of length l, which we call the type of the neighborhood.

To compute the number of equivalence classes with respect to α it is sufficient to
compute, for each neighborhood type t of v′i ∈ G\Gsub in Gsub corresponding to those
of vi ∈ H\Hsub in Hsub, the number nt of vertices in G\Gsub having the neighborhood
of type t in Gsub. Note that the number of occurrences of a given neighborhood type
t in any of the (k− l)-tuples corresponding to H\Hsub is fixed, say, ot. Therefore, the
aforementioned number of equivalence classes for the (k − l)-tuples complementing
the l-tuple α is simply

∏
t

(
nt

ot

)
.

For an l-tuple α, let nt(α) be the number of vertices in G\Gsub having the neigh-
borhood type t in Gsub. Then, the number of all equivalence classes over all relevant
l-tuples α is given by the sum

∑
α

∏
t

(
nt(α)
ot

)
. If the numbers nt(α) are given, then

this sum can be easily computed in O(nl(k − l)) time. It is sufficient to observe by
the definition of the l-neighborhood problem that these numbers can be determined
by solving the latter problem.

The easily computable values of B(Hsub, H
′) (recall k = O(1)) can be treated as

coefficients at the unknowns which correspond to NI(H ′, G) for H ′ ∈ SHk(Hsub, H),
respectively, in order to form the left-hand side of an equation whose right-hand side
is the computed value of our linear combination.

We let Eq(H, l), where l ∈ {1, . . . , k−1}, denote the set of such equations, each one
with |SHk(Hsub, H)| unknowns corresponding to NI(H ′, G) for H ′ ∈ SHk(Hsub, H),
respectively.

Definition 3.4. For H ∈ Hk(l), the set Eq(H, l) consists of the following equa-
tions in one-to-one correspondence with induced subgraphs Hsub of H on l vertices:∑

H′∈SHk(Hsub,H)

B(Hsub, H
′)xH′,G =

∑
H′∈SHk(Hsub,H)

B(Hsub, H
′)NI(H ′, G),

where H\Hsub is an independent set in H.
Note that in these equations, the variables xH′,G correspond to NI(H ′, G), re-

spectively.
By Propositions 3.2 and 3.3, we obtain the following lemma.
Lemma 3.5. For H ∈ Hk(l), the right-hand side of an equation in Eq(H, l) can

be evaluated in time O(nl(k − l) + Tl(n)).
For H ′ ∈ SHk(Hsub, H), let A(Hsub, H

′) be the number of automorphisms of H ′

divided by the number of automorphisms of H ′ that are identity on Hsub. The follow-

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

900 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

ing lemma will be useful in evaluation of the coefficients of equations in Eq(H, k− 2),
where H ∈ Hk(k − 2).

Lemma 3.6. Let H ∈ Hk(k − 2), let Hsub be an induced subgraph of H on
l vertices such that the two vertices in H\Hsub form an independent set, and let
H ′ ∈ SHk(Hsub, H). The equality A(H,H ′) = B(H,H ′) holds.

Proof. LetH ′ ∈ SHk(Hsub, H), and let F be the set of all isomorphisms f between
Hsub and an induced subgraph of H ′ satisfying the requirements from Definition 3.1.

Consider an extension f ′ of f ∈ F to an isomorphism betweenH and the subgraph
of H ′ composed of Hf

sub, all edges of H
′ incident to Hf

sub, and all other vertices of H ′.
If H ′ = H , then f ′ is an automorphism of H ′. Otherwise, H ′ is the other member of
Hk(Hsub, H) obtained by adding the edge between the two independent vertices of H
outside Hsub. Then, f

′ is also an automorphism of H ′ since the only edge in H ′ not
incident to Hf

sub has to connect the f ′ images of the aforementioned two independent
vertices in H.

It follows that each f ∈ F can be identified with the class of all automorphisms of
H ′ that are equal each other on Hsub. Conversely, each such a class yields a distinct
member in F .

We conclude that B(Hsub, H
′) is equal to the number of automorphisms of H ′

divided by the number of automorphisms of H ′ that are identity on Hsub.

See Examples 3.2 and 3.3 for examples of systems of equations in Eq(H, l), where
H ∈ Hk(l). The equations in Example 3.3 can be regarded as an extension of those
for connected H ∈ H4 given in [16].

Example 3.2. The following is an example of equations in Eq(H, 1), where H ∈
H3(1) (corresponding to those in [13]).

Let G = (V,E) be a graph on n vertices, and for v ∈ V, let deg(v) stand for the
degree of v in G. Next, for i = 0, 1, 2, 3, let ti denote a graph on three vertices that
contains exactly i edges. Thus in particular t0 consists of three K1, i.e., three isolated
vertices, while t3 is a triangle, i.e., K3. For i = 0, 1, 2, we obtain the three following
equations in Eq(ti, 1), respectively:

(a) A(K1, t0)xt0,G +A(K1, t1)xt1,G =
#{(v, {u,w}) | {v, u, w} ⊂ V ∧ {{v, u}, {v, w}} ∩ E = ∅},

(b) A(K1, t1)xt1,G +A(K1, t2)xt2,G =
#{(v, (u,w)) | {v, u, w} ⊂ V ∧ {v, u} ∈ E ∧ {v, w} /∈ E},

(c) A(K1, t2)xt2,G +A(K1, t3)xt3,G =
#{(v, {u,w}) | {{v, u}, {v, w}} ⊂ E}.

By computing the coefficientsA(K1, ti), letting the unknows Ti representNI(ti, G)
instead of xti,G for i = 0, 1, 2, 3, and evaluating the right-hand sides, we obtain the
following system of linearly independent equations:

(i) 3T0 + T1 =
∑

v∈V

(
n−deg(v)−1

2

)
,

(ii) 2T1 + 2T2 =
∑

v∈V deg(v)(n− deg(v)− 1), and

(iii) T2 + 3T3 =
∑

v∈V

(
deg(v)

2

)
.

Example 3.3. Assume the notation from Example 3.2. Let quadruples stand for
unordered four-element sets in this example. Next, let

• Q0 denote the number of quadruples of vertices in G which form independent
sets, i.e., equivalently, the number of K4 in the complement graph;

• Q| denote the number of quadruples of vertices in G which induce exactly
only one edge;

• Q‖ denote the number of quadruples of vertices in G which induce exactly
two nonincident edges;

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 901

• Q∧ denote the number of quadruples of vertices in G which induce exactly a
path on two edges and an isolated vertex;

• Q⊔ denote the number of quadruples in G that induce a path on three edges;
• Q� denote the number of quadruples in G that induce exactly a star composed
of three incident edges (claw);

• Q�. denote the number of quadruples in G that induce exactly a triangle and
an isolated vertex;

• Q�− denote the number of quadruples in G that induce exactly a triangle and
an edge incident to it (paw);

• Q� denote the number of quadruples of vertices in G that induce exactly C4;
• Q� denote the number of quadruples of vertices in G that induce exactly five
edges of G, (diamond);

• Q� denote the number of quadruples of vertices in G that induce six edges
of G, i.e., K4.

We obtain the following system of 10 linearly independent left-hand sides of sim-
plified equations respectively in Eq(Hs, 2), where Hs is a subgraph of K4 counted
in Qs, and for simplicity Qs stand also for the variable corresponding to Qs. The
right-hand sides of these equations can be computed in O(nω) time. In part, these
equations coincide with the equations for connected Qs presented in [16]. It is indi-
cated in parentheses whether K2 or an independent set on two vertices, denoted by
I2, is respectively used as Hsub.

1. 12Q0 + 2Q| (I2),
2. 2Q| + 4Q|| (K2),

3–4. 2Q∧ + 6Q� (I2), 8Q|| + 2Q⊔ (I2),
5–7. 6Q�. + 2Q�− (K2), 4Q⊔ + 4Q�− (I2),

6Q� + 2Q�− (K2),
8. 4Q� + 2Q� (I2),
9. 4Q�− + 8Q� (K2),

10. 2Q� + 12Q� (K2).
Note that in particular the obvious equation Q0 +Q| +Q∧ +Q|| +Q�. +Q⊔ +

Q� +Q�− +Q� +Q� +Q� =
(
n
4

)
can be easily derived from these equations.

Lemma 3.7. For each H in Hk(l), pick an arbitrary equation from Eq(H, l). The
resulting system of |Hk(l)| equations is linearly independent.

Proof. Sort the graphs in Hk so that the number of edges is nondecreasing and the
graphs inHk(l) form a prefix of the sorted sequence. Let B be the |Hk(l)|×|Hk|matrix
corresponding to the left-hand side of the equations in Eq(H, l) forH ∈ Hk(l) with the
rows ofB corresponding toH ∈ Hk(l) and the columns ofB corresponding toH ′ ∈ Hk

sorted in the aforementioned way. It follows from the definition of the equations that
the leftmost maximal square submatrix M of B of size |Hk(l)| × |Hk(l)| has nonzero
elements along the diagonal starting from the top-left corner. Furthermore, below the
diagonal there are only zeros, since each supergraph H ′ of H on the same vertex set,
that is identical on Hsub and the edges between Hsub and H\Hsub, cannot have fewer
or equally many edges as H unless H ′ = H .

4. Counting and detection of induced subgraphs of equal size. In this
section, we shall use the equations derived in the previous section to count and detect
different induced subgraphs of equal fixed size.

Theorem 4.1. If for all H ∈ Hk\Hk(l) the values NI(H,G) are known, then
for all H ′ ∈ Hk, the numbers NI(H ′, G) and N(H ′, G) can be determined in time
O(|Hk(l)|(nl(k− l)+ |Hk|k2k!+ |Hk(l)|2)+Tl(n)), in particular in time O(nl+Tl(n))
for k = O(1).

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

902 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

Proof. We can enumerate all subgraph isomorphisms between two graphs on k ver-
tices inO(k2k!) time. Hence, computing all the possible coefficients B(Hsub, H) on the
left sides of the equations from Lemma 3.7 takes time O(|Hk(l)||Hk|k2k!). It follows by
Lemma 3.5 that forming the aforementioned equations takes time O(|Hk(l)||Hk|k2k!+
|Hk(l)|nl(k−l)+Tl(n)). If for allH ∈ Hk\Hk(l), the values NI(H,G) are known, then
we can substitute these values for the corresponding variables in the aforementioned
equations.

Assume the definition of the matrix B from the proof of Lemma 3.7. Note that
the aforementioned substitutions do not affect the leftmost maximal square submatrix
M of the matrix B. Since M has zeros below the diagonal starting from the top-
left corner, we infer that the resulting |Hk(l)| equations with |Hk(l)| unknowns are
also linearly independent. Hence, we can solve the resulting equations completely in
O(|Hk(l)|3) time. It remains to apply Fact 2.1 to obtain all the values N(H ′, G) as
well.

Let H = (VH , EH) and G = (VG, EG). Clearly, if we are interested in the number
of bijections b : VH → VG such that {b(u), b(v)} ∈ EG iff {u, v} ∈ EH , then we should
multiply NI(H ′, G) with the number of automorphisms of H ′. The latter can be
computed by checking all permutations of vertices in O(k!k2) time.

Marginally, Theorem 4.1 can be extended to the following form, symmetric with
respect to NI(H,G) and N(H,G), by Fact 2.1.

Theorem 4.2. If for all H ∈ Hk\Hk(l) either the values N(H,G) or the values
NI(H,G) are known, then for all H ′ ∈ Hk, the numbers N(H ′, G) and NI(H ′, G)
can be determined in time O(nl + Tl(n)) for k = O(1).

Proof. By Theorem 4.1, we may assume w.l.o.g. that N(H,G) are known for
all H ∈ Hk\Hk(l). Form the initial |Hk(l)| linearly independent equations with |Hk|
unknowns corresponding to NI(H ′, G), where H ′ ∈ Hk, as in the proof of Theo-
rem 4.1. Let B be the |Hk(l)|× |Hk| matrix of coefficients of the left-hand sides of the
aforementioned equations. By Fact 2.1, these equations can be transformed into an-
other set of |Hk(l)| equations with |Hk| unknowns corresponding to N(H ′, G), where
H ′ ∈ Hk. The matrix of coefficients of the left-hand sides of the new set of equations
is the matrix product of B with the inverse of the matrix M given in Fact 2.1. Since
B has rank |Hk(l)| and M is nonsingular, the product matrix has also rank |Hk(l)|.
Thus, the new set of |Hk(l)| equations is also linearly independent. Note also that
each of the new equations corresponding to an original equation in Eq(Hsub, H) will
have a nonzero coefficient solely at N(H,G) and N(H ′, G), where H ′ is a supergraph
of H in Hk, by the analogous property of the original equations and Fact 2.1.

Now, if we substitute the known values N(H,G) for the corresponding variables
in these new equations, we obtain |Hk(l)| equations with |Hk(l)| unknowns. The
resulting equations are also linearly independent by the arguments analogous to that
in the proof of Lemma 3.7. Hence, we can solve them completely to obtain all values
N(H ′, G) for H ′ ∈ Hk. By symmetrically applying Fact 2.1, we also obtain all values
NI(H ′, G) for H ′ ∈ Hk.

For the problem of deciding whether the input graphG has a subgraph isomorphic
to a given H ∈ Hk\Hk(l), we obtain the following stronger result (our first main
result).

Theorem 4.3. For k = O(1) and any H ∈ Hk(l), one can decide whether
N(H,G) = 0 in time O(nl + Tl(n)).

Proof. Let H ∈ Hk(l). N(H,G) > 0 iff there is a supergraph H1 of H in Hk

such that NI(H1, G) > 0. Therefore, for each supergraph H1 of H (including H), we
proceed as follows.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 903

If H1 ∈ Hk(l), we consider the equation in Eq(H, l) in the set of equations from
the proof of Lemma 3.7 and Theorem 4.1. Its left-hand side is a linear combination
of variables xH′ in one-to-one correspondence to NI(H ′, G), where H ′ = H1 or H ′ is
some supergraph of H1 in Hk, and all coefficients are positive. Hence, by computing
the right-hand side of the equation in time O(nl + Tl(n)) according to Lemma 3.5,
we can decide whether there is a supergraph H ′ of H in a set of supergraphs of H1

including H1 such that NI(H ′, G) > 0. If the right-hand side is positive we know that
N(H,G) > 0.

If H1 /∈ Hk(l), we consider the supergraph H2 of H which results from H1 by
deleting all edges between the k − l independent vertices of H. Clearly, H2 is also a
subgraph ofH1 and it belongs toHk(l). Importantly, in the equation in Eq(H2, l) there
must be a variable xH1 corresponding to NI(H1, G). Hence, similarly to the previous
case, by computing the right-hand side of the equation in time O(nl + Tl(n)), we can
decide whether there is a supergraph H ′ of H in a set of supergraphs of H including
H1 such that NI(H ′, G) > 0.

If we obtain negative answers for all supergraphs H1 of H , then we know that
N(H,G) = 0.

Since for k = O(1) the total number of supergraphs H1 ∈ Hk is O(1), the total
time complexity remains O(nl + Tl(n)).

Note that we can also estimate N(H,G) for H ∈ Hk(l) within a constant mul-
tiplicative factor in time O(nl + Tl(n)). It is sufficient to compute the sum of the
right-hand sides of the equations used in the proof of Theorem 4.3. Since for k = O(1)
the total number of the equations is O(1) and the coefficients at NI(H1, G), where
H1 is a supergraph of H in Hk, are also O(1), each copy of such supergraph H1 will
be counted only O(1) times in the sum.

5. Fast counting of small subgraphs with an independent set of size 2.
For l = k − 2, we can derive our most interesting results on computing N(H,G). We
begin with the following useful transformation of our equations.

Lemma 5.1. The set of equations in Eq(H, k − 2) for H ∈ Hk(k − 2) from the
proofs of Theorem 4.1 and Lemma 3.7 can be transformed to an equivalent set of

equations whose left-hand sides are of the form xH + (−1)(
k
2)−mH+1N(H,Kk)xKk

,
where xH and xKk

are respectively in one-to-one correspondence with NI(H,G) and
NI(Kk, G), where mH stands for the number of edges of H, and whose right-hand
sides are computable in time O(nk−2 + Tk−2(n)).

Proof. Consider the set S of linearly independent equations from Eq(H, k − 2),
H ∈ Hk(k − 2) from the proofs of Theorem 4.1 and Lemma 3.7. By the structure
of these equations, they can be easily transformed into the set of equations with the
left-hand side of the form xH + cHxKk

, where xH is the variable corresponding to
NI(H,G), xKk

is the variable corresponding to NI(Kk, G), cH is a constant, and the
right-hand side is computable in time O(nk−2 + Tk−2(n)).

To show that cH = (−1)(
k
2)−mH+1N(H,Kk), we need to introduce the following

notation.
For F ∈ Hk, let aut(F) be the number of automorphisms of F and let autid(Hsub, F)

be the number of automorphisms of F that are identity on Hsub.
Note that for F ∈ Hk, N(F,Kk) = k!/aut(F) = aut(Kk)/aut(F) holds.
We shall prove by induction on the number of edges missing to Kk, i.e.,

(
k
2

)−mF ,

that for F ∈ Hk(k − 2), the equality cF = (−1)(
k
2)−mF+1aut(Kk)/aut(F) holds.

Recall Lemma 3.6. Consider an original equation whose left-hand side is of the
form A(Hsub, H)xH + A(Hsub, H

′)xH′ , where Hsub is a subgraph of H including all

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

904 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

vertices and edges of H but two vertices not connected by an edge and edges in-
cident to them, and H ′ denotes H augmented by the edge connecting these two
vertices.

By the definition, we have A(Hsub, F) = aut(F)/autid(Hsub, F) for F ∈ {H,H ′}.
Note also that if there is an automorphism of F ∈ {H,H ′} in autid(Hsub, F) that
is not identity on F , then the two vertices of F outside Hsub have to have the same
neighborhood in Hsub. It follows that autid(Hsub, H) = autid(Hsub, H

′).
SupposeH = Kk\e. By the equalitiesA(Hsub, H) = aut(Kk\e)/autid(Hsub,Kk\e),

A(Hsub,Kk) = aut(Kk)/autid(Hsub,Kk), and autid(Hsub,Kk\e) = autid(Hsub,Kk),
it is sufficient to multiply the equation by autid(Hsub,Kk)/aut(Kk\e) to transform

its left-hand side to the form xKk\e + aut(Kk)
aut(H) xKk

. Thus, the induction hypothesis

holds for F = Kk\e.
We may assume further thatH is a strict subgraph ofKk\e and that the induction

hypothesis holds for F = H ′.
We have cH = − cH′A(Hsub,H

′)
A(Hsub,H) . By A(Hsub, F) = aut(F)/autid(Hsub, F) and the

inductive hypothesis, the latter equality yields cH equal to

− (−1)(
k
2)−mH′+1aut(Kk)

aut(H ′)
aut(H ′)

autid(Hsub, H ′)
autid(Hsub, H)

aut(H)
.

By autid(Hsub, H
′) = autid(Hsub, H) and straightforward simplifications, we obtain

the induction hypothesis for F = H.
The following theorem is an immediate consequence of Lemma 5.1 and

Theorem 4.2.
Theorem 5.2. For any H ∈ Hk, if the value of NI(H,G) is known, then

for all H ′ ∈ Hk, the numbers NI(H ′, G) and N(H ′, G) can be determined in time
O(nk−2 + Tk−2(n)) for k = O(1).

Proof. If the value of NI(H,G) is known, then by Lemma 5.1 that of NI(Kk, G)
can be computed in time O(nk−2 + Tk−2(n)). Now the thesis follows from
Theorem 4.2.

Fact 2.1 combined with Lemma 5.1 yields our main result in this section.
Theorem 5.3. For any H ∈ Hk(k− 2), i.e., any graph H on k vertices different

from Kk, N(H,G) can be computed in time O(nk−2 + Tk−2(n)).
Proof. For H ′
= Kk, let CH′ be the right-hand side of the normalized equation

in Eq(H ′, k − 2) with variables xH′ and xKk
in Lemma 5.1. Note that CH′ can be

computed in time O(nk−2+Tk−2(n)) by Lemma 5.1. For convention, we set CKk
= 0.

Let k′ =
(
k
2

)
. Since xH′ corresponds to NI(H ′, G), we obtain the following equality:

NI(H ′, G) = CH′ + (−1)k
′−mH′N(H ′,Kk)NI(Kk, G).

For H ′ ∈ Hk, we shall denote the set of edges of H ′ by EH′ and its cardinality
by mH′ . Let H ∈ Hk(k − 2). By combining the expression of N(H,G) in terms of
NI(H ′, G), where H ′ ranges over supergraphs of H in Hk, given in Fact 2.1 with the
aforementioned equalities for NI(H ′, G), we obtain

N(H,G) = C +
∑

H′∈Hk, EH⊆EH′

(−1)k
′−mH′N(H,H ′)N(H ′,Kk)NI(Kk, G),

where C =
∑

H′∈Hk&EH⊆EH′ N(H,H ′)CH′ can be computed in time O(nk−2+Tk−2(n)).

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 905

On the other hand, for any mH ≤ i ≤ k′, we have∑
H′∈Hk,EH⊆EH′ ,mH′=j

N(H,H ′)N(H ′,Kk)NI(Kk, G)

= N(H,Kk)NI(Kk, G)

(
k′ −mH

j −mH

)
.

It follows that

N(H,G) = C +N(H,Kk)NI(Kk, G)

⎛
⎝ k′∑

j=mH

(−1)k
′−j

(
k′ −mH

j −mH

)⎞⎠ .

On the other hand, we have

k′∑
j=mH

(−1)k
′−j

(
k′ −mH

j −mH

)
=

k′−mH∑
m=0

(−1)(k
′−mH)−m

(
k′ −mH

m

)
= 0.

We conclude that N(H,G) = C, i.e., N(H,G) can be computed in time
O(nk−2 + Tk−2(n)).

6. Solving the l-neighborhood problem and finalizing the main results.
We can solve the l-neighborhood problem (see the introduction) for a graph G as
follows.

If the length l of the binary vectors b is 1, then for each vertex v of G it is sufficient
to report the number of neighbors if b(1) = 1 or nonneighbors if b(1) = 0.

Suppose that l > 1. For each binary vector b of length l, we proceed as follows.
We form two arithmetic matrices A and B. The rows of the matrix A correspond to
�l/2-tuples of vertices of G. The columns of A correspond to vertices of G. Each entry
A[t1, k] is set to 1 iff the kth vertex has the neighborhood in the subgraph induced by
the �l/2-tuple t1 of vertices described by the first �l/2 bits of the vector b; otherwise
A[t1, k] is set to 0. We define the matrix B analogously by substituting �l/2�-tuples
for �l/2-tuples and exchanging rows with columns. Thus, in particular, if l is even,
then the transpose of B is equal to A.

Note that the matrices A and B can be constructed in time O(n�l/2�+1l).
Consider now the arithmetic product C of A and B. Let t be any tuple of l vertices

in G. Decompose t into the prefix t1 of length �l/2 and the suffix t2 of length �l/2�.
Observe that C[t1, t2] is equal to the number of vertices in G that have neighborhood
specified by the binary vector b.

It follows that it is sufficient to compute the product C. Note that there are 2l

different vectors b. Recall that ω(p, q, r) denotes the exponent of fast matrix multipli-
cation for rectangular matrices of size np × nq and nq × nr, respectively. We obtain
the following theorem.

Theorem 6.1. The l-neighborhood problem for a graph on n vertices can be
solved in time O(n) for l = 1 and in time O(2lnω(�l/2�,1,�l/2�)) for l ≥ 2.

By combining Theorem 6.1 with Theorems 4.3 and 5.3, and observing that ω(�l/2,
1, �l/2�) ≥ l, we obtain the following more explicit formulation of our main results.

Theorem 6.2. For k = O(1) and any H ∈ Hk(l), one can decide whether
N(H,G) = 0 in time O(nω(�l/2�,1,�l/2�)).

By [8, 14], when 1 ≤ 0.294 l/2 = 0.147l and so if l ≥ 7, then the time upper
bound in Theorem 6.2 does not exceed O(nl).

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

906 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

Theorem 6.3. Let k = O(1). For all H ∈ Hk(k − 2), i.e., all H ∈ Hk\{Kk},
the numbers N(H,G) can be computed in time O(nω(�(k−2)/2�,1,�(k−2)/2�)).

Corollary 6.4. For all H ∈ H4\{K4}, the numbers N(H,G) can be computed
in O(nω) time.

Corollary 6.5. For all H ∈ H5\{K5}, the numbers N(H,G) can be computed
in O(nω(2,1,1)) time.

Recently, Le Gall has shown that ω(2, 1, 1) < 3.257 [18].
In the particular case of a few graphs termed 4-cyclic by Alon, Yuster, and Zwick

in [3], Corollary 6.4 coincides with their result stating that for k = 3, . . . , 7 and any
k-cyclic graph H, N(H,G) can be computed in O(nω) time [3]. The k-cyclic graphs
form a narrow family of sparse graphs in Hk that are homomorphic images of Ck.

To estimate O(nω(�(k−2)/2�,1,�(k−2)/2�)) the following facts proved by Coppersmith
[8] and Huang and Pan [14] are useful.

Fact 6.1 (see [8, 14]). Let α = sup{0 ≤ t ≤ 1:ω(1, t, 1) = 2+o(1)} < 0.294. Then
ω(1, t, 1) ≤ 2+ o(1) for t ∈ [0, α] and ω(1, t, 1) = 2+ ω−2

1−α (t−α) + o(1) for t ∈ [α, 1].
With more work, Huang and Pan [14] derived the following generalization of

Fact 6.1.
Fact 6.2 (see [14]). Let α be defined as in Fact 6.1. Suppose 0 ≥ t ≤ 1 ≤ r.

Then ω(t, 1, r) = r + 1+ o(1) for t ∈ [0, α] and ω(t, 1, r) = r + 1+ ω−2
1−α (r − α) + o(1)

for t ∈ [α, 1].
By combining the inequality ω(p, q, r) ≤ aω(p/a, q/a, r/a) for a ≥ 1 with Fact 6.1

for even l and with Fact 6.2 for odd l, we obtain the following estimation of the
run-times in Theorems 6.2 and 6.3.

Remark 6.1. For even l, nω(�l/2�,1,�l/2�) ≤ n0.922l+0.533 holds, while for odd l,
nω(�l/2�,1,�l/2�) ≤ n0.922l+1.533 holds.

7. Detecting and counting fixed subgraphs in sparse graphs. Recall the
proof of Proposition 3.3. Given a list L of the relevant l-tuples, one can also solve the
l-neighborhood problem in time proportional to |L|n. Hence, we obtain the following
counterpart of Proposition 3.3.

Proposition 7.1. Let k = O(1), H ∈ Hk(l), and let Hsub be a subgraph of H
such that H\Hsub forms an independent set of size k − l. Suppose that all induced
subgraphs of G isomorphic to Hsub can be listed in time THsub

. Then the right-hand
side of the equation in Eq(H, l) with Hsub (see section 3) can be computed in time
O(THsub

+NI(Hsub, G)n).
In particular, if Hsub = Kl, then we have THsub

= O(a(G)l−2m) by [7]. (Recall
that a(G) stands for the arboricity of G and m for the number of edges in G.) Hence,
using also Theorem 6.1, we obtain the following lemma.

Lemma 7.2. Let k = O(1) and H ∈ Hk(l). The right-hand side of the equation in
Eq(H, l) with Hsub=Kl can be computed in time O(min{a(G)l−2mn, nω(�l/2�,1,�l/2�)}+
a(G)l−2m).

We can also list induced copies ofHsub having relatively large maximum matching
substantially faster than in O(nl) time when the input graph G is sparse. Suppose
that Hsub has a matching of size q. It follows that the relevant l-tuples of vertices
inducing a subgraph isomorphic toHsub can be generated in time at most proportional
to the number of pairs composed of a q-tuple of edges and (l − 2q)-tuple of vertices
jointly inducing a subgraph isomorphic to Hsub. Hence, assuming l = O(1), we obtain
THsub

(n) = O(mqnl−2q). Clearly, we have also NI(Hsub, G) ≤ O(mqnl−2q) in this
case. By plugging the aforementioned upper bounds into Proposition 7.1 and using
Theorem 6.1, we obtain the following lemma.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 907

Lemma 7.3. Let k = O(1) and H ∈ Hk(l). The right-hand side of the equation in
Eq(H, l) with Hsub having a matching of size q can be computed in time O(mqnl−2q+
min{mqnl−2q+1, nω(�l/2�,1,�l/2�)}).

Observe that our main results on detection (Theorems 4.3 and 6.2) and counting
(Theorems 5.3 and 6.3) hold if we restrict the set of equations used in their proofs to
the following single representatives of Eq(H̃, l):

1. H̃ ∈ Hk(l) can be decomposed into a supergraph H∗ of our particular Hsub

having exactly l vertices so that H̃\H∗ forms an independent set on k − l
vertices.

2. The aforementioned supergraph H∗ plays the role of Hsub in the single equa-
tion from Eq(H̃, l).

Simply, the aforementioned proofs use only equations for supergraphs of H in
Hk(l), which in turn are included in the set of H̃ ’s.

Since H∗ as a supergraph of Hsub has also a matching of size at least q, the time
upper bound of Lemma 7.3 holds also for the equation in Eq(H̃, l).

Summarizing, we obtain the following sparse extensions of Theorems 6.2 and 6.3
by Lemma 7.2 and Lemma 7.3, respectively.

Theorem 7.4. Let k = O(1) and H ∈ Hk(l). If H is decomposable into a
clique on l vertices and an independent set on k − l vertices and possibly some
edges between these two subgraphs, then one can decide whether N(H,G) = 0 in
time O(a(G)l−2m)+min{a(G)l−2mn, nω(�l/2�,1,�l/2�)}). Furthermore, if k − l = 2,
then one can also compute N(H,G) in time O(a(G)k−4m + min{a(G)k−4mn,
nω(�(k−2)/2�,1,�(k−2)/2�)}).

Note that if H satisfies the requirements of Theorem 7.4, then it is in particular
a split graph [6].

Theorem 7.5. Let k = O(1) and H ∈ Hk(l). If H is decomposable into a
subgraph having a matching of size q and a subgraph forming an independent set on
k − l vertices and possibly some edges between these two subgraphs, then one can
decide whether N(H,G) = 0 in time O(mqnl−2q +min{mqnl−2q+1, nω(�l/2�,1,�l/2�)}).
Furthermore, if k − l = 2, then one can also compute N(H,G) in time O(mqnk−2q−2+
min{mqnk−2q−1, nω(�(k−2)/2�,1,�(k−2)/2�)}).

Note that for any graph the complement to the set of vertices covered by a max-
imal matching is an independent set. Hence, we obtain the following corollary from
Theorem 7.5.

Corollary 7.6. Let k = O(1) and H ∈ Hk. If H has a maximal matching of size
q, then one can decide whether N(H,G) = 0 in time O(mq + min{mqn, nω(q,1,q)}).
Furthermore, if k − 2q = 2, then the numbers N(H,G) can be computed in time
O(m(k−2)/2 +min{m(k−2)/2n, nω((k−2)/2,1,(k−2)/2)}).

8. Final remarks. Our results confirm the following scenario for the problems
of counting or detecting copies of a graph H on k vertices with an independent set
of size s. In the induced subgraph isomorphism case, the counting versions of these
problems seem to be hard for all such H , independently of their density and the size
of s. (See Theorem 5.2, and for its special four-vertex cases see also [16].) On the
contrary, in the subgraph isomorphism case, it seems that the larger s, the better the
upper bounds we can obtain (recall our two main results and [25]).

The extreme case when the pattern graph is just a set of k isolated vertices fully
confirms the scenario. In the induced subgraph isomorphism case, the problems of
counting and detecting are equally as hard as those for the k-clique, while in the
subgraph isomorphism case they become trivial.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

908 M. KOWALUK, A. LINGAS, AND E.-M. LUNDELL

Incidentally, our O(nω)-bound for H ∈ H4\{K4} coincides with the best known
running time for detecting or counting copies of K3, while our O(nω(2,1,1))-bound for
H ∈ H5\{K5} coincides with the best known running time for detecting or counting
copies of K4.

Of course, the ultimate goal is to improve the time upper bounds for complete
graphs, and even improvements for K4 or K5 could lead to such a global improvement.

However, there is a large spectrum of applications where detecting or counting not
necessarily complete small pattern graphs occurs. Very recent examples of applica-
tions include identification of computational patterns in automatic design of processor
systems [27], motif counting and discovery in biomolecular networks [1], and structure
discovery in protein networks [4].

Acknowledgments. The authors are very grateful to unknown referees whose
comments helped to improve a preliminary version of the paper. Special thanks go
to the referee who simplified the time upper bounds in our main results and provided
many other valuable comments.

REFERENCES

[1] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp, Biomolecular
network motif counting and discovery by color coding, Bioinformatics, 24 (2008), pp. 241–
249.

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[3] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica,

17 (1997), pp. 209–223.
[4] P. Bachman and Y. Liu, Structure discovery in PPI networks using pattern-based network

decomposition, Bioinformatics, 25 (2009), pp. 1814–1821.
[5] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Counting Paths and Packings in

Halves, in Lecture Notes in Comput. Sci. 5757 (A. Fiat and P. Sanders, eds.), Springer,
New York, 2009, pp. 578–586.

[6] A. Brandstädt, V. B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM Monogr.
Discrete Math. Appl., SIAM, Philadelphia, 1999.

[7] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput., 14
(1985), pp. 210–223.

[8] D. Coppersmith, Rectangular matrix multiplication revisited, J. Complexity, 13 (1997), pp. 42–
49.

[9] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput., 9 (1990), pp. 251–280.

[10] F. Eisenbrand and F. Grandoni, On the complexity of fixed parameter clique and dominating
set, Theoret. Comput. Sci., 326 (2004), pp. 57–67.

[11] F. V. Fomin, D. Lokshtanov, V. Raman, B. V. R. Rao, and S. Saurabh, Faster Algorithms
for Finding and Counting Subgraphs, J. Comput. Systems Sci., 78 (2012), pp. 698–706.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, New York, 2003.

[13] A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly,
66 (1959), pp. 778–783.

[14] X. Huang and V. Y. Pan, Fast rectangular matrix multiplications and applications, J. Com-
plexity, 14 (1998), pp. 257–299.

[15] A. Itai and M. Rodeh, Finding a minimum circuit in a graph, SIAM J. Comput., 7 (1978),
pp. 413–423.

[16] T. Kloks, D. Kratsch, and H. Müller, Finding and counting small induced subgraphs
efficiently, Inform. Process. Lett., 74 (2000), pp. 115–121.

[17] W. L. Kocay, Some new methods in reconstruction theory, in Combinatorial Mathematics IX,
Lecture Notes in Math. 952, Springer, New York, 1982, pp. 89–114.

[18] F. Le Gall, Faster algorithms for rectangular matrix multiplication, in Proceedings of the
53rd Annual IEEE Symposium on Foundations of Computer Science, 2012, pp. 514–523.

[19] J. Nes̆etr̆il and S. Poljak, On the complexity of the subgraph problem, Comment. Math.
Univ. Carolin., 26 (1985), pp. 415–419.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COUNTING AND DETECTING SMALL SUBGRAPHS 909

[20] J. Plehn and B. Voigt, Finding Minimally Weighted Subgraphs, Lecture Notes in Comput.
Sci. 484, Springer, Berlin, 1991, pp. 18–29.

[21] A. Stothers, On the Complexity of Matrix Multiplication, Ph.D. thesis, University of Edin-
burgh, 2010.

[22] V. Vassilevska, Efficient algorithms for clique problems, Inform. Process. Lett., 109 (2009),
pp. 254–257.

[23] V. Vassilevska, Efficient Algorithms for Path Problems in Weighted Graphs, Ph.D. thesis,
Carnegie Mellon University, 2008.

[24] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in Proceedings of
the 44th ACM Symposium on Theory of Computing Conference, 2012, pp. 887–898.

[25] V. Vassilevska and R. Williams, Finding, minimizing, and counting weighted subgraphs,
in Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009,
pp. 455–464.

[26] R. Williams, Finding paths of length k in O*(2k) time, Inform. Process. Lett., 109 (2009),
pp. 315–318.

[27] C. Wolinski, K. Kuchcinski, and E. Raffin, Automatic design of application-specific recon-
figurable processor extensions with UPaK synthesis kernel, ACM Trans. Design Automat.
Electron. Syst., 15 (2009), pp. 1–36.

[28] R. Yuster and U. Zwick, Finding even cycles even faster, SIAM J. Discrete Math., 10 (1997),
pp. 209–222.

D
ow

nl
oa

de
d

05
/0

8/
14

 to
 1

71
.6

7.
21

6.
23

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

