
Finding Correlations in Subquadratic Time,
with Applications to Learning Parities and the Closest Pair Problem ∗

Gregory Valiant
Stanford University

gregory.valiant@gmail.com

August 29, 2013

Abstract

Given a set of n d-dimensional Boolean vectors with the promise that the vectors are chosen uni-
formly at random with the exception of two vectors that have Pearson–correlation ρ (Hamming dis-
tance d· 1−ρ

2), how quickly can one find the two correlated vectors? We present an algorithm which,

for any constant � > 0, and constant ρ > 0, runs in expected time O
�
n

5−ω
4−ω+� + nd

�
< O(n1.62 +

nd), where ω < 2.4 is the exponent of matrix multiplication. This is the first subquadratic–time
algorithm for this problem for which ρ does not appear in the exponent of n, and improves upon
O(n2−O(ρ)), given by Paturi et al. [29], the Locality Sensitive Hashing approach of [18] and the
Bucketing Codes approach of [13].

Applications and extensions of this basic algorithm yield significantly improved algorithms for
several other problems:
Approximate Closest Pair: For any sufficiently small constant � > 0, given n d-dimensional
vectors, our algorithm returns a pair of vectors whose Euclidean (or Hamming) distance differs
from that of the closest pair by a factor of at most 1+ �, and runs in time O(n2−Θ(

√
�)). The best

previous algorithms (including Locality Sensitive Hashing) have runtime O(n2−O(�)).
Learning Sparse Parities with Noise: Given samples from an instance of the learning
parities with noise problem where each example has length n, the true parity set has size at
most k << n, and the noise rate is η, our algorithm identifies the set of k indices in time
n

ω+�
3 kpoly(1

1−2η) < n0.8kpoly(1
1−2η). This is the first algorithm with no dependence on η in

the exponent of n, aside from the trivial O
��

n

k

��
≈ O(nk) brute-force algorithm, and for large

noise rates (η > 0.4), improves upon the results of Grigorescu et al. [15] that give a runtime of

n(1+(2η)2+o(1)) k
2 poly(1

1−2η).
Learning k-Juntas with Noise: Given uniformly random length n Boolean vectors, together
with a label, which is some function of just k << n of the bits, perturbed by noise rate η,
return the set of relevant indices. Leveraging the reduction of Feldman et al. [14] our result for

learning k-parities implies an algorithm for this problem with runtime n
ω+�
3 kpoly(2k, 1

1−2η) <

n0.8kpoly(2k, 1
1−2η), which is the first runtime for this problem of the form nck with an absolute

constant c < 1.
Learning k-Juntas without Noise: Given uniformly random length n Boolean vectors, to-
gether with a label, which is some function of k << n of the bits, return the set of relevant
indices. Using a modification of the algorithm of Mossel et al. [24], and employing our algorithm
for learning sparse parities with noise via the reduction of Feldman et al. [14], we obtain an algo-

rithm for this problem with runtime n
ω+�
4 kpoly(2k, n) < n0.6kpoly(2k, n), which improves on the

previous best of n
ω+1
ω k ≈ n0.7kpoly(2k, n) of Mossel et al. [24].

∗
A preliminary version of a portion of this work appeared at the IEEE Symposium on Foundations of Computer

Science (FOCS) 2012, as “Finding Correlations in Subquadratic Time, with Applications to Learning Parities and

Juntas” [37].

1

1 Introduction

One of the most basic statistical tasks is the problem of finding correlations in data. In some settings,
the data is gathered with the specific goal of ascertaining the set of correlated or anti-correlated
variables; in many other settings, the identification of correlated features is used repeatedly as a
key data analysis primitive within the context of more complex algorithms. This prompts the basic
question: how quickly can one find correlated features in data?

With the recent rise of big data, this question has immediate practical relevance. To give one
concrete example, in the case of genome-wide association studies (GWAS), it is the computational
challenge of efficiently inferring the structural relationships between the millions of genetic markers
that is the bottleneck in unlocking information into the genetic factors that predict disease and
health risks (see e.g. [22, 40]).

Perhaps the most simple formalization of this problem of finding correlations is the following:
Given a set of n d-dimensional Boolean vectors with the promise that the vectors are chosen uniformly
at random from the Boolean hypercube, with the exception of two vectors that have Pearson–
correlation ρ (Hamming distance d · 1−ρ

2), how quickly can one find the correlated pair? This problem
was, apparently, first posed by Leslie Valiant in 1988 as the light bulb problem [38]. The first positive
solution was provided by Paturi et al. [29], who gave an n2−Θ(ρ) algorithm. Curiously, this basic
setting arises as a special case of various problems that are central to theoretical computer science.

Perhaps most obviously, the light bulb problem is a special case of the approximate closest pair
problem: given a set of vectors, how can one quickly find two vectors with near-minimal Hamming,
or Euclidean distance? Surprisingly, previous algorithms obtained comparable runtimes for the light
bulb problem and approximate closest pair problem; phrased differently, in contrast to our algorithms,
these algorithms do not significantly leverage the randomness in the light bulb problem, and the fact
that nearly all the pairwise distances are extremely concentrated near d/2.

The light bulb problem is also easily recognized as a special case of learning parity with noise1:
suppose one is given access to a sequence of examples (x, y), where x ∈ {−1,+1}n is chosen uniformly
at random, and y ∈ {−1,+1} is set so that y = z

�
j∈S xi, for some fixed, though unknown set S ⊂ [n],

where z ∈ {−1,+1} is chosen to be −1 independently for each example with probability η ∈ [0, 1/2).
In the case where the noise rate η = 0, the problem of recovering the set S is easy: given n such
examples, with high probability one can recover the set S by Gaussian elimination—translating this
problem into a problem over F2, S is given simply as the solution to a set of linear equations. From
an information theory standpoint, the addition of some nonzero amount of noise (η > 0) does not
change the problem significantly; for constant η, given O(n) examples, with high probability there
will only be one set S ⊂ [n] where the parities of the corresponding set of indices of the examples
are significantly correlated with the labels. From a computational standpoint, the addition of the
noise seems to change the problem entirely. In contrast to the simple polynomial-time algorithm for
the noise-free case, when given a small constant amount of noise, the best known algorithm, due to

Blum et al. [8] takes time 2O(n
logn).

This problem of learning parity with noise is, increasingly, understood to be a central problem in
learning theory. Additionally, this problem reoccurs in various forms in several areas of theoretical
computer science, including coding theory as the problem of decoding random binary linear codes,
and in cryptography in the form of the “learning with errors” problem that underlies lattice-based
cryptosystems, see e.g. [31, 9].

1
In particular, the light bulb problem is the problem of learning parity with noise where the true parity has size

k = 2. To see one direction of the reduction, given a matrix whose rows consist of samples from an instance of parity

with noise, if one simply throws out the data points that have an odd label, the columns in the remaining matrix will

be uniformly random, except with the two columns corresponding to the indices of the true parity being correlated.

2

Our results for learning parities apply to the setting in which the true parity set S is much smaller
than n, say k := |S| = O(log n). This problem of learning k-parities is especially relevant to Learning
Theory, as was revealed by a series of reductions given in work of Feldman et al. [14], showing that
the problem of learning k-parities (under the uniform distribution, with random classification noise)
is at least as hard as the problems of learning k-juntas (where the labels are an arbitrary function of
k bits), learning 2k-term DNFs from uniformly random examples, and the variants of these problems
in which the noise is adversarial (rather than random). The existence of such a reduction should
not be surprising: the problem of learning a parity with noise is the problem of finding a heavy
low-degree fourier coefficient, given the promise that one exists; in the case of learning a k = log(n)
sized junta, for example, one knows that there will be at most 2k significant fourier coefficients.
Intuitively, the presence of more heavy low-degree fourier coefficients should, if anything, facilitate
the task of finding such a coefficient. For reference, the specific statements of the reductions are
given in Appendix A.

All of our results rely on fast matrix multiplication: our results for the light bulb problem and
learning parity with noise use the fact that n×n matrices may be multiplied in time O(nω), for ω < 3,
with the best known bound of ω < 2.372 [42]. Our results for the Closest Pair problem rely on fast
rectangular matrix multiplication—namely that for any � > 0, for α < 0.29, the product of an n×nα

and nα×nmatrix may be computed in time O(n2+�) [11]. While the matrix multiplication does some
of the algorithmic heavy lifting, our approach introduces some new metric embedding machinery, in
particular the “Chebyshev embedding” for the approximate closest pair problem, which may be of
independent interest and utility.

1.1 Related Work

Historically, the first line of work on finding close pairs of vectors focussed on “nearest neighbor
search”: given a set of vectors how can one preprocess them such that given a new vector, one can
efficiently find the vector in the set that is closest of the new vector (with respect to some metric–
typically Euclidean distance, or Hamming distance in the Boolean setting)? For such problems, there
are typically two parameters of interest: the amount of space required to store the preprocessed set
of vectors, and the amount of time required to perform a single query.

The earliest work on this question considered the case in which the n points lie in very low
dimensional space, d = 1, 2, 3, In the case that d = 1, each point is a real number, and one can
simply sort the list of numbers, and store the sorted list. Given a new number, one can perform a
binary search over the sorted list to find the closest number. Thus the storage space is linear in the
size of the input, and each query requires O(log n) comparisons. For d ≥ 2, the analogous scheme
corresponds to partitioning the space into n regions, indexed by the points in the set, where the
region corresponding to the ith point xi consists of those points that are closer to xi than to any of
the other n− 1 points in the set.

In the case of d = 2, such a partition of the plane is known as the Voronoi diagram of the set
of n points, and yields space bounds and query time analogous to the d = 1 setting. Unfortunately,
such schemes suffer a curse of dimensionality and do not generalize well to higher dimensions; while
the query time remains polynomial in d log n, the space required to store such partitions scales as
O(n�d/2�) [10], and quickly cease to be preferable to performing the brute-force comparisons (see, for
example, [23, 41]). On the practical side, there has been considerable work in developing reasonable
data structures to partition slightly higher dimensional Euclidean spaces (d < 20), starting with the
notion of k-dimensional trees (kd–trees), introduced by Bentley [6] (see [34] for a summary including
more recent developments).

In an effort to overcome some of the difficulties of returning the exact closest point, starting in

3

the late 1990’s, significant effort was spent considering the c–approximate nearest neighbor problem
in which the goal of returning the closest point is relaxed to the more modest goal of returning a
point whose distance is at most a multiplicative factor of c = 1 + � larger than that of the closest
point. Additionally, a small probability of failure is allowed. In many practical settings, such a
relaxation is essentially equivalent to the exact nearest neighbor problem. Starting with the results
of Kushilevitz et al. [20] and Indyk and Motwani [18], algorithms requiring space that is polynomial
in n and d, with query time polynomial in d log n were given (for constant � > 0).

Introduced in work of Indyk and Motwani [18], the concept of locality sensitive hashing offered
both sublinear query time, as well as subquadratic space, thereby yielding nontrivial algorithms for

the approximate closest pair problem. Specifically, they gave an algorithm with query time O(n
1

1+�)

and space O(n1+ 1
1+�). (Throughout, we ignore log n factors, and the additive dn term in the space.)

The basic idea was to use a series of hashing functions that all have the property that close points
have a higher probability of hashing to the same bucket. To perform a given query, one simply hashes
the query point, and then checks the subset of the n data points that have also been hashed to those
buckets. Since the original paper, there have been a number of improvements in the parameters, and
generalizations from Hamming and Euclidean distance to other �p metrics [12, 28, 3]. The current
state of the art for the 1+ � nearest neighbor problem under the Euclidean metric is given in Andoni
and Indyk [3], achieving query time and space O(dnα), O(n1+α), respectively, for α = 1

(1+�)2 + o(1).

These results were recently shown to be essentially tight in the sense that for any scheme based on
locality sensitive hashing, the exponent α ≥

1
(1+�)2 − o(1) [25, 26]. (See [4] for a survey on locality

sensitive hashing.)
For the problem of finding a pair of points whose distance is at most a factor of 1+ � further than

that of the closest pair of points, by simply running the nearest–neighbor search n times—once for

each vector—one obtains algorithms with runtimes O(n1+ 1
1+�), and O(n

1+ 1
(1+�)2), respectively in the

Hamming and Euclidean settings which are the best previously known algorithms for these problems.
For small �, these runtimes are roughly O(n2−�), and O(n2−2�), respectively.

1.1.1 The Light Bulb Problem

The light bulb problem is the problem of finding a single planted pair of correlated vectors from
among a set of random Boolean vectors:

Definition 1. Given a set of n vectors in {−1,+1}d, with the promise that the vectors are chosen
uniformly at random with the exception of two vectors that have Pearson–correlation ρ (Hamming
distance d · 1−ρ

2), the light bulb problem with parameters n, d, ρ is the problem of recovering the true
correlated pair of vectors.

The light bulb problem is easily seen to be a special case of the approximate closest pair problem.
To see the correspondence in parameters, for sufficiently large dimension, d, the Hamming distance
between the correlated vectors will be at most 1−ρ

2 d whereas, with high probability, the Hamming

distance between any other pair of vectors will be close to d

2 . Thus solving the 1 + � approximate
closest pair problem for 1+ � ≈ 1

1−ρ
will, with high probability, return the correlated pair of vectors.

This special setting of the approximate closest pair problem captures much of the challenge
of the more general problem in the rigorous sense that the lower bounds for locality sensitive are
based on this planted correlation setting [25, 26]. The fact that the light bulb problem is the
hardest setting for locality sensitive hashing, together with the fact that this setting has structure
that can be leveraged—namely that, with high probability, the inner products between most of the
“uninteresting” pairs of vectors will be extremely tightly concentrated around zero—make the light
bulb problem a natural starting point for efforts to improve upon locality sensitive hashing.

4

Despite this, the light bulb problem has received much less attention than the nearest-neighbor
problem; the early work on locality sensitive hashing seemed unaware that somewhat similar ideas
had appeared nearly a decade earlier in the work of Paturi et al. [29], which gave an algorithm for

the light bulb problem with runtime O(n1+
log ρ+1

2
log 1/2), which is slightly better than that given by the

application of locality sensitive hashing for the Hamming cube given in [18]. More recently, Dubiner
introduced the “Bucketing Codes” approach [13], which is similar in spirit to the approach of Andoni

and Indyk [3], and yields an algorithm for the light bulb problem with a runtime of O(n
2

ρ+1).
For small values of ρ, all these approaches yield runtimes of n2−O(ρ), with [13] achieving the best

asymptotic runtime of O(n2−2ρ), in the limit as ρ → 0.
For our results on the light bulb problem, and closest pair problem, we will perform some metric

embeddings: the hope is to construct some embedding f : Rd → Rm with the property that if �u, v�
is large, then the inner product of the images of u and v, �f(u), f(v)� will also be large, and if the
inner product is small, the inner product of the images is tiny. For the light bulb problem, we will
be able to choose the embedding f to be a simple “XOR”/“tensor” embedding, which sets each
coordinate of f(u) to be the product of entries of u. Such an embedding has appeared previously
in several contexts, and was used by Lyubashevsky [21] to show that given few examples from an
instance of learning parity with noise, one can generate new “simulated” examples, that can be used
in place of actual examples.

Our results for the approximate closest pair problem will require a more sophisticated embedding.
In fact, it seems unlikely that we would be able to construct a single embedding f with the desired
properties (see Fact 10). Instead of using a single embedding, we will construct a pair of embeddings,
f, g : Rd → Rm with the property that �f(u), g(v)� is large [small] if �u, v� is large [small]. This
observation that a pair of embeddings can be more versatile than a single embedding was also
fruitfully leveraged by Alon and Naor in their work on approximating the cut norm of a matrix [2].

1.1.2 Parities, Juntas, and DNFs

The problem of learning parity with noise is defined as follows:

Definition 2. An example (x, y) from an (n, k, η)-instance of parity with noise, consists of x ∈

{−1,+1}n, chosen uniformly at random, together with a label y ∈ {−1,+1} defined by y = z·
�

i∈S xi,
where z ∈ {−1,+1} is chosen independently of x to be −1 with probability η, for some fixed set S ⊂ [n]
with |S| = k.

The problem of learning parity with noise is the task of recovering the set S, given access to a set
of example pairs (x, y).

In the case that the noise rate η = 0, by translating the entries of the examples from being in
{−1, 1} to being elements of F2, this problem of recovering the set S is simply the task of solving a
linear system of equations over F2, since the dot product (over F2) of each example with the indicator
of S will yield the label. Such a linear system can trivially be solved in time O(n3) via Gaussian
elimination, irrespective of k = |S|.

In contrast to the setting of solving systems of noisy linear equations over the real numbers,
there is no easy least squares regression algorithm over finite fields. For even a small positive noise
rate, η > 0, the complexity of this problem seems to change drastically; algorithms such as Gaussian
elimination will no longer work, as they proceed by adding and subtracting examples from other
examples, and the noise in the labels of the corrupted examples will thereby be spread throughout
the set of examples until there is essentially no signal left in the final output of the algorithm.

It is worth stressing that the difficulty of this problem is strictly computational. From an infor-
mation theoretic standpoint, the addition of a small amount of noise does not change the problem

5

significantly—given O(n) examples, Chernoff bounds yield that with overwhelming probability, the
true parity set S will be the only set for which the product of the corresponding indices correlates
significantly with the labels.

Interest in this problem of learning parity with noise was sparked by the results of Blum et
al. [8], who first showed that there exists a class of functions that can be learned in polynomial-time
with a constant amount of random classification noise, but which, provably, cannot be efficiently
learned in the statistical query (SQ) learning model. The SQ learning framework, introduced by
Kearns in 1993 [19], sought to abstract and formalize the restricted manner in which many types of
learning algorithms interact with data. Specifically, given a distribution over labelled examples, an
SQ algorithm interacts with the data via the following protocol: it describes a function, f1 from an
example/label pair to {0, 1}, and then receives the average value of that function over the examples,
with the addition of a small amount of (potentially adversarial) noise. The algorithm then produces
a second query, f2, and receives a perturbed expectation of that function, and so on. This framework
captures many learning algorithms: stochastic gradient descent, the perceptron algorithm, etc. The
salient feature of all SQ algorithms, is that because they only interact with the data via receiving
noisy expectations, they are robust to modest amounts of random classification noise. Intuitively,
the main limitation of SQ algorithms is that they can not interact directly with the data, precluding
algorithms such as Gaussian elimination which seem to require access to the actual data points.

Blum et al. [8] showed that parity functions on O(log n log log n) bit strings with constant noise
rate can be learned in polynomial time, whereas the earlier results of Blum et al. [7] imply that
any SQ algorithm provably requires a super-polynomial number of queries (provided the noise rate
of each query is at least inverse polynomial). Phrased differently, they presented an algorithm for

learning parity with noise over n bit strings, with runtime 2
O

�
n

logn

�

, whereas any SQ algorithm
provably required runtime 2Ω(n).

Their algorithm proceeds by obtaining a huge number of examples, 2
O

�
n

logn

�

, and then performs
a sort of “block” Gaussian elimination in which the vast number of examples is leveraged to ensure
that sets of no more than O(

√
n) examples are added together, as opposed to O(n) that would occur

in typical Gaussian elimination. This reduction in the number of examples that are added together
implies that the level of noise in the output (which increases geometrically with every additional
addition of an example), is significantly reduced, allowing for a slightly sub-exponential algorithm.

This algorithm prompted several other works, including work by Lyubashevsky [21], who showed
that a similar approach could be applied to a much smaller set of examples O(n1+�) and still obtain

a sub-exponential, though slightly larger, runtime of 2
O

�
n

log logn

�

. The algorithm of Blum et al. was
also shown to have applications to various lattice problems, including the shortest lattice vector [1].

The assumption that the noise in each example’s label is determined independently seems crucial
for the hardness of learning parity with noise. In the case in which noise is added in a structured
manner—for example, if examples arrive in sets of three, with the promise that exactly one out of
each set of three examples has an incorrect label, the recovery problem can be solved in polynomial
time, as was shown by Arora and Ge [5].

More recently, with the surge of attention on lattice problems prompted by the development of
lattice-based cryptosystems, there has been much attention on the related problem of learning with
errors (LWE). The LWE problem, introduced by Regev in 2005 [31], corresponds to the problem
of learning parity with noise with two modifications: instead of working over F2 the LWE is over a
larger finite field, and every example is perturbed by adding a small amount of (discrete) Gaussian
noise. One of the attractions of basing cryptosystems on the LWE problem is that it has been shown
to be as hard as the worst–case hardness of lattice problems such as GapSVP (the decision variant of
the shortest lattice vector problem), and SIVP (the shortest independent vectors problem) [31, 30].

6

See [32], for a relatively recent survey on LWE. There are no known such hardness reductions for
learning parity with noise.

1.2 Sparse Parities and Juntas

Our results will concern the problem of learning sparse parities with noise. Specifically, this is the
problem of learning parities with noise in the special case when the size of the parity set k = |S| is
known to be very small. Such a restriction clearly makes the problem easier, as one could simply
perform a brute-force search over all

�
n

k

�
≈ nk sets of k indices. In light of the subexponential algo-

rithm of Blum et al. [8] for learning large parities, it is tempting to hope that analogous savings over
the brute-force approach can be achieved in the sparse setting, perhaps yielding an no(k) algorithm,
though no such algorithm is known, and adapting the approach of Blum et al. to the sparse setting
seems problematic.

This problem of learning sparse parities is especially relevant to learning theory, as several other
basic problems in learning theory have been reduced to it. In 2006, Feldman et al. [14], showed that
algorithms for learning k-sparse parities with noise can be used to learn k-juntas—functions from
{0, 1}n → {0, 1} which only depend on the values of k << n of the indices (see Definition 5)—and
learning 2k-term DNF, from uniformly random examples.

The reductions of Feldman et al. transform instances of k-juntas or 2k-term DNF into instances
of parity with noise, with a parity of size ≤ k, by adding some specially designed extra noise, which
zeros out nearly all the heavy Fourier coefficients of the juntas or DNF. With some reasonable
probability, however, exactly one heavy Fourier coefficient will remain, in which case this process
has created an instance of parity with noise. It is worth stressing that such a transformation adds
a large amount of noise—corresponding to noise rate η = 1

2 −
1
2k
, thus motivating the development

of algorithms for sparse parity with noise that are very noise robust; for example, algorithms whose
runtimes depend only as poly(1

1/2−η
), as opposed to having the noise rate in the exponent of n.

For completeness, in Appendix A we include formal statements of the reductions of Feldman
et al. [14], which we use to obtain improved algorithms for learning k-juntas and DNF from our
algorithm for learning parities. We now briefly summarize the previous algorithmic work on learning
sparse parities and k-juntas.

For the problem of learning k-sparse parities with noise, in a recent paper, Grigorescu et al. [15]
adapt the approach of Hopper and Blum [16] to the noisy setting to give an algorithm that runs
in time poly(1

1−2η)n
((1+2η)2+o(1))k/2. In particular, as the noise rate goes to 0, the performance of

this algorithm tends to O(nk/2), and as the noise rate tends towards 1
2 , the dependency on n tends

towards O(nk).
For the problem of learning juntas over the uniform distribution, Mossel et al. [24] show that

size k juntas can be learned in the absence of noise, in time n
ωk
ω+1 poly(2k) ≈ n0.70kpoly(2k). This

result leverages a powerful characterization of k-juntas: in particular, they show that any k-junta
either has a nonzero Fourier coefficient of degree at most d, or, when regarded as a polynomial over
F2, the k-junta has degree at most k − d. Their result follows from balancing a brute-force search
for low-degree Fourier coefficients, with solving a large system of linear equation (using fast matrix
multiplication) to find the low-degree representation over F2 in the case that the brute-force search
did not find any heavy Fourier coefficients. As this approach involves solving a large system of linear
equations, the assumption that there is no noise is necessary. In particular, for constant noise η,
prior to our results, no algorithm for learning k-juntas with noise η > 0 running in time O(nck) for
any constant c < 1 was previously known.

For the problem of (�, δ) PAC-learning s-term DNF under the uniform distribution, the results

7

of Grigorescu et al. [15] imply a runtime of

poly(log
1

δ
,
1

�
, s)n(1−Õ(�/s)+o(1)) log s

� ,

which improves upon the O(nlog s
�) of Verbeurgt [39] from 1990.

2 Summary of Results and Techniques

We provide a summary of our main theorems, and outline the intuitions and techniques leveraged to
obtain each result.

2.1 Main Theorems

We begin by stating our main results for the light bulb problem, and finding approximate closest
pairs of points. We then give our results for learning parity with noise, and state its corollaries for
learning juntas, both with and without noise, and DNFs.

Theorem 1. Consider a set of n vectors in {−1, 1}d and constants ρ, τ ∈ [0, 1] with ρ > τ such
that for all but at most s pairs u, v of distinct vectors, |�u, v�| ≤ τd. There is an algorithm that, with
probability 1− o(1), will output all pairs of vectors whose inner product is least ρd. Additionally, the
runtime of the algorithm is

Õ
�
sdn1/(4−ω) + n

5−ω
4−ω+ω

log ρ
log τ

�
≤ O

�
sdn0.7 + n1.62+3 log ρ

log τ

�
,

where ω < 2.4 is the exponent of matrix multiplication, and the Õ notation hides polylogarithmic
factors of n.

The above theorem together with basic Chernoff bounds immediately yields the following corollary
bounding the complexity of the light bulb problem in the setting in which the dimension d is near
the information theoretic limit of O(logn

ρ2
).

Corollary 3. For any constants ρ, � > 0, there exists a constant c� dependent on � such that for
d ≥ c�

logn
ρ2

, there is an algorithm that, with probability 1− o(1), will find a planted set of ρ-correlated

vectors from among n random vectors in {±1}d, and will run in time

Õ(n
5−ω
4−ω+�) ≤ O(n1.62),

were ω > 2.4 is the exponent of matrix multiplication.

We stress that the runtimes given in the above results differs in nature from those given by pre-
vious approaches in that the dependence on the correlation, ρ, has been removed from the exponent
of n, yielding significant improvements in the asymptotic performance for small values of ρ.

Theorem 2. Given n vectors in Rd and sufficiently small approximation parameter � > 0, with
probability 1− o(1) our algorithm will return a pair of vectors u, v such ||u − v|| ≤ (1 + �)d∗, where
d∗ is the (Euclidean) distance between the closest pair of vectors. Additionally, the algorithm runs
in time

O
�
n2−Ω(

√
�) + nd

�
.

8

2.1.1 Parities, Juntas, and DNFs

Definition 4. An example (x, y) from an (n, k, η)-instance of parity with noise, consists of x ∈

{−1,+1}n, chosen uniformly at random, together with a label y ∈ {−1,+1} defined by y = z·
�

i∈S xi,
where z ∈ {−1,+1} is chosen independently of x to be −1 with probability η, for some fixed set S ⊂ [n]
with |S| = k.

Corollary 3 can be leveraged to yield an algorithm for an (n, k, η) instance of parity with noise with

runtime nk
5−ω+�
8−2ω poly(1

1−2η) ≈ n0.81poly(1
1−2η). We are able to very slightly improve this exponent

via a related, though alternate approach to obtain the following:

Theorem 3. For any fixed � > 0, for sufficiently large n and k, given examples from an (n, k, η)
instance of parity with noise, with probability 1 − o(1), our algorithm will correctly return the true
set of k parity bits. Additionally, the algorithm will run in time

n
ω+�
3 kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
).

The above theorem has immediate implications for the problems of learning juntas and DNFs,
via the reductions of Feldman et al. [14], which are summarized in Theorems A.1 and A.2 and
Corollary A.3 in the Appendix:

Definition 5. An example (x, y) from a (n, η)-instance of a noisy k-junta consists of x ∈ {−1,+1}n,
chosen uniformly at random, together with a label y ∈ {−1,+1} defined by y = z · f(xS), where
z ∈ {−1,+1} is chosen independently of x to be −1 with probability η, f is a fixed though unknown
function f : {−1,+1}k → {−1,+1}, and xS denotes the indices of x occurring in a fixed (though
unknown) set S ⊂ [n] with |S| = k.

The above theorem together with Theorem A.1 immediately implies the following corollary:

Corollary 6. For sufficiently large n and k given access to examples from an (n, η) instance of a
noisy k-junta, with constant probability our algorithm will correctly return the true set of k� ≤ k
relevant indices, and truth table for the function. Additionally, the algorithm has runtime, and
sample complexity bounded by

n
ω+�
3 kpoly(

1

1− 2η
) < n0.80kpoly(2k,

1

1− 2η
).

For the problem of learning juntas without noise, one can further improve the exponent by
combining our improved algorithm for parity with noise, with the approach of Mossel et al. [24].
Theorem 3 together with Corollary A.3 yields the following corollary for learning juntas without
noise, where the exponent is obtained by setting α = 3

4 in the statement of Corollary A.3 so as to
equate the two arguments of the max operation:2

Corollary 7. For sufficiently large n and k given access to examples from an (n, η) instance of a
noisy k-junta with η = 0, with constant probability our algorithm will correctly return the true set of
k� ≤ k relevant indices, and truth table for the function. Additionally, the algorithm has runtime,
and sample complexity bounded by

n
ω+�
4 kpoly(2k, n) < n0.60kpoly(2k, n).

2
I am grateful to Vitaly Feldman for drawing my attention to this corollary—that an improved algorithm for learning

small parities that is very noise-robust yields an improved algorithm for learning k-juntas without noise.

9

Definition 8. An example (x, y) from a r-term DNF over n bits under the uniform distribution
consists of x ∈ {−1,+1}n, chosen uniformly at random, together with a label y ∈ {−1,+1} given by
a fixed (though unknown) r-term DNF applied to x.

The following corollary follows from first arguing that an analog of Theorem 3 holds (Theorem 6)
in which the sample complexity has been reduced, and then applying Theorem A.2.

Corollary 9. For sufficiently large n and k, there exists an algorithm that (�, δ)–PAC learns r-term
DNF formulae over n bits from uniformly random examples that runs in time

poly

�
1

δ
,
r

�

�
n0.80 log r

� ,

where the logarithm is to the base 2.

2.2 Technique Overview

In this section we provide a high-level overview of the main techniques. Throughout, we favor clarity
over optimization of the constants. For the light-bulb and closest pair problems, because we are
concerned with improving the dependency on the error parameter � beyond constant factors, there
is little distinction between the Hamming setting and Euclidean setting (and, for example, one can
easily convert Euclidean unit vectors into ±1 vectors by simply choosing a random rotation of the
unit sphere, then truncating coordinates according to their signs). Thus the following techniques
will apply both to the Hamming and Euclidean settings, and we do not belabor the distinction in
this overview.

Light Bulb Problem: Section 3 begins by describing an improved algorithm for the light bulb
problem that applies to the setting where the dimension of the vectors is rather large, d ≈ n2/3, and,
in particular, is much larger than the dimension required to information theoretically recover the
true planted correlated pair. This improved algorithm leverages the following two basic observations
about this high-dimensional light bulb setting, neither of which can be exploited within the locality
sensitive hashing framework:

• With the exception of the correlated pair of vectors, given a large amount of data (high di-
mensional vectors) the inner product between pairs of vectors is extremely tightly concentrated
around a single value.

• One need not iteratively solve n nearest neighbor search problems, one for each vector; instead,
one can perform many such searches simultaneously.

The XOR/Tensor Embedding: Given the ability to efficiently solve the light bulb problem
in the setting in which the amount of data is rather large, the natural question is whether one can
reduce the low-dimensional setting, in which the inner products between typical vectors are less
tightly concentrated, to the high-dimensional setting in which the “uninteresting” inner products
have significant concentration. Specifically, given a set of vectors just over the information theoretic
dimension, we are hoping to project them into a significantly higher dimensional space in such a
way that the inner product between the planted pair remains relatively large, but the pairwise inner
products between all the other vectors become tightly concentrated (about zero). It is worth stressing
that this embedding into a higher dimensional space is, in some sense, the antithetical approach to
locality sensitive hashing in which one projects into a lower-dimensional space then buckets the
resulting projections.

10

Formally, we are searching for some metric embedding f : Rd → Rm, for some m > d, such
that for all unit vectors u, v ∈ Rd, if �u, v� is large, then �f(u), f(v)� is relatively large, yet if �u, v�
is small, then �f(u), f(v)� is as small as possible. The “XOR/tensor” embedding (scaled so as to
map unit vectors to unit vectors), in which each vector is replaced by its degree q tensor power, is
one such embedding. Letting f be such an embedding, we have �f(u), f(v)� = (�u, v�)q , and hence
the multiplicative gap between “big” inner products and “small” inner products is amplified by an
exponent of q. While the dimensionality of the image m = dq, one can implicitly subsample indices
of the projections so as to ensure that the dimensionality of the vectors remains << n. Our main
result for the light bulb problems is obtained by selecting q ≈ log n to be as large as possible, up until
the magnitude of the noise in the inner products introduced by the subsampling begins to swamp the
discrepancy between the image of the “big” inner product and the “small” inner products. We note
that such an embedding has been used in a variety of other settings, including by Lyubashevsky [21]
to show that given few examples from an instance of learning parity with noise, one can generate
new “simulated” examples, in much the same way as we are creating new dimensions of data in the
light bulb setting. The use of such embeddings in the nearest-neighbor setting, or closest-pair setting
is novel.

Two Embeddings are Better than One—The Chebyshev Embedding: If one tries to
apply the above approach to obtain an algorithm for finding a pair of unit vectors whose inner
product is within an additive � from that of the pair with maximal inner product, one would obtain
an algorithm with runtime O(n2−Θ(�)); namely, a comparable dependence on � as would be obtained
via locality sensitive hashing, but with worse constants. How could one improve upon this runtime?
The natural hope is that one could employ a better embedding than the XOR/tensor embedding
to achieve better concentration in the “uninteresting” inner products. Unfortunately, a classical
structural result of Schoenberg from the 1940s suggests that this embedding is, in some sense,
optimal:

Fact 10 (Schoenberg [35]). Consider a function g : R → R which has the property that for any d,
there exists f : Sd−1 → Rm such that �f(u), f(v)� = g (�u, v�) for all u, v ∈ Sd−1, where Sd−1 denotes
the d-dimensional spherical shell. The Taylor expansion of g about 0 has exclusively nonnegative
coefficients (and converges uniformly).

Note that the degree q XOR/tensor embedding corresponds to the function g(x) = xq, which,
among degree q polynomials with non-negative coefficients, is, in some sense optimal for our purposes
of amplifying the gap between the small and large inner products.

The crucial idea, however, is that we are not restricted to a single embedding. In particular, we
can use two embeddings, f, h and create two copies of our vectors, and project each according to a
different embedding, and then consider inner products across these two sets of vectors. Given such
a pair of embeddings, we are no longer limited to Schoenberg’s characterization; it is not hard to
see that given any polynomial, p, one can design a pair of embeddings f, h such that for all vectors
u, v �f(u), h(v)� = p (�u, v�) . Indeed, the XOR/tensor embedding shows how to obtain monomials
p(x) = xq, and by negating h, the corresponding embedding yields p(x) = −xq, and an embedding
corresponding to p1 + p2 can be obtained simply by appending the embeddings corresponding to p1
and p2.

Given the ability to fashion embeddings that implement any polynomial, the question is which
polynomial to use? If we are in the setting in which all pairwise inner products lie in the interval
[α, β], and we hope to find a pair of vectors with inner product at least β− �, then we wish to employ
a polynomial that is as small as possible on the interval [α, β − �], and as large as possible outside
this interval. Chebyshev polynomials, scaled appropriately are such extremal polynomials:

11

Fact. (e.g. Thm. 2.37 of [33]) For any x �∈ [−1, 1],

Tq(x) = max
�
|p(x)| : p ∈ Pq and supy∈[−1,1]|p(y)| ≤ 1

�
,

where Tq is the degree q Chebyshev polynomial (of the first kind), and P denotes the set of all degree
q polynomials with real coefficients.

By employing a pair of embeddings that realize a “Chebyshev embedding”, we are able to obtain
an algorithm for finding pairs of unit vectors with inner product within an additive � from that of
the maximal pair, in time O(n2−Θ(

√
�)). The

√
� arises because Tq(1 + �)/Tq(1) ≈ eq

√
�, in contrast

to the polynomial p(x) = xq for which p(1 + �) ≈ eq�, which would lead to a runtime of O(n2−Θ(�)).
There are a number of details that we have not discussed in this overview, including why we are
restricted in the degree of the polynomial.

This use of a pair of embeddings to eschew Schoenberg’s characterization of what is implementable
via a single embedding was also fruitfully leveraged by Alon and Naor in their work on approximating
the cut norm of a matrix [2]. Our Chebyshev embedding appears to be novel, and because of its
extremal nature, we believe it might be useful in other setting that are amenable to the use of a pair
of embeddings.

From Maximal Inner Product to Closest Pair: In Section 4.2 we describe a reduction from
the general 1 + � approximate closest pair problem, to the problem of finding a pair of unit vectors
whose inner product is within an additive � of that of the maximal pair. While this section is rather
involved, the techniques are, perhaps, less widely applicable than those of the other sections. The
first step of this reduction shows how to convert the general problem into one in which all vectors
have unit norm. Given this, provided that the minimum distance is bounded away from 0 (e.g.
the maximum inner product is bounded away from 1), up to constant factors, finding the �-closest
pair is equivalent to finding the c� maximal inner product. The main challenge of the reduction is
handling the case when one has a set of unit vectors whose closest pair is extremely close. If this
minimal distance is > 1/n0.9, we can handle this case via another application of the “XOR/tensor”
embedding to effectively increase all distances. If the minimal distance is < 1/n0.9, we argue that
we can efficiently cluster the points into sets of rather close points, with the property that after
subtracting off the mean of each set and converting the set back into a set of unit vectors, the
minimum distance is now > 1/n0.9, and this process does not significantly alter the relative distances
between different pairs of points.

Learning Parity with Noise: Given the ability to learn a parity with noise over n-bit strings,
where the size of the parity set is c in time nα, one can generally obtain an algorithm for learning
parities of size k that runs in time roughly nkα/c. To illustrate, consider taking an instance of parity
with noise where the size of the parity set is 2c. One can form the instance of parity with noise
over n2-bit strings by creating an index corresponding to each of the pairs of original indices, and
populating them with the XOR of the two corresponding values. If the original instance had a set of
2c indices whose XOR was correlated with the label, then the resulting instance (over n2-bit strings)
would have several sets of c indices whose XOR would correlate with the label, and hence one could
apply an algorithm for learning parities of size c, with runtime (n2)α to find the set of c indices in the
larger instance, corresponding to 2c indices in the original instance. Of course, the larger instance
lacks the strong independence assumptions of the actual distribution of examples that the original
instance had, though most algorithms should be robust to these mild dependencies.

This reduction, together with our most basic result for finding correlations (the light bulb prob-
lem), immediately yields an algorithm for learning parities of size k with noise η in time roughly

O(nk
5−ω

2(4−ω) poly(1
1/2−η

)) < O(n0.81kpoly(1
1/2−η

). The extreme noise robustness is due to the fact that
the correlation did not appear in the exponent of n in our algorithm for finding correlations.

12

We obtain the very slightly improved exponent of ωk/3 < 0.8k by directly designing an algorithm
for the k = 3 setting, as opposed to the k = 2 setting corresponding to the problem of finding
correlations. Given an example x, y, for x = (x1, . . . , xn) and y is the corresponding label from an
instance of parity with noise with k = 3, for any i, Pr[xi = 1|y = 1] = 1/2. Similarly, Pr[xixj = 1|y =
1] = 1/2 for distinct i, j ∈ [n]. The improved algorithm for finding parities rests on the following
observation about parity sets of size k = 3: if the bits of x are not chosen uniformly at random, but
instead are chosen independently to be 1 with probability 1

2 + α, for some small bias α, then the
above situation no longer holds. In such a setting, it is still the case that Pr[xi = 1|y = 1] ≈ 1

2 + α,
however

Pr[xixj = 1|y = 1] =

�
1
2 +Θ(α) if i and j are both in the true parity set,
1
2 +Θ(α2) if i or j is not in the set of parity bits.

The punchline of the above discrepancy is that very small biases—even a bias of α = 1/
√
n can

be quite helpful. Given such a bias, for any pair i, j ∈ [n], for sufficiently large n, even n ·polylog (n)
examples will be sufficient to determine whether i and j are both in the parity set by simply measuring
the correlation between the ith and jth indices for examples with even label, namely estimating
Pr[xixj = 1|y = 1] based on the examples. How does one compute these

�
n

2

�
correlations between

vectors of length npolylog (n) in time o(n3)? By (fast) matrix multiplication. It is worth stressing
that, provided this argument is sound, the resulting algorithm will be extremely noise-robust, since
the discrepancy between Pr[xixj = 1|y = 1] in the cases that i, j are both parity bits and the case
that they are not will degrade linearly as η → 1/2.

It should now be intuitively clear how to extend this approach from the small-biased setting to
the setting in which the examples are generated uniformly at random, since a bias of 1/

√
n is quite

modest. In particular, with constant probability, a random length–n example will have at least n

2+
√
n

positive indices, thus simply filtering the examples by removing those with fewer than n/2 positive
indices should be sufficient to instill the necessary bias (at the minor expense of independence).

3 A New Algorithm for the Light Bulb Problem

We begin by presenting our new approach to the light bulb problem; our improved algorithm for
finding the closest pair of vectors in the general setting will build upon this approach. There are two
essential features of the light bulb problem which we exploit:

• With the exception of the correlated pair of vectors, the Hamming distance between pairs of
vectors is tightly concentrated around a single value, d/2.

• One need not iteratively solve n nearest neighbor search problems, one for each vector; instead,
one can effectively perform many such searches simultaneously.

We now provide an intuitive overview of how we exploit these features. We begin by assuming that
we can choose the dimension of the vectors, d.

Given a d×n matrix X with entries in {−1,+1} whose columns are uniformly random, with the
exception of a pair of ρ-correlated columns, one naive approach to finding the correlated columns
is to simply compute W = XtX, the matrix whose i, jth entry is the inner product between the
ith and jth columns of matrix X. With overwhelming probability, the largest off-diagonal entry of
W will correspond to the correlated columns, as that entry will have value roughly dρ, whereas all
the other off-diagonal entries have expected value 0, and will be tightly concentrated around 0, with
standard deviation O(

√
d). The obvious issue with this approach is that W has n2 entries, precluding

13

a sub–quadratic runtime. This remains an issue even if the number of rows, d is taken to be near
the information theoretic limit of O(logn

ρ2
).

Our approach is motivated by the simple observation that if two columns of X are highly corre-
lated, then we can compress X, by simply aggregating sets of columns. If one randomly partitions
the n columns into, say, n2/3 sets, each of size n1/3, and then replaces each set of columns by a single
vector, each of whose entries is given by the sum (over the real numbers) of the corresponding entries
of the columns in the set, then we have shrunk the size of the matrix from d×n, to a d×n2/3 matrix,
Z (that now has integer entries in the range [−n1/3, n1/3]). It is still the case that most pairs of
columns of Z will be uncorrelated. If, in the likely event that the two original correlated columns are
assigned to distinct sets, the two columns of Z to which the two correlated columns contribute, will
be slightly correlated. Trivially, the expected inner product of these two columns of Z is ρd, whereas
the inner product between any two other columns of Z has expected value 0, and variance O(n2/3d).

Thus provided ρd >>
√

n2/3d, and hence d >> n2/3/ρ2, there should be enough data to pick out the
correlated columns of matrix Z, by computing W � = ZtZ, and then finding the largest off-diagonal
element. This computation of the product of an n2/3 × n2/3/ρ2 matrix with its transpose, via fast
matrix multiplication, is relatively cheap, taking time n2ω/3poly(1/ρ) ≤ n1.6 · poly(1/ρ), where ω is
the exponent of matrix multiplication.

Once one knows which two columns of Z contain the original correlated columns of W , one can
simply brute-force check the inner products between all pairs of columns of W that contribute to
the two correlated columns of Z, which takes time dn2/3. (One could also recursively apply the
algorithm on the two relevant sets of n1/3 columns, though this would not improve the asymptotic
running time.) The computation, now, is dominated by the size of the initial n2/3/ρ2 × n > n1.66

matrix! It is also clear that the runtime of this algorithm will depend only inverse polynomially
on the correlation–in particular, ρ will not appear in the exponent of n. Optimizing the tradeoff
between the size of the initial matrix, and the time spent computing the product, yields an exponent
of (5− ω)/(4− ω) < 1.62.

Because our more general results will build off these ideas, we formally describe a slight extension
of the above algorithm that applies to sets of vectors whose only guarantee is that most of the pairwise
inner products are small, with the exception of a small number of large inner products. Since we
will no longer make any assumptions that the entries of the vectors are chosen independently, our
algorithm will employ a fairly standard trick of randomly flipping the signs of each vector to achieve
pairwise independence between the inner products of different pairs of vectors. The author is grateful
to Rasmus Pagh for pointing out this approach for dealing with a lack of independence.

14

Algorithm 11. Vector Aggregation
Input: Two m × n matrices X,X

� with entries xi,j , x
�
i,j ∈ R, a constant α ∈ (0, 1], and an integer

s ≤ n
2−2α.

Output: s pairs of indices, (c, c
�
) ∈ [n].

• Repeat the following 10 log n times:

– Randomly partition [n] into n
1−α disjoint subsets, each of size n

α
, denoting the

sets S1, . . . , Sn1−α .

– For each i = 1, 2, . . . , 10 log n do the following:

∗ Select n coefficients q1, . . . , qn ∈ {−1,+1} at random.

∗ Form the m × n
1−α matrix Z

i with entries z
i
j,k =

�
�∈Sk

q� · xj,�. and the m × n
1−α

matrix Z
�i with entries q

i
j,k =

�
�∈Sk

q� · x�
j,�.

∗ Let W
i
= (Z

i
)
†
Z

�i.

– Define the n
1−α × n

1−α matrix W with wi,j = quartile{|w1
i,j |, |w2

i,j |, . . . , |w10 logn
i,j |.} where

quartile is the smallest value greater than the lowest 75% of the entries.

– Find the largest s entries of W, and for each such entry wi,j using a brute-force
search, taking time O(mn

2α
) compute all the pairwise inner products between columns

of X indexed by Si and columns of X
� indexed by Sj, and record those indices and

inner product values of the largest s inner products computed. If this algorithm is
being run in the setting with X = X

� then do the above brute-force search on the
largest s off-diagonal entries of W.

• Traverse the list of 10s log n saved indices and inner products, and output the s pairs
with the largest inner products.

We remark that the final brute-force search step of the above algorithm can be replaced by a
recursive application of the entire algorithm to each subset of 2nα vectors, though for most ranges
of parameters of interest, including the light bulb problem, the runtime of this brute-force search
component is dominated by the computation of the matrix product W i = (Zi)†Z �i.

The following proposition describes the performance of the above algorithm, and the proof is
a straightforward application of tail bounds, arguing that if the pair of partitions Sj , Sk have the
property that for all � ∈ Sj and h ∈ Sk the inner product of the �th column of X and hth column
of X � is bounded by τ , then with high probability the entry of W corresponding to Sj , Sk satisfies
wj,k ≤ 3nατ, in which case with high probability any entry wj�,k� corresponding to sets that contains
a pair of columns with large inner product will be detected and searched in the second-to-last step
of the algorithm.

Proposition 12. The algorithm Vector-Aggregation, when given as input s, α, and two m×n
matrices with the property that for at most s pairs of columns u, v with u a column of X and v a
column of X �, |�u, v�| ≤ τ, with probability 1 − o(1) will output all pairs of columns whose inner
product is greater than 12nατ. Additionally, the runtime of the above algorithm is

Õ
�
mn+ smn2α + timeMult(n1−α,m)

�
,

where timeMult(k, �) is the time it takes to multiply a k× � matrix by its a �× k matrix, and the Õ
hides a polylogarithmic factor of n.

Note that trivially, timeMult(k, �) = O
�
�ω max

�
1, k

�

�2�
where ω < 2.4 is the exponent of matrix

multiplication, since this trivially holds if k ≤ �, and if k > �, this this product can be computed via

a series of
�
k

�

�2
computations of a �× � square matrix product. We use this bound in the following

corollary for the light bulb problem, which follows from the above proposition by basic Chernoff
bounds.

15

Corollary 13. For any constant � > 0, the algorithm Vector-Aggregation, when given as input
α = 1

2(4−ω) , and s = 1, and two copies of the matrix X whose columns consist of the vectors given

in an n, d, ρ instance of the light bulb problem with d = n2α+�

ρ2
, will output the true pair of correlated

columns with probability 1− o(1), and will run in time

O

�
n

5−ω
4−ω+�

ρ2ω

�
< n1.62

· poly(1/ρ).

The proof of Proposition 12 will rely on the following extremely crude anti-concentration lemma
to argue that if an entry wi

j,k
of W i contains a contribution from a pair of columns with large inner

product, then with a reasonable probability over the random choice of q1, . . . , qn, the entry wi

j,k
will

not be too small.

Lemma 14. Given a t×t matrix A with entries ai,j, for q1, . . . , qt, r1, . . . , rt ∈ {±1} chosen uniformly
at random,

Pr



|
�

i,j

qirjai,j | ≥
1

4
max
i,j

ai,j



 ≥
1

4
.

Proof. Assume without loss of generality that a1,1 = maxi,j ai,j , and for ease of notation, define
a = q1r1a1,1. Let b =

�
i≥2 qir1ai,1, c =

�
j≥2 q1rja1,j , and d =

�
i,j≥2 qirjai,j . For a given assignment

to the qi, rj , if the sum in question has magnitude less than a/4, if |a + b| ≥ a/2 then by flipping
q1 the sum would have magnitude at least a/4. Similarly, in the case that |a + c| ≥ a/2 if r1 were
flipped, the sum would also have magnitude at least a/4. If neither of these conditions hold, then
|b + c| ≥ a, in which case by flipping both q1 and r1, the magnitude of the sum in question will be
at least 3

4a ≥ a/4. Hence for every assignment to r2, . . . , rn and q2, . . . , qn there is at least a 1/4
probability over the randomness in the assignment to r1, q1 that the sum in question exceeds a/4,
and the lemma holds.

Proof of Proposition 12. We begin by analyzing the value of wi

j,k
, viewed as a random variable

over the choice of the n coefficients q1, . . . , qn. Letting X� denote the �th column of matrix X, by
definition

wi

j,k =
�

�∈Sj ,h∈Sk

q�qh�X�, X
�
h�,

which is the sum of n2α pairwise inner products of columns of the original matrices, each with a
coefficient of ±1. Since the coefficients of these inner products are pairwise independent, and each
contribution has expectation 0 (since the probability of coefficients ±1 are equally likely), their
contributions to the variance of wi

j,k
sums. Hence the contribution to wi

j,k
contributed by pairs of

columns u, v with �u, v� ≤ τ has variance bounded by n2ατ2. Hence by Chebyshev’s inequality, with
probability at most 1/9, this contribution will not exceed 3nατ in magnitude. Given a partition
S1, . . . , Sn1−α , for Sj , Sk such that all pairs of inner products between columns indexed by Sj of X
and columns indexed by Sk of X � are at most τ , tail bounds on the binomial distribution yields that
with probability > 1 − 1/n2 over the randomness in the 10 log n choices of coefficients q1, . . . , qn,

the top quartile of the magnitudes of w1
j,k
, . . . , w10 logn

j,k
will be at most 3nατ , and thus by a union

bound over the n2−2α ≤ n2 entries of W , with high probability no such element wj,k will be this
large. To conclude, by Lemma 14 with probability at least 1/4, for any pair of sets Sj , Sk for which
at least one of the contributing inner products �X�, X �

h
� > 12nατ, the corresponding entry satisfies

|wi

j,k
| > 3nατ, and hence, crudely, with probability at least 1/4 the top quartile, wj,k, of these 10 log k

choices of i will be at least this value. Hence for any pair of columns that have inner product at

16

least 12nατ, the probability that it is discovered in each of the 10 log n rounds of the algorithm is
at least (1 − nα−1) · 1/4 where the first factor is the probability, in the case that X = X � that the
two indices do not end up in the same partition Sj ; if X �= X � then this factor vanishes, as we look
in the diagonal entries of W . Thus with probability 1 − o(1), all such large inner products will be
discovered by the end of the algorithm.

To analyze the runtime of the algorithm, note that, up polylogarithmic factors the runtime is
either dominated by the computation of the matrices Z,Z �, taking time O(mn), the brute-force search
phase, taking time at most O(smn2α), or the computation of the matrix product W i = (Zi)†Z �i. �

3.1 Projecting Up

The algorithm Vector Aggregation described above shows how to efficiently find significantly
correlated vectors from among a large number of extremely weakly correlated vectors. In this section,
we describe a metric embedding which will amplify the gap between the “significantly” correlated
vectors and the “weakly” correlated vectors.

As applied to the light bulb problem (Corollary 13), the algorithm of the previous section succeeds

provided that the points have dimension d ≥ n
1

4−ω+�/ρ2 ≈ n0.62/ρ2. What happens if d is quite
small? Information theoretically, one should still be able to recover the correlated pair even for
d = O(log n/ρ2). How can one adapt the Vector-Aggregation approach to the case when d
is near this information theoretic boundary? We will perform a metric embedding that carefully
projects the vectors into a larger space in such a way so as to guarantee that the projected vectors
act like vectors corresponding to an n, d�, ρ� instance of the light bulb problem for some d� > d, and
ρ� < ρ, with the property that d� is sufficiently large so as ensure that the approach of the previous
section succeeds. We rely crucially on the fact that ρ does not appear in the exponent of n in the
runtime, since this transformation will yield ρ� << ρ.

While our embedding can be described more generally, we begin by describing it in the setting
in which the entries of the vectors in question are ±1. Consider randomly selecting a small set of
the rows of the matrix whose columns consist of the set of vectors. We will produce a new row
by component–wise multiplication. We term such a process of generating new dimensions (rows) as
“XORing together a set of rows”, and we claim that the new row of data thus produced is reasonably
faithful. In particular, if two columns are completely correlated, then the result of XORing together
a number of rows will produce a row for which the values in the two correlated columns will still
be identical. If the correlation is not 1, but instead ρ, after combining q rows, the corresponding
columns will only be ρq correlated, as XORing degrades the correlation. Recall, however, that the
algorithm of the previous section was extremely noise robust, and thus we can afford to degrade the
correlation considerably. For constant ρ, we can certainly take q = o(log n) without increasing the
exponent of n in the runtime.

Note that as we are viewing the vectors as having entries in {−1, 1}, this XORing of sets of rows
is simply component-wise multiplication of the rows. Equivalently, it can be seen as replacing each
column with a sample of the entries of the qth tensor power of the column.

In the context of learning parity with noise, this expansion approach was used by Lyuba-
shevsky [21] to show that given few examples from an instance of learning parity with noise, one
can generate new “simulated” examples, that can be used in place of actual examples. In contrast
to the current setting, the challenge in that work was arguing that the new instances are actually
information theoretically indistinguishable from new examples (with higher noise rate). To prove
this strong indistinguishability, Lyubashevsky employed the “Leftover Hash Lemma” of Impagliazzo
and Zuckerman [17].

In our setting, we do not need any such strong information theoretic guarantees; Proposition 12

17

only requires some guarantees on the inner products of pairs of columns, which are given by repeated
application of the following trivial lemma, together with Chernoff bounds:

Lemma 15. Given vectors u, v, w, z ∈ Rd with �u, v� = ρ1d and �w, z� = ρ2d, for i, j chosen
uniformly at random from [d],

E[(uiwj) · (vizj)] = ρ1ρ2.

Phrased differently, letting x ∈ Rd2 be the vector whose entries are given by the d2 entries
of the outer-product uwt, and y is given by the entries of vzt, then �x, y� = ρ1ρ2d2. Elementary
concentration bounds show that provided one samples sufficiently many indices of this outer product,
the inner product between the sampled vectors will be close to this expected value (normalized by
the dimension).

Proof. The proof follows from the independence of i, j, the facts that E[uivi] = ρ1, E[wjzj] = ρ2, and
the basic fact that the expectation of the product of independent random variables is the product of
their expectations.

We now describe our algorithm, which applies more generally than the light bulb problem setting,
and can alternately be viewed as an algorithm for approximating the product of two ±1 matrices,
under the assumption that the product has only a moderate number of large entries.

Algorithm 16. Expand and Aggregate
Input: An m × n matrix X with entries xi,j ∈ {−1,+1}, real numbers ρ, τ ∈ (0, 1), with ρ > τ, and
an integer s > 0

Output: A set of s pairs of indices (c, c
�
) ∈ [n].

• Set α =
1

2(4−ω) , for ω < 2.4 is the exponent of matrix multiplication.

• Let m
�
= n

2α+ log ρ
log τ log

4
n, and q =

logn
−2 log τ .

• If m
� ≥ n, calculate all pairwise inner products, taking time O ((m

�
)
ω
).

• Otherwise, we create an m
� × n matrix Y with entries in {−1,+1}:

– For each of the m
� rows of Y , select a list t1, . . . , tq with each ti selected uniformly

at random from [m], and set the jth component of the corresponding row to be�q
i=1 xti,j .

• Output the result of running algorithm Vector-Aggregation on input Y with the parameters
α and s, where the brute-force searches can be performed on the original columns of X.

The intuition of the above algorithm is that the matrix Y resulting from the XOR/tensor ex-
pansion step has the property that the expected inner product between any two “bad” columns
is bounded in magnitude by m�τ q = m� 1√

n
, and the expected inner product of a “good” pair of

vectors will be m�ρq = m�n− log ρ
2 log τ >> m� 1√

n
. Chernoff bounds will then guarantee that all inner

products are closely concentrated about their expectations, to within ±
√
m�polylog n, and hence

the matrix Y satisfies the assumptions of Proposition 12 in which case the output of algorithm
Vector-Aggregation will be as desired.

The performance of the above algorithm is summarized by the following theorem:

Theorem 1 Consider a set of n vectors in {−1, 1}d and constants ρ, τ ∈ [0, 1] with ρ > τ such that
for all but at most s pairs u, v of distinct vectors, |�u, v�| ≤ τd. There is an algorithm that, with

18

probability 1− o(1), will output all pairs of vectors whose inner product is least ρd. Additionally, the
runtime of the algorithm is

Õ
�
sdn1/(4−ω) + n

5−ω
4−ω+ω

log ρ
log τ

�
≤ O

�
sdn0.7 + n1.62+3 log ρ

log τ

�
,

where ω < 2.4 is the exponent of matrix multiplication, and the Õ notation hides polylogarithmic
factors of n.

The above theorem together with basic Chernoff bounds immediately yields Corollary 3, describ-
ing an algorithm for the light bulb problem in the setting in which the dimension d is near the
information theoretic limit of O(logn

ρ2
).

Corollary 3 For any constants ρ, � > 0, there exists a constant c� dependent on � such that for
d ≥ c�

logn
ρ2

, there is an algorithm that, with probability 1− o(1), will find a planted set of ρ-correlated

vectors from among n random vectors in {±1}d, and will run in time

Õ(n
5−ω
4−ω+�) ≤ O(n1.62),

were ω > 2.4 is the exponent of matrix multiplication.

Proof of Theorem 1. From the independent generation of each row of Y , and the fact that all en-
tries are either ±1, a union bound over Chernoff bounds guarantees that with probability 1− o(1),
all the n2 pairwise inner products between columns of Y will be within an additive

√
m� log n of

their expectations. By Lemma 15, for a pair of columns of X with inner product with magni-
tude at most τm, the expected inner product of the corresponding columns of matrix Y will have
magnitude at most m�τ q = m�n−1/2 ≤

√
m�, and hence by the above tail bounds will be at most

2
√
m� log n = 2nα+ log ρ

2 log τ log3 n with the claimed probability. Similarly, for a pair of columns with
inner product at least ρd, with the claimed probability the inner product between the correspond-

ing columns of Y will be at least m�ρq −
√
m� log n = m�n− log ρ

2 log τ −
√
m� log n ≥

1
2n

2α+ log ρ
2 log τ log4 n.

Letting τ � = 2nα+ log ρ
2 log τ log3 n, note that for sufficiently large n, the “big” inner products satisfy

1
2n

2α+ log ρ
2 log τ log4 n ≥ 12nα · 2nα+ log ρ

2 log τ log3 n = 12nατ �, and hence the requirements of Proposition 12
are satisfied with probability 1− o(1) over the randomness in the construction of matrix Y , and the
theorem follows from Proposition 12. �

4 The Chebyshev Embedding, and Closest-Pair Problem

We now abstract and refine the main intuitions behind the Expand and Aggregate algorithm,
to yield our algorithm for the general approximate closest pair problem, which will work in both the
Boolean and Euclidean settings. We extend the ideas of the previous section in two steps. First we
consider the problem of finding a pair of vectors whose inner product is within an additive � from
that of the pair with maximal inner product, given that all vectors have unit norm. Accomplishing
this step will require the Chebyshev embedding—a more powerful embedding than the XOR/tensor
embedding of the previous setting. In Section 4.2 we then extend our algorithm for finding the
approximately maximal inner product from a set of unit vectors, to the general problem of finding
a pair of vectors whose Euclidean distance is within a multiplicative (1 + �) from that of the closest
pair.

19

4.1 The Chebyshev Embedding

The Vector-Aggregation algorithm of the previous section relies, crucially, on the tight concen-
tration around 0 of the inner products of the uncorrelated vectors. In the case of Proposition 12,
this concentration came “for free”, because we assumed that the dimensionality of the data was
large ≈ n0.6. To obtain Theorem 1, we needed to work to obtain sufficiently tight concentration. In
particular, we performed a metric embedding f : {−1,+1}d → {−1,+1}m, with the crucial property
that for an appropriately chosen integer q, for u, v ∈ {−1,+1}d,

�f(u), f(v)�

m
≈

�
�u, v�

d

�q

.

The key property of this mapping x → xq is that if one pair of vectors has an inner product that
is a factor of (1+ �) larger than than that of any other pair, after performing this mapping, the inner
product of the image of the close pair will now be a factor of (1+ �)q >> 1+ � larger than that of the
images of any other pair of vectors; thus the “gap” has been significantly expanded. Of course, we
can not take q to be arbitrarily large, as we would like to maintain a subquadratic amount of data
and thus m << n, and the variance in the inner products that arises from the subsampling process
(choosing which subsets of the rows to XOR) will be O(m). Thus if q is so large that the O(

√
m)

standard deviation in the inner product dominates the mρq inner product of the images of the closest
pair, all the signal in the data will be lost and the algorithm will fail. (Phrased more generally, if q
is too large, the distortion caused by projecting to a lower dimensional space will swamp the signal.)

A not-so-simple calculation shows that if we try to obtain an algorithm for the problem of finding
a pair of unit vectors with inner product within � of the maximal inner product (or the (1 + �)
approximate closest pair problem) via this Expand and Aggregate approach, we would end up
with an algorithm with runtime n2−O(�). Can we do any better? To simplify the exposition, assume
that we are told that there is a “good” pair of vectors with inner product at least 1/2+�, and that all
other pairs of vectors are “bad” and have inner product in the range [−1/2, 1/2]. In order to improve
upon this runtime of n2−O(�), we need an improved embedding—one that damps the magnitudes
of the “bad” pairs of vectors as much as possible, while preserving the inner product between the
closest pair. Specifically, we seek a mapping fc : Rd → Rm with the following properties:

• For all u, v ∈ Rd, if �u, v� ≥ 1
2 + �, then �fc(u), fc(v)� ≥ c.

• For all u, v ∈ Rd, if �u, v� ∈ [−1
2 ,

1
2], then �fc(u), fc(v)� is as small as possible.

• For all u ∈ Rd, fc(u) can be computed reasonably efficiently.

The dimension of the image, m, is not especially important, as we could always simply choose
a random subset of the dimensions to project onto while roughly preserving the inner products
(provided this can all be computed efficiently). In general, it is not clear what the optimal such
embedding will be, or how extreme a “gap amplification” we can achieve. A classical result of
Schoenberg from the 1940s [35], however, characterizes the what can be achieved via a specific type
of embedding. Formally, he characterized the set of functions g : R → R which have the property
that for any d, there exists f : Sd−1 → Rm such that �f(u), f(v)� = g (�u, v�) for all u, v ∈ Sd−1,
where Sd−1 denotes the d-dimensional spherical shell. In particular, he showed that a necessary
and sufficient condition for such functions g is that their Taylor expansion about 0 has exclusively
nonnegative coefficients (and converges uniformly). It is not hard to see that for such polynomials g
of a given degree, the XOR/tensor embedding g(x) = xq has the optimal gap amplification.

The crux of our improved Chebyshev embedding is the realization that we are not constrained to
a single embedding. For our purposes, if we can construct a pair of embeddings, f, h : Sd−1 → Rm

with the property that �f(u), h(v)� = g (�u, v�) , for some function g with superior gap amplification,
then we can create two copies of the set of vectors in question, embed one copy according to f

20

and the other according to h, and then consider inner products across the two sets. The power of
two embeddings, is that we can realize any polynomial g. To see this, note that the XOR/tensor
embedding can realize any monic polynomial p(x) = xq, given a pair of embeddings f, h, by setting
f = −h one can obtain negative monomials p(x) = −xq, and by simply concatenating the embeddings
that realize polynomials p1, p2, one obtains an embedding that realizes p1 + p2.

Given this power of two embeddings, the question is now which polynomials should we use? The
following fact suggests an embedding which, at least among a certain class of embeddings, will be
optimal.

Fact. (e.g. Thm. 2.37 of [33]) For any x �∈ [−1, 1],

Tq(x) = max
�
|p(x)| : p ∈ Pq and supy∈[−1,1]|p(y)| ≤ 1

�
,

where Tq is the degree q Chebyshev polynomial (of the first kind), and P denotes the set of all degree
q polynomials with real coefficients.

Perhaps the most surprising aspect of this simple fact is that a single polynomial, Tq captures this
extremal behavior for all x. The following fact quantifies the properties of the Chebyshev polynomials
that we will rely on:

Fact 17. Letting Tq(x) :=
(x−

√
x2−1)q+(x+

√
x2−1)q

2 denote the qth Chebyshev polynomial (of the first
kind), the following hold:

• Tq(x) has leading coefficient 2q−1.

• Tq(x) has q distinct real roots, all lying within the interval [−1, 1].

• For x ∈ [−1, 1], |Tq(x)| ≤ 1.

• For δ ∈ (0, 1/2], Tq(1 + δ) ≥ 1
2e

q
√
δ.

Proof. The first 3 properties are standard facts about Chebyshev polynomials (see, e.g. [36]). To
verify the fourth fact, note that for δ in the prescribed range,

�
(1 + δ)2 − 1 ≥

√
2δ, and we have

the following: Tq(1 + δ) ≥ 1
2(1 + δ +

√
2δ)q ≥ 1

2(1 +
√
2δ)q ≥ 1

2e
q
√
δ.

To illustrate the high-level idea, we return to our example above in which we hope to isolate a
pair of vectors with “large” inner product 1/2 + � from among a set of vectors with “small” inner
products in the range [−1/2, 1/2]. We will construct an embedding corresponding to the monic
polynomial P (x) = Tq(2x)/22q−1, where Tq(x) is the qth Chebyshev polynomial (of the first kind).
Note that since Tq(x) has q roots, all in the interval [−1, 1], the polynomial P (x) will also have q real
roots in the interval [−1/2, 1/2]. The corresponding mappings f, h, constructed as described above,
will have the property that �f(u), g(v)� = P (�u, v�) /2q. Roughly, we will choose q = O(log n), and
hence the the multiplicative gap between the “large” inner product and the “small” inner products

will be eq
√

�/2 = nO
√
�, hence we will be able to aggregate sets of nO(

√
�) vectors in the Vector

Aggregation algorithm. We will ensure that the image of the original vectors have dimension
m << n0.29, hence the most computationally expensive step of our algorithm will be the computation
of the product of an n1−Θ(

√
�)×m matrix and an m×n1−Θ(

√
�) matrix, using fast rectangular matrix

multiplication (see Fact 23), which will have runtime O(n2(1−Θ(
√
�)). We now formally define the

Chebyshev embedding. We define this embedding in the setting in which the vectors in question have
values ±1; this uniformity ensures that the entries of the vectors returned by the embedding have the
same magnitudes, and hence are amenable to Chernoff bounds to guarantee that the inner products

21

between the returned vectors are concentrated about their expectations. In the following section
in which we use this embedding, we give a general procedure for converting a set of arbitrary unit
vectors to a set of unit vectors with entries ±1/

√
d, while roughly preserving the inner products.

Algorithm 18. Chebyshev Emebedding
Input: Two m × n matrices X,X

� with entries xi,j ∈ {±1}, real numbers τ
−
, τ

+ ∈ [−1, 1] with τ
−

<

τ
+ and integers q and m

�.
Output: Two m

� × n matrices Y, Y
� with entries yi,j ∈ {±1}.

• Let Tq denote the degree q Chebyshev polynomial (of the first kind), with roots at
r1, . . . , rq ∈ (0, 1).

• Each of the m
� rows of the output matrices Y, Z are populated as follows:

– We will populate two sets of q vectors s1, . . . , sq, and t1, . . . , tq each of length n as
follows. For i = 1, . . . , q :

∗ With probability 1/2, choose a random index j ∈ [m] and set both si to be the jth
row of X and ti to be the jth row of X

�.

∗ Let ci = τ
−
+

1+ri
2 (τ

+−τ
−
) be the location of the ith root of Tq after the support

has been scaled so that the roots lie within [τ
−
, τ

+
] rather than [−1, 1].

∗ With probability 1−ci
4 set both si and ti to be the all ones vectors.

∗ With probability 1+ci
4 set si to be the all ones vector, and ti to be the all

minus ones vector.

– Define the ith rows of Y and Y
� to be the component-wise products of the si’s and

ti’s respectively:

Yi,j =

q�

�=1

s�(j), Y
�
i,j =

q�

�=1

t�(j),

where s�(j) and t�(j) denote the jth entries of the vectors s� and t�, respectively.

The following proposition characterizes the Chebyshev embedding.

Proposition 19. Let Y, Y � be the matrices output by the algorithm Chebyshev Embedding on
input X,X �, τ+, τ−, q,m�. With probability 1 − o(1) over the randomness in the construction of
Y, Y �, for all i, j ∈ [n], �Yi, Y �

j
� is within

√
m� log n from the value

Tq

�
�Xi, X �

j
� − τ−

τ+ − τ−
2− 1

�
·m�

· (τ+ − τ−)q ·
1

23q−1
,

where Tq is the degree q Chebyshev polynomial of the first kind. Additionally, the algorithm runs in
time O(m�nq).

In particular, the above proposition states that the value of the inner products of columns of Y, Y �

are concentrated around the Chebyshev polynomial that has been scaled so that its roots lie in the
interval [τ−, τ+], evaluated at the inner product of the corresponding columns of X,X �, multiplied
by an appropriate scaling factor.

Proof of Proposition 19. The fact that all inner products are concentrated within ±
√
m� log n about

their expectations follows from the fact that each row of Y, Y � is generated independently, and all
entries of these matrices are ±1, and hence a union bound over basic Chernoff bounds yields the
desired concentration. We now analyze the expectation of the inner products. Let u, u� be columns

22

of X,X � respectively, and v, v� the corresponding columns of Y, Y �. Letting x = �u,u��
m

, by Lemma 15,

E[�v, v��] = m�
q�

i=1

x− ci
2

,

where ci is the location of the ith root of the qth Chebyshev polynomial after the roots have been
scaled to lie in the interval [τ−, τ+]. The proposition now follows from noting that the qth Chebyshev
polynomial has leading coefficient 2q−1, whereas the above expression when expressed as a polynomial
in x has leading coefficient 1/2q, disregarding the factor of the dimension m�, and then noting that if
one has two monic degree q polynomials, P and Q where the roots of Q are given by scaling the roots
of P by a factor of α, then the values at corresponding locations differ by a multiplicative factor of
1/αq; since the roots of Tq lie between [−1, 1] and the roots of the polynomial constructed in the
embedding lie between [τ−, τ+], this corresponds to taking α = 2

τ+−τ− . �

4.2 Finding Vectors with Maximal Inner Product

We now describe how to employ the Chebyshev embedding of the previous section to obtain an
algorithm for finding a pair of vectors with inner product within � from that of the maximal inner
product, for arbitrary Euclidean vectors with unit norm. The rough outline is to first convert the
set of vectors into vectors with entries ±1, then apply the Chebyshev embedding, and then simply
run the Vector Aggregation algorithm from Section 3.

Algorithm 20. Make Uniform
Input: An m × n matrix X with entries xi,j ∈ R whose columns have unit Euclidean norm, and δ ∈
(0, 1).

Output: An m
� × n matrix Y with entries yi,j ∈ {±1}, where m

�
=

10 logn
δ2

.

• For each i = 1, . . . ,m
�, select a random unit vector v ∈ Rm

, and let w = v
t
X. For all j =

1, . . . , n, set yi,j = sign(wj).

The following basic lemma characterizes the performance of the above algorithm:

Lemma 21. Letting Y denote the output of running Algorithm 20 on input X, δ, where X is a
matrix whose columns have unit norm, with probability 1− o(1/n2), for all pairs i, j ∈ [n],

����
�Yi, Yj�

m� −

�
1− 2

cos−1(�Xi, Xj�)

π

����� ≤ δ,

where Xi, Yi denote the ith columns of X and Y , respectively. And thus if �Yi, Yj� ≥ maxk �=��Yk, Y��−
δm�, then with probability 1 − o(1), �Xi, Xj� ≥ maxk �=��Xk, X�� − 2πδ. Additionally, the runtime of

the algorithm is O(mn logn
δ2

).

Proof. Letting α denote the angle between Xi and Xj , hence �Xi, Xj� = cos(α), for any k ∈ [m�],

Pr[yk,iyk,j = −
1

m�] = Pr [r ∈ [0, α]] =
α

π
,

where r ← Unif [0, π], is selected uniformly at random from the interval [0, π]. Hence

E[�Yi, Yj�] = 1− 2
α

π
.

23

Since all entries yi,j ∈ ±
1√
m� , and the different dimensions are chosen independently, a union bound

over n2 Chernoff bounds yields that with the claimed probability, all pairwise inner products will be
within ±δ of their expectations.

The second claim follows from noting that the above guarantees that if �Yi, Yj� ≥ maxk �=��Yk, Y��−
δ, then with the claimed probability the expected inner product of Yi and Yj is at most 2δ smaller
than that of the maximal expected inner product, and hence the angle between the corresponding
columns of X is at most 2πδ smaller than that of the optimal pair, and hence the inner products of
the corresponding columns of X are at most 2πδ smaller than the optimal inner product, since the
magnitude of the derivative of the cosine function is at most 1.

We now describe the main algorithm of this section:

Algorithm 22. Approximate Maximal Inner-Product
Input: An m × n matrix X with entries xi,j ∈ R whose columns have unit Euclidean norm, and
� ∈ (0, 1).

Output: Two distinct indices c1, c2 ∈ [n], s.t. with probability 1 − o(1), �Xc1 , Xc2� ≥
maxi �=j�Xi, Xj� − �, where Xc denotes the cth column of matrix X.

• Let X
� denote the m

� × n matrix with m
�

= O(
logn
�2

) resulting from applying algorithm 20
(Make Uniform) to matrix X with input parameter δ = �/2π.

• Choose n
1.5 random pairs of distinct columns of X

�, for each pair compute their inner
product and let vmax be the maximum such inner product divided by m

�.

• Define m
��

= n
0.2 and q =

1
50 log n and let Y, Y

� be the m
�� × n matrices returned by running

algorithm Chebyshev Embedding on inputs X
�
, X

�
, q,m

�� and with τ
−
:= −1, τ

+
:= vmax.

• Run algorithm Vector Aggregation on the matrices Y, Y
� with s := n, and α :=

√
δ

100 , and
return the indices corresponding to the largest of the s returned inner products if it is
at least vmax, otherwise output the indices corresponding to vmax.

Theorem 4. The algorithm Approximate Maximal Inner-Product, when run on an m × n
matrix X, whose columns have unit Euclidean norm and a sufficiently small constant approximation
parameter � > 0 will, with probability at least 1 − o(1), output a pair of indices c1, c2 such that
�Xc1 , Xc2� ≥ maxi �=j�Xi, Xj� − �, where Xi denotes the ith column of matrix X. Additionally, the

runtime of the algorithm is Õ(mn + n2− 1
200

√
�), where the Õ hides a polylogarithmic factor of n.

Additionally, by repeating the algorithm and outputting the pair with maximum inner product over
all runs, the probability of failure can be reduced exponentially.

The proof of the above theorem will follow relatively easily from the guarantees on the Chebyshev
Embedding and the Vector Aggregation algorithms given by Proposition 12 and Proposition 19.
Additionally, we will rely on fast rectangular matrix multiplication—namely that sufficiently skinny
matrices can be multiplied in nearly quadratic time. The following result of Coppersmith summarizes
this fact.

Fact 23 (Coppersmith [11]). For any positive γ > 0, provided β < .29, the product of a k × kβ with
a kβ × k matrix can be computed in time O(k2+γ).

Proof of Theorem 4. By Lemma 21, with probability 1− o(1) the matrix X � returned by the Make
Uniform algorithm will have the property that any pair of columns whose inner product is within
an additive m�δ = m��/2π of the inner product of the maximal pair, will correspond to a pair of
columns of the original matrix X whose inner product is within an additive � of that of the maximal

24

pair. We now argue that the remainder of the algorithm, with high probability, will find columns of
X � whose inner product is within δm� from that of the maximal pair.

If vmaxm� is within δm� from the maximal inner product, then the algorithm trivially succeeds.
Otherwise, by a Chernoff bound, with probability at least 1 − o(1) there are at most n pairs of
columns whose inner product is greater than vmaxm�, since if this were not the case, we would have
expected to see at least

√
n such pairs in the set of n1.5 random pairs surveyed, but instead we saw

no such pairs. Hence in this case, there are at most n pairs with inner product greater than vmaxm�,
and there is some pair with inner product at least (vmax + δ)m�. We now argue that the properties
of the Chebyshev embedding together with the guarantees on the performance of the Aggregate
Vectors algorithm will guarantee that with high probability, all pairs of columns with inner product
at least (vmax + δ)m�) will be returned.

Note that with probability 1− o(1) it will be the case that vmax > −1/2 simply because for any
constant c > 0, there can not be a super-constant fraction of unit vectors with inner products less
than −c, hence with this probability (1 + vmax) > 1/2. By Proposition 19 with probability 1− o(1),
for all pairs of columns X �

i
, X �

j
of matrix X such that �X �

i
, X �

j
� ≤ vmaxm�, the corresponding inner

product of their Chebyshev embeddings will satisfy |�Yi, Y �
j
�| ≤ m��2q 1

23q−1 +
√
m�� log n ≤ 3n0.18 for

sufficiently large n, by our choice of m�� and q. Letting i, j denote the indices of the columns with the
largest inner product which we are assuming is at least (vmax+δ)m�, and k, � denoting indices of any

pair of columns with �X �
k
, X �

�
� ≤ vmaxm�, Proposition 19 also yields that

�Yi,Y
�
j �

�Yi,Y
�
j �

≥
1
2Tq(1 + δ), where

the factor of two is a crude way of dealing with the additive ±
√
m�� log n error in the inner products

introduced via the randomness of the Chebyshev embedding, which is insignificant in comparison to
(1 + vmax)q

m��

23q−1 , which is a lower bound on the expected inner product of the images of a pair of
columns of X � whose inner product is at least vmaxm�.

By Fact 17, Tq(1 + δ) > 1
2e

q
√
δ = 1

2n
√
δ/50 >> nα = n

√
δ/100 for sufficiently large n, hence

the conditions of Proposition 12 hold, and with high probability the execution of the Aggregate
Vectors algorithm will output all pairs of indices corresponding to columns of X � whose inner
products are at least (vmax + δ)m�.

To conclude our proof of the theorem, note that runtime of the above algorithm, up to poly-
logarithmic factors of n, is either dominated by the Õ(mn) time to perform Make Uniform,
or is dominated by the computation of the matrix product in the Vector Aggregation algo-

rithm: timeMult(n1−α,m��) = timeMult(n1−
√

�/2π/100, n0.2). By Fact 23, this runtime is bounded
by O(n2−

√
�/150+γ) for any positive constant γ. The theorem now follows from taking γ to be a

sufficiently small multiple of
√
�. �

4.3 The Approximate Closest Pair

Given the algorithm of the previous section for finding an additively approximate maximal inner
product in a set of unit vectors, there are two minor hurdles to address in order to obtain an
algorithm for finding a multiplicatively (1 + �) approximation to the closest pair of points from
among an arbitrary set of vectors. The first hurdle is translating the problem of finding a close pair
of arbitrary vectors, to finding a close pair of unit vectors. This can be relatively easily accomplished
by adding a rather large randomly chosen vector v to all other vectors, then normalizing the vectors
so as to have unit norm. Provided the vector v has magnitude significantly more than the maximum
magnitude of all the vectors of interest, and the dimensionality of the space is sufficiently high so as to
guarantee that v is nearly orthogonal to the chords connecting all pairs of the vectors of interest, this
operation will have low distortion (and will simply scale all distances by roughly the same factor).
Algorithm 25 (Standardize) given below accomplishes this transformation.

25

Having reduced the problem to the setting in which all vectors have unit norm, the “law of cosines”
||v −w||2 = ||v||2 + ||w||2 − 2�v, w�, relates the distance between vectors to the inner products. This
will allow us to very easily translate between multiplicative 1+� bounds on the distance and additive
c·� bounds on the inner product (for a constant c), provided that the closest distance is not too small.
If the closest distance is too small for an additive guarantee on the inner product to correspond to
a meaningful multiplicative guarantee on the distance, we have two approaches. If the minimum
distance is at least 1/n0.9, we can amplify this distance, while only increasing the multiplicative
gap between distances via an analog of the XOR/tensor embedding. Algorithm 31 (Approximate
Closest Pair (large α)) addresses this setting. If the minimum distance is less than 1/n0.9, then,
since all vectors have unit norm, intuitively, we should be able to find it with a divide-and-conquer
approach. Since either there are only a few pairs of points that are very close in which case we can
easily pick them off, or there is a large set of points that are all extremely close in which case we will
be able to subtract off their mean, and rescale that cluster of points; such a transformation has the
property that it effectively increases the minimal distance by a factor of 1/z, where z is the diameter
of the cluster of points. Algorithm 29 (Approximate Closest Pair (small α)) addresses this
setting.

We note that we may assume that we know the distance between the closest pair, up to a factor
of 2, by, for example, running the locality sensitive hashing algorithm of [18], which returns a (1+ ��)
factor approximate closest pair, for �� = 1.

Fact 24 (From [3]). For any constant γ > 0, locality sensitive hashing can be used to approximate the
minimum distance between a set of n vectors in d-dimensional Euclidean space, up to a multiplicative
factor of 2, in time O(dn5/4+γ).

The following algorithm reduces the problem of finding a close pair of points among arbitrary
vectors, to finding a close pair of points among unit vectors.

Algorithm 25. Standardize
Input: A d× n matrix X with entries xi,j ∈ R, constant � ∈ (0, 1).

Output: A m
� × n matrix Y with all columns having unit norm, and m

�
= log

3
n.

• Perform a Johnson-Lindenstrauss transformation of the columns of X into dimension m
� to

yield matrix X
�.

• Let c denote the magnitude of the largest column of X
�.

• Choose a random m
�-dimensional vector v of length 8c/�.

• Let matrix Y be the result of adding v to each column of X
�, and normalizing all columns

so as to have unit norm.

Proposition 26. Letting Y denote the result of algorithm Standardize on input X and �, with
probability 1 − o(1/poly(n)) for all sets of four columns Y1, Y2, Y3, Y4 of matrix Y , with X1, . . . , X4

being the corresponding columns of matrix X, it holds that

||Y1 − Y2||

||Y3 − Y4||
·
||X3 −X4||

||X1 −X2||
∈ [1− �, 1 + �].

Proof. With probability at least 1 − o(1/poly(n)), the Johnson-Lindenstrauss transformation will
preserve all distances up to a multiplicative factor of 1 + �/8, hence we proceed with the proof
assuming this is the case. For any given vector X �

i
−X �

j
, the length of its projection onto the plane

orthogonal to the vector v +
X�

i+X�
j

2 , will decrease by a factor of o(1/ log n) < �/8 with probability

26

1−o(1/poly(n)) over the choice of v. Note that the only difference between this projection of X �
i
−X �

j

and 8cYi/�− 8cYj/� is due to the scaling factor to make the images of X �
i
, X �

j
unit vectors, and the

discrepancy between this scaling factor and 8c/� is at most a factor of 2c+8c/�
8c/� = 1 + �/4. Thus by

the triangle inequality with the claimed probability, the ratios of all pairs of pairwise distances are
preserved, up to a multiplicative factor of �.

The following algorithm finds a (1+ �) approximate closest pair from among a set of unit vectors,
given that the distance between the closest pair is at least α > 1

n0.9 .

Algorithm 27. Approximate Closest Pair (large α)
Input: A d × n matrix X with entries xi,j ∈ R with d = log

3
n whose columns have unit norm,

and constant � ∈ (0, 1), and α > 1/n
0.9 such that the closest pair of columns have distance in the

range [α, 2α].

Output: A pair of indices.

• If α > 0.2 return the best result found in log
2
n runs of algorithm Approximate Maximal

Inner-Product on input X, and �/20.

• Otherwise, define the d×n matrix Z as follows: for each i ∈ [d], select a set of q = � π
2α�

uniformly random unit vectors v1, . . . , vq and for all j ∈ [n], set

zi,j = sign

�
q�

k=1

X
†
j vk

�
,

where Xj is the jth column of matrix X.

• Return the best result found in log
2
n runs of algorithm Approximate Maximal

Inner-Product with error parameter �/20 and input matrix Z with all entries scaled by
1/

√
d so as to make them have unit norm.

The following proposition characterizes the performance of the above algorithm.

Proposition 28. For any constant � > 0, Algorithm 31 (Approximate Closest Pair (large
α)), when given as input n unit vectors in Rd with d = log3 n, whose closest pair have distance lying
in the interval [α, 2α], with probability 1− o(1/poly(n)) will output a pair with Euclidean distance at
most a factor of (1 + �) larger than that of the minimal pair. Additionally, provided α > 1/n0.9, the
runtime of the algorithm is Õ(n2−Θ(

√
�)).

Proof. In the case that α > 0.2, the proposition follows from noting that provided the distance
between the closest pair is bounded below by a constant, the task of returning the approximate closest
pair to a multiplicative factor of 1 + � is the same the task of returning the pair with approximately
maximal inner product to additive c� for some constant c. Specifically, given that the closest pair has
distance at least 0.2 the law of cosines yields that the maximal inner product is at most 1−0.08+o(1)
and hence an additive approximation of the maximal inner product to within �/20 will yield the
desired multiplicative guarantee on the distance.

In the case that α < 0.2, consider two columns Xi, Xj that form an angle of β (and hence have

distance
�
(1− cosβ)2 + sin2 β). For each random vector v, we have that E[sign(X†

i
v·X†

j
v)] = 1−2β

π
,

and since expectations of independent random variables multiply, we have that for each k,

E[zk,izk,j] =

�
1−

2β

π

�q

.

Consider the pair of columns of X with minimal distance δ∗ ∈ [α, 2α], and hence form an angle
β∗ ∈ [α/2, 2α], in which case the expected inner product between the corresponding columns of Z

27

is at most d
�
1− α

π

�π/2α
≤ 0.65d, and is at least d

�
1− 4α

π

�π/2α
≥ 0.11d. By the same calculation,

the image of any pair of columns of X whose distance was a multiplicative factor of at least (1 + �)
larger than δ∗ will have expected inner product at least a multiplicative factor of (1 + �/2) smaller
than that of the image of the pair with distance δ∗. By a union bound over Chernoff bounds, since
d = log3n, with probability 1−o(1/poly(n)) the inner products between any two columns of Z differs
from their expectations by o(1), and hence finding the pair with inner product within an additive
�/20 will correspond to finding a multiplicative 1 + � approximation to the closest pair of original
vectors.

To bound the runtime, note that provided α < 1/n0.9, the runtime of all components of the
algorithm aside from the calls to Approximate Maximal Inner-Product, take time bounded by
Õ(n/α) = Õ(n1.9).

Finally, we address the setting in which the closest pair might be extremely close, having distance
< 1

n0.9 . Here, the difficulty is that we cannot compute a sufficiently high powered XOR/tensor
embedding without spending super-quadratic time. Instead, we note that if the minimum distance
is so small, we can recursively divide the set of points into small clusters, that are all far apart in
relation to the minimal distance. If all clusters are small, then we can trivially find the closest pair by
brute force search with each cluster. If we have a large cluster (with tiny diameter), then we can can
simply subtract off the mean of the cluster; after re-normalizing via the Standardization algorithm,
Algorithm 25, the resulting points will have unit norm, and the smallest distance will have increased
to at least 1/n0.8, and we can apply the algorithm Approximate Closest Pair (large α).

28

Algorithm 29. Approximate Closest Pair (small α)
Input: A d × n matrix X with entries xi,j ∈ R whose columns have unit norm, and constant � ∈
(0, 1), and α < 1/n

0.9 such that the closest pair of columns have distance in the range [α, 2α].

Output: A pair of indices c1, c2 ∈ [n].

• Let v1, . . . , vn denote the n columns of X. We recursively split up these vectors:

– Project all vectors onto a random d dimensional unit vector and sort the resulting
projections, x1 ≤ . . . ≤ xn, assume wlog xi is the proj. of vi.

– We now traverse the list: we ‘‘pause’’ at some xi, if there are fewer than n
0.6

points with projected value in the interval [xi − 2α, xi]. If we have ‘‘paused’’ at xi

we do one of two procedures:

– if |{j : xj < xi}| ≤ n
0.9:

∗ Brute force search for the closest pair of points from the set {vj : xj < xi}.
Store the closest pair and their distance, and remove all points vj (and their
projections xj) for which xj ≤ xi − 2α from all further computations. Continue
traversing the list (with those points removed).

– if |{j : xj < xi}| > n
0.9:

∗ Save set Si := {vj : xj ≤ xi}, and continue traversing the list with all points vj

s.t. xj ≤ xi − 2α removed.

– Having finished traversing the list, if we have not stored any sets Si, then we
can simply compare the stored closest pair distances, and output the minimum.
Otherwise, let S1, . . . , Sk denote the sets that are stored. For each set Si do the
following:

∗ For ease of notation, let S denote Si. Note that points in S had projections
xi in sets of contiguous intervals of width 2α; each interval had ≥ n

.6 points,
hence all xi are within 2αn

.4
.

∗ Choose
√
n random pairs of vectors from S, and compute their distances. Let µ

be the median of these
√
n distances. If µ > αn

0.6, then output ERROR.

∗ Otherwise, randomly select v ∈ S, sample n
0.1 distances between v and randomly

chosen v
� ∈ S; repeat until one has found a v that has distance at most 2αn

0.6

from at least 1/4 of the points in S.

∗ Let 0 = d1 ≤ . . . ≤ d|S| be the distances beween v and all points in S. Find c ∈
[2αn

0.6
, 4αn

0.6
] s.t. |{i : di ∈ [c, c+ 2α]}| < n

0.4
.

∗ For each of the at most n
0.4 points in S with di ∈ [c, c + 2α], via a brute force

search check all O(n
1.4

) distances between such points and all other points in
S, recording the smallest such distance.

∗ Construct the sets T := {vi : di < c}, and T
�
:= {vi : di > c + 2α}. We recurse the

whole algorithm on the set of points T
� noting that |T �| < 3

4 |S|.
∗ We now address the set T: subtract v from all points in T and run algorithm

Standardize on the resulting points, and then run algorithm Approximate Closest
Pair (large α) with parameter �/2 on the results of running Standardize on
the set T with parameter �/2. (Since all points in T were distance at most
4αn

0.6 from v, after subtracting off v, and running the Standardize algorithm,
the distance of the closest pair will have increased by a factor of Ω(

1
αn0.6),

and hence the minimum distance will be >> 1/n
0.9 and hence will be amenable to

running the ‘‘large α’’ variant of the closest pair algorithm.)

• Compare the closest pairs returned by all branches of the algorithm, and return the
closest.

Proposition 30. Algorithm 29 (Approximate Closest Pair (small α)), on input a set of n
unit vectors in d = log3 n dimensional space, � > 0, and α ≤ 1/n0.9 such that the closest pair of points
has distance in the interval [α, 2α] will output the (1 + �) approximate closest pair with probability
1− o(1/poly(n)), and runs in time Õ(n2−Θ(

√
�)).

29

Proof. Each time that the algorithm “pauses” at a projected value xi, if no set is saved during that
pause, then a brute-force-search is performed on at most n0.9 vectors, which are then removed from
all subsequent computation. If the closest pair involves one of those points, then we will find it, since
our projection onto a random unit vector only decreases distances.

If a set S is “saved”, then the vectors correspond to a set of vectors that ended up unusually
close together in the projection. In particular, note that the projection onto a random unit vector,
in expectation, shrinks distances by a factor of Θ(1/

√
d), and, crudely, the probability that a given

distance is decreased by a factor of more than 100/
√
d is bounded by 1/10, and hence the probability

that the median of a subset of
√
n randomly chosen pairwise distances from points in set S is more

than αn0.6 is o(1/poly(n)), since, based on the proximity of the projections of these points, the
distances should be (̃αn0.4). Given this, with probability 1 − o(1/poly(n)) the sampling approach
will find a vector v that has the desired distance from at least 1/4 the points of S, and the sets
T, T � we be constructed as desired and have the claimed size. Note that the step that chooses the
threshold distance c between the elements of T and T �, and then brute-force searches, and discards
all points within this critical distance [c, c + 2α] ensures that if the closest pair of points lies in S,
then the pair was either found in the brute-force phase, or is contained within either T or T �.

The crux of the algorithm is the fact that we subtract the vector v from all points in set T . Since,
by construction, all points in this set have distance at most 4αn0.6 from v, after v is subtracted from
all the points, the ratio of the minimum distance in set T − v to the maximum modulus of these
points is now at least α

4αn0.6 = n−0.6/4. Hence by Proposition 26, the result of running Standardize
on this set will yield a set of unit vectors for which the ratio of the distances have been distorted by
at most a factor of (1 + �/2), and the minimum distance is at least Θ(n−0.6/�) >> 1/n0.9.

To analyze the runtime of the algorithm, note that all branches of the algorithm terminate, with
the exception of the recursive call to the sets T �. Nevertheless, with each call the number of points
in each set considered decreases by a factor of at least 3/4, since |T �| ≤ 3

4 |S|, and the total number
of points in the union of all such sets is at most n(1+ o(1)), from the fact that in the initial creation
of sets Si, at most a n0.6/n0.9 fraction of points end up being assigned to more than one of the sets
Si.

For completeness, we state the general closest-pair algorithm:

Algorithm 31. Approximate Closest Pair
Input: A d× n matrix X with entries xi,j ∈ R, constant � ∈ (0, 1).

Output: A pair of indices.

• Let Y be the m×n matrix output by algorithm Standardize on input X with parameter �/4.

• Using locality sensitive hashing, find α such that the minimum distance between pairs of
columns of Y is in the interval [α, 2α].

• If α ≥ 1/n
0.9 return the results of running Approximate Closest Pair (large α) on input

Y, �/2, and α.

• If α < 1/n
0.9 return the results of running Approximate Closest Pair (small α) on input

Y, �/2, and α.

Theorem 2, which we restate below for convenience, characterizes the performance of the above
algorithm, and follows immediately from Fact 24, and Propositions 28 and 30:

Theorem 2 Given n vectors in Rd and sufficiently small approximation parameter � > 0, with
probability 1− o(1) our algorithm will return a pair of vectors u, v such ||u − v|| ≤ (1 + �)d∗, where

30

d∗ is the (Euclidean) distance between the closest pair of vectors. Additionally, the algorithm runs
in time

O
�
n2−Ω(

√
�) + nd

�
.

5 Learning Parities and Juntas

The problem of finding a ρ-correlated pair of Boolean vectors from among n random vectors is easily
seen to be equivalent to solving the parity with noise problem, in the special case that the size of
the true parity set is k = 2; the correspondence between the correlation ρ and noise rate η is given
by η = 1/2 − ρ/2. To see one direction of the equivalence, note that given an instance of such a
parity with noise problem, if one removes all examples that have label 1, one will be left with a set
of examples in which the two true parity indices are correlated. One could thus use the algorithm

of Proposition 12 to find the pair of parity indices in time n
5−ω

2(4−ω)kpoly(1
1/2−η

) < n1.62poly(1
1/2−η

),
where ω < 2.4 is the exponent of matrix multiplication.

In general, given an algorithm for solving the parity with noise problem for parities of some
fixed size c in time O(nα), one may attempt to adapt it to obtain an algorithm for the parity with
noise problem for parities of any value k > c that runs in time O(nk

α
c) by performing the following

transformation: for each length n example with label �, transform it into a length N =
�

n

k/c

�
≈ nk/c

example with label �, where each index represents the XOR (or product in the ±1 setting) of some set
of k/c of the indices of the original example. If the original set of examples contained a set of k indices
whose XOR is correlated with the labels, then the transformed examples will contain (several) sets of
c indices whose XOR is correlated with the labels. One can now simply apply the original algorithm
for finding parities of size c to the transformed set of examples, to yield a runtime of O

�
(nk/c)α

�
.

The minor difficulty, of course, is that the transformed examples are no longer uniformly random bit
strings, though most algorithms should be robust to the type of dependencies that are introduced
by this transformation.

The above transformation motivates the search for improved algorithms for finding small constant–
sized parities (k = 2, 3, 4, . . .). Given the existence of a subquadratic time algorithm for the case
k = 2, a natural hope is that one can design better and better algorithms for larger k, perhaps with
the eventual hope of yielding an no(k) algorithm.

While the above reduction together with Proposition 12 (corresponding to k = 2) yields an
algorithm for learning k-sparse parities with runtime

n
5−ω

2(4−ω)kpoly(
1

1/2− η
) < n0.81kpoly(

1

1/2− η
),

we instead consider the k = 3 case directly, and obtain an exponent of < 0.80k. While the constant
in the exponent is only very slightly better than what is yielded from leveraging the k = 2 setting,
this alternate approach is intuitively appealing and may be of independent interest.

5.1 A Little Bias Goes a Long Way

As for the results of Sections 3 and 4, our k = 3 algorithm uses fast matrix multiplication to find a pair
of correlated vectors. The crux of the approach is that a parity function has reasonably heavy low-
degree Fourier coefficients if one changes from the uniform distribution over the Boolean hypercube
to a slightly biased product distribution. The required bias is very small, thereby allowing one to

31

efficiently subsample a set of uniformly random examples so as to simulate a set of examples with
the desired bias. In the remainder of this section we describe the main idea behind the algorithm.

Given an example x, y, for x = (x1, . . . , xn) from an (n, 3, η)-instance of parity with noise (with
three parity bits), for any i, Pr[xi = 1|y = 1] = 1/2. Similarly, Pr[xixj = 1|y = 1] = 1/2 for distinct
i, j ∈ [n]. The improved algorithm for finding parities rests on the following observation about parity
sets of size k = 3: if the bits of x are not chosen uniformly at random, but instead are chosen
independently to be 1 with probability 1

2 + α, for some small bias α, then the above situation no
longer holds. In such a setting, it is still the case that Pr[xi = 1|y = 1] ≈ 1

2 + α, however

Pr[xixj = 1|y = 1] =

�
1
2 +Θ(α) if i and j are both in the true parity set,
1
2 +Θ(α2) if i or j is not in the set of parity bits.

The punchline of the above discrepancy is that very small biases—even a bias of α = 1/
√
n can

be quite helpful. Given such a bias, for any pair i, j ∈ [n], for sufficiently large n, even n ·polylog (n)
examples will be sufficient to determine whether i and j are both in the parity set by simply measuring
the correlation between the ith and jth indices for examples with even label, namely estimating
Pr[xixj = 1|y = 1] based on the examples. How does one compute these

�
n

2

�
correlations between

vectors of length npolylog (n) in time o(n3)? By (fast) matrix multiplication. It is worth stressing
that, provided this argument is sound, the resulting algorithm will be extremely noise-robust, since
the discrepancy between Pr[xixj = 1|y = 1] in the cases that i, j are both parity bits and the case
that they are not will degrade linearly as η → 1/2.

It should now be intuitively clear how to extend this approach from the small-biased setting to
the setting in which the examples are generated uniformly at random, since a bias of 1/

√
n is quite

modest. In particular, with constant probability, a random length–n example will have at least n

2+
√
n

positive indices, thus simply filtering the examples by removing those with fewer than n/2 positive
indices should be sufficient to instill the necessary bias (at the minor expense of independence). In
the following sections we make this approach rigorous.

5.2 Learning Parity by Adding Bias

As in the case of learning a parity of size k = 3, outlined in the previous section, for the general case
of parities of size k a bias of 1/

√
n in the examples will be sufficient. There are many approaches to

achieving this bias; algorithmically, the most simple approach is to take examples, and reject those
which have fewer than n

2 +
√
n positive indices. While this approach can be made to work, the

conditioning on the total weight being large greatly complicates the analysis. Thus we instead argue
that one can filter the examples in such a way that the distribution of the examples that remain is
very close in total variational distance (�1 distance) to the distribution in which the examples are
actually generated by independently choosing the value of each index with probability 1

2 +
1√
n
. Thus

the result of applying our algorithm to the filtered examples will, with high probability be identical
to the result of applying the algorithm to a set of examples generated according to the idealized
process which selects the value of each index of each example independently, to be 1 with probability
1/2 + 1/

√
n, and thus it suffices to perform the analysis of the simpler setting in which indices are

chosen independently.
We first state the simple filtering process, and then prove that the resulting distribution of

examples has the desired property. Throughout, we let Bin[r, p] denote the binomial random variable
representing the number of heads that occur after flipping r i.i.d. coins that each land heads with
probability p.

32

Algorithm 32. Make Biased Examples
Input: An m× n matrix X with entries xi,j ∈ {−1,+1}, a desired bias α ∈ (0,

1
2), and t ∈ [n].

Output: an m
� × n matrix Y, for some m

� ≤ m, consisting of a subset of the rows of X.

• Define r =
Pr[Bin[n, 12]>t]

Pr[Bin[n, 12+α]>t]
.

• For each row xi = xi,1, . . . , xi,n of X:

– let si be the number of 1’s in xi.

– If si ≥ t discard row xi.

– Otherwise, if si < t, then include row xi in matrix Y with probability

r ·
Pr[Bin[n,

1
2 + α] = si]

Pr[Bin[n,
1
2] = si]

(Note that this quantity is always bounded by 1.)

Proposition 33. The algorithm make biased examples when given as input an m×n matrix X
chosen with each entry being 1 independently with probability 1/2, α = 1√

n
, and t = n

2 +
√
nk logn

4 ,

will output matrix Y satisfying the two following properties:

• The total variation distance between the distribution from which each row of Y is chosen and
the distribution on rows defined by the process of picking each of the n elements independently
to be 1 with probability 1

2 + α, is at most n−Θ(k2 logn)

• With probability at least 1− e−
mr2

32 , Y has at least mr

4 rows, where r ≥ n−(12+
k
4).

The following lemma will be useful in the proof of the above proposition.

Lemma 34. For Bin[n, p] denoting a binomially distributed random variable, for α > 0 with
α = o(1) and s >

√
n+ αn,

Pr[Bin[n, 12] >
n

2 + s]

Pr[Bin[n, 12 + α] > n

2 + s]
≥

1

(1 + 2α)2s
√
n
,

for sufficiently large n.

Proof. We first lowerbound the numerator; trivially, Pr[Bin[n, 12] >
n

2 +s] > Pr[Bin[n, 12] =
n

2 +s] =�
n

n
2+s

�
1
2n . We now upper bound the denominator. To this order, note that for any s� ≥ s, we have

Pr[Bin[n, 12 + α] = n

2 + s� + 1]

Pr[Bin[n, 12 + α] = n

2 + s�]
=

�
n

n
2+s�+1

�
(12 + α)

�
n

n
2+s�

�
(12 − α)

=
n− 2s�

2 + n+ 2s�
·

1
2 + α
1
2 − α

≤
n− 2(

√
n+ αn)

2 + n+ 2(
√
n+ αn)

·

1
2 + α
1
2 − α

= 1−
4
√
n− 4α+ 2

(n+ 2
√
n+ 2αn+ 2)(1− 2α)

≤ 1−
1
√
n
,

for sufficiently large n. This shows that we may bound
�

n

i=n
2+s

�
n

i

�
(1/2 − α)i(1/2 + α)n−i by the

geometric series
�

n
n

2 + s

�
(1/2− α)

n
2−s(1/2 + α)

n
2+s

∞�

i=0

(1−
1
√
n
)i =

�
n

n

2 + s

�
(1/2− α)

n
2−s(1/2 + α)

n
2+s

√
n.

33

Thus the desired ratio is at least
�

n
n
2+s

�
1
2n�

n
n
2+s

�
(1/2− α)

n
2−s(1/2 + α)

n
2+s

√
n
≥

1

(1 + 2α)2s
√
n
.

Proof of Proposition 33. Each row of Y is distributed as a length-n string with each bit equaling
1 independently with probability α, conditioned on the total number of 1’s to be at most t. This
distribution has variation distance at most 2Pr[Bin[n, 12+α] > t] from the corresponding distribution

in which no conditioning occurs. By standard Chernoff bounds, Pr[Bin[n, 12+α] > t] ≤ e−
(n(12+α)−t)2

(1−2α)n .
The expected number of rows of Y will be at least m · r · (1− q), where q = Pr[Bin[n, 12 +α] > t],

and thus this expectation is trivially at least mr

2 . Since each row of the input X is inserted into Y

independently, with probability at least r

2 , by a Chernoff bound, Pr[|Y | < mr

4] < e−
mr2

32 . Using the
lower bound on r of Lemma 34 yields the claim.

We now state the general algorithm for learning parities of size k. Note that throughout, we
assume that we know the size of the true parity set. This is without loss of generality, as we can
always simply try k = 1, 2, 3, . . ., and lose at most a factor of k in our runtime. Additionally, we
aim to find the parity with some constant probability. Since we can always verify whether the
returned parity set is correct (with all but inverse exponential probability), by simply repeating the
algorithm many times this constant probability of success can become probability 1− δ at an extra
multiplicative expense of log 1

δ
. Finally, we assume that k is divisible by 3. This is without loss of

generality, as we can always insert up to two extra bits in each example and multiply the label by
their values so as to yield examples from an instance of size at most n+2 where the size of the parity
is actually divisible by 3.

Algorithm 35. Learn Parity with Noise
Input: An m × n matrix X with entries xi,j ∈ {−1,+1}, a length m vector v ∈ {−1,+1}m of
labels, a parameter k that is divisible by 3, and an arbitrarily small constant � > 0.
Output: a set of k indices.

• Let Y be the result of running make biased examples on matrix X, with α =
1√
n

and t =

n
2 +

k logn
4

√
n.

• Remove all rows from Y whose corresponding label (in vector v) is −1, and take the

first m
�
=

nk/3(1+�)

(1−2η)2+� of the remaining rows to form the m
� × n matrix Y

�.

• Generate the m
� ×

�
n
k
3

�
matrix Z by taking each row of Y

�, and generating a row of Z

of length
�

n
k/3

�
, with each position zi,S corresponding to a set S ⊂ [n] of k/3 distinct

indices, and setting zi,S =
�

j∈S y
�
i,j .

• Compute the
�

n
k/3

�
×

�
n

k/3

�
matrix C = Z

t
Z. For convenience, we regard the elements of C

as being indexed by a pair of sets S, S
� ⊂ n with |S| = k/3, thus cS,S� is the entry

corresponding to the product of the two columns of Z corresponding to the sets S and S
�.

• For every pair of subsets S, S
� ⊂ [n] with S and S

� each consisting of k/3 distinct
elements, if S ∩ S

� �= ∅, set cS,S� = 0.

• Let cS1,S2 , be the largest element of matrix C. Look in the column CS1 corresponding
to set S1, and let S3 be the set that maximizes cS1,S3 subject to the constraint that
S3 ∩ S2 = ∅. Output S1 ∪ S2 ∪ S3.

34

Theorem 5. For any fixed � > 0, for sufficiently large n and k given m = n
2k
3 (1+�)

(1−2η)2+� examples from

an (n, k, η) instance of parity with noise, with probability 1− o(1/n), the algorithm Learn Parity
with Noise, when given as input the m× n matrix of examples, and length m vector of labels, will
correctly return the true set of k parity bits. Additionally, the algorithm will run in time

O

��
n

k
3 (1+�)

(1− 2η)2+�

�ω�
.

The crux of the proof of Theorem 5 is that, given that applying make biased examples to
matrix X yields a matrix Y with suitably biased elements, the matrix Z inherits some bias from Y .
In particular, the fact that each entry of Z is given as the product of k/3 entries of X should not
completely erase the bias. While the bias will decrease exponentially in k, the length of the rows of
Z are correspondingly larger, and we are only hoping that the bias of each element of Z is roughly
1/
�

|Z|. The following basic lemma guarantees this.

Lemma 36. Let z =
�

s

i=1wi, where each wi ∈ {−1,+1} is chosen independently to be 1 with
probability 1

2 + α. Then Pr[z = 1] = 1
2 + 2s−1αs.

Proof. Letting p = 1
2 − α, we have the following:

Pr[z = 1]− Pr[z = −1] =
s�

i=0

(−1)ipi(1− p)s−i

�
s

i

�

= ((1− p)− p)s

= (1− 2p)s = 2sαs,

Proof of Theorem 5. Proposition 33 guarantees that with probability at least 1 − o(1/n) there will

be at least m� = n
k
3 (1+�)

(1−2η)2+� examples with which to populate matrix Y . Additionally, Proposition 33

guarantees that the total variational distance between the distribution from which matrix Y is drawn
and the distribution defined by choosing each index independently to be 1 with probability 1

2 + 1√
n

is o(1/n), hence with the claimed probability the algorithm will perform identically as in the case
that the elements of matrix Y were actually generated according to this independent model. For the
remainder of the proof, we argue as if matrix Y is generated in that fashion.

We now consider the matrix Z. Let zS , zS� be two element of the row z of Z corresponding
to disjoint sets S, S� ⊂ [n], and let � denote the label corresponding to row z before any noise has
been added. Let w =

�
j∈S∪S� yj , denote the random variable representing zSzS� . For notational

convenience, define

F (β, h) =

�h/2��

i=0

(
1

2
− β)2i(

1

2
+ β)h−2i

�
h

2i

�
=

1

2

�
1 + 2hβh

�
,

which is the probability computed in Lemma 36 that when h identical independent coins that land
heads with probability 1

2 + β are tossed, an even number of heads occurs. Letting s denotes the

35

number of parity bits in S ∪ S�, we have the following, where α = 1√
n
:

Pr[w = 1|� = 1] =
F (α, s)F (α, 2k3 − s)F (α, k − s)

F (α, k)

+
(1− F (α, s))(1− F (α, 2k3 − s))(1− F (α, k − s))

F (α, k)

=
1 + (2α)2k/3 + (2α)k + (2α)5k/3−2s

2(1 + (2α)k)
,

where the numerator of first line is computing the probability that w = 1 and � = 1.
In the case that s = 2k/3, which occurs when both S and S� are subsets of the set of parity bits,

then we can lowerbound the above as

Pr[w = 1|� = 1] ≥
1 + (2α)k/3

2(1 + (2α)k)
≥

1

2
+

(2α)k/3

2
− (2α)2k/3 ≥

1

2
+

(2α)k/3

3
,

since α = o(1). In the case that s ≤ 2k/3− 1, we upperbound the quantity as follows:

Pr[w = 1|� = 1] ≤
1 + 2(2α)k/3+2

2
≤

1

2
+

(2α)k/3

100
,

since α = o(1). Letting �∗ denote the true label, corrupted with independent noise η < 1/2, we have

Pr
s=2k/3

[w = 1|�∗ = 1] ≥
1

2
+

(2α)k/3

3
(1− 2η), and Pr

s≤2k/3−1
[w = 1|�∗ = 1] ≤

1

2
+

(2α)k/3

100
(1− 2η).

Putting the pieces together, letting m� denote the number of rows of matrix Z, which is at least
n

k
3 (1+�)

(1−2η)2+� , we have that for any entry cS,S� of matrix C corresponding to two disjoint sets S, S�, where

S and S� are not both subsets of the parity bits, E[cS,S�] ≤ 2
m�(2/

√
n)k/3

100 (1− 2η). On the other hand,

if S, S� are both subsets of the parity bits, then E[cS,S�] ≥ 2
m�(2/

√
n)k/3

3 (1 − 2η), and since these
quantities have variance at most m�, for any constant �, via a union bound over Chernoff bounds,
taking n large yields that with probability 1− o(1/n), all the entries of C corresponding to pairs of
disjoint sets that are not both subsets of the true parity bits will be smaller than all the entries that
correspond to pairs of subsets of the true parity bits.

5.3 Reducing the Sample Complexity

In order to obtain our desired corollary for learning DNF (Corollary 9), we must reduce the number
of examples used in our Learn Parity with Noise algorithm. Intuitively, provided one has a very
noise–robust algorithm, such reduction in sample complexity is easy; one simply takes a very small
number of examples—in fact, min(n1+�, poly(k) log n) will suffice—and then “manufactures” many
examples by XORing together small sets of the actual examples. Provided the initial noise in the
labels is η, if we XOR together q examples, then the XOR of the labels will be the correct label with
probability at least 1

2 + (1−2η)q

2 .

Algorithm 37. Make More Examples
Input: An m × n matrix X with entries xi,j ∈ {−1,+1}, a length m vector v ∈ {−1,+1}m of
labels, a positive integer q < m, an integer m

�.
Output: An m

� × n matrix Y , and a length m
� vector w of labels.

• For each i ∈ [m
�
], randomly choose a set T ⊂ [m], with |T | = q, create row yi of Y , by

assigning the jth component of yi to be
�

�∈T x�,j , and letting the ith label be
�

j∈T vj .

36

Ideally, we would be able to apply the algorithm Learn Parity With Noise in a black-box
fashion to the output of running make more examples on a small number of actual examples, as
was done in [21]. Unfortunately, because the noise in the generated examples will increase with q
in the exponent, we will not be able to take sufficiently large q so as to yield the necessary claim
that the distribution of resulting examples is close in total variation distance to the desired uniform
distribution.

Instead, we argue that the distribution of a small number (namely, k) of the columns of the
generated examples are close to uniform. The idea is that we will argue that the distribution of the
values in the k parity columns are close to uniform, which will let us apply our Chernoff bound to
argue that with very high probability, the “good” entries cS,S� of the matrix C generated in Learn
Parity With Noise, corresponding to S, S� subsets of the true parity set, will be “large”. For all
the “bad” entries of C, we will not be able to apply Chernoff bounds; however, using the fact that the
rows are pairwise independent, we will apply Chebyshev’s inequality to argue that with probability
at least 1/2, each “bad” element will be small. Thus after running the whole algorithm log(

�
n

k/3

�
)

times, we can argue that with high probability, in every run, the “good” coordinates will be large,
whereas for a “bad” element, in each run of the algorithm, it will be small with probability at least
1/2. Thus after log(

�
n

k/3

�
) runs, with high probability the only elements that were never “small”

will correspond to entries whose row and column correspond to subsets of the true parity set, as
desired. We now make this roadmap rigorous. We begin by defining what it means for a family of
hash functions to be universal, and state the Leftover Hash Lemma.

Definition 38. Let H be a family of hash functions from A to B, and let H ∈ H be chosen uniformly
at random. H is a universal family of hash functions if for all distinct a, a� ∈ A, Pr[H(a) = H(a�)] ≤
1
|B| .

Lemma 39 (Leftover Hash Lemma [17]). For A ⊂ {0, 1}m, with |A| ≥ 2r, and |B| = {−1,+1}r−�

for some � > 0, if H is a universal family of hash functions from A to B, then with probability at
least 1 − 2−�/4, a uniformly random H ∈ H will satisfy Dtv[H(a), Unif(B)] ≤ 2−�/4, where a is a
random element of A, Unif(B) denotes the uniform distribution on B, and Dtv is the total variation
distance.

The following basic fact will also be useful.

Fact 40. Given a vector v ∈ {−1,+1}m, such that m(12 + p) indices of v are +1, then for a random
set T ⊂ [m], with |T | = q,

Pr[
�

i∈T
vi = 1] ≥

1

2

�
1 +

�
2mp− q + 1

m− q + 1

�q�
.

Proposition 41. Given an m × n matrix X and vector of labels v consisting of m examples from
an instance of parity with noise with noise rate η, integer q ≤

m(1−2η)
4 , and integer m�, for any

fixed set S ⊂ [n] with |S| = k, with probability at least 1 − 2−
q log m

q −k

4 , the algorithm make more
examples on input X, v, q,m�, will output a matrix Y such that the m� × k submatrix YS defined
as the subset of the columns of Y corresponding to indices in S, will have total variation distance

at most m�2−
q log m

q −k

4 from the distribution on matrices given by assigning each element to be ±1
independently with probability 1/2.

Additionally, with probability at least 1− 2−
(q−1) log m

q−1−k

4 , the distribution of the rows of YS cor-
responding to the set of correct labels, will differ from that corresponding to the set of incorrect

37

labels by total variation distance at most 2m�2−
(q−1) log m

q−1−k

4 . Finally, provided 1−2η > 4m−0.4, with

probability at least 1−o(1/m), the number of correct labels will be at least m�
�
1
2 + 1

2

�
1−2η
4

�q�
−m�0.6.

Proof. We will first apply the Leftover Hash Lemma (Lemma 39). Note that each choice of matrix
X defines a hash function from the set A := {T : T ⊂ [m], |T | = q} to the set B = {−1,+1}k,
via the mapping that considers the columns of X corresponding to indices in set S, and XORs
each coordinate of the rows of X with indices in set T (as described in the algorithm make more
examples). Trivially, this family of hash functions is universal, since for two sets T �= T �, supposing
that i ∈ T, i �∈ T �, the image of T and T � will differ XORing with a uniformly random string
(namely, the ith row of X). Next, note that |A| =

�
m

q

�
≥ 2q log

m
q and thus Lemma 39 implies that

with probability at least 1− 2−
q log m

q −k

4 over the choice of matrix X, we will have that the distance

between each row of Y and the uniform distribution over {−1,+1}k is at most 2−
q logm−2k

8 . A union
bound over our m� rows yields the desired claim.

We now reason about labels. With probability at least 1− o(1/m), the number of correct labels

in the original vector v of labels will be at least m

2 + m(1−2η)
2 −m0.6 > m

2 + m(1−2η)
4 . Thus by Fact 40,

with this probability the expected number of correct labels in vector w will be at least

m�
�
1

2

�
1 +

�
m(1− 2η)/2− q + 1

m− q + 1

�q��
≥ m�

�
1

2
+

1

2

�
1− 2η

4

�q�
,

and thus with probability at least 1 − o(1/m) over the initial choice of the v labels, and the choice

of the sets that generate the m� new examples, at least m�
�
1
2 + 1

2

�
1−2η
4

�q�
−m�0.6 of the labels w

will be correct.
We now argue that for a given “manufactured” example, the correctness of the label is essentially

independent of the values of the chosen set of k indices. We proceed as in [21], and note that,
assuming there is at least one incorrectly labelled example in v (if not, then the independence is
trivial), letting Xodd, Xeven denote the sets of subsets T ⊂ [m] with |T | = q for which the number
of corresponding label is incorrect (correct). With probability 1− o(1/m), |Xeven| > |Xodd| >

�
m

q−1

�
,

and thus (since the correctness of the original labels are chosen independently of the corresponding
example) we may apply Lemma 39 as above, to conclude that the distribution of the values of the
k bits is distributed nearly uniformly over the 2k values. In particular, with probability at least

1 − 2−
(q−1) log m

q−1−k

2 , the distribution of the k bits conditioned on the label being correct will differ
from the distribution conditioned on the label being incorrect by at most total variation distance

1− 2−
(q−1) log m

q−1−k

4 .

We now describe our algorithm for solving instances of parity with noise, that uses few examples.

38

Algorithm 42. Learn With Few Examples
Input: Positive integers k, r, q,m

� an r ·m×n matrix X with entries xi,j ∈ {−1,+1}, and a length
r ·m vector v ∈ {−1,+1}m of labels.
Output: A set S ⊂ [n] with |S| = k.

• For i = 1 to r

– Let matrix X
�, and labels v

� be the output of running algorithm make more examples
on input X

i
, v

i
, q,m

�
, where X

i is the m×n submatrix of X consisting of rows i ·m+1

through rows (i+ 1)m, and v
i is the corresponding vector of labels.

– Let matrix Y be the result of running make biased examples on matrix X with
α =

1√
n

and t =
n
2 +

k logn
4

√
n.

– Remove all rows of Y with labels −1, and denote the resulting smaller m
��×n matrix

Y
�.

– Generate the m
�� ×

�
n

k/3

�
matrix Z by taking each row of Y

�, and generating a row of

length
�

n
k/3

�
with each position z�,S corresponding to a set S ⊂ [n] of k/3 (distinct)

indices, and setting z�,S =
�

j∈S y
�
�,j .

– Compute the
�

n
k/3

�
×

�
n

k/3

�
matrix C

i
= Z

t
Z, and let m

i
:= m

��.

• Let the set ParityBits be the union of all pairs of disjoint sets of size k/3, S, S
�, that

have the property that c
i
S,S� >

mi(2/
√
n)

k/3

3 for each i ∈ [r], where c
i
S,S� denotes the index of

matrix C
i indexed by the sets S, S

�
, as in algorithm Learn Parity with Noise.

• If |ParityBits| �= k output FAIL, otherwise output the set ParityBits.

Theorem 6. The algorithm Learn With Few Examples, when run on input k, r := 100k log n,

q, m� := n
2k
3 (1+�)

(1−2η)3q , and m = 100 · rq n2k/q

(1−2η)6 examples from an (n, k, η) instance of parity with noise,

will return the correct set of k parity bits with probability at least 1− o(1). Additionally, the number
of examples used is m; for sufficiently large constant q, the number of examples is bounded by n�k,
and the total runtime of the algorithm is bounded by

poly

�
1

(1− 2η)

�
· n

k
3 (1+�)ω,

where ω < 2.4 is the matrix multiplication exponent.

Proof. The proof follows from noting first that m� <
�
m/r

q

�.4
, and thus with probability 1− o(1), in

all r runs, no two choices of random subsets of [m] of size q chosen in the construction of X � will
be equal, and thus with this probability, the rows of X � (and thus Y and Y �) will all be pairwise
independent. Thus, from the proof of Theorem 5 and Chebyshev’s inequality, for each pair S, S� of

disjoint sets of size k/3 that are not both subsets of the true set of parity bits, ci
S,S� ≤

mi(2/
√
n)k/3

3
with probability at least 1/2. Since each of the r runs are independent, the probability that such a
bad pair of sets remains after all r = 100k log n runs is at most 1

n100k , and thus via a union bound

over the at most
�

n

k/3

�2
such pairs of bad sets, with probability 1 − o(1), no such bad pairs of sets

will appear in the final output set ParityBits.
By Proposition 41, and our choice of parameters, with probability 1− o(1/n), the total variation

distance between the assignment of the values to the k true parity columns of matrix X � in a given
run, and if they were chosen uniformly is at most o(1/n), and thus with probability 1−o(1), after the
r runs, the algorithm must perform identically to the performance in the case that these columns were
chosen uniformly at random, and thus the arguments of the proof of Theorem 5, and, in particular,

39

the Chernoff bound, guarantees that with probability 1 − o(1) in all r runs, every pair of disjoint

sets S, S� of size k that are subsets of the parity bits, will satisfy ci
S,S� >

mi(2/
√
n)k/3

3 , as desired.

6 Further Directions: Beyond Fast Matrix Multiplication

Beyond the more obvious open questions posed by these improved algorithms, one very relevant
direction for future work is to give algorithms that improve over the brute-force search in practice,
for modest-sized datasets. For instance:

Does there exist an algorithm for finding a pair of 0.05-correlated Boolean vectors from
among n = 100, 000 uniformly random Boolean vectors that significantly beats brute-force-
search, in practice?

There are two natural angles to this question. The first is to try to improve fast matrix multiplica-
tion implementations. While the algorithms described in this work rely on fast matrix multiplication,
they do not require an especially accurate multiplication. In particular, our algorithms would still
succeed if they used a noisy matrix multiplication, or even an algorithm that ”misplaced” a constant
fraction of the cross-terms. (For example, for n × n matrices A,B,C, in computing AB = C, the
entry ci,j should be the sum of n cross terms ai,k ·bk,j ; our algorithms would be fine if only, say, half of
these cross terms ended up contributing to ci,j .) Tolerating such “sloppiness” seems unlikely to allow
for faster asymptotic bounds on the runtime (at least within the Coppersmith–Winograd frame-
work), though it may significantly reduce the overhead on some of the more practically expensive
components of the Coppersmith-Winograd framework.

The second approach to yielding a practical algorithm would be to avoid fast matrix multiplication
entirely. Our Vector Aggregation algorithm of Section 3 seems natural (if many pairwise inner
products are extremely small, we should “bucket” them in such a way that we can process them in
bulk, yet still be able to detect which bucket contains the large inner product). Nevertheless, if one
replaces the fast matrix multiplication step with the naive cubic-time multiplication, one gets no
improvement over the quadratic brute-force search. It seems that no clever bucketing schemes (in
the “aggregation” step, one need not simply add the vectors over the reals. . .), or fancy embeddings
can remove the need for fast matrix multiplication.

One intuitive explanation for the difficulty of avoiding fast matrix multiplication is via the con-
nection between finding correlations, and learning parity with noise. The statistical query (SQ) lower
bound of Blum et al. [7], informally, implies that any algorithm that will beat brute-force-search must
be highly non-SQ; in particular, it must perform nontrivial operations that intertwine at least log n
rows of the matrix whose columns are the given vectors. Fast matrix multiplication is clearly such
an algorithm.

Given this intuitive need for a non-SQ component of the algorithm, perhaps the most likely
candidate for an off-the-shelf algorithm that might replace fast matrix multiplication, is the Fast
Fourier Transform. In a recent paper, Pagh gives an extremely clean and practically viable algorithm
for computing or approximating the product of two matrices given the promise that their product
is sparse, or has small Frobenius norm after one removes a small number of large entries [27]. The
algorithmic core of Pagh’s approach is the computation of a Fourier transform. Perplexingly, despite
the fact that Pagh’s results specifically apply to the type of matrix products that we require for our
algorithms that find correlations and parities, it does not seem possible to improve on the trivial
brute-force search runtimes by using Pagh’s matrix multiplication algorithm.

40

References

[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem.
In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 601–610, 2001.

[2] N. Alon and A. Naor. Approximating the cut-norm via Grothendiecks inequality. In Proceedings
of the ACM Symposium on Theory of Computing (STOC), pages 72–80, 2004.

[3] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
459–468, 2006.

[4] A. Andoni and P. Indyk. Near–optimal hashing algorithms for approximate nearest neighbor in
high dimensions. Communications of the ACM, 51(1):117–122, 2008.

[5] S. Arora and R. Ge. New algorithms for learning in presence of errors. In International Collo-
quium on Automata, Languages and Programming (ICALP), pages 403–415, 2011.

[6] J.L. Bentley. Multidimensional binary search trees used for associative searching. Communica-
tions of the ACM, 18(9):509–517, 1975.

[7] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF
and characterizing statistical query learning using Fourier analysis. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), pages 253–262, 1994.

[8] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):507–519, 2003.

[9] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In IEEE Symposium on Foundations of Computer Science (FOCS), 2011.

[10] K. Clarkson. A randomized algorithm for closest–point queries. SIAM Journal on Computing,
17(4):830–847, 1988.

[11] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13(1):42–
49, 1997.

[12] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality–sensitive hashing scheme based on
p-stable distributions. In Proceedings of the 20th ACM Symposium on Computational Geometry
(SoCG), pages 253–262, 2004.

[13] M. Dubiner. Bucketing coding and information theory for the statistical high dimensional nearest
neighbor problem. CoRR, abs/0810.4182, 2008.

[14] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for learning noisy parities
and halfspaces. In IEEE Symposium on Foundations of Computer Science (FOCS), 2006.

[15] E. Grigorescu, L. Reyzin, and S. Vempala. On noise-tolerant learning of sparse parities and
related problems. In The 22nd International Conference on Algorithmic Learning Theory (ALT),
2011.

[16] N. J. Hopper and A. Blum. Secure human identification protocols. In ASIACRYPT, pages
52–66, 2001.

41

[17] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 248–253, 1989.

[18] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the ACM Symposium on Theory of Computing (STOC), 1998.

[19] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.

[20] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[21] V. Lyubashevsky. The parity problem in the presence of noise, decoding random linear codes,
and the subset sum problem. In RANDOM, pages 378–389, 2005.

[22] J. Marchini, P. Donnelly, and L.R. Cardon. Genome-wide strategies for detecting multiple loci
that influence complex diseases. Nature Genetics, 37(4):413–417, 2005.

[23] S. Meiser. Point location in arrangements of hyperplanes. Information and Computation,
106(2):286–303, 1993.

[24] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k relevant variables. Journal
of Computer and System Sciences, 69(3):421–434, 2004.

[25] R. Motwani, A. Noar, and R. Panigraphy. Lower bounds on locality sensitive hashing. In
Proceedings of the ACM Symposium on Computational Geometry (SoCG), pages 154–157, 2006.

[26] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower bounds for locality sensitive hashing (except
when q in tiny). In Innovations in Theoretical Computer Science (ITCS), pages 275–283, 2011.

[27] R. Pagh. Compressed matrix multiplication. In Innovations in Theoretical Computer Science
(ITCS), 2012.

[28] R. Panigraphy. Entropy–based nearest neighbor search in high dimensions. In Proceedings of
the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

[29] Ramamohan Paturi, Sanguthevar Rajasekaran, and John H. Reif. The light bulb problem. In
Conference on Learning Theory (COLT), pages 261–268, 1989.

[30] C. Peikert. Public–key cryptosystems from the worst-case shortest vector problem. In Proceed-
ings of the ACM Symposium on Theory of Computing (STOC), pages 333–342, 2009.

[31] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM, 56(6):1–40, 2009.

[32] O. Regev. The learning with errors problem. Invited survey in IEEE Conference on Computa-
tional Complexity (CCC), 2010.

[33] T.J. Rivlin. The Chebyshev Polynomials. John Wiley and Sons, 1974.

[34] H. Samet. Foundations of Multidimensional and Metric Data Structures. Elsevier, 2006.

[35] I.J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96–108,
1942.

42

[36] G. Szegö. Orthogonal polynomials, 4th edition. American Mathematical Society, Colloquium
Publications, 23. Providence, RI, 1975.

[37] G. Valiant. Finding correlations in subquadratic time, with applications to learning parities and
juntas. In IEEE Symposium on Foundations of Computer Science (FOCS), 2012.

[38] L. Valiant. Functionality in neural nets. In First Workshop on Computational Learning Theory,
pages 28–39, 1988.

[39] K. A. Verbeurgt. Learning DNF under the uniform distribution in quasipolynomial time. In
Conference on Learning Theory (COLT), pages 314–326, 1990.

[40] X. Wan, C. Yang, H. Xue, N. Tang, and W. Yu. Detecting two-locus associations allowing for
interactions in genome-wide association studies. Bioinformatics, 26(20):2517–2525, 2010.

[41] R. Weber, H.J. Schek, and S. Blott. A quantitative analysis and performance study for
similarity–search methods in high–dimensional spaces. In The 24th International Conference on
Very Large Databases (VLDB), 1998.

[42] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith–Winograd. In Proceed-
ings of the ACM Symposium on Theory of Computing (STOC), 2012.

A Learning Juntas and DNF via Sparse Parities

We formally state the results of Feldman et al. [14] which reduce the problem of learning Juntas and
DNF to the problem of learning parity with noise. The main intuition, and proof approach of [14] is
that the problem of learning parities with noise is the problem of finding a heavy Fourier coefficient,
given the promise that one exists; in the case of learning a k-junta, one knows that there will be at
most 2k significant Fourier coefficients. The reduction proceeds by essentially peppering the labels
with random XORs, so that after the peppering process, with some decent probability, exactly one
Fourier coefficient will have survived, in which case the problem has been successfully transformed
into the problem of learning a parity of size k with noise. It is worth stressing that this reduction
results in an instance with a very large noise rate—noise 1

2 −
1
2k
, thus highlighting the importance

of considering the problem of learning parities with noise in the setting in which the noise-rates
approach 1/2. Below we give formal statements of these reductions.

Theorem A.1 (Feldman et al. [14]). Given an algorithm that learns parities of size k on length n
strings (under the uniform distribution) with noise rate η ∈ [0, 12) that runs in time T (n, k, η), there
exists an algorithm that learns k-juntas under the uniform distribution with noise rate η� that runs
in time

O

�
k22k · T (n, k,

1

2
−

1− 2η�

2k
)

�
.

Theorem A.2 (Feldman et al. [14]). Given an algorithm that learns parities of length k on length
n strings (under the uniform distribution) with noise rate η ∈ [0, 12) that takes S(n, k, η) examples
and runs in time T (n, k, η), there exists an algorithm that (�, δ)–PAC learns r-term DNF formulae
under the uniform distribution that runs in time

Õ

�
r4

�2
· T

�
n, log

�
Õ(r/�)

�
,
1

2
− Õ(�/r)

�
· S

�
n, log

�
Õ(r/�)

�
,
1

2
− Õ(�/r)

�2
�
.

43

Additionally, as Feldman observed, an improved algorithm for learning parities of size k can be
used, via the reduction of Feldman et al. [14] to yield an improvement in runtime of the approach
of Mossel et al. [24] for the problem of learning k-juntas without noise. The key observation of
Mossel et al. is that either a k-junta has a heavy Fourier coefficient of degree at most d, or, when
represented as a polynomial over F2, has degree at most k − d. Their algorithm proceeds by brute
force-searching for a heavy Fourier coefficients of order at most αk for some appropriately chosen α;
if none are found, then the junta is found by solving a linear system over n(1−α)k variables. Given
an improved algorithm for learning parities with noise, using the reduction of Feldman et al., one
improves upon the brute-force search component of the algorithm of Mossel et al. [24]. The following
corollary quantifies this improvement.

Corollary A.3. Given an algorithm that learns parities of length j on length n strings (under the
uniform distribution) with noise rate η ∈ [0, 12) that runs in time T (n, j, η), for any α ∈ (0, 1), there
exists an algorithm that learns k-juntas without noise under the uniform distribution in time

max

�
T (n, αk,

1

2
−

1

2αk
), nωk(1−α)

�
poly(n).

44

