
File: DISTL2 047601 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 3799 Signs: 2004 . Length: 45 pic 0 pts, 190 mm

journal of complexity 14, 257�299 (1998)

Fast Rectangular Matrix Multiplication and Applications*

Xiaohan Huang

Ph.D. Program in Mathematics, Graduate School and University Center,
City University of New York, 33 West 42nd Street, New York, New York 10036

E-mail: xhuang�email.gc.cuny.edu

and

Victor Y. Pan

Department of Mathematics and Computer Science, Lehman College,
City University of New York, Bronx, New York 10468

E-mail: vpan�lcvax.lehman.cuny.edu

Received January 21, 1997

First we study asymptotically fast algorithms for rectangular matrix multiplica-
tion. We begin with new algorithms for multiplication of an n_n matrix by an
n_n2 matrix in arithmetic time O(n|), |=3.333953..., which is less by 0.041 than
the previous record 3.375477... . Then we present fast multiplication algorithms for
matrix pairs of arbitrary dimensions, estimate the asymptotic running time as a
function of the dimensions, and optimize the exponents of the complexity estimates.
For a large class of input matrix pairs, we improve the known exponents. Finally
we show three applications of our results:

(a) we decrease from 2.851 to 2.837 the known exponent of the work bounds
for fast deterministic (NC) parallel evaluation of the determinant, the characteristic
polynomial, and the inverse of an n_n matrix, as well as for the solution to a non-
singular linear system of n equations,

(b) we asymptotically accelerate the known sequential algorithms for the
univariate polynomial composition mod xn, yielding the complexity bound O(n1.667)
versus the old record of O(n1.688), and for the univariate polynomial factorization
over a finite field, and

article no. CM980476

257
0885-064X�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.

* This work was supported by NSF Grant 9625344 and PSC CUNY Awards 667340 and
668365. Some results of this paper have been presented at the Second ACM International
Symposium on Parallel Algebraic and Symbolic Computations (PASCO'97), Maui, Hawaii,
July 1997.

File: DISTL2 047602 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 3138 Signs: 2645 . Length: 45 pic 0 pts, 190 mm

(c) we improve slightly the known complexity estimates for computing basic
solutions to the linear programming problem with m constraints and n variables.
� 1998 Academic Press

Key Words: rectangular matrix multiplication; asymptotic arithmetic complexity;
bilinear algorithms; parallel complexity; polynomial composition; polynomial
factorization over finite fields; linear programming.

1. INTRODUCTION

1.1. Our Subject and Results

Acceleration of matrix multiplication is a major subject of theory and
practice of computing (see [Pan], [Pan,a], [CW90], [GL96]). In some
respects this is a basic problem in the study of computational complexity,
because a very large class of computations with matrices, graphs, and
regular and Boolean expressions can be reduced to matrix multiplication,
so that the estimates for the asymptotic complexity of all these compu-
tations are represented by the same exponent as matrix multiplication
[Pan], [BP94], [BCS97]. In this large class there is a subclass of impor-
tant computational problems whose record asymptotic complexity is
reduced to that of rectangular matrix multiplication. This motivates our
study in the present paper, in which we improve the known upper
estimates for the asymptotic complexity of multiplying rectangular matrices
of large sizes and demonstrate further impact of our results. In particular,
this impact includes the improvement of the known deterministic asymptotic
upper bounds on the work-complexity of some of the most fundamental
parallel (NC) matrix computations, such as the evaluation of the determi-
nant, the inverse, and the characteristic polynomial of an n_n matrix as
well as for the solution of a nonsingular system of n linear equations.
Furthermore, we decrease the known asymptotic complexity estimates for
polynomial composition, factorization of univariate polynomials over finite
fields, and computation of a basis solution to a linear programming
problem.

Our progress relies on extending the powerful techniques of [CW90] for
fast multiplication of square matrices to rectangular matrix multiplication
and on the reduction of other listed computational problems (of parallel
matrix computation, polynomial composition and factorization, and linear
programming) to rectangular matrix multiplication. Our techniques of the
reduction of polynomial computations to rectangular matrix multiplication
may be also of some independent interest because matrix computations on
present day computers are known to be highly efficient [GL96], and the
reduction to them is a practical means of improving the known solution of
other computational problems.

258 HUANG AND PAN

File: DISTL2 047603 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 3251 Signs: 2777 . Length: 45 pic 0 pts, 190 mm

As in [CW90], as well as in [Sc81], [CW82], [Co82], [Pan],
[Pan,a], [St86], [St87], [St88], [GP89], [BCS97], [Co97], [BM98],
we study the improvement of the known arithmetic complexity estimates
for the operations with matrices of very large sizes, which are far beyond
the sizes encountered in practice, and our improvement is expressed in
terms of decreasing the exponents ; of the complexity bounds of the form
O(N;), N � �, N representing the size of the input. In particular the
known complexity estimate for multiplication of an n_n matrix by an
n_n2 matrix was O(n3.375477...) (based on the straightforward application
of [CW90]), and we decreased this exponent by roughly 0.04, to yield
O(n3.333953...). For the cited problems of parallel NC computations for n_n
input matrices, the known estimate for their work-complexity was O(n2.851)
[GP89], and we yielded O(n2.837). For polynomial composition modulo xn,
we decreased the known sequential complexity exponent from O(n1.688)
(obtained by combining [BK78] and [CW90]) to O(n1.667) with the
respective decrease of the asymptotic complexity of the known fast algo-
rithms [GS92], [KS95] for factorization of univariate polynomials in
finite fields; furthermore, we showed some additional ways to improve the
factorization by its more effective reduction to rectangular matrix multi-
plication (see the details in Section 10). Finally, application of our fast
algorithms for rectangular matrix multiplication immediately enabled us
to improve the estimate O(m1.594n) of [BM98], to yield O(m1.575n), for
computing basic solutions to the linear programming problem with m
constraints and n variables.

1.2. Some Related Work

Asymptotic arithmetic complexity of square n_n matrix multiplication
has been studied very extensively and intensively for many years (see, e.g.,
[St69], [Sc81], [CW82], [Pan], [Pan,a], [St86], [St87], [St88],
[CW90]). So far, this study has culminated in the record upper bound
O(n|), |<2.376 (in terms of the number of arithmetic operations
involved) [CW90], which marks dramatic improvement over the classical
|=3 (before 1969), but still falls short of the best lower bound 2.

Less attention has been paid so far to the complexity of rectangular
matrix multiplication, where the most important works are [BD76],
[Co82] and [Co97]. The papers [BK78], [GP89], [GS92], [KS95],
[BM98] also studied the applications of rectangular matrix multiplication
to the computational problems that we consider in our present paper.

1.3. Organization of Our Paper

We organize our presentation as follows. In Section 2, we recall some
basic concepts, definitions and results on matrix multiplications. In par-
ticular, we introduce the notation (m, n, p) for the problem of m_n by

259FAST RECTANGULAR MATRIX

File: DISTL2 047604 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2537 Signs: 2001 . Length: 45 pic 0 pts, 190 mm

n_p matrix multiplication. In Sections 3 and 4, we modify slightly the
technique of Section 6 of [CW90], which gives us an algorithm for
(n, n, n2) having complexity O(n3.3399). This will be a basic pattern for our
further study. In Section 5, we extend the technique of Section 7 of
[CW90], to improve our algorithm for (n, n, n2) and to yield the bound
O(n3.33396). In Section 6, we show a basic fast algorithm for (nt, n, nr) for
an arbitrary pair of non-negative rational numbers t and r, which we
improve further in Section 7. In Section 8, we compare the algorithms
developed in our paper with various other effective algorithms and
optimize the process of combining all these old and new algorithms
together. We extend our improvement of rectangular matrix multiplication
to the improvement of the known upper estimates for the work-complexity
of deterministic parallel matrix computations in Section 9, for polynomial
composition and univariate polynomial factorization over finite fields in
Section 10, and for finding basic solutions to the linear programming
problem in Section 11.

PART I. ACCELERATION OF RECTANGULAR
MATRIX MULTIPLICATION

2. DEFINITIONS AND SOME BACKGROUND

In this section, we introduce some basic concepts and definitions con-
cerning matrix multiplication, define some new concepts, and recall some
basic results.

The problem of multiplying an m_n matrix by an n_p matrix is
denoted (m, n, p). Indices i, j, k range from 0 to m&1, n&1, p&1,
respectively.

The asymptotic complexity of m_n by n_p matrix multiplication can
be expressed in terms of A(m, n, p) denoting the minimum number of
arithmetic operations involved. There is a good motivation, however, to
confine the study to bilinear algorithms.

Definition 2.1 (Bilinear Algorithms for Matrix Multiplication). Given
a pair of m_n and n_p matrices X=[xi, j], Y=[yj, k], compute XY in
the following order: Evaluate first the linear forms in the x-variables and
in the y-variables

Lq=:
i, j

fijqxij , L$q=:
j, k

f *jkq yjk , (2.1)

260 HUANG AND PAN

File: DISTL2 047605 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2356 Signs: 1398 . Length: 45 pic 0 pts, 190 mm

then the products Pq=Lq L$q for q=0, 1, ..., M&1, and finally the entries
�j xij yjk of XY, as the linear combinations

:
j

xij yjk= :
M&1

q=0

f kiq**LqL$q , (2.2)

where fijq , f *jkq and f kiq** are constants such that (2.1) and (2.2) are the iden-
tities in the indeterminates xij , y jk , for i=0, 1, ..., m&1; j=0, 1, ..., n&1;
k=0, 1, ..., p&1. M, the total number of all multiplications of Lq by L$q is
called the rank of the algorithm, and the multiplications of Lq by L$q are
called the bilinear steps of the algorithm or bilinear multiplications.

The minimum number M(m, n, p) of bilinear multiplications used in all
bilinear algorithms for m_n by n_p matrix multiplication, (m, n, p) , is
an appropriate measure for the asymptotic complexity of (m, n, p) due to
the known bound (cf. e.g., [Pan])

A(mh, nh, ph)=O((M(m, n, p))h) as h � �. (2.3)

In addition, presently and historically, all the known algorithms supporting
the record asymptotic complexity estimates for matrix multiplication have
been devised as bilinear algorithms.

We have the simple known estimates (cf. e.g., [Pan])

M(m, n, 1)=mn, (2.4)

M(m, n, p)�M(m�q, n�q, p�q) M(q, q, q) (2.5)

for any q that divides m, n, and p. Furthermore, we have the equations

M(m, n, p)=M(m, p, n)=M(n, p, m)

=M(n, m, p)=M(p, n, m)=M(p, m, n), (2.6)

of [Pan72],

M(n, n, r(n))=n2+o(n) if r(n)=o(log n), n � � [BD76],

A(n, n, nr)=O(n2+=) for any =>0 if r�0.197, n � � [Co82],

A(n, n, nr)=O(n2+=) for any =>0 if r�0.294, n � � [Co97].

261FAST RECTANGULAR MATRIX

File: DISTL2 047606 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2444 Signs: 1710 . Length: 45 pic 0 pts, 190 mm

By extending (2.5), we obtain that

M(m, n, p)=O(q|) max(mn, np, pm)�q2, q=min(m, n, p) � �,

provided that M(q, q, q)=O(q|).
Hereafter, the notation L � (m, n, p) indicates the existence of a

bilinear algorithm requiring L essential (bilinear) multiplications in order
to compute the indicated matrix product. If the algorithm is an ``any preci-
sion approximation (APA) algorithm'' [BCLR], we write L w�* (m, n, p).
If k disjoint matrix products of the size (m, n, p) are computed (sharing
no variables), we write L � k(m, n, p) .

In this paper, we study the problems of matrix multiplication of the form
(nr, ns, nt) with positive integers n and non-negative rational numbers r, s,
and t. Let O(n|(r, s, t)) denote the bilinear complexity of (nr, ns, nt) , that
is, O(n|(r, s, t)) bilinear multiplications suffice for solving the problem
(nr, ns, nt) . Then |(r, s, t) will be called the exponent for the problem
(nr, ns, nt) . Due to (2.6), we have

|(r, s, t)=|(t, r, s)=|(s, t, r)=|(r, t, s)=|(s, r, t)=|(t, s, r). (2.7)

Therefore, it suffices to estimate any one of the six latter exponents for
given r, s and t.

Since

O(n|(ar, as, at))=O((na)|(r, s, t))=O(na|(r, s, t)),

the exponents |(r, s, t) satisfy the homogeneity equation

|(ar, as, at)=a|(r, s, t).

There is the straightforward (information) lower bound:

|(r, s, t)�max[r+s, s+t, t+r]. (2.8)

If r=s=t, then (nr, ns, nt) =(nr, nr, nr) represents a square matrix
multiplication. Computing its bilinear complexity is reduced to computing
the exponent |(r, r, r)=r } |(1, 1, 1), that is, to computing |(1, 1, 1), by
homogeneity. Current record upper bound |(1, 1, 1)=|<2.376 is due to
[CW90].

If r=s{t, then (nr, ns, nt) represents multiplication of a square matrix
by a rectangular matrix. Computing its bilinear complexity is reduced to

262 HUANG AND PAN

File: DISTL2 047607 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2437 Signs: 1425 . Length: 45 pic 0 pts, 190 mm

computing the exponent |(r, r, t), that is, to computing |(1, 1, t�r)=
|(r, r, t)�r, by homogeneity. The upper bound

|(1, 1, t�r)=2+o(1) for t�r�0.294 [Co96]

matches the lower bound |(1, 1, t�r)�2 of (2.8), up to the term o(1).
In this paper, we study the problem (nr, ns, nr) of multiplication of a

rectangular matrix by a rectangular matrix, where r, s and t are distinct
from each other or at least s{r.

We will use the following basic results.

Theorem 2.1 (Scho� nhage [Sc81]). Assume given a field F, coefficients
:i, j, h, l , ;j, k, h, l , #k, i, h, l in F(*) (the field of rational functions in a single
indeterminate *), and polynomials fg over F 3, such that

:
L

l=1
\ :

i, j, h

:i, j, h, lx (h)
i, j +\ :

i, j, h

;j, k, h, l y (h)
j, k+\ :

i, j, h

#k, i, h, lz (h)
i, j +

=:
h \ :

mh

i=1

:
nh

j=1

:
ph

k=1

x (h)
i, j y (h)

j, kz (h)
k, i++ :

g>0

* gfg(x (h)
i, j , y (h)

j, k , z (h)
k, i)

is an identity in x(h)
i, j , y (h)

j, k , z (h)
k, i , *. Then, given =>0, one can construct an

algorithm to multiply N_N square matrices in O(N3{+=) operations, where
{ satisfies

L=:
h

(mhnh ph){.

A simple extension of Theorem 2.1 enables us to estimate |(r, s, t) from
above as soon as we obtain a bilinear algorithm for k disjoint problems
(nr, ns, nt) .

Theorem 2.2 (Salem and Spencer [SS42]). Given =>0, there exists
M=&2c�=2 such that for all M>M= , there is a set B of M$>M1&= distinct
integers,

0<b1<b2< } } } <bM$<M�2,

with no three terms in an arithmetic progression: For any triple of bi , bj ,
bk # B, we have

bi+bj=2bk iff bi=b j=bk .

263FAST RECTANGULAR MATRIX

File: DISTL2 047608 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2898 Signs: 2040 . Length: 45 pic 0 pts, 190 mm

In part of our presentation, we will follow the line of [CW90]. In par-
ticular, as in [CW90], we will use Theorem 2.2 in order to transform
tensor product construction into the form k(m, n, p) for sufficiently large
k, m, n and p.

Remark 2.1. Our study of matrix multiplication applies to the com-
putation over arbitrary field of constants.

3. BASIC ALGORITHM FOR (n, n, n2)

In this and the next sections, we will extensively use the techniques of
[CW90] (compare [Pan] and [St86] on some preceding work). We begin
with a basic algorithm from [CW90], Eq. (5), which gives us one of the
most effective examples of the trilinear aggregating techniques first intro-
duced in [Pan72] (cf. also [Pan] and [Pan,a]). For a given value of the
integer q, we will call this construction Dq :

:
q

i=1

*&2(x[0]
0 +*x[1]

i)(y[0]
0 +*y[1]

i)(z[0]
0 +*z[1]

i)

&*&3 \x[0]
0 +*2 :

q

i=1

x[1]
i +\y[0]

0 +*2 :
q

i=1

y[1]
i +\z[0]

0 +*2 :
q

i=1

z[1]
i +

+[*&3&q*&2](x[0]
0)(y[0]

0)(z[0]
0)

= :
q

i=1

(x[0]
0 y[1]

i z[1]
i +x[1]

i y[0]
0 z[1]

i +x[1]
i y[1]

i z[0]
0)+O(*). (3.1)

The x-variables in (3.1) consist of two blocks: X [0]=[x[0]
0] and

X[1]=[x[1]
1 , ..., x[1]

q]. Similarly, the y-variables consist of blocks Y [0] and
Y[1], and the z-variables consist of blocks Z[0] and Z[1].

Our next goal is to estimate the exponent |(1, 1, 2).
Consider the 4Nth tensor power of (3.1). Each variable x[I]

i in the tensor
power is the tensor product of 4N variables x[J]

j , one from each of 4N
copies of the original algorithm (3.1). j ranges in [0, 1, 2, ..., q]. The sub-
script i is a vector of dimension 4N formed by the 4N subscripts j. J ranges
in [0, 1]. The superscript [I] is a vector of dimension 4N having entries
in [0, 1], formed by the 4N superscripts [J]. Clearly, [I] is uniquely
determined by i. Similar comments apply to the y- and z-variables.

In our tensor power, there are 34N triples (X [I], Y [J], Z[K]); each of
them is a matrix product of some size (m, n, p) with mnp=Q4N. We will
eliminate some triples by setting to zero some blocks of variables x, y
and�or z, so as to stay with some triples of the form (qN, qN, q2N) sharing

264 HUANG AND PAN

File: DISTL2 047609 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2911 Signs: 2158 . Length: 45 pic 0 pts, 190 mm

no variables. Then we will estimate the number of the remaining triples,
which will define the exponent |(1, 1, 2). When we zero a block X [I]

(respectively, Y [I], Z[I]), we will set to zero all the x-(respectively, y-, z-)
variables with the given superscript pattern.

Hereafter, (Q
Q1, Q2 , ..., Qs

), for positive integers Q, Q1 , Q2 , ..., Qs satisfying

Q1+Q2+ } } } +Qs=Q,

denotes the multinomial expansion coefficient. Our presentation will closely
follow Section 6 of [CW90].

For all i and I, set x[I]
i =0, unless I consists of 2N indices of 0 and

exactly as many indices of 1. For all j and J, set y[J]
j =0 unless J consists

of N indices of 0 and 3N indices of 1, and similarly for z[K]
k . When we com-

plete this procedure, there still remain (4N
2N, N, N) blocks of triples

(X [I], Y [J], Z[K]). The blocks are compatible, which means that the loca-
tions of their zero indices are disjoint; i.e., among the superscript vectors of
(X [I], Y [J], Z[K]), there is one and only one zero in the location of the
same component. (For example, for N=2, the block X [10110100]Y [11011011]_
Z[01101111] is compatible.) Among them, for each block of variables Z[K],
there are (3N

2N, N) pairs (X[I], Y [J]) sharing this block; for each block Y [K],
there are also (3N

2N, N) pairs (X [I], Z[K]) sharing it; and for each block X [I],
there are (2N

N, N) pairs (Y[J], Z[K]) sharing it. Set M=2(3N
2N, N)+1. Select a

sufficiently small positive = and a sufficiently large N, so that the latter
value M would satisfy the assumptions of the Salem-Spencer theorem for
this =; construct a Salem-Spencer set B (cf. [SS42], [Be46], and [CW90]),
where the cardinality of B is M$�M 1&=. In the next section, by revisiting
the techniques of Section 6 of [CW90], we obtain at least

H=
1
4

M$
M2 \ 4N

2N, N, N+ (3.2)

non-zero block products represented by the triples (X [I], Y [J], Z[K]) and
pairwise sharing no variables X [I], Y [J] or Z[K].

The fine structure of each block scalar product represents a matrix
product of the size

(qN, qN, (qN)2) .

For qN=n, this turns into (n, n, n2). For example, for N=1, the fine
structure of the compatible triple X[1010]Y [1101]Z[0111] is

X [1010]
i0k0 Y [1101]

ij0l Z[0111]
0 jkl , i, j, k, l=1, 2, ..., q,

265FAST RECTANGULAR MATRIX

File: DISTL2 047610 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2155 Signs: 798 . Length: 45 pic 0 pts, 190 mm

which represents the matrix product

x1010 } } } xq010 y1101 } } } y1q01 | } } } | y110q } } } y1q0q

\ b b b +\ b b b | } } } | b b b +x10q0 } } } xq0q0 yq101 } } } yqq01 | } } } | yq10q } } } yqq0q

z0111 } } } z01q1

b b b
z0q11 } } } z0qq1

_\ b b b + .
z011q } } } z01qq

b b b
z0q1q } } } z0qqq

We deduce from the above algorithm and from Theorem 2.2 and
extended Theorem 2.1 that

(q+2)4N�cHn|(1, 1, 2), (3.3)

where c is the overhead constant of O(n|(1, 1, 2)) and H is defined by (3.2).
By applying Stirling's formula

lim
n � �

- 2?n \n
e+

n

n !
=1 (3.4)

in order to estimate H, we obtain

(q+2)4N�c$N &(1�2)(1&=) \44

33+
N

\22

33+
N=

qN|(1, 1, 2), (3.5)

where c$ is a constant. Let = � 0, N � �, take the N th roots and then
logarithms of both sides of (3.5), and obtain that

(q+2)4�\44

33+ q|(1, 1, 2),

|(1, 1, 2)�
1

log q
log \27(q+2)4

256 + .

The right-hand side is minimized for q=10:

|(1, 1, 2)�3.339848783...<3.3399. (3.6)

266 HUANG AND PAN

File: DISTL2 047611 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2261 Signs: 1336 . Length: 45 pic 0 pts, 190 mm

4. THE NUMBER OF DISJOINT NONSCALAR BLOCK PRODUCTS

In this section, we will proceed again along the line of Section 6 of
[CW90] modified slightly so as to estimate |(1, 1, 2), rather than
|(1, 1, 1).

Choose integers wj at random in the interval from 0 to M&1, for
j=0, 1, 2, ..., 4N, and compute the integers

bX (I)# :
4N

j=1

Ij wj (mod M),

bY (J)#w0+ :
4N

j=1

Jj wj (mod M),

bZ(K)#\w0+ :
4N

j=1

(2&Kj) wj+<2 (mod M),

where I=(I1 , ..., I4N) # [0, 1]4N, Ij is 0 or 1, j=1, ..., 4N, and similarly for
J and K. As in [CW90], obtain that

bX (I)+bY (J)&2bZ(K)#0 mod M,

for any triple of blocks (X [I], Y [J], Z[K]) whose product X [I]Y [J]Z[K]

appears in the trilinear form. [Indeed, examine the contribution of each wj

and observe that for each of the three terms

x[0]
0 y[1]

i z[1]
i , x[1]

i y[0]
0 z[1]

i , x[1]
i y[1]

i z[0]
0 ,

we have Ij+Jj+Kj=2 in the basic construction.]
Set X [I]=0 unless bX (I) is in the Salem-Spencer set B, set Y [J]=0

unless bY (J) # B, and set Z[K]=0 unless bZ(K) # B. Then, for each triple
(I, J, K), where X[I]Y [J]Z[K]{0, we have

bX (I)+bY (J)#2bZ(K) mod M, bX (I), bY (J), bZ(K) # B,

and therefore,

bX (I)=bY (J)=bZ(K),

by the virtue of the Salem-Spencer theorem.
We recall that the block X [I] is the set of q4N variables x[I]

i , with nonzero
indices in 2N specified places, that is, sharing a common superscript I,
a nonzero block is one which has not yet been set to zero; blocks X [I],

267FAST RECTANGULAR MATRIX

File: DISTL2 047612 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2704 Signs: 1990 . Length: 45 pic 0 pts, 190 mm

Y[J], Z[K] are compatible if the locations of their zero indices are pairwise
disjoint. Let us complete the pruning procedure, as in [CW90]. Make lists
of triples (X [I], Y [J], Z[K]) representing compatible nonzero blocks, with
bX (I)=bY (J)=bZ(K)=b for all b # B. If any triple (X [I], Y [J], Z[K]) on
the list shares a block (say, Z[K]) with another triple (X [I$], Y [J$], Z[K$])
occurring earlier in the list, then eliminate the former triple by setting to
zero one of the other blocks (say, X[I]). Now, we apply the counting argu-
ment of [CW90] and extend the lemma of Section 6 of [CW90] as
follows:

Lemma 4.1. The expected number of triples remaining on each list, after
pruning, is at least

1
4M2 \ 4N

2N, N, N+ .

Proof. Compare the expected number, (4N
2N, N, N) M &2, of triples in the

list before pruning, for each b # B, with the upper estimate

3
2 \

4N
2N, N, N+\\

2N
N, N+&1+ M&3

for the expected number of unordered pairs of compatible triples sharing a
Z-block, a Y-block, or an X-block. The latter number is an upper bound
on the expected number of eliminated pairs of triples, which is easily
showed to be not less than the expected number of eliminated triples.
Comparison of the two upper estimates gives us Lemma 4.1. K

It follows from Lemma 4.1 that the expected number of triples remaining
on all lists after pruning (average over all the choices of wj) is at least H
of (3.2). Therefore, we may fix a choice of wj that achieves at least as many
triples on the list.

The procedure of computing H can be summarized in the following way:

Procedure 4.1. Step 1: First compute the number of triples of blocks,
having a fixed pattern (nr, ns, nt) among all the triples (X [I], Y [J], Z[K])
that we have after taking the tensor power of a given basic trilinear algo-
rithm [like (3.1)]. In Section 3, (nr, ns, nt)=(n, n, n2), and there are
(4N

2N, N, N) special triples among a total of 34N.

Step 2: Compute the numbers of pairs (X [I], Y [J]) sharing a single
block Z[K], of pairs (X [I], Z[K]) sharing a single block Y [J], and of

268 HUANG AND PAN

File: DISTL2 047613 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2509 Signs: 1507 . Length: 45 pic 0 pts, 190 mm

pairs (Y [J], Z[K]) sharing a single block X [I] (in Section 3, these numbers
are

\ 3N
2N, N+ , \ 3N

2N, N+ , \ 2N
N, N+ ,

respectively). Determine the largest of them (above, the largest is (3N
2N, N)).

Step 3: Perform the pruning procedure extending the one presented in
this section in the straightforward way and show that there still remain at
least

H=
the number from step 1

4_the largest from step 2

triples (X [I], Y [J], Z[K]) sharing no variables.

The latter procedure will be repeatedly applied in the next sections.

5. IMPROVED ALGORITHM FOR (n, n, n2)

In this section, we will improve our upper bound on the exponent
|(1, 1, 2) from 3.3399 to 3.333953 by combining the technique of Section 7
of [CW90] and the same ideas as in the previous section. The improve-
ment will be due to using a more complicated starting algorithm, that is,
the basic trilinear aggregating algorithm from [CW90], Eq. (10):

:
q

i=1

*&2(x[0]
0 +*x[1]

i)(y[0]
0 +*y[1]

i)(z[0]
0 +*z[1]

i)

&*&3 \x[0]
0 +*2 :

q

i=1

x[1]
i +\y[0]

0 +*2 :
q

i=1

y[1]
0 +\z[0]

0 +*2 :
q

i=1

z[1]
i +

+[*&3&q*&2](x[0]
0 +*3x[2]

q+1)(y[0]
0 +*3y[2]

q+1)(z[0]
0 +*3z[2]

q+1)

= :
q

i=1

(x[0]
0 y[1]

i z[1]
i +x[1]

i y[0]
0 z[1]

i +x[1]
i y[1]

i z[0]
0)

+x[0]
0 y[0]

0 z[2]
q+1+x[0]

0 y[2]
q+1z[0]

0 +x[2]
q+1 y[0]

0 z[0]
0 +O(*). (5.1)

The subscripts now form three classes: [0], [q+1] and [1, 2, ..., q], which
will again be denoted i. Again, the subscripts uniquely determine the super-
scripts (block indices).

Take the 4N th power of this construction. Each variable x[I]
i in the ten-

sor power is the tensor product of 4N variables x[J]
j , one from each of 4N

269FAST RECTANGULAR MATRIX

File: DISTL2 047614 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2255 Signs: 1409 . Length: 45 pic 0 pts, 190 mm

copies of the original algorithm (5.1). Its subscript i is a vector of dimen-
sion 4N [0, 1, 2, ..., q, q+1], formed by the 4N subscripts j. Its superscripts
[I] is a vector of dimension 4N with entries in [0, 1, 2], formed by the 4N
superscripts [J].

Set L=W;N X, where ; is a small positive number (which will be
specified later on, roughly at the level of 0.02). As in the previous section,
we currently have 64N triples (X [I], Y [J], Z[K]). Set x[I]

i =0, unless I has
exactly 2N indices of 0, exactly 2N&2L indices of 1, and exactly 2L indices
of 2; set y[J]

j =0, unless J has exactly N+2L indices of 0, exactly 3N&3L
indices of 1, and exactly L indices of 2, and similarly for z[K]

k . When we
complete this procedure, there still remain

\ 4N
L, L, 2L, 2N&2L, N&L, N&L+

blocks of triples (X [I], Y [J], Z[K]). Namely, among the 4N copies of
construction (5.1), we pick

x[0]
0 y[1]

i z[1]
i from 2N&2L copies,

x[1]
i y[0]

0 z[1]
i from N&L copies,

x[1]
i y[1]

i z[0]
0 from N&L copies,

x[0]
0 y[0]

0 z[2]
q+1 from L copies,

x[0]
0 y[2]

q+1z[0]
0 from L copies and

x[2]
q+1 y[0]

0 z[0]
0 from 2L copies.

They are compatible, which means that the sum of indices at the same
locations of their superscripts I, J and K is 2. Among them, for each Z[K],
there are

\ 3N&3L
2N&2L, N&L+\

N+2L
N&L, 2L, L+

pairs (X [I], Y [J]) sharing it; for each Y [K], there are as many pairs
(X [I], Z[K]) sharing it; but for each X [I], there are only

\ 2N
2N&2L, L, L+\

2N&2L
N&L, N&L+

pairs (Y [J], Z[K]) sharing it.

270 HUANG AND PAN

File: DISTL2 047615 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2066 Signs: 1178 . Length: 45 pic 0 pts, 190 mm

Select the larger (that is, the former) of the two numbers of pairs and set

M=2 \ 3N&3L
2N&2L, N&L+\

N+2L
N&L, 2L, L++1.

Construct a Salem-Spencer set B. Select random integers 0�wj<M,
j=0, 1, 2, ..., 4N. Then, by following the lines of Section 7 of [CW90] and
of our Section 4, in particular, by applying Procedure 4.1, we obtain at
least

H*=
1
4

M$
M2 \ 4N

L, L, 2L, 2N&2L, N&L, N&L+
non-zero triples (X [I], Y [J], Z[K]), which share no variables with each
other, where M$�M1&=, for a fixed positive =, is the cardinality of B. Each
of these triples corresponds to a matrix product of size

(qN&L, qN&L, (qN&L)2) ,

which turns into (n, n, n2) for n=qN&L. Letting M(n, n, n2)=O(n|(1, 1, 2))
and summarizing our estimates, we obtain

(q+2)4N�cH*q(N&L) |(1, 1, 2).

Applying Stirling's formula to the value H*, we obtain that

(q+2)4N�cN&1+(3�2) = _ 256
;;(3&3;) (3&3;) (1+2;)(1+2;)&

N

_(c$)N qN(1&;) |(1, 1, 2).

Let = � 0, N � �, take N th roots and then logarithms on both sides and
deduce that

(q+2)4�
256

;;(3&3;) (3&3;) (1+2;) (1+2;) q(1&;) |(1, 1, 2),

|(1, 1, 2)�
1

(1&;) log q
log \;;(3&3;) (3&3;) (1+2;) (1+2;) (q+2)4

256 + .

q=9 and ;=0.016 minimize the right-hand side of the latter inequality,
and we obtain that

|(1, 1, 2)�3.333953...<3.334.

271FAST RECTANGULAR MATRIX

File: DISTL2 047616 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2993 Signs: 2235 . Length: 45 pic 0 pts, 190 mm

6. BASIC ALGORITHM FOR (nr, ns, nt)

In this section, we will combine the ideas and techniques of Sections 3
and 4 so as to develop the basic algorithms for estimating the exponents of
rectangular matrix multiplications of arbitrary shape, that is, for the problem
(nr, ns, nt) . For convenience, we first classify the triples (nr, ns, nt) , for all
rational r, s, t as follows:

(1) (nr, n, n) with r>1;

(2) (n, n, nt) with 0�t�1;

(3) (nr, n, nt) with r>1>t>0.

Indeed, we have three respective classes of triples:

(1) Among r, s, t, two are equal and the third one is larger. In this
case, we may assume r>s=t [cf. (2.7)]. Then, by homogeneity of the
exponent, |(r, s, t)=s|(r�s, 1, 1), r�s>1.

(2) Among r, s, t, two are equal and the third one is not larger. In
this case, we may assume r=s�t. Then, by homogeneity of the exponent,
|(r, s, t)=r|(1, 1, t�r), 0�t�r�1.

(3) Among r, s, t, all three are pairwise distinct. In this case, we may
assume r>s>t. Then, by homogeneity of the exponent, |(r, s, t)=s|(r�s,
1, t�s), r�s>1>t�s>0.

6.1. The Case of (nr, n, n) with r>1

We begin with the construction (3.1) again. Take the (2+r) N th tensor
power of (3.1), where N is sufficiently large and (2+r) N is an integer.
Each variable x[I]

i in the tensor power is the tensor product of (2+r) N
variables x[J]

j , one from each of (2+r) N copies of the original algorithm
(3.1). Its subscript i is a vector of dimension (2+r) N with entries in
[0, 1, 2, ..., q], made up of the (2+r) N subscripts j. Its superscript [I] is
a vector of dimension (2+r) N with entries in [0, 1], made up of the
(2+r) N superscripts [J]. Clearly, [I] is uniquely determined by i.

In our tensor power, there are totally 3N(2+r) triples (X [I], Y [J], Z[K]).
We will eliminate some triples and preserve those of dimension (qN, qN,
(qN)r) , sharing no variables with each other. Then we will estimate the
number of the remaining triples.

Set x[I]
i =0 unless I has exactly rN indices of 0 and exactly 2N indices

of 1, set y[J]
j =0 unless J has exactly N indices of 0 and exactly (1+r) N

indices of 1, and similarly for z[K]
k . When we complete this procedure, there

still remain ((2+r) N
N, N, rN) blocks of triples (X [I], Y [J], Z[K]). They are com-

patible, which means that the locations of their zero indices are disjoint.

272 HUANG AND PAN

File: DISTL2 047617 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 1986 Signs: 1177 . Length: 45 pic 0 pts, 190 mm

Among them, for each Z[K], there are ((1+r) N
N, rN) pairs (X [I], Y [J]) sharing

it; for each Y [K], there are as many pairs (X [I], Z[K]) sharing it; for each
X[I], there are only (2N

N, N) pairs (Y [J], Z[K]) sharing it. We select the larger
(former) of the two latter estimates and set

M=2 \(1+r) N
N, rN ++1.

Construct a Salem-Spencer set B (cf. [SS42] and [Be46]), where the
cardinality of B is M$�N 1&=. In the same way as in the previous sections,
we obtain at least

H� =
1
4

M$
M2 \(2+r) N

N, N, rN+
non-zero triples (X [I], Y [J], Z[K]) sharing no variables with each other;
that is, our algorithm computes at least H� block products (X[I], Y [J],
Z[K]). The fine structure of each block product is a matrix product of size

(qN, qN, (qN)r) ,

which is (n, n, nr) for qN=n. It follows that

(q+2) (2+r) N�cH� n|(1, 1, r),

where c is the overhead constant of O(n|(1, 1, r)). Applying Stirling's formula
to approximate H� , we obtain

(q+2) (2+r) N�cN&(1�2)(1&=) \(2+r) (2+r)

(1+r) (1+r)+
N

(c$)N= qN|(1, 1, r),

where c and c$ are constants. Let = � 0, N � �, take N th roots, and obtain

(q+2) (2+r)�\(2+r)(2+r)

(1+r)(1+r)+ q|(1, 1, r).

By solving for |(1, 1, r), we obtain

|(1, 1, r)�
1

log q
log \(1+r) (1+r) (q+2) (2+r)

(2+r)(2+r) + . (6.1)

273FAST RECTANGULAR MATRIX

File: DISTL2 047618 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2382 Signs: 1647 . Length: 45 pic 0 pts, 190 mm

6.2. The Case of (n, n, nt) with 0�t�1

We replace t by r, for convenience. In this case the algorithm is almost
completely the same as in the case of (nr, n, n) with r>1. The small
difference is that we now set

M=2 \ 2N
N, N++1,

since (2N
N, N) exceeds ((1+r) N

N, rN). We proceed as in subsection 6.1 and obtain
that

|(1, 1, r)�
1

log q
log \22rr(q+2) (2+r)

(2+r) (2+r) + , (6.2)

for 0�r�1.

6.3. The Case of (nr, n, nt) with r>1>t>0

Due to (2.6), we may assume (nt, n, nr) with r>1>t>0, instead of
(nr, n, nt) with r>1>t>0. In this case, we take the (t+1+r) N th
tensor power of (3.1), where N is sufficiently large and (t+1+r) N is
an integer. In our tensor power, there are a total of 3N(t+1+r) triples
(X [I], Y [J], Z[K]). As before, we will eliminate some triples and preserve
those of the dimension ((qN)t, qN, (qN)t) sharing no variables with each
other. Then we will estimate the number of the remaining triples.

Set x[I]
i =0 unless I has exactly rN indices of 0 and exactly (t+1) N

indices of 1, set y[J]
j =0 unless J has exactly tN indices of 0 and exactly

(1+r) N indices of 1, and set s[K]
k =0 unless K has exactly N indices of 0

and exactly (t+1) N indices of 1. When we complete this procedure, there
still remain ((t+1+r) N

tN, N, rN) blocks of triples (X [I], Y [J], Z[K]). They are com-
patible, which means that the locations of their zero indices are disjoint.
Among them, for each Z[K], there are ((t+r) N

tN, rN) pairs (X [I], Y [J]) sharing
it; for each Y [J], there are ((1+r) N

N, rN) pairs (X [I], Z[K]) sharing it; for each
X[I], there are ((t+1) N

tN, N) pairs (Y [J], Z[K]) sharing it.
Since r>1>t>0, the second of these three estimates is the largest. So

we set

M=2 \(1+r) N
N, rN ++1.

274 HUANG AND PAN

File: DISTL2 047619 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2468 Signs: 1681 . Length: 45 pic 0 pts, 190 mm

Similarly to subsection 6.1, we obtain that

|(t, 1, r)�
1

log q
log \(1+r) (1+r) tt(q+2) (t+1+r)

(t+1+r) (t+1+r) + . (6.3)

7. IMPROVED ALGORITHM FOR (nr, ns, nt)

In this section, we will improve our algorithm of Section 6 for the
problem (nr, ns, nt) by combining the ideas from Sections 5 and 6. We
break this section into three subsections and respectively discuss the three
cases, as in Section 6.

7.1. The Case of (n, n, nr) with r>1

We begin with the construction (5.1). Take the (2+r) N th tensor power
of this construction, where N is sufficiently large and (2+r) N is an integer.
Each variable x[I]

i in the tensor power is the tensor product of (2+r) N
variables x[J]

j , one from each of (2+r) N copies of the original algorithm
(5.1). The subscript i is a vector of dimension (2+r) N with entries in
[0, 1, 2, ..., q, q+1], made up of the (2+r) N subscripts j. The superscript
[I] is a vector of dimension (2+r) N with entries in [0, 1, 2], consisting
of the (2+r) N superscripts [J].

Set L=W;N X, where ; is a small number to be determined later on
(roughly at the level between 0.005 and 0.05). We currently have 6(2+r) N

triples (X [I], Y [J], Z[K]). Set x[I]
i =0 unless I has exactly r(N&L)+2L

indices of 0, exactly 2(N&L) indices of 1 and exactly rL indices of 2; set
y[J]

j =0 unless J has exactly N+rL indices of 0, exactly (1+r)(N&L)
indices of 1 and exactly L indices of 2, and similarly for z[K]

k . When this
procedure is completed, there still remain

\ (2+r) N
L, L, rL, r(N&L), (N&L), (N&L)+

blocks of triples (X [I], Y [J], Z[K]), which means that, among the (2+r) N
copies of construction (5.1), we pick

x[0]
0 y[1]

i z[1] from r(N&L) copies,

x[1]
i y[0]

0 z[1]
i from (N&L) copies,

x[1]
i y[1]

i z[0]
0 from (N&L) copies,

275FAST RECTANGULAR MATRIX

File: DISTL2 047620 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 1763 Signs: 932 . Length: 45 pic 0 pts, 190 mm

x[0]
0 y[0]

0 z[2]
q+1 from L copies,

x[0]
0 y[2]

q+1 z[0]
0 from L copies, and

x[2]
q+1 y[0]

0 z[0]
0 from rL copies.

They are compatible, which means that the sum of indices at the same
locations of their superscripts I, J and K is 2. Among them, for each Z[K],
there are

\ (1+r)(N&L)
(N&L), r(N&L)+\

N+rL
(N&L), L, rL+

pairs (X [I], Y [J]) sharing it; for each Y [K], there are as many pairs
(X [I], Z[K]) sharing it; for each X [I], there are only

\r(N&L)+2L
r(N&L), L, L+\

2(N&L)
(N&L), (N&L)+

pairs (Y [J], Z[K]) sharing it.
We select the larger former bound and set

M=2 \ (1+r)(N&L)
(N&L), r(N&L)+\

N+rL
(N&L), L, rL++1.

Construct a Salem-Spencer set B. Select random integers

0�wj<M, j=0, 1, 2, ..., (2+r) N.

As before, we obtain at least

H� =
1
4

M$
M2 \ (2+r) N

L, L, rL, r(N&L), (N&L), (N&L)+
non-zero triples (X [I], Y [J], Z[K]), which share no variables with each
other, where M$ is the cardinality of B and M$�M1&=. Each of them
corresponds to a matrix product of size

(q(N&L), q(N&L), qr(N&L)) .

276 HUANG AND PAN

File: DISTL2 047621 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 1720 Signs: 810 . Length: 45 pic 0 pts, 190 mm

For n=q(N&L), this turns into (n, n, nr). Letting M(n, n, nr)=O(n|(1, 1, r))
and summarizing, we obtain

(q+2) (2+r) N�cH� q(N&L) |(1, 1, r).

Applying Stirling's formula to approximate the value of right-hand side, we
have

(q+2) (2+r) N�cN&1+(3�2) = _ (2+r) (2+r)

;;((1+r)(1&;)) (1+r)(1&;) (1+r;) (1+r;)&
N

_(c$)=N qN(1&;) |(1, 1, r).

Letting = � 0, N � �, and taking N th roots, we obtain

(q+2) (2+r)�
(2+r) (2+r)

;;((1+r)(1&;)) (1+r)(1&;) (1+r;)(1+r;) q(1&;) |(1, 1, r).

Taking logarithms on both sides and solving for |(1, 1, r), we obtain the
estimate

|(1, 1, r)�
1

(1&;) log q

_log \;;((1+r)(1&;)) (1+r)(1&;) (1+r;) (1+r;) (q+2) (2+r)

(2+r)(2+r) + .

(7.1)

7.2. The Case of (n, n, nr) with 0�r�1

We treat this case similarly to the case r>1. The small difference is that
now

\ (1+r)(N&L)
(N&L), r(N&L)+\

N+rL
(N&L), L, rL+

<\r(N&L)+2L
r(N&L), L, L+\

2(N&L)
(N&L), (N&L)+ .

277FAST RECTANGULAR MATRIX

File: DISTL2 047622 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2369 Signs: 1533 . Length: 45 pic 0 pts, 190 mm

Therefore, we set

M=2 \r(N&L)+2L
r(N&L) L, L+\

2(N&L)
(N&L), (N&L)++1.

In the same way as in the preceding subsection, we obtain the exponent
bound

|(1, 1, r)�
1

(1&;) log q

_log \\
(r;)(r;) (2(1&;))2(1&;)

_(r(1&;)+2;) (r(1&;)+2;) (q+2) (2+r)+
(2+r) (2+r) + .

(7.2)

7.3. The Case of (nr, n, nt) with r>1>t>0

Due to (2.6), we will discuss the problem (nt, n, nr) with r>1>t>0,
instead of (nr, n, nt) with r>1>t>0. In this case, take the (t+1+r) N th
tensor power of (5.1), where N is sufficiently large, and (t+1+r) N
is an integer. Each variable x[I]

i in the tensor power is the tensor product
of (t+1+r) N variables x[J]

j , one from each of (t+1+r) N copies of
the original algorithm (5.1). The subscript i is a vector of dimension
(t+1+r) N with entries in [0, 1, 2, ..., q, q+1], made up of the
(t+1+r) N subscripts j. The superscript [I] is a vector of dimension
(t+1+r) N with entries in [0, 1, 2], made up to the (t+1+r) N super-
scripts [J].

Set L=W;N X , where a small number ; will be determined later on
(roughly at the level between 0.005 and 0.05). We currently have 6(t+1+r) N

triples (X [I], Y [J], Z[K]). Set x[I]
i =0 unless I has exactly tL+L+r(N&L)

indices of 0, exactly (t+1)(N&L) indices of 1 and exactly rL indices of 2;
set y[J]

j =0 unless J has exactly t(N&L)+L+rL indices of 0, exactly
(1+r)(N&L) indices of 1, and exactly tL indices of 2; set z[K]

k =0 unless
K has exactly tL+(N&L)+rL indices of 0, exactly (t+r)(N&L) indices
of 1 and exactly L indices of 2. When we complete this procedure, there
still remain at least

\ (t+1+r) N
tL, L, rL, t(N&L), (N&L), r(N&L)+

278 HUANG AND PAN

File: DISTL2 047623 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 1771 Signs: 916 . Length: 45 pic 0 pts, 190 mm

blocks of triples (X [I], Y [J], Z[K]). In accordance with this estimate,
among the (t+1+r) N copies of construction (5.1), we pick

x[0]
0 y[1]

i z[1]
i from r(N&L) copies,

x[1]
i y[0]

0 z[1]
i from t(N&L) copies,

x[1]
i y[1]

i z[0]
0 from (N&L) copies,

x[0]
0 y[0]

0 z[2]
q+1 from L copies,

x[0]
0 y[2]

q+1 z[0]
0 from tL copies, and

x[2]
q+1 y[0]

0 z[0]
0 from rL copies.

They are compatible, which means that the sum of indices at the same
locations of their superscripts I, J and K is 2. Among them, for each block
Z[K], there are

\ (t+r)(N&L)
t(N&L), r(N&L)+\

tL+(N&L)+rL
tL, (N&L), rL +

pairs (X [I], Y [J]) sharing it; for each Y [K], there are

\ (1+r)(N&L)
(N&L), r(N&L)+\

t(N&L)+L+rL
t(N&L), L, rL +

pairs (X [I], Z[K]) sharing it; for each X [I], there are

\ (t+1)(N&L)
t(N&L), (N&L)+\

tL+L+r(N&L)
tL, L, r(N&L) +

pairs (Y [J], Z[K]) sharing it.
Since r>1>t>0, the largest of these three bounds is the second one.

So, we set

M=2 \ (1+r)(N&L)
(N&L), r(N&L)+\

t(N&L)+L+rL
t(N&L), L, rL ++1.

279FAST RECTANGULAR MATRIX

File: DISTL2 047624 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2651 Signs: 1819 . Length: 45 pic 0 pts, 190 mm

Along the line of subsection 7.1, we now obtain the exponent bound

|(t, 1, r)�
1

(1&;) log q

_log \\
(t;)t; ((1+r)(1&;)) (1+r)(1&;)

_(t(1&;)+(1+r) ;) (t(1&;)+(1+r) ;) (q+2) (t+1+r)+
(t+1+r) (t+1+r) + .

(7.3)

8. DISCUSSION ON OPTIMIZATION OF ALGORITHMS FOR
FAST RECTANGULAR MATRIX MULTIPLICATIONS

In this section, we will compare our algorithms for rectangular matrix
multiplication of this paper with other possible effective algorithms and will
choose some combination of our designs so as to optimize the exponents.
We will discuss three cases, as in Sections 6 and 7.

8.1. The Case of (n, n, nr) with r>1

In this case, if we apply square matrix multiplication algorithm (cf.
[CW90]), we obtain

M(n, n, nr)=nr&1M(n, n, n)=nr&1O(n|)=O(nr&1+|).

Due to |<2.376 ([CW90]), |(1, 1, r)=r&1+|<r+1.376. Let g(r)=
r+1.376; then g(r) is an increasing linear function in the interval [1, �)
and passes through the points (1, 2.376) and (2, 3.376), where g(1)=
2.375477... agrees with the result of Section 8 of [CW90].

Let f (r) denote the right-hand side of (7.1), that is, the exponent estimate
for (n, n, nr) based on the algorithm of subsection 7.1. By combining the
results of Sections 5 and 7, we obtain that f (r) is an increasing function
in the interval [1, +�) passing through the points (1, 2.38719) and
(2, 3.334). For r=1, f (1)=2.3879 agrees with the result of Section 7 of
[CW90], and f (2)=3.334 agrees with the result of Section 5. Near the
point r=1.171, we have f (r)rg(r)=r+1.376. For q=7 and ;=0.0336,
f (1.171)=2.546462806...<g(1.171)=2.546477....

According to this examination, (7.1) minimizes the exponent for
r�1.171&= for an appropriate small positive =.

8.2. The Case of (n, n, nr) with 0�r�1

In this case, we let f (r) be the right-hand side of (7.2). f (r) is a monotone
increasing continuous function in the interval [0, 1] passing through the

280 HUANG AND PAN

File: DISTL2 047625 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2026 Signs: 1009 . Length: 45 pic 0 pts, 190 mm

points (0, 2+=) and (1, 2.38719). The exponent estimate given by f (r) for
r # [0, 1] is not yet the best, however. A better exponent bound for
r # [0, 1] is given by

|(1, 1, r)={
2+o(1),
2(1&r)+(r&:) |

1&:
,

0�r�0.294=:,

0.294<r�1.
(8.1)

Here is its derivation:

|(1, 1, r)�2+o(1), 0�r�0.294=:

comes from [Co96], and we also have

|(1, 1, r)�
2(1&r)+(r&:) |

1&:
, :=0.294<r�1.

Indeed,

M(n, n, nr)=M(n(1&r)�(1&:) } n(r&:)�(1&:), n(1&r)�(1&:)

_n(r&:)�(1&:), n((1&r) :)�(1&:) } n (r&:)�(1&:))

�M(n(1&r)�(1&:), n (1&r)�(1&:), n((1&r) :)�(1&:))

_M(n(r&:)�(1&:), n (r&:)�(1&:), n(r&:)�(1&:))

=O((n(1&r)�(1&:))2+= (n(r&:)�(1&:))|)

=O(n(2(1&r)+(r&:) |)�(1&:)).

Summarizing the two cases above, we have the optimal choice of our
parameters represented by the curves of Fig. 1.

8.3. The Case of (nt, n, nr) with r>1>t>0

In this case, we first deduce a small upper bound on the exponent
|(t, 1, r). [For lower bound, see (2.4).]

Theorem 8.1. Let |(t, 1, r) be the exponent of (nt, n, nr) . Then

|(t, 1, r)�{
r+1+=,
r(1&:)+(1&t)+(|&1)(t&:)

1&:
+=,

0�t�0.294=:,

0.294<t�1.
(8.2)

281FAST RECTANGULAR MATRIX

FIG. 1. Illustration of exponent curves |(1, 1, r) for (n, n, nr) , 0�r<+�. (6.1), (6.2),
(7.1), (7.2) and (8.1) refer to the respective equations of this paper.

Proof. For 0�t�0.294=:, we have

M(nt, n, nr)�nr&1M(n, n, nt)

�nr&1M(n, n, n:)

=nr&1O(n2+=) (cf. [Co96])

=O(nr+1+=),

that is, |(t, 1, r)�r+1+=.

282 HUANG AND PAN

For :=0.294<t�1, the current best exponent estimate can be derived
as

M(nt, n, nr)=M(nr, n, nt)

=M(nr&(t&:)�(1&:) } n (t&:)�(1&:), n(1&t)�(1&:)

_n(t&:)�(1&:), n((1&t) :)�(1&:) } n(t&:)�(1&:))

�M(nr&(t&:)�(1&:), n(1&t)�(1&:), n((1&t) :)�(1&:))

_M(n(t&:)�(1&:), n(t&:)�(1&:), n(t&:)�(1&:))

=O((nr&(t&:)�(1&:)+(1&t)�(1&:)+=)(n(t&:)�(1&:))|)

=O(nr&(t&:)�(1&:)+(1&t)�(1&:)+(|(t&:))�(1&:)+=)

=O(n(r(1&:)+(1&t)+(|&1)(t&:))�(1&:)+=). K

Let f (r, t) denote the right-hand side of (7.3), let g(r, 0�t�:)=
1+r+=, and let

g(r, :<t�1)=
r(1&:)+(1&t)+(|&1)(t&:)

1&:
. (8.3)

We combine these relations, and in Fig. 2, we represent the resulting
exponents in this parameter range.

FIG. 2. The three areas are, respectively, the optimal region of the three exponent
functions for (nt, n, nr) , 0�t�1�r.

283FAST RECTANGULAR MATRIX

File: DISTL2 047628 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2403 Signs: 1561 . Length: 45 pic 0 pts, 190 mm

PART II. APPLICATIONS OF FAST RECTANGULAR
MATRIX MULTIPLICATION

9. APPLICATION TO PARALLEL MATRIX COMPUTATIONS

In this section, we will assume the customary EREW PRAM machine
model of parallel computing [EG88], [KR90] and apply the results of
Section 8 in order to improve the record work-complexity deterministic
estimates of [GP89] for fast (NC) parallel solution of the three following
problems:

(1) compute the determinant and the characteristic polynomial of a
given n_n rational, real, or complex matrix A;

(2) solve a linear system Ax=b;

(3) invert A.

We first repeat some basic definitions from [GP89], which are used in
the main theorem and its corollary in [GP89].

Definition 9.1. P(n) is the minimum number of arithmetic processors,
and W(n)=O(P(n) log2 n) is the minimum arithmetic work (that is, the
product of time and processor bounds) supporting O(log2n) parallel time
bound for solving problems (1), (2), and (3) under the EREW PRAM
model of parallel computing; P(V , m, n, p) is the minimum number of
arithmetic processors, and

W(V , m, n, p)=O(P(n) log(mnp))

is the minimum arithmetic work supporting O(log(mnp)) parallel time
bound for multiplication of m_n by n_p matrices; P(V , n)=P(V , n, n, n),
W(V , n)=W(V , n, n, n).

The following theorem and its corollary are from [GP89]:

Theorem 9.1. The solution to Problems (1) and (2) can be computed by
using O(log2 n) parallel steps and simultaneously

P(det, n)=max[P(V , n1.25, n, n1.25), P(V , n0.5, n2, n0.5)]

processors, yielding the work-complexity bound

W(det, n)=O(P(det, n) log2 n)

=max[W(V , n1.25, n, n1.25), W(V , n0.5, n2, n0.5)].

284 HUANG AND PAN

File: DISTL2 047629 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2650 Signs: 1822 . Length: 45 pic 0 pts, 190 mm

The solution to Problem (3) can be computed by using O(log2 n) steps and

P(n)=min
v, u

max[P(det, n), P(V , u+1, v, n2), P(V , n, nu, n)]

processors, where the minimum is over all pairs v and u such that

vu�n+1�(v+1) u.

This yields the work bound

W(n)=min
v, u

max[W(det, n), W(V , u+1, v, n2), W(V , n, nu, n)].

Substitute the bound P(V , n)=O(n2.376) and obtain

Corollary 9.1. The solutions to Problems (1), (2) and (3) can be com-
puted by using simultaneously O(log2 n) steps, P(n)=O(n2.851) arithmetic
processors and W(n)=O(n2.851) arithmetic work.

We will also need the following result, which extends Proposition 4.3.2 of
[BP94] from the case of square to rectangular matrices:

Theorem 9.2. The product XY of an nts_ns matrix X by an ns_nrs

matrix Y can be computed by using parallel time O((t+r+1) s log n) and
O(n|� (t, 1, r) s) arithmetic processors, where n>1, s � �, and |� (t, 1, r) is any
number exceeding the value |(t, 1, r) defined in Section 2.

Proof. With no loss of generally, we may assume (see, for instance
[BM75], Section 2.5, or [Pan]) that an nt_n by n_nr matrix product
X0Y0 is computed by means of a bilinear algorithm (cf. Definition 2.1).

Now we apply the tensor product construction to such a bilinear algo-
rithm; that is, we apply this algorithm recursively in order to multiply the
matrices X and Y whose entries are nt_n and n_nr matrices, respectively.
This will give us a recursive bilinear algorithms for multiplication of nts_ns

by ns_nrs matrices, for s=1, 2, ..., and we have

ts+1�ts+(1+max(r, t)) log2 n+log2 M+4,

ps+1�max[n(r+t+2)(s+1), n(r+t)(s+1)M, ps M],

where N=nmax(1+r, 1+t, r+t), tl and p l denote the parallel time and the num-
ber of arithmetic processors used in the above recursive bilinear algorithm
for nl_nl matrix multiplication. Since M�n|� (t, 1, r) the latter recursive rela-
tions immediately lead to Theorem 9.2. K

285FAST RECTANGULAR MATRIX

File: DISTL2 047630 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2223 Signs: 1228 . Length: 45 pic 0 pts, 190 mm

Next, we will apply the results of our Section 8 in order to improve the
bounds on P(n) and W(n) from O(n2.851) of Corollary 9.1 to O(n2.837). Due
to Theorems 9.1 and 9.2, it suffices to improve the upper estimate O(n2.837)
for the sequential complexity of the four following problems of rectangular
matrix multiplication

(n1.25, n, n1.25) , (n1�3, n2�3, n2) ,

(n, n4�3, n) , (n0.5, n2, n0.5) ,

defined by the four following exponents:

|(1.25, 1, 1.25), |(1�3, 2�3, 2), |(1, 4�3, 1), |(0.5, 2, 0.5).

By applying the results of Section 8, we obtain that

|(1.25, 1, 1.25)=1.25|(1, 1, 0.8)=2.8368...<2.837

(by applying (8.1) for |=2.376),

|(1�3, 2�3, 2)= 2
3|(0.5, 1, 3)=2.7398...

(by applying (8.2) for |=2.376),

|(1, 4�3, 1)=|(1, 1, 1.33...)=2.6993...

(by selecting q=7, ;=0.033 in (7.1)),

|(0.5, 2, 0.5)=0.5|(1, 1, 4)=2.6390...

(by selecting q=14, ;=0.0026 in (7.1)).

Combining the four latter bounds with Theorems 9.1 and 9.2, we arrive at
the bounds W(n)=O(n2.837) and P(n)=O(W(n)).

Remark 9.1. The bound W(n)=O(n2.837) can be decreased if |=
|(1, 1, 1) is decreased below 2.376 and also if : is increased above 0.294.
Namely, our argument above, together with (8.1) and (8.2), implies that

W(n)=O(max[W1(n), W2(n), W3(n), W4(n)]),

where

W1(n)=n|1, |1=|(1.25, 1, 1.25)

=1.25
0.4+(0.8&:) |

1&:
[cf. (8.1)],

286 HUANG AND PAN

File: DISTL2 047631 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2765 Signs: 1855 . Length: 45 pic 0 pts, 190 mm

W2(n)=n|2, |2=|(1�3, 2�3, 2)=
2
3

|(0.5, 1, 3)

=\2
3+

3(1&:)+0.5+(|&1)(0.5&:)
1&:

[cf. (8.2)],

W3(n)=n|3, |3=|(1, 4�3, 1)<2.7,

W4(n)=n|4, |4=|(0.5, 2, 0.5)<2.64.

Clearly, |1 and |2 decrease as | decreases and�or : increases.

Remark 9.2. Randomized parallel solution of the listed problems
(1)�(3) only requires polylogarithmic time and work O(n2.376) (cf. [KP91],
[KP92], [KP94], [BP94], [P96], [E97]).

10. ACCELERATION OF POLYNOMIAL COMPOSITION
AND FACTORIZATION OF POLYNOMIALS OVER

FINITE FIELDS

We will extend our results of Part I to accelerate polynomial composi-
tion and factorization. To reach the maximum effect, we will modify some
of the known reductions of these polynomial computations to matrix multi-
plication (see subsection 10.5).

10.1. Introduction

In this section, we will apply the results of Part I on fast rectangular
matrix multiplication in order to improve the known estimates for the com-
putational complexity of polynomial composition and the factorization of
univariate polynomials over finite fields, which are major problems of
algebraic computing. We refer the reader to [GS92] and [KS95] on the
background of the latter fundamental problem.

10.2. Some Definitions and Preliminary Results

For reader's convenience, in this subsection, we restate some definitions
and results of Part I, that we will apply in this section. ``Ops'' stands for
``arithmetic operations,'' and ``bms'' stands for ``bilinear multiplications.''
(m, n, p) denotes the problem of multiplying a pair of m_n by n_p
matrices. We represent the complexity of (nr, ns, nt) by the number of
bilinear multiplications (bms) required, M(nr, ns, nt).

Theorem 10.1 (Part I, Section 5). The problem (n, n, n2) of rectangular
matrix multiplication can be solved by using O(n3.333953...) bms, that is, the expo-
nent of the arithmetic complexity of (n, n, n2) is |(1, 1, 2)�3.3333953... .

287FAST RECTANGULAR MATRIX

File: DISTL2 047632 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2347 Signs: 1285 . Length: 45 pic 0 pts, 190 mm

Theorem 10.2 (Part I, Section 7). The problem (n, n, nr) of rectangular
matrix multiplication can be solved by using O(n|(1, 1, r)) bms, where r�1 is
a rational number, the matrix exponent |(1, 1, r) is bounded as

|(1, 1, r)�min
l, b

1
(1&b) log l

_log \bb((1+r)(1&b)) (1+r)(1&b) (1+rb) (1+rb) (l+2) (2+r)

(2+r)(2+r) + ,

where l�2 is an integer and 0�b�1.

Theorem 10.3 (Part I, Section 8). The problem (nt, n, nr) of Rectan-
gular Matrix Multiplication (where 0�t�0.294, r�1) can be solved by
using O(nr+1+=) bms.

10.3. Complexity of Modular Polynomial Composition

Theorem 10.4. Let

p(x)=p0+ p1x+ p2 x2+ } } } + pnxn,

q(x)=q0+q1 x+q2x2+ } } } +qnxn

be two polynomials. The arithmetic complexity of computing the coefficients
of the polynomial

p(q(x)) mod xn+1

is O(M(n, - n, - n)=O(n3.334�2)=O(n1.667).

Proof. Algorithm 2.1 of [BK78] for computing p(q(x)) mod xn+1 has
its complexity dominated by the complexity of the problem (n, - n, - n).
Consequently, Theorem 10.4 immediately follows from Theorem 10.1. K

For comparison, the known exponent for the complexity of the above
problem of modular polynomial composition was obtained by reduction of
the problem (n, - n, - n) to - n blocks of square - n_- n matrix multi-
plication, so that

M(n, - n, - n)�- n M(- n, - n, - n)

(cf. e.g., [KS95]). The resulting exponent 1.688 exceeds one of
Theorem 10.4 by 0.021.

288 HUANG AND PAN

File: DISTL2 047633 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2808 Signs: 2210 . Length: 45 pic 0 pts, 190 mm

10.4. Factorization of Polynomial over Finite Fields (Two Approaches)

There are two major approaches to the factorization of a univariate
polynomial of a degree n over the finite field Fq with q elements. These
approaches are due to Berlekamp [B70] and Cantor and Zassenhaus
[CZ81]. Both of the approaches lead to randomized algorithms and were
recently improved in [GS92] and [KS95], to yield the current record
complexity estimates for the factorization problem. We will show further
improvement of all these record estimates, by using fast matrix multiplica-
tion. We will follow the flowchart of [KS95], where the two cited approaches
are treated separately and the Cantor�Zassenhaus approach is partitioned
into the study of the two cases, of the equal-degree and the distinct-degree
factorization of a polynomial, where all the factors must have the same
(equal) degree or all must have distinct degrees, respectively. We will study
these two approaches (one with two subcases) in the next three sections.

Our Theorems 10.5�10.7 will specify our record complexity estimates for
polynomial factorization, which depend on the two parameters, n (the
degree of the polynomial) and q (the cardinality of the field). In particular,
we yield the factorization over Fq by using O(n1.8356+n1.763 log q) field
operations or alternatively, O(n1.80535 log q), versus the previous record
bounds O(n1.852+n1.763 log q) and O(n1.815 log q) of [KS95]. As in
[KS95], our latter record bound is obtained based on each of the two
approaches, that is, Cantor�Zassenhaus' and Berlekamp's.

10.5. Complexity of Equal-Degree Polynomial Factorization over
Finite Fields

The probabilistic algorithm of von zur Gathen and Shoup (cf. [GS92])
solves the equal-degree factorization problem for a univariate polynomial
of a degree n over the finite field Fq with q elements by using the expected
number of

O(n(|+1)�2+o(1)+n1+o(1) log q)

or

O(n1.688+n1+o(1) log q)

operations in Fq . Here, n(|+1)�2+o(1) is the estimated complexity of poly-
nomial composition modulo xn. Due to our Theorems 10.1 and 10.4 and
Remark 2.1, the bound on the complexity of the equal-degree factorization
problem can be immediately improved as follows.

289FAST RECTANGULAR MATRIX

File: DISTL2 047634 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2562 Signs: 1812 . Length: 45 pic 0 pts, 190 mm

Theorem 10.5. The equal-degree factorization of a univariate poly-
nomial of a degree n over the finite field Fq with q elements an be computed
probabilistically by using an expected number of

O(M(n, - n, - n))=O(n1.667+n1+o(1) log q)

operations in Fq .

10.6. Complexity of Distinct-Degree Factorization over a Finite Field

Section 2 of [KS95] presents a (deterministic) algorithm (Algorithm D)
for the distinct-degree factorization of a polynomial of a degree n over the
finite field Fq with q elements. The algorithm uses

O(n(|+1)�2+(1&;)(|&1)�2+n1+;+o(1) log q)

operations in Fq , for any ; in the interval 0�;�1 (see Theorem 3 in
[KS95]).

By substituting |<2.375477 of [CW90] and then minimizing the expo-
nent of n, Kaltofen and Shoup obtained the estimate of O(n1.815 log q)
operations in Fq (cf. [KS95], Theorem 3).

We will next improve this bound as follows:

Theorem 10.6. Distinct degree factorization of a univariate polynomial
over a finite field Fq with q elements can be computed deterministically by
using

O(n|(1, 1&;�2, 1&;�2)+n1+;+o(1) log q)

operations in Fq , for any ; from the interval 0�;�1. For ;=0.805347, this
bound can be turned into O(n1.80535 log q).

By comparing Theorems 10.5 and 10.6, we conclude that the estimate of
Theorem 10.6 is larger and dominates the overall asymptotic complexity of
polynomial factorization over Fq in terms of the number of the field opera-
tions used, although we need randomization to apply the estimates of
Theorem 10.5 and do not need it to apply Theorem 10.6.

Proof. To prove Theorem 10.6, we will first recall and improve Lemmas
3 and 4 of [KS95].

Lemma 3 of [KS95] states: Given a polynomial f # K[x] of a degree n
over an arbitrary field K and k+1 polynomials g1 , g2 , ..., gk , h # K[x], all
of degrees less than n, where k=O(n$), 0�$�1, it suffices to apply

O(n(|+1)�2k (|&1)�2)

290 HUANG AND PAN

File: DISTL2 047635 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2390 Signs: 1516 . Length: 45 pic 0 pts, 190 mm

operations in K to compute

g1(h) mod f, ..., gk(h) mod f # K[x].

In the proof of Lemma 3 of [KS95], the latter complexity bound relies
on the estimates for the complexity of the problem (n, - nk, - nk), for
which [KS95] uses the bound

O(n�- nk) M(- nk, - nk, - nk).

We will replace this estimate by M(n, - nk, - nk). As is pointed out in
Section 8 of Part I, for most of the selections of k, our algorithms for rec-
tangular matrix multiplication achieve better results than application of
square matrix multiplication.

Lemma 4 of [KS95] states: Let f # Fq[x] be a polynomial of a degree n.
Suppose that we are given xq r

mod f # Fq[x]. Then O(n(|+1)�2K (|&1)�2)
operations in Fq suffices to compute

xqr
mod f, xq 2r

mod f, ..., xq Kr
mod f # Fq[x],

for K=O(n$), 0�$�1.

For the sake of completeness of our argument, let us outline the short
proof of Lemma 4.

Proof of Lemma 4 of [KS95]. For i�1, let Gi=xqir
mod f # Fq[x].

Assume that we have computed G1 , ..., Gm . Then we can obtain
Gm+1 , ..., G2m by computing

G1(Gm) mod f, ..., Gm(Gm) mod f

by means of the algorithm supporting Lemma 3. Therefore, to compute
G1 , ..., GK given G1 , we simply repeat the above ``doubling'' step O(log K)
times, and then achieve the stated running-time estimate.

The procedure above can be specified in the following way where we
incorporate our improved version of Lemma 3:

Step 1. For a given G1 , computing G1(G1) mod f=G2 is equivalent
to solving the problem (n, - n, - n) (i.e., let k=1 in Lemma 3).

Step 2. For a given G1 and G2 from step 1, computing

G1(G2) mod f=G3 and G2(G2) mod f=G4

291FAST RECTANGULAR MATRIX

File: DISTL2 047636 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2155 Signs: 1117 . Length: 45 pic 0 pts, 190 mm

is equivalent to solving the problem (n, - 2n, - 2n) (i.e., let k=2 in
Lemma 3).

Step log K&1. For G1 , ..., GK�8 from the previous steps, computing

G1(GK�8) mod f=G1+K�8 , ..., GK�8(GK�8) mod f=GK�4

is equivalent to solving the problem (n, - n(K�4), - n(K�4)) (i.e., let
k=K�4 in Lemma 3).

Step log K. For G1 , ..., GK�4 from the previous steps, computing

G1(GK�4) mod f=G1+K�4 , ..., GK�4(GK�4) mod f=GK�2

is equivalent to solving the problem (n, - n(K�2), - n(K�2)) , (i.e., let
k=K�2 in Lemma 3).

We recall that

M (n, - n(K�2i+1), - n(K�2 i+1))

� 1
2 M(n, - n(K�2i), - n(K�2i)), i=1, 2, ..., log K.

Now we sum the complexity estimates for all steps from 1 to log K, to
arrive at the overall complexity bound of

\ 1
2log K + } } } +

1
2+ M(n, - nK , - nK)<M(n, - nK , - nK).

Therefore, we may replace O(n(|+1)�2K (|&1)�2) by M(n, - nK , - nK).
According to Algorithm D, we have K=n1&;, which leads to the result

of Theorem 3 of [KS95]. Now, by replacing K by n1&; in M(n, - nK ,
- nK), we deduce the bound of

M(n, - n2&; , - n2&;)=M(n, n1&;�2, n1&;�2)=O(n|(1, 1&;�2, 1&;�2)).

The latter argument enables us to replace the term

n(|+1)�2+(1&;)(|&1)�2

in the estimate of Theorem 3 of [KS95] by

n|(1, 1&;�2, 1&;�2),

292 HUANG AND PAN

File: DISTL2 047637 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2367 Signs: 1704 . Length: 45 pic 0 pts, 190 mm

so as to yield the bound of

O(n|(1, 1&;�2, 1&;�2)+n1+;+o(1) log q)

on the complexity of the distinct-degree factorization in Fq (cf. our
Remark 2.1). To minimize the exponent of n in the latter bound, we choose
;=0.805347. Furthermore, in Theorem 10.2 of our subsection 10.2, we
choose b=0.023 and l=8. Then we arrive at the estimate

|(1, 1&;�2, 1&;�2)�1.805346859...<1.80535.

Since ;+o(1) is bounded from above by 0.80535, we finally arrive at
the complexity bound O(n1.80535 log q), thus completing the proof of
Theorem 10.6 to yield a new record complexity estimate for the distinct-
degree factorization (and consequently, for the entire factorization algo-
rithm). K

10.7. Complexity of the Fast Black Box Berlekamp Algorithm

In this subsection, we will follow the line of Section 3 of [KS95] but will
utilize the results of our Part I on rectangular matrix multiplication to
improve the estimates of [KS95] for the complexity of the fast randomized
Black Box Berlekamp Algorithm. The latter algorithm is a version of
Berlekamp's algorithm ameliorated in [KS95] for the factorization of a
monic square-free polynomial over the finite field Fq with q elements. By
following [KS95], we will refer to this algorithm as Algorithm B.

First, let us recall the result of Theorem 4 of [KS95], which states that
for any constant ; with 0�;�1, Algorithm B of [KS95] can be implemented
so as to use an expected number of

O(n(|+1)�2+(3&|) |;&1�2|+o(1)+n(|+1)�2+(1&;)+o(1)+n1+;+o(1) log q)

(10.1)

operations in Fq . By choosing |<2.375477 and minimizing the exponent n,
one obtains the bound of

O(n1.880+n1.808 log q)

operations in Fq .
We will next improve the latter bound to

O(min[n1.860+n1.808 log q, n1.8335 log q]);

293FAST RECTANGULAR MATRIX

File: DISTL2 047638 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2391 Signs: 1839 . Length: 45 pic 0 pts, 190 mm

then we will also improve a refined estimate of [KS95] for the complexity
of Algorithm B. Note first that the term O(n1.880+n1.808 log q) is obtained
by choosing ;=0.808 in (10.1); also note that n(|+1)�2 comes from the
complexity bound for the problem of modular polynomial composition,
which we bound by O(n3.334�2)=O(n1.667), due to our Theorems 10.1 and
10.4. Then, we will bound the exponents of the first and the second terms
by 1.8591... and of the third term by 1.808, that is, we have the overall com-
plexity bound of O(n1.860+n1.808 log q).

To yield the estimate O(n1.8335 log q), we first note that (|+1)�2 in the
second term of (10.1) can be replaced by |(1, 1, 2)<3.333953, then
optimize the exponent of n by choosing an appropriate ;, to bound the
sum by O(n1.8335 log q), and then, finally, prove that the exponent of the
first term can also be decreased to 1.8335. Towards the latter goal, let
us follow the proof of Theorem 4 of [KS95] so as to cover Step AE2 of
Algorithm AE and the calculation of its complexity. The bound

O(n(|+1)�2+(3&|) |;&1�2|+o(1))

comes from the complexity estimate for rectangular matrix multiplication
problem (m, t, n), where m=n1&; and t=n;, or conversely, t=n1&; and
m=n;, that is,

O(n(|+1)�2+(3&|) |;&1�2|+o(1))

comes from the bound

M(n1&;, n;, n)=O(n|(1&;, ;, 1)).

For ;=0.8335&o(1), among 1&;, ;, and 1, the value 1&;=0.1665+
O(1) is the smallest, 1 is the largest, and (1&;)�;<0.294. By applying our
Theorem 10.3, we obtain

|(1&;, ;, 1)=1+;+o(1)=1.8335.

Therefore, we achieve O(n1.8335 log q), thus improving Theorem 4 of
[KS95].

Theorem 4 is also improved by Theorem 5 of [KS95], which gives us
the record randomized complexity estimate for factorization over Fq by the
Fast Black Box Berlekamp Algorithm. Our results of Part I will enable us
to improve the estimates of Theorem 5 of [KS95] too.

294 HUANG AND PAN

File: DISTL2 047639 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2231 Signs: 1518 . Length: 45 pic 0 pts, 190 mm

Theorem 5 of [KS95] states: For any constant ; with 0�;�1, Algo-
rithm B can be implemented so as to use an expected number of

O(n(|+1)�2+(3&|) |;&1�2| +o(1)+n(|+1)�2+(1&;)(|&1)�2+o(1)+n1+;+o(1) log q)

(10.2)

operations in Fq . In particular, by choosing |<2.375477 and minimizing the
exponent of n, one obtains the bound of

O(n1.852+n1.763 log q)

operations in Fq . Furthermore, for |=2.375477, by making use of the
techniques for fast rectangular matrix multiplication, the estimate (10.2) can
be reduced to

O(n(|+1)�2+(1&;)(|&1)�2+o(1)+n1+;+o(1) log q) (10.3)

and, in particular, to O(n1.815 log q) for an appropriate choice of ;.
We will next prove the record estimates for the asymptotic complexity of

polynomial factorization over Fq based on Algorithm B.

Theorem 10.7. The bounds O(n1.852+n1.763 log q) and O(n1.815 log q) on
the complexity of the nth degree polynomial factorization over Fq based
on Algorithm B of [KS95] can be improved to yield the bounds
O(n1.8356+n1.763 log q) and O(n1.80535 log q), respectively.

Proof. Note that the second term of (10.2),

O(n(|+1)�2+(1&;)(|&1)�2+o(1)),

comes from the solution of the problem (n, n1&;�2, n1&;�2) (cf. our
Theorem 10.4) and thus can be replaced by

M(n, n1&;�2, n1&;�2)=O(n|(1, 1&;�2, 1&;�2))

(as in the preceding section where we improved the result of Theorem 3 of
[KS95]). By choosing again b=0.023 and l=8 in Theorem 10.2 of sub-
section 10.2 (as we did at the end of subsection 10.6) but choosing
;=0.763&o(1), we arrive at the bound

|(1, 1&;�2, 1&;�2)�1.835532965....

295FAST RECTANGULAR MATRIX

File: DISTL2 047640 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2231 Signs: 1402 . Length: 45 pic 0 pts, 190 mm

In the proof of Theorem 5 of [KS95],

O(n(|+1)�2+(1&;)(|&1)�2+o(1))

is an upper bound on M(n1&;, n, n;). For ;=0.763&o(1), we have

M(n1&;, n, n;)=M(n0.237+o(1), n, n0.763&o(1))

=n0.013M(n0.224+o(1), n, n0.763&o(1))

=n0.013O(n|(0.224+o(1), 1, 0.763&o(1))).

On the other hand,

(0.224+o(1))�(0.763&o(1))�0.294

(compare the first term of (5.1) in Theorem 4 of [KS95]). Consequently,
by applying Theorem 10.3 of subsection 10.3, we deduce that

|(0.224+o(1), 1, 0.763&o(1))=1+0.763&o(1)�1.763.

Therefore, the expression

n0.013O(n|(0.224+o(1), 1, 0.763&o(1)))=O(n0.013+1.763)=O(n1.776)

bounds the first term, and the latter bound is dominated by the second
term. This enables us to improve the estimate O(n1.852+n1.763 log q) to
O(n1.8356+n1.763 log q).

Finally, we discuss the improvement from O(n1.1815 log q) to
O(n1.80535 log q). Since the second and the third terms of Theorem 5 of
[KS95] [cf. (10.2)] are the same as in the Theorem 3 of [KS95], that is,
bounded by O(n1.80535 log q), it remains to prove that the first term is
dominated by O(n1.80535). Choose ;=0.80535&o(1) and note that (as we
mentioned above) the first term comes from the bound

M(n1&;, n, n;)=M(n0.19465+o(1), n, n0.80535&o(1))

=O(n|(0.19465+o(1), 1, 0.80535&o(1)))

=O(n1.80535).

Now, due to the inequality

(0.19465+o(1))�(0.80535&o(1))�0.294

and the application of our Theorem 10.3, we arrive at the desired bound of
O(n1.80535 log q), thus proving Theorem 10.7. K

296 HUANG AND PAN

File: DISTL2 047641 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 2503 Signs: 1755 . Length: 45 pic 0 pts, 190 mm

11. APPLICATION TO FINDING BASIC SOLUTIONS OF
A LINEAR PROGRAMMING PROBLEM

In this section, we will apply the results on rectangular matrix multi-
plications from Section 8 to find basic solutions of a linear programming
problem with m constraints and n variables and improve its record com-
plexity estimate from O(n1.594) to O(m1.575).

First, let us follow [BM98] and briefly describe the problem.

Problem 11.1 (Basis Crashing for a Linear Programming Problem).
Consider the standard-form system of linear constraints

Ax=b, x�0,

where A # Rm_n is assumed to have m linearly independent rows, b # Rm, and
x # Rn, R denoting the field of real numbers. A solution x of this system is
said to be basic if the set of columns A } j with xj{0 is linearly independent.
Thus, a basic solution has at most m positive components.

The problem of finding a basic solution given a non-basic one arises
frequently in linear programming, especially in the context of interior-point
methods. For simplicity, we call this problem basis crashing.

P. A. Belling and N. Megiddo in [BM98] reduced this problem to
performing rectangular matrix multiplication and proved the following
estimate.

Theorem 11.1. Problem 11.1 can be solved by using

O((m1+2t+m|(1, 1, t)) n�mt)=O((m1+t+m|(1, 1, t)&t) n) (11.1)

arithmetic operations, for any t in the interval 0�t�1.

To minimize (11.1), we seek t, 0�t�1, which minimizes

max[1+t, |(1, 1, t)&t].

Substitute (8.1) and rewrite this expression as

max {1+t,
2(1&t)+(t&:) |

1&:
&t= , (11.2)

where |=2.376 and :=0.294. The minimum is reached for t=0.5747...
<0.575, which implies the following estimate.

Theorem 11.2. The complexity of Problem 11.1 of computing basis solu-
tions to the linear programming problem with m constraints and n variables
is O(m1.575n).

297FAST RECTANGULAR MATRIX

File: DISTL2 047642 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 7595 Signs: 2731 . Length: 45 pic 0 pts, 190 mm

Remark 11.1. In [BM98] the estimate similar to (11.2) was obtained,
but for some reason, a slightly larger numerical value of the exponent of m
(namely, 1.594) was deduced.

ACKNOWLEDGMENT

Erich Kaltofen pointed out to us the application of rectangular matrix multiplication to
polynomial factorization.

REFERENCES

[B70] Berlekamp, E. R. (1970), Factoring polynomials over large finite fields, Math.
Comput. 24, 713�735.

[BCLR] Bini, D., Capovani, M., Lotti, G., and Romani, F. (1979), O(n2.7799) complexity for
matrix multiplication, Inform. Process. Lett. 8, 234�235.

[BCS97] Bu� rgisser, P., Clausen, M., and Shokrollahi, M. A. (1997), ``Algebraic Computa-
tional Complexity,'' Springer, Berlin.

[BD76] Brockett, R. W., and Dobkin, D. (1976), On the number of multiplications required
for matrix multiplications, SIAM J. Complexity 5, 624�628.

[Be46] Behrend, F. A. (1946), On sets of integers which contain no three terms in
arithmetical progression, Proc. Nat. Acad. Sci. USA 32, 331�332.

[BK78] Brent, R. P., and Kung, H. T. (1978), Fast algorithms for manipulating formal
power series, J. Assoc. Comput. Mach. 25, 581�595.

[BM75] Borodin, A., and Munro, I. (1975), ``The Computational Complexity of Algebraic
and Numeric Problems,'' American Elsevier, New York.

[BM98] Beling, P. A., and Megiddo, N. (1998), Using fast matrix multiplication to find
basic solutions, Theoret. Comput. Sci. to appear.

[BP94] Bini, D., and Pan, V. Y. (1994), ``Polynomial and Matrix Computations, Vol. 1:
Fundamental Algorithms,'' Birkha� user, Boston.

[Co82] Coppersmith, D. (1982), Rapid multiplication of rectangular matrices, SIAM
J. Comput. 11, 467�471.

[Co97] Coppersmith, D. (1997), Rectangular matrix multiplication revisited, J. Complexity 13,
42�49.

[CW82] Coppersmith, D., and Winograd, S. (1982), On the asymptotic complexity of
matrix multiplication, SIAM J. Comput. 11, 472�492.

[CW90] Coppersmith, D., and Winograd, S. (1990), Matrix multiplication via arithmetic
progressions, J. Symbolic Comput. 9, 251�280.

[CZ81] Cantor, D. G., and Zassenhaus, H. (1981), A new algorithm for factoring poly-
nomials over finite fields, Math. Comput. 36, 587�592.

[E97] Eberly, W. (1997), Parallel matrix inversion over abstract fields: Two approaches,
in ``Proceedings Second International Symposium on Parallel Symbolic Computa-
tion (PASCO'97),'' pp. 38�45, ACM Press, New York.

[EG88] Eppstein, D., and Galil, Z. (1988), Parallel algorithmic techniques for com-
binatorial computation, Annual Rev. Comput. Sci. 3, 233�283.

[GL96] Golub, G. H., and Van Loan, C. F. (1996), ``Matrix Computations,'' 3th ed., Johns
Hopkins Univ. Press, Baltimore.

298 HUANG AND PAN

File: DISTL2 047643 . By:CV . Date:29:05:98 . Time:10:59 LOP8M. V8.B. Page 01:01
Codes: 7773 Signs: 3089 . Length: 45 pic 0 pts, 190 mm

[GP89] Galil, Z., and Pan, V. Y. (1989), Parallel evaluation of the determinant and of the
inverse of a matrix, Infor. Proc. Lett. 30, 41�45.

[GS92] von zur Gathen, J., and Shoup, V. (1992), Computing Frobenius maps and factoring
polynomials, Comput. Complexity 2, 187�224.

[KP91] Kaltofen, E., and Pan, V. Y. (1991), Processor efficient parallel solution of linear
systems over an abstract field, in ``Proceedings, 3rd Annual ACM Symposium on
Parallel Algorithms and Architectures,'' pp. 180�191, ACM Press, New York.

[KP92] Kaltofen, E., and Pan, V. Y. (1992), Processor-efficient parallel solution of linear
systems. II. The positive characteristic and singular case, in ``Proceedings of 33rd
Annual IEEE Symposium on Foundations of Computer Science,'' pp. 714�723,
IEEE Computer Society Press, Los Alamitos, CA.

[KP94] Kaltofen, E., and Pan, V. Y. (1994), Parallel solution of Toeplitz and Toeplitz-like
linear systems over fields of small positive characteristic, in ``Proceedings of First
International Symposium on Parallel Symbolic Computation (PASCO'94), Linz,
Austria (Sept. 1994),'' Lecture Notes Series in Computing, Vol. 5, pp. 225�233,
World Scientific, Singapore.

[KR90] Karp, R., and Ramachandran, V. (1990), A survey of parallel algorithms for shared
memory machines, in ``Handbook for Theoretical Computer Science'' (J. van
Leeuwen, Ed.), pp. 869�941, North Holland, Amsterdam.

[KS95] Kaltofen, E., and Shoup, V. (1995), Subquadratic-time factoring of polynomials
over finite fields, in ``Proceedings, 27th Annual ACM Symposium on Theory
Comput.,'' pp. 398�406, ACM Press, New York; Math. Comput., in press.

[Pan72] Pan, V. Y. (1972), On schemes for the computation of products and inverses of
matrices, Uspekhi Mat. Nauk. 27, 249�250. [in Russian]

[Pan] Pan, V. Y. (1984), ``How to Multiply Matrices Faster,'' Lecture Notes in Computer
Science, Vol. 179, Springer, Berlin.

[Pan,a] Pan, V. Y. (1984), How can we speed-up matrix multiplication?, SIAM Rev. 26,
393�415.

[P96] Pan, V. Y. (1996), Parallel computation of polynomial GCD and some related
parallel computations over abstract fields, Theor. Comput. Sci. 162, 173�233.

[Sc81] Scho� nhage, A. (1981), Partial and total matrix multiplication, SIAM J. Comput. 10,
434�456.

[SS42] Salem, R., and Spencer, D. C. (1942), On sets of integers which contain no three
terms in arithmetical progression, Proc. Nat. Acad. Sci. USA 28, 561�563.

[St69] Strassen, V. (1969), Gaussian elimination is not optimal, Numerische Math. 13,
354�356.

[St86] Strassen, V. (1986), The asymptotic spectrum of tensors and the exponent of matrix
multiplication, in ``Proceedings, 27th Annual IEEE Symposium on Foundations of
Computer Science,'' pp. 49�54, IEEE Computer Society Press.

[St87] Strassen, V. (1987), Relative bilinear complexity and matrix multiplication, J. Reine
Angew. Math. 375�376, 406�443.

[St88] Strassen, V. (1988), The asymptotic spectrum of tensor, J. Reine Angew. Math. 384,
102�152.

Printed in Belgium

299FAST RECTANGULAR MATRIX

