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Abstract
In the past few years, successive improvements of the
asymptotic complexity of square matrix multiplication have
been obtained by developing novel methods to analyze
the powers of the Coppersmith-Winograd tensor, a basic
construction introduced thirty years ago. In this paper we
show how to generalize this approach to make progress on
the complexity of rectangular matrix multiplication as well,
by developing a framework to analyze powers of tensors
in an asymmetric way. By applying this methodology to
the fourth power of the Coppersmith-Winograd tensor, we
succeed in improving the complexity of rectangular matrix
multiplication.

Let α denote the maximum value such that the product
of an n× nα matrix by an nα × n matrix can be computed
with O(n2+ε) arithmetic operations for any ε > 0. By
analyzing the fourth power of the Coppersmith-Winograd
tensor using our methods, we obtain the new lower bound
α > 0.31389, which improves the previous lower bound
α > 0.30298 obtained by Le Gall (FOCS’12) from the
analysis of the second power of the Coppersmith-Winograd
tensor. More generally, we give faster algorithms computing
the product of an n × nk matrix by an nk × n matrix for
any value k 6= 1. (In the case k = 1, we recover the bounds
recently obtained for square matrix multiplication).

These improvements immediately lead to improvements

in the complexity of a multitude of fundamental problems for

which the bottleneck is rectangular matrix multiplication,

such as computing the all-pair shortest paths in directed

graphs with bounded weights.

1 Introduction

1.1 Background. Matrix multiplication is one of the
most important problems in mathematics and computer
science. In 1969, Strassen discovered the first algorithm
with subcubic complexity computing the product of two
square matrices [25]. In modern notation, Strassen’s re-
sult can be stated as an upper bound ω < 2.81 on the ex-
ponent of square matrix multiplication ω, defined as the
minimum value such that two n×n matrices can be mul-
tiplied using O(nω+ε) arithmetic operations for any con-
stant ε < 0. Strassen’s breakthrough initiated intense
work on the complexity of matrix multiplication, which
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in a span of a few decades lead to several improvements,
culminating in the celebrated O(n2.376)-time algorithm
for square matrix multiplication by Coppersmith and
Winograd [10], i.e., the upper bound ω < 2.376 on the
exponent of square matrix multiplication. This algo-
rithm is obtained from a basic construction, which is
nowadays often called the Coppersmith-Winograd ten-
sor. Coppersmith and Winograd showed that analyzing
this tensor gives the upper bound ω < 2.388, and next
showed that analyzing the second power of this tensor
gives the improved upper bound ω < 2.376.

A natural question, already mentioned in Copper-
smith and Winograd’s paper [10], was whether higher
powers of the Coppersmith-Winograd tensor can lead
to further improvement to the complexity of matrix
multiplication. Most efforts to investigate this direc-
tion quickly stopped after discovering that the third
power does not seem to lead to any further improve-
ment. More than twenty year later, however, Stothers
[24] (see also [11]) and Vassilevska Williams [28] showed
that the fourth power does give an improvement: the
fourth power leads to the upper bound ω ≤ 2.373. The
technically challenging analysis of the fourth power was
made possible by the introduction of powerful general
recursive techniques to analyze powers of tensors. Ex-
tending these techniques, Vassilevska Williams [28] and
then Le Gall [18] succeeded in analyzing higher powers
up to the 32nd power, which gave additional small im-
provements and lead to the current best known upper
bound on the exponent of square matrix multiplication
ω < 2.3728639. Table 1 summarises all these results.
Ambainis et al. [3] finally showed that further improv-
ing this upper bound will be hard: they showed that
analyzing higher powers of the Coppersmith-Winograd
tensor (e.g., powers 64, 128,...) using the same method-
ology cannot give any further significant improvement
on ω (in particular it cannot lead to a proof of the pop-
ular conjecture ω = 2).

Besides square matrix multiplication, rectangular
matrix multiplication plays a central role in many al-
gorithms as well. In addition to natural applications
to computational problems in linear algebra, typical
examples of application include the construction of
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fast algorithms for the all-pairs shortest paths problem
[2, 21, 31, 34, 35], dynamic computation of the transitive
closure [12, 22], detection of subgraphs [29, 32], speed-
up of sparse square matrix multiplication [4, 15, 33] and
algorithms for bounded-difference min-plus square ma-
trix multiplication [6]. Rectangular matrix multiplica-
tion has also been used in computational complexity
[1, 20, 30] and computational geometry [14, 15].

The typical problem considered when studying rect-
angular matrix multiplication is computing the product
of an n×

⌈
nk
⌉

matrix by an
⌈
nk
⌉
× n matrix, for some

parameter k ≥ 0.1 In analogy to the square case, the
exponent of rectangular matrix multiplication, denoted
ω(k), is defined as the minimum value such that this
product can be computed using O(nω(k)+ε) arithmetic
operations for any constant ε > 0. Also note that for
k = 1 (i.e., for square matrices), we have ω(1) = ω.

Coppersmith [8] showed in 1982 that ω(0.172) = 2.
This surprising result means that the product of an
n ×

⌈
n0.172

⌉
matrix by an

⌈
n0.172

⌉
× n matrix can be

computed in time almost linear in the size of the output
(which contains n2 entries). This discovery lead to the
introduction of the following quantity α:

α = sup{k | ω(k) = 2}.

Since proving that α = 1 is equivalent to proving that
ω = 2, the quantity α is sometimes called the dual ex-
ponent of matrix multiplication. Coppersmith’s result
[8] then corresponds to the bound α ≥ 0.172. Copper-
smith [9] later showed that α > 0.29462 by analyzing the
Coppersmith-Winograd tensor in the context of rectan-
gular matrix multiplication. Fifteen years later, Le Gall
[17] showed that the second power of the Coppersmith-
Winograd tensor can also be analyzed in the context
of rectangular matrix multiplication, which lead to the
improved lower bound α > 0.30298. This analysis was
actually much more general and gave bounds on ω(k)
that improved prior bounds [13, 16] for any k 6= 1. (For
k = 1, i.e., square matrix multiplication, this approach
recovered the upper bound ω < 2.376 from [10]). The
results from [17] are presented in Table 2.

1.2 Our results. In view of the recent progress in
square matrix multiplication algorithms obtained by
analyzing higher powers of the Coppersmith-Winograd

1Note that a basic result in algebraic complexity theory states
that the algebraic complexities of the following three problems are
the same: computing the product of an n ×

⌈
nk

⌉
matrix by an⌈

nk
⌉
×n matrix, computing the product of an

⌈
nk

⌉
×n matrix by

an n× n matrix, and computing the product of an n× n matrix
by an n×

⌈
nk

⌉
matrix. In this paper for concreteness we discuss

only the first type of products, but all our bounds naturally hold
for the two other types as well.

m Upper bound Reference

1 ω < 2.3871900 Coppersmith-Winograd [10]
2 ω < 2.3754770 Coppersmith-Winograd [10]
4 ω < 2.372927 Vassilevska Williams [28]
8 ω < 2.372873 Vassilevska Williams [28]
16 ω < 2.3728640 Le Gall [18]
32 ω < 2.3728639 Le Gall [18]

Table 1: Upper bounds on ω obtained by analyzing the
m-th power of the Coppersmith and Winograd tensor.

k
upper bound

on ω(k)
0.30298 2

0.31 2.000063
0.32 2.000371
0.33 2.000939
0.34 2.001771
0.35 2.002870
0.40 2.012175
0.45 2.027102
0.50 2.046681

0.5302 2.060396
0.55 2.070063
0.60 2.096571
0.65 2.125676
0.70 2.156959
0.75 2.190087
0.80 2.224790

k
upper bound

on ω(k)
0.85 2.260830
0.90 2.298048
0.95 2.336306
1.00 2.375477
1.10 2.456151
1.20 2.539392
1.30 2.624703
1.40 2.711707
1.50 2.800116
1.75 3.025906
2.00 3.256689
2.50 3.727808
3.00 4.207372
4.00 5.180715
5.00 6.166736

Table 2: Upper bounds from [17] on the exponent of
the multiplication of an n × nk matrix by an nk × n
matrix, obtained by analyzing the second power of the
Coppersmith-Winograd tensor.

tensor, it is natural to ask whether the same approach
can be applied to obtain further improvements on the
complexity of rectangular matrix multiplication as well.
We investigate this question in this paper, and present
a framework to extend the analysis of higher powers
to the case of rectangular matrix multiplication. We
concretely focus on the analysis of the fourth power of
the Coppersmith-Winograd tensor and show that this
analysis leads to non-negligible improvements. The new
upper bounds we obtain on the exponent of rectangular
matrix multiplication ω(k) are given in Table 3 and the
values for k ≤ 1 are plotted in Figure 1.2 We obtain in
particular the new lower bound

α ≥ 0.31389

2Note that the curve of Figure 1 has the same shape as the
curve for the second power given in [17].
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k
upper bound

on ω(k)
0.31389 2

0.32 2.000064
0.33 2.000448
0.34 2.001118
0.35 2.001957
0.40 2.010314
0.45 2.024801
0.50 2.044183

0.5286 2.057085
0.55 2.067488
0.60 2.093981
0.65 2.123097
0.70 2.154399
0.75 2.187543
0.80 2.222256

k
upper bound

on ω(k)
0.85 2.258317
0.90 2.295544
0.95 2.333789
1.00 2.372927
1.10 2.453481
1.20 2.536550
1.30 2.621644
1.40 2.708400
1.50 2.796537
1.75 3.021591
2.00 3.251640
2.50 3.721503
3.00 4.199712
4.00 5.171210
5.00 6.157233

Table 3: Our upper bounds on the exponent of the
multiplication of an n × nk matrix by an nk × n
matrix, obtained by analyzing the fourth power of the
Coppersmith-Winograd tensor.

on the dual exponent of matrix multiplication, as stated
in the following theorem.

Theorem 1.1. The product of an n×
⌈
n0.31389

⌉
matrix

by an
⌈
n0.31389

⌉
× n matrix can by computed with

O(n2+ε) arithmetic operations for any constant ε > 0.

This new bound improves the previous best known
lower bound α > 0.30298 by Le Gall [17]. For other
values of k as well, our new upper bounds on ω(k) are
systematically better than those of [17], as can be seen
by comparing Table 2 and Table 3. For instance we
obtain ω(3) ≤ 4.199712, which improves the previous
upper bound ω(3) ≤ 4.207372. Note that for k = 1
(i.e., for square matrix multiplication), we obtain the
same upper bound ω ≤ 2.372927 on the exponent of
square matrix multiplication as the bound obtained by
analyzing the fourth power [11, 18, 24, 28]. Indeed, for
k = 1 our analysis becomes essentially the same as the
analysis for the square case in those prior works.

A surprising, or at least unexpected, aspect of the
result of Theorem 1.1 is that the improvement from the
second power to the fourth power (from α > 0.30298
to α > 0.31389) exceeds the improvement known from
the first power to the second power (from α > 0.29462
to α > 0.30298). This is completely different from the
improvements achieved on ω when analyzing successive
powers of the Coppersmith-Winograd tensor, which are
decreasing, as summarized in Table 1. Actually, all
the numerical results we have obtained confirm that for

0 0.31389 1

2

2.372927

k

ω
(k

)

Figure 1: Our upper bounds on the exponent of the
multiplication of an n×nk matrix by an nk×n matrix.

any fixed value of k the improvements on ω(k) decrease
similarly to the square case when analyzing successive
powers. For instance for k = 0.8 and k = 2 the
first power gives ω(0.8) < 2.2356 and ω(2) < 3.2699;
by examining Tables 2 and 3 we observe that the
improvement is larger from the first power to the second
power. The situation happens to be different, however,
for lower bounds on α. Since the curves representing
the upper bounds on ω(k) have horizontal asymptotes
at the lower bound on α (see Figure 1 of the present
paper and Figure 1 in [17]), even small improvements
on ω(k) can lead to fairly significant improvements on
α, as our results show.

The most pressing question is now to investi-
gate what will happen for even higher powers of the
Coppersmith-Winograd tensor (e.g., power 8 or 16). We
believe that this question is important since, besides its
theoretical interest, further significant improvements for
α may be obtained in this way. A concrete approach
would be to adapt to the rectangular case the numeri-
cally efficient methods based on convex optimization de-
veloped, in the setting of square matrix multiplication,
to study high powers of the Coppersmith-Winograd ten-
sor [18]. In the other direction, it may be possible to
show some limitations on the improvements achievable
when studying higher powers, by generalizing the recent
approach developed for the square case [3].

Applications of our results. Our new bounds can
be used to improve essentially all the known algorithms
based on rectangular matrix multiplication algorithms
(e.g., the algorithms in [2, 14, 15, 21, 31, 29, 32, 34, 35]).
Following [17], we discuss below one concrete example.

Zwick [35] has shown how to use rectangular matrix
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multiplication to compute the all-pairs shortest paths in
weighted direct graphs where the weights are bounded
integers. The time complexity obtained by Zwick for
graphs with constant weights is O(n2+µ+ε), for any
constant ε > 0, where µ is the solution of the equation
ω(µ) = 1 + 2µ. The results from [17] (see Table 2)
show that ω(0.5302) < 2.0604, which gives the upper
bound µ < 0.5302. The results of the present paper (see
Table 3) show that ω(0.5286) < 2.0572, which gives the
upper bound µ < 0.5286.

1.3 Overview of our approach. Before presenting
an overview of the techniques used in this paper, we give
an informal description of algebraic complexity theory
(a more detailed presentation of these notions is given
in Section 2).

Trilinear forms and the asymptotic sum inequal-
ity. The matrix multiplication of an m × n matrix by
an n × p matrix can be represented by the following
trilinear form, denoted as 〈m,n, p〉:

〈m,n, p〉 =
m∑
r=1

n∑
s=1

p∑
t=1

xrsystzrt,

where xrs, yst and zrt are formal variables. This form
can be interpreted as follows: the (r, t)-th entry of the
product of an m×n matrix M by an n×p matrix M ′ can
be obtained by setting xij = Mij for all (i, j) ∈ [m]× [n]
and yij = M ′ij for all (i, j) ∈ [n] × [p], setting zrt = 1
and setting all the other z-variables to zero. One can
then think of the z-variables as formal variables used to
record the entries of the matrix product.

More generally, a trilinear form t is represented as

t =
∑
u∈A

∑
v∈B

∑
w∈C

tuvwxuyvzw.

where A,B and C are three sets, xu, yv and zw are
formal variables and the tuvw’s are coefficients in a field
F. The rank of the trilinear form t, denoted R(t),
represents the number of multiplications needed for the
computation. The border rank of t, denoted R(t), is
a generalization of the concept of rank, which is also
related to the complexity of computing the tensor.

A sum
∑
i ti of trilinear forms is a direct sum if

the ti’s do not share variables. Informally, Schönhage’s
asymptotic sum inequality [23] for rectangular matrix
multiplication states that, if the form t can be converted
into a direct sum of c trilinear forms, each form being
isomorphic to 〈m,m,mk〉, then

c ·mω(k) ≤ R(t).

This implies that to obtain good upper bounds on
the exponent of rectangular matrix multiplication, it is

enough to find a tensor t of low border rank that can
be converted into many independent (i.e., not sharing
any variables) products of large enough rectangular
matrices.

Overview of the analysis of the second power. We
now give a brief overview of the analysis of the second
power of the Coppersmith-Winograd tensor given in
[17] to derive the upper bounds on ω(k) of Table 2.
The Coppersmith-Winograd tensor is a trilinear form Fq
introduced in [10]. Here q is a parameter (concretely, q
is an integer between 2 and 10). Its second power Fq⊗Fq
can actually be written as a sum of fifteen terms Tuvw:

Fq ⊗ Fq =
∑

0≤u,v,w≤4
u+v+w=4

Tuvw.

In order to apply Schönhage’s asymptotic sum inequal-
ity, this sum must first be converted into a direct
sum. This is done using a powerful general tech-
nique known as the laser method, first introduced by
Strassen [26] and then successively generalized and re-
fined [10, 11, 13, 16, 17, 18, 24, 28]. The first step is to
take the N -th tensor product of the basic construction,
where N is a large integer, and then zero variables so
that the remaining terms do not share variables. Since
we want each remaining term to be isomorphic to a
rectangular matrix product in order to obtain an up-
per bound on ω(k) via Schönhage’s asymptotic sum in-
equality, the choice of zeroed variables has to be done
carefully. The laser method allows us, for any choice
of the fifteen parameters auvw ∈ [0, 1] satisfying specific
constraints, to convert the N -th tensor product of the
basic construction into a direct sum of many terms (the
number of these terms depending on the values of the
auvw’s), each isomorphic to

(1.1)
⊗

0≤u,v,w≤4
u+v+w=4

T⊗auvwN
uvw .

The next step is to analyze each term (1.1) and
show that it corresponds to a direct sum of matrix
products of the form 〈m,m,mk〉 (the number of terms
in the direct sum and the value of m will depend
on the values of the auvw’s and q). Some of the
Tuvw’s (more precisely, all the Tuvw’s except T112, T121
and T211) can be analyzed in a straightforward way,
since they correspond to matrix products. The main
technical contribution of the approach from [17] was
to show that each of the remaining three terms can
be converted into a large number of objects called “C -
tensors” in Strassen’s terminology [27]. This conversion
is done again via the laser method, which introduces
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additional parameters. Finally, Ref. [17] explained how
to convert these C -tensors into a direct sum of matrix
multiplication tensors. Combining the analysis of these
fifteen terms shows that (1.1) corresponds to a direct
sum of matrix products of the form 〈m,m,mk〉, as
wanted. Schönhage’s asymptotic sum inequality then
gives the upper bound on ω(k) presented in Table 2 by
numerically optimizing the choice of the parameters (the
choice of q, the auvw’s and the additional parameters
arising in the second extraction).

Overview of our analysis of the fourth power.
The fourth power of the Coppersmith-Winograd tensor
can be written as a sum of 45 terms Tuvw:

F⊗4q =
∑

0≤u,v,w≤8
u+v+w=8

Tuvw.

For conciseness, this tensor will be denoted F through
the paper. Similarly to the analysis of the second power,
the laser method allows us, for any choice of parameters
auvw ∈ [0, 1] satisfying specific constraints, to convert
the N -th tensor product of the basic construction into
a direct sum of many terms, each isomorphic to

(1.2)
⊗

0≤u,v,w≤8
u+v+w=8

T⊗auvwN
uvw .

We call this process the first extraction, which is ex-
plained in detail in Section 3. Note that while this ex-
traction is more complicated than for the second power
since the number of variables is larger and deriving the
constraints that the parameters should satisfy is more
complex, conceptually the analysis is fairly standard.

The main technical contribution of this work is a
methodology to analyze each term (1.2). A natural
strategy would be to mimic the analysis done in [17]
for the second power and analyze each component Tuvw
individually. While this leads to some improvement over
the second power when k is close to 1 (in particular,
this leads to the same upper bound ω < 2.372927 as in
prior works analyzing the fourth power in the context
of square matrix multiplication [24, 28]), this strategy
does not give any improvement for smaller values of k
(in particular, no improved lower bound on the dual
exponent of matrix multiplication α). Our strategy,
instead, is to analyze all the terms Tuvw together via
the laser method. As in the term-by-term analysis done
for the second power in [17], this introduces a set of new
parameters for each term and a set of constraints that
these parameters should satisfy. A difference is that now
some of the constraints are global: they can involve the
parameters of all the 45 terms. We call this process the

second extraction, which is explained in detail in Section
4. Note that this methodology appears to be more
powerful than the term-by-term conversion to C -tensors
done in [17]: First, as already mentioned, the latter
approach does not seem to lead to any improvement on
α for the fourth power. Second, our new methodology,
when applied to the analysis of the second power in
replacement of the conversion into C -tensors done in
[17], already leads to upper bounds on ω(k) slightly
better than those found in [17] for some values of k
(more precisely, we observed such improvements for
values in the range k ∈ [0.37, 0.46]).

The second extraction outlined in the previous
paragraph actually does not completely analyze (1.2):
it simply decomposes each term Tuvw into a direct sum
of products of the fifteen terms arising in the analysis
of the second power. To complete the analysis, we
recursively apply the same strategy as for the second
extraction and analyse the contribution of all these
fifteen terms together, again using the laser method
(which introduce two additional parameters). We call
this process the third extraction, which is explained in
detail in Section 5.

Finally, combining our three extractions, we con-
clude that the tensor F⊗N can be converted into a di-
rect sum of c trilinear forms, each form being isomorphic
to 〈m,m,mk〉, for some values c and m depending on
all the parameters introduced. Applying Schönhage’s
asymptotic sum inequality then gives an inequality in-
volving ω(k) and all these parameters (the formal state-
ment is Theorem 6.1 in Section 6). Optimizing numer-
ically the choice of parameters, under the constraints
derived on those parameters, gives the upper bounds of
Table 3 and the lower bound on α of Theorem 1.1.

2 Preliminaries

We present various known results and tools related
to matrix multiplication. Two good references for an
extensive treatment of this topic are [7] and [5].

2.1 General notations and definitions. In this
paper we will use, for any positive integer n, the
notation [[1, n]] to represent the set {1, . . . , n}. Given
a finite set X we denote P(X) the set of all function
a : X →]0, 1[∩Q such that

∑
x∈X a(x) = 1. Note

that the functions in P(X) are simply probability
distributions on X where the probabilities are rational
and strictly between 0 and 1.

We define the notion of type. A type can be seen as
a frequency vector.

Definition 2.1. Given N ∈ N, a finite set U , two
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mappings u : [[1, N ]] −→ U and t ∈ P(U), we say that
u is of type t if |u−1(x)| = t(x)N holds for all x ∈ U .

2.2 Tensors, matrix multiplication and the
asymptotic sum inequality. Let F be a field, let
u,v,w be three positive integers, and let U = Fu, V = Fv
and W = Fw. A tensor t of format (u, v, w) is an ele-
ment of U ⊗ V ⊗W = Fu×v×w, where ⊗ denotes the
tensor product. Fix a base (xi) of U , a base (yj) of
V and a base (zk) of W . We write xiyjzk as a short
cut for xi ⊗ yj ⊗ zk. The family (xiyjzk) is a base of
U ⊗ V ⊗W , and thus t can be written in this base as
t =

∑
ijk

tijkxiyjzk, where the tijk are coefficients in F.

For a tensor written under this form, we call the (xi)
the x variables, and similarly we call the (yj) and the
(zk) the y variables and the z variables.

Let t ∈ U ⊗ V ⊗ W and t′ ∈ U ′ ⊗ V ′ ⊗ W ′ be
two tensors. The direct sum t ⊕ t′, is a tensor in
(U ⊕ U ′) ⊗ (V ⊕ V ′) ⊗ (W ⊕W ′). The tensor product
t ⊗ t′ is a tensor in (U ⊗ U ′) ⊗ (V ⊗ V ′) ⊗ (W ⊗W ′).
For any positive c, we will denote the tensor t⊕ · · · ⊕ t
(with c occurrences of t) by c · t and the tensor t⊗· · ·⊗ t
(with c occurrences of t) by t⊗c.

The tensor representing the multiplication of an
m×n matrix by an n×p matrix over the field F, denoted
〈m,n, p〉, is the tensor of format (mn, np,mp) defined as

〈m,n, p〉 =
∑
ijk

tijkxiyjzk

where i spans [[1,m]] × [[1, n]], j spans [[1, n]] × [[1, p]], k
spans [[1,m]]× [[1, p]] and

tijk =

 1 if i = (r, s), j = (s, t), k = (r, t) for some
integers (r, s, t) ∈ [[1,m]]× [[1, n]]× [[1, p]]

0 otherwise.

We also consider the tensor of format (n, n, n) which
represents n independent scalar products. It is denoted

by 〈n〉 and is defined as 〈n〉 =
n∑
l=1

xlylzl.

The following definitions allow us to relate the prop-
erties of different tensors. Let λ denote an indetermi-
nate, and F[λ] the space of polynomials in λ with coef-
ficients in F.

Definition 2.2. Let t ∈ Fu×v×w and t′ ∈ F[λ]u
′×v′×w′

be two tensors. We say that t′ is a restriction of t, and
denote t′ ≤ t, if there are linear maps α : Fu −→ F[λ]u

′
,

β : Fv −→ F[λ]v
′
, γ : Fw −→ F[λ]w

′
such that

(α ⊗ β ⊗ γ)(t) = t′ where (α ⊗ β ⊗ γ) is the linear
map Fu ⊗ Fv ⊗ Fw −→ F[λ]u

′ ⊗ F[λ]v
′ ⊗ F[λ]w

′
obtained

by taking the tensor product of α, β, γ.

The intuition behind this notion is that the restric-
tion of a tensor is easier to compute than the original
tensor, in the sense that an algorithm computing a ten-
sor t can be converted into an algorithm computing a
tensor t′ ≤ t with the same complexity.

Definition 2.3. Let t ∈ F[λ]u×v×w and t′ ∈ Fu×v×w
be two tensors. We say that t′ is an approximation of
t, if there exists a tensor t′′ ∈ F[λ]u×v×w and some
s ∈ N such that t = λst′ + λs+1t′′. We may also write :
t = λst′ +O(λs+1).

This is analogous to the notion of approximate
computation.

Definition 2.4. Let t ∈ Fu×v×w and t′ ∈ Fu′×v′×w′
be

two tensors. We say that t′ is a degeneration of t, and
denote t′ � t, if t′ is an approximation of a restriction
of t.

Note that by definition, t′ ≤ t =⇒ t′ � t. The
notion of degeneration can be seen as an approximate
conversion. It has the following property.

Proposition 2.1. (Proposition 15.25 in [7]) Let
t1, t

′
1, t2 and t′2 be four tensors. Suppose that t′1 � t1

and t′2 � t2. Then t′1 ⊕ t′2 � t1 ⊕ t2 and t′1 ⊗ t′2 � t1 ⊗ t2.

Definition 2.5. Let t be a tensor. The border rank of
t is R(t) = min{r ∈ N | t� 〈r〉}.

The notion of border rank enables us to formally de-
fine the exponent of rectangular matrix multiplication,
as follows. For any k ≥ 0,

ω(k) = inf{β |R(〈n, bnkc, n〉) = O(nβ)}.

The exponent of square matrix multiplication is
ω = ω(1).

Similarly to almost all recent works on matrix
multiplications, our main tool for proving lower bounds
on ω(k) will be Schönhage’s asymptotic sum inequality
[23] (see [13, 16, 17, 19] for the version of the inequality
given below).

Theorem 2.1. (Asymptotic sum inequality) Let
k, m and c be three positive integers. Let t be a tensor
such that c · 〈m,m,mk〉� t. Then

c ·mω(k) ≤ R(t).

2.3 The fourth power of Coppersmith-
Winograd tensor. For any positive integer q,
the Coppersmith-Winograd tensor [10] is the tensor of
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format (q + 2, q + 2, q + 2) defined as

Fq =

q∑
i=1

(x0yizi + xiy0zi + xiyiz0)+

x0y0zq+1 + x0yq+1z0 + xq+1y0z0.

Coppersmith and Winograd showed that R(Fq) ≤ q+2.
They also considered the square of this tensor. For

any t ∈ N, define the set

St = {(i, j, k) ∈ N3 | i+ j + k = t}.

Define the tensors xii′yjj′zkk′ = xiyjzk ⊗ xi′yj′zk′ . By
regrouping terms, we can write

(Fq)
⊗2 =

∑
(i,j,k)∈S4

Tijk

where

T004 = x0,0y0,0zq+1,q+1

T013 =

q∑
i=1

x0,0yi,0zi,q+1 +

q∑
k=1

x0,0y0,kzq+1,k

T022 = x0,0yq+1,0z0,q+1 + x0,0y0,q+1zq+1,0 +
q∑

i,k=1

x0,0yi,kzi,k

T112 =

q∑
i=1

xi,0yi,0z0,q+1 +

q∑
k=1

x0,ky0,kzq+1,0 +

q∑
i,k=1

xi,0y0,kzi,k +

q∑
i,k=1

x0,kyi,0zi,k

and the other eleven terms are obtained by per-
muting the indexes of the x variables, the y vari-
ables and z variables in the above expressions (e.g.,
T040 = x0,0yq+1,q+1z0,0 and T400 = xq+1,q+1y0,0z0,0).
Note that R(F⊗2q ) ≤ (q + 2)2 from the submultiplica-
tivity of the border rank.

Let us now consider the fourth power of the
Coppersmith-Winograd tensor Fq (already studied, in
the context of square matrix multiplication, in Refs. [11,
24, 18, 28]). For any (i, j, k) ∈ S8 define the set

Sijk = {((u, v, w), (u′, v′, w′)) ∈ S4 × S4 |
u+ u′ = i, v + v′ = j, w + w′ = k}

and the tensor

Tijk =
∑

((u,v,w),(u′,v′,w′))∈Sijk

Tuvw ⊗ Tu′v′w′ .

By regrouping terms, the fourth power of Fq, which
hereafter we simply denote F (the value of q will be

implicit until the very end of the paper), can be written
as

F = (Fq)
⊗4

= (Fq)
⊗2 ⊗ (Fq)

⊗2

=

 ∑
(u,v,w)∈S4

Tuvw

⊗
 ∑

(u′,v′,w′)∈S4

Tu′v′w′


=

∑
((u,v,w),(u′,v′,w′))∈S2

4

Tuvw ⊗ Tu′v′w′

=
∑

(i,j,k)∈S8

∑
((u,v,w),(u′,v′,w′))∈Sijk

Tuvw ⊗ Tu′v′w′

=
∑

(i,j,k)∈S8

Tijk.

Note that R(F ) ≤ (q + 2)4, again from the submulti-
plicativity of the border rank.

When later working with the terms Tijk, we will
sometimes consider the equivalent decomposition

Tijk =
∑

(u,v,w)∈Sijk

Vijk[uvw]

where

Sijk = {(u, v, w) ∈ S4,∃ (u′, v′, w′) ∈ S4 |
u+ u′ = i, v + v′ = j, w + w′ = k}

and

∀ (u, v, w) ∈ Sijk, Vijk[uvw] = Tuvw ⊗ Ti−u,j−v,k−w.

For any integer N ∈ N and
triple (I, J,K) with I = (I(1), . . . , I(N)),
J = (J(1), . . . , J(N)), K = (K(1), . . . ,K(N)) such
that (I(1), J(1),K(1)), . . . , (I(N), J(N),K(N)) ∈ S8,
define

TIJK = TI(1)J(1)K(1) ⊗ · · · ⊗ TI(N)J(N)K(N).

Notice that we define TIJK only for triple (I, J,K) from
the set

{(I, J,K),∀ l ∈ [[1, N ]], (I(l), J(l),K(l)) ∈ S8} ∼= SN8 .

We can then write:

F⊗N =
∑

(I,J,K)∈SN
8

TIJK .

Finally, for any triple (a, b, c) ∈ S8 and any triple

(I, J,K) = (I(l), J(l),K(l))l∈[[1,N ]] ∈ S
N

abc, we define

Vabc[IJK] =

N⊗
l=1

Vabc[I(l)J(l)K(l)].
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2.4 Extraction from a tensor. In this subsection
we explain our main tool to realize an extraction from a
sum of tensors. An extraction consists in assigning some
variables to zero in a tensor (thus eliminating all their
contributions to the sum). If a tensor T ′ is extracted
from T , then T ′ ≤ T trivially holds. Our primary goal
is to guarantee that the resulting tensor T ′ is a direct
sum of isomorphic tensors, so that the asymptotic sum
inequality can be used.

All recent progresses on square or rectangular ma-
trix multiplication have been obtained by perform-
ing extractions based on the so-called laser method
[10, 11, 13, 16, 17, 18, 24, 26, 28]. Le Gall [17] intro-
duced the following convenient framework to interpret
such reductions in the rectangular case. In this frame-
work, a sum of tensors corresponds to a graph whose
vertices are the tensors in the sum. There is an edge
between two vertices in the graph if and only if the
two corresponding terms in the sum of tensors share a
variable. Let G denote this graph, and U denote its
set of vertices. Zeroing a term in the sum corresponds
to removing one vertex from the graph. As mentioned
above, however, terms can be zeroed only by zeroing
the variables it contains. This means that such a zero-
ing operation may actually remove more than one ver-
tex from the graph. Extracting a direct sum from the
original tensor is then equivalent to removing vertices
from the graph by such zeroing operations and reach-
ing an edgeless graph. When using this methodology,
we will like to additionally guarantee that the vertices
remaining in the final graph are from a specified subset
U∗ ⊆ U . Concretely, the set U∗ will be the set of ver-
tices of terms matching a certain type, which will ensure
that all the tensors remaining after the extraction are
of this type. In our extractions we will use the following
theorem from [17], which is tailored for this goal and
was already used for the analysis of the second power of
the Coppersmith-Winograd tensor.

Theorem 2.2. (Theorem 4.2 in [17]) Let τ be a
fixed positive integer. Let N be a large integer and define
the set

Λ = {(I, J,K) ∈ [τ ]N × [τ ]N × [τ ]N | I` + J` +K` = τ

for all ` ∈ {1, . . . , N}}.

Define the following three coordinate functions
f1, f2, f3 : [τ ]N × [τ ]N × [τ ]N → [τ ]N by

f1((I, J,K)) = I

f2((I, J,K)) = J

f3((I, J,K)) = K

Let U be a subset of Λ such that there exist integers
N1,N2 and N3 for which the following property holds:

for any I ∈ [τ ]N ,

|{u ∈ U | f1(u) = I}| ∈ {0,N1}
|{u ∈ U | f2(u) = I}| ∈ {0,N2}
|{u ∈ U | f3(u) = I}| ∈ {0,N3}.

Let T1 = |f1(U)|, T2 = |f2(U)| and T3 = |f3(U)|. Let G
be the (simple and undirected) graph with vertex set U
in which two distinct vertices u and v are connected if
and only if there exists one index i ∈ {1, 2, 3} such that
fi(u) = fi(v).

Assume there exists a set U∗ ⊆ U such that

• |fi(U∗)| = Ti for each i ∈ {1, 2, 3};

• there exist integers N ∗1 ,N ∗2 and N ∗3 such
that |{u ∈ U | fi(u) = I}| = Ni if and only if
|{u ∈ U∗ | fi(u) = I}| = N ∗i for each I ∈ [τ ]N and
each i ∈ {1, 2, 3}.

Define a removal operation as removing all the vertices
u (if any) such that fi(u) = I, for a fixed sequence
I ∈ [τ ]N and a fixed position i ∈ {1, 2, 3} Then, for
any constant ε > 0, the graph G can be converted, with
only removal operations, into an edgeless graph with

Ω

(
T1N ∗1

(N1 +N2 +N3)1+ε

)
vertices, all of them being in U∗.

3 First extraction

In this section we describe our first extraction.
Let us consider any function a ∈ P(S8). For

any (i, j, k) ∈ S8 we will often write a(ijk) instead
of a(i, j, k). Given a, we define the following three
mappings:

A : [[0, 8]] −→ ]0, 1[ i 7−→ A(i) =
∑

j,k∈N|(i,j,k)∈S8

a(ijk),

B : [[0, 8]] −→ ]0, 1[ j 7−→ B(j) =
∑

i,k∈N|(i,j,k)∈S8

a(ijk),

C : [[0, 8]] −→ ]0, 1[ k 7−→ C(k) =
∑

i,j∈N|(i,j,k)∈S8

a(ijk).

A,B,C are the projections of a on each of the three
coordinates. We thus have∑

i∈[[0,8]]

A(i) =
∑

j∈[[0,8]]

B(j) =
∑

k∈[[0,8]]

C(k) = 1.

We are going to realize a first extraction
from the tensor F⊗N , where N is such that
∀ (i, j, k) ∈ S8, a(ijk)N ∈ N (such an N always exists
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since the values of a are rational). The goal is to zero
variables so that, from the sum

F⊗N =
∑

(I,J,K)∈SN
8

TIJK ,

we are left only with tensors TIJK where (I, J,K) is of
type a, i.e, tensors isomorphic to⊗

(i,j,k)∈S8

T
a(ijk)N
ijk .

We now explain how to achieve this goal.

The extraction. First notice that for any
(I, J,K), (I ′, J ′,K ′) ∈ SN8 such that I 6= I ′, the x
variables in TIJK and in TI′J′K′ are disjoint. We set to
zero all the x variables except the ones which appear
in a TIJK where I is of type A, that is to say we set to
zero all variables which appear in a TIJK with I not of
type A. We are thus left with only the tensors TIJK
with I of type A.

We apply the same process for the y and z variables
so that only remain the tensors TIJK with I of type A,
J of type B and K of type C. Let [a] denote the set of
mappings a : S8 −→ ]0, 1[ which have the same pro-
jections as a and satisfy ∀ (i, j, k) ∈ S8, a(ijk)N ∈ N.
The tensors which remain are exactly the tensors TIJK
with (I, J,K) of type a ∈ [a].

The number of sequences I ∈ [[0, 8]]N of type A is

TX =

(
N

(A(i)N)i∈[[0,8]]

)
as choosing a sequence I of type A is equivalent to
choose the location of the A(i) elements i for i ∈ [[0, 8]].
Using the Stirling formula, we get, with the A(i) fixed
and N −→∞,

TX = Θ

 1

N4

 1
8∏
i=0

A(i)A(i)


N .

Similarly, we define the number of sequences J ∈ [[0, 8]]N

of type B as TY and the number of sequences
K ∈ [[0, 8]]N of type C as TZ .

For any fixed sequence I of type A, the number of
remaining forms TIJK of type a is

N ∗X =
8∏
i=0

(
A(i)N

(a(ijk)N)j,k∈N|(i,j,k)∈S8

)
,

while the total number of remaining forms TIJK is

NX =
∑
a∈[a]

8∏
i=0

(
A(i)N

(a(ijk)N)j,k∈N|(i,j,k)∈S8

)
.

Define, the function g which associates to any mapping
x : S8 −→ ]0, 1[ (i, j, k) 7−→ x(ijk) the value

g(x) =

( ∏
(i,j,k)∈S8

x(ijk)x(ijk)

)−1
. Using Stirling’s

formula, and the fact that |S8| =
9∑
l=1

l = 45, we get

that

N ∗X = Θ


[
g(a)

8∏
i=0

A(i)A(i)

]N
N18

 ,

NX = Θ

∑
a∈[a]

[
g(a)

8∏
i=0

A(i)A(i)

]N
N18

 .

Similarly, for any sequence J of type B, the number of
remaining forms TIJK of type a and the total number
of remaining forms TIJK are

N ∗Y = Θ


[
g(a)

8∏
j=0

B(j)B(j)

]N
N18

 ,

NY = Θ


∑
a∈[a]

[
g(a)

8∏
j=0

B(j)B(j)

]N
N18

 ,

and for any sequence K of type C, the number of
remaining forms TIJK of type a and the total number
of remaining forms TIJK are

N ∗Z = Θ


[
g(a)

8∏
k=0

C(k)C(k)

]N
N18

 ,

NZ = Θ

∑
a∈[a]

[
g(a)

8∏
k=0

C(k)C(k)

]N
N18

 .

Using the framework presented in Subsection 2.4,
we get by Theorem 2.2 that for any ε > 0 we can further
extract from the remaining TIJK a direct sum of

Ω

(
TXN ∗X

(NX +NY +NZ)1+ε

)
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tensors TIJK , all of which are of type a. We want the
number of tensors is this direct sum to be high. For this
to happen, we now formulate some conditions on a.

Conditions on a. We first want to find a ∈ P(S8)
such that g(a) = max

a∈[a]
g(a). Let us see g as a function

from the set ]0, 1[45 to the set of positive real numbers.
We want to find the maximum of g on the domain
[a] ⊂]0, 1[45. For this, we will find the maximum of g on

the domain [̃a], the set of mappings S8 −→ ]0, 1[ which

have the same projections as a. Note that [̃a] ⊇ [a],

and that [̃a] is a convex subset of ]0, 1[45. Consider

the function ln g : [̃a] −→ R. For any a ∈ [̃a],
ln g(a) =

∑
(i,j,k)∈S8

−a(ijk) ln a(ijk). Since ln g is a

concave function on a convex domain, any critical point
of ln g is a global maximum of ln g, and thus of g. We
express the conditions satisfied by the critical points
below.

We first observe that ln g can actually be written
as a (concave) function of only 21 variables, namely
a(215), a(224), a(233), a(242), a(251), a(260), a(314),
a(323), a(332), a(341), a(350), a(413), a(422), a(431),
a(440), a(512), a(521), a(530), a(611), a(620), a(710).

This is because ln g is defined on [̃a], and the elements

of [̃a] have, by definition, the same projections as a,

and thus for any a ∈ [̃a] the a(ijk) satisfy the following
system of linear equations:

∀ i ∈ [[0, 8]], A(i) =
∑

j,k∈N|(i,j,k)∈S8

a(ijk),

∀ j ∈ [[0, 8]], B(j) =
∑

i,k∈N|(i,j,k)∈S8

a(ijk),

∀ k ∈ [[0, 8]], C(k) =
∑

i,j∈N|(i,j,k)∈S8

a(ijk).

Resolving of the (homogeneous) linear system3 reduces
the number of variables to 21, as claimed.

From now we will assume that a satisfies the sym-
metry condition

(C1) ∀ (i, j, k) ∈ S8, a(ijk) = a(ikj).

Computing each one of the 21 partial differential equa-

tions
∂ ln g

∂a(ijk)
= 0 leads, after simplification and by con-

3A Maple file deriving the symbolic solution of this system is
available at [36].

dition (C1), to a system (C2) of 10 non linear equations:

0 = − ln(a(017)) + ln(a(026)) + ln(a(107))− ln(a(125)) −
ln(a(206)) + ln(a(215)),

0 = − ln(a(017)) + ln(a(026)) + ln(a(107))− ln(a(116)) −
ln(a(602)) + ln(a(611)),

0 = − ln(a(017)) + ln(a(035)) + ln(a(107))− ln(a(134)) −
ln(a(305)) + ln(a(314)),

0 = − ln(a(017)) + ln(a(044)) + ln(a(107))− ln(a(134)) −
ln(a(404)) + ln(a(413)),

0 = − ln(a(017)) + ln(a(035)) + ln(a(107))− ln(a(125)) −
ln(a(503)) + ln(a(512)),

0 = − ln(a(017)) + ln(a(035)) + ln(a(107)) + ln(a(116)) −
ln(a(125))− ln(a(134))− ln(a(206)) + ln(a(224)),

0 = − ln(a(017)) + ln(a(044)) + ln(a(107)) + ln(a(116)) −
ln(a(134))− ln(a(134))− ln(a(206)) + ln(a(233)),

0 = − ln(a(017))− ln(a(026)) + ln(a(035)) + ln(a(044)) +

ln(a(107)) + ln(a(116))− ln(a(134))− ln(a(134)) −
ln(a(305)) + ln(a(323)),

0 = − ln(a(017))− ln(a(026)) + ln(a(044)) + ln(a(035)) +

ln(a(107)) + ln(a(116))− ln(a(134))− ln(a(134)) −
ln(a(305)) + ln(a(323)),

0 = − ln(a(017))− ln(a(026)) + ln(a(044)) + ln(a(035)) +

ln(a(107)) + ln(a(116))− ln(a(134))− ln(a(125)) −
ln(a(404)) + ln(a(422)).

Note that, as the value of any a ∈ [a] is
fixed from the values of only 21 variables, and as
∀ (i, j, k) ∈ S8, a(ijk)N ∈ [[1, N ]], we have |[a]| ≤ N21.
For any a satisfying these 10 equations, we have
g(a) = max

a∈[a]
g(a) and thus, NX = O(N21N ∗X),

NY = O(N21N ∗Y ), NZ = O(N21N ∗Z).

Final statement. Let us also impose the condition

(C3)
8∏
i=0

A(i)A(i) ≥
8∏
j=0

B(j)B(j).

By the symmetry condition (C1), this im-

plies that
8∏
i=0

A(i)A(i) ≥
8∏
k=0

C(k)C(k). We

get N ∗Y = N ∗Z = O(N ∗X), and thus we obtain
(NX +NY +NZ) = O(N21N ∗X) and

TXN ∗X
(NX +NY +NZ)1+ε

= Ω

(
TX

(N21(1+ε)(N ∗X)ε

)
.
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As by definition N ∗X ≤ |S8|N = 45N , this is equal to

r1 = Ω

 1

N25+21ε45Nε

 1
8∏
i=0

A(i)A(i)


N .

We obtain the following final result.

Theorem 3.1. Let q be any positive integer. Let a
be any function from P(S8) satisfying the constraints
(C1), (C2) and (C3). Then for any ε > 0, the trilinear
form F⊗N admits a restriction which is a direct sum
of r1 trilinear forms, each of which is isomorphic to⊗
(i,j,k)∈S8

T
⊗a(ijk)N
ijk .

4 Second extraction

As we will see later in details in Section 6, the ten-
sors Tijk for (i, j, k) ∈ S8 with one or more of their
indices i, j, k equal to 0 are actually matrix prod-
ucts tensors. No further work is required for them.
In contrast, the tensors Tijk for (i, j, k) ∈ S8 where
S8 = {(i, j, k) ∈ S8 | i > 0, j > 0, k > 0} do not corre-
spond to matrix products.

We are now going to realize an extraction on
all the tensors Tijk, (i, j, k) ∈ S8. We first study
the properties of the Tijk, (i, j, k) ∈ S8. In Sub-
section 4.1, we consider the particular case of the
tensors T233, T323 and T332. In Subsection 4.2,
we consider the remaining tensors, i.e., the tensors
Tijk for (i, j, k) ∈ S′8 = S8 \ {(2, 3, 3), (3, 2, 3), (3, 3, 2)},
which are actually easier to analyze. Then, in Sub-
section 4.3, we explain the limitations of independent
extractions and introduce our method to realize a joint
extraction.

4.1 The tensors T233, T323, T332. The extractions
from the tensors T233, T323, T332 can be realized sim-
ilarly to the extraction from the tensor F that we re-
alized in Section 3. As the situation is similar for the
three tensors, we only detail the extraction from the
tensor T233.

We start from the decomposition

T233 =
∑

(u,v,w)∈S233

V233[uvw].

By definition of the (Tijk)(i,j,k)∈S4
, for any

(i, j, k), (i′, j′, k′) ∈ S233 such that i 6= i′, the x
variables in Tijk and in Ti′j′k′ are disjoints, and
thus the x variables in V233[ijk] and in V233[i′j′k′]
are disjoint. We can thus realize an extraction

from T
a(233)N
233 just as in Section 3. We consider

a mapping a233 ∈ P(S233), with projections A233,
B233, C233. As the (a233(ijk)a(233)) are rational
numbers, and as N will later go to infinity, we can as-
sume that ∀ (i, j, k) ∈ S233, a233(ijk)a(233)N ∈ N.
We impose the symmetry condition
∀ (i, j, k) ∈ S233, a233(ijk) = a233(ikj), and thus
B233 = C233. We also impose the symmetry condition

∀ (i, j, k) ∈ S233, a233(ijk) = a233(2− i, 3− j, 3− k),

as V233[ijk] = V233[2 − i, 3 − j, 3 − k]. By realizing
an extraction successively on the x variables, the
y variables and the z variables, we are left with

the tensors V233[IJK] where (I, J,K) ∈ Sa(233)N233

is of type a233 ∈ [a233]. Here [a233] denotes the
set of mappings a233 : S233 −→ ]0, 1[ which
have the same projections as a233 and satisfy
∀ (i, j, k) ∈ S233, a233(ijk)a(233)N ∈ N.

The number of sequences I ∈ [[0, 2]]a(233)N of type
A233 is

T233,X =

(
a(233)N

(A233(i)a(233)N)i∈[[0,2]]

)

= Θ

 1

N

 1
2∏
i=0

A233(i)A233(i)


a(233)N

 .

Define the function g233 which associates to any
mapping x : S233 −→ ]0, 1[ (i, j, k) 7−→ x(ijk) the
value

g233(x) =

 ∏
(i,j,k)∈S233

x(ijk)x(ijk)

−1 .
For any fixed sequence I of type A233, the number of
remaining forms V233[IJK] with (I, J,K) of type a233
is

N ∗233,X =
2∏
i=0

(
A233(i)a(233)N

(a233(ijk)a(233)N)j,k∈N|(i,j,k)∈S233

)

= Θ


[
g233(a233)

2∏
i=0

A233(i)A233(i)

]a(233)N
(a(233)N)7/2

 ,

while the total number of remaining forms V233[IJK] is

N233,X =
∑

a233∈[a233]

2∏
i=0

(
A233(i)N

(a233(ijk)a(233)N)j,k∈N|(i,j,k)∈S233

)

= Θ

 ∑
a233∈[a233]

[
g233(a233)

2∏
i=0

A233(i)A233(i)

]a(233)N
(a(233)N)7/2

 .

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1039

D
ow

nl
oa

de
d 

04
/1

1/
20

 to
 7

3.
69

.2
54

.2
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Similarly, for any fixed sequence J of type B233, the
number of remaining forms V233[IJK] with (I, J,K) of
type a233 is

N ∗233,Y = Θ


[
g233(a233)

3∏
j=0

B233(j)B233(j)

]a(233)N
(a(233)N)3

 ,

the total number of remaining forms V233[IJK] is

N233,Y = Θ


∑

a233∈[a233]

[
g233(a233)

3∏
j=0

B233(j)B233(j)

]a(233)N
(a(233)N)3

 ,

and for any fixed sequence K of type C233, the number
of remaining forms V233[IJK] with (I, J,K) of type
a233 is N233,Z = N233,Y and the total number of
remaining forms V233[IJK] is N ∗233,Z = N ∗233,Y .

By studying the function g233 in a similar way
as we studied the function g in Section 3, we get
that g(a233) = max

a233∈[a233]
g(a233) for a233 satisfying the

constraint

2 ln(a233(211)) + ln(a233(130))− ln(a233(202)) −
ln(a233(220))− ln(a233(112)) = 0.

Calculations show that a233 ∈ [a233] can be writ-
ten as a function of a233(130) and a233(103)
only, and as a233(130), a233(103) ∈ [[1, a(233)N ]],
we have that |[a233]| ≤ (a(233)N)2 and thus
we obtain N233,X = O((a(233)N)2N ∗233,X),

N233,Y = O((a(233)N)2N ∗233,Y ) and

N233,Z = O((a(233)N)2N ∗233,Z).

The tensors T323 and T332 are analysed similarly.
Imposing the constraints

2 ln(a323(121)) + ln(a323(310))− ln(a323(022)) −
ln(a323(220))− ln(a323(112)) = 0

2 ln(a332(112)) + ln(a332(031))− ln(a332(202)) −
ln(a332(022))− ln(a332(211)) = 0

implies that N323,X = O(N2N ∗323,X) and

N332,X = O(N2N ∗332,X).

To summarize, when analyzing T233, T323 and T332
we need to impose the following system (D2) of con-
straints (in addition to other constraints discussed

later):

2 ln(a233(211)) + ln(a233(130))− ln(a233(202)) −
ln(a233(220))− ln(a233(112)) = 0

2 ln(a323(121)) + ln(a323(310))− ln(a323(022)) −
ln(a323(220))− ln(a323(112)) = 0

2 ln(a332(112)) + ln(a332(031))− ln(a332(202)) −
ln(a332(022))− ln(a332(211)) = 0.

4.2 The tensors of S′
8. We adopt the same no-

tations as in the previous subsection. We consider
as before mappings aijk ∈ P(Sijk) for (i, j, k) ∈ S′8,
with projections Aijk, Bijk and Cijk, and assume as
before ∀ (u, v, w) ∈ Sijk, aijk(uvw)a(ijk)N ∈ N. For
(i, j, k) ∈ S′8, the number of sequences I ∈ [[0, i]]a(ijk)N

of type Aijk is

Tijk,X =

(
a(ijk)N

(Aijk(u)a(ijk)N)u∈[[0,i]]

)

= Θ

 1

N
i
2

 1
i∏

u=0
Aijk(u)Aijk(u)


a(ijk)N

 .

The extractions on the elements of S′8 are simpler
in the sense that we have ∀ (i, j, k) ∈ S′8, [aijk] = {aijk},
i.e., fixing the projections Aijk, Bijk and Cijk fixes all
the values of the mapping aijk. We thus have

Nijk,X = N ∗ijk,X , Nijk,Y = N ∗ijk,Y , Nijk,Z = N ∗ijk,Z ,

with

Nijk,X =

i∏
x=0

(
Aijk(x)a(ijk)N

(aijk(xyz)a(ijk)N)y,z∈N|(x,y,z)∈Sijk

)

= Θ


[
gijk(aijk)

i∏
x=0

Aijk(x)Aijk(x)

]a(ijk)N

(a(ijk)N)

|Sijk| − (i+ 1)

2

 ,

Nijk,Y =

j∏
y=0

(
Aijk(y)a(ijk)N

(aijk(xyz)a(ijk)N)x,z∈N|(x,y,z)∈Sijk

)

= Θ


[
gijk(aijk)

j∏
y=0

Bijk(y)Bijk(y)

]a(ijk)N

(a(ijk)N)

|Sijk| − (j + 1)

2

 ,
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Nijk,Z =
k∏
z=0

(
Aijk(z)a(ijk)N

(aijk(xyz)a(ijk)N)x,y∈N|(x,y,z)∈Sijk

)

Θ


[
gijk(aijk)

k∏
z=0

Cijk(z)Cijk(z)

]a(ijk)N

(a(ijk)N)

|Sijk| − (k + 1)

2

 .

4.3 The joint extraction. If we were to realize the
extraction on each of the Tijk, (i, j, k) ∈ S8 indepen-
dently, we would have to impose either the constraints

∀ (i, j, k) ∈ S8,
i∏

x=0

Aijk(x)Aijk(x) ≥
j∏

y=0

Bijk(y)Bijk(y)

and
i∏

x=0

Aijk(x)Aijk(x) ≥
k∏
z=0

Cijk(z)Cijk(z)

or, as in [17], introduce the notion of C -tensor to
perform the analysis. It does not seem, however, that
any of these two approaches is helpful for analyzing
the fourth power of the Coppersmith-Winograd tensor
in the rectangular setting (in particular, the above
constraints are too strong and do not lead to any
improved lower bound on α). Instead, we are going
to realize a global extraction directly on the tensor

(4.3) T =
⊗

(i,j,k)∈S8

T
⊗a(ijk)N
ijk .

Note that this tensor can be decomposed as follows:

T =
⊗

(i,j,k)∈S8

 ∑
(u,v,w)∈Sijk

Vijk[uvw]

⊗a(ijk)N

=
⊗

(i,j,k)∈S8

 ∑
(I,J,K)∈Sa(ijk)N

ijk

Vijk[IJK]


where for (I, J,K) ∈ Sa(ijk)Nijk ,

Vijk[IJK] =
⊗

l∈[[1,a(ijk)N ]]

Vijk[I(l)J(l)K(l)].

T =
∑

(I,J,K)∈
∏

(i,j,k)∈S8

S
a(ijk)N
ijk

( ⊗
(i,j,k)∈S8

Vijk[IijkJijkKijk]

)

where we see (I, J,K) ∈
∏

(i,j,k)∈S8

S
a(ijk)N

ijk as a family

(Iijk, Jijk,Kijk)(i,j,k) indexed by (i, j, k) ∈ S8 with

(Iijk, Jijk,Kijk) ∈ Sa(ijk)Nijk .

Let (i, j, k) ∈ S8. By definition of the
(Tuvw)(u,v,w)∈S4

, for any (u, v, w), (u′, v′, w′) ∈ Sijk
such that u 6= u′, the x variables in Tuvw and in
Tu′v′w′ are disjoint, and thus the x variables in Vijk[uvw]
and in Vijk[u′v′w′] are disjoint. This implies that for

any (Iijk, Jijk,Kijk), (I ′ijk, J
′
ijk,K

′
ijk) ∈ S

a(ijk)N

ijk with
Iijk 6= I ′ijk, the x variables in Vijk[IijkJijkKijk] and in
Vijk[I ′ijkJ

′
ijkK

′
ijk] are disjoint.

The x variables of the tensor (4.3) are
indexed by a sequence of indices. This se-
quence can be divided in a partition of subse-
quences, each subsequence being associated to a
Vijk[Iijk, Jijk,Kijk] for a (i, j, k) ∈ S8. Hence, for any

(I, J,K), (I ′, J ′,K ′) ∈
∏

(i,j,k)∈S8
S
a(ijk)N

ijk with I 6= I ′,
the x variables in

V [IJK] =
⊗

(i,j,k)∈S8

Vijk[IijkJijkKijk]

and

V [I ′J ′K ′] =
⊗

(i,j,k)∈S8

Vijk[I ′ijkJ
′
ijkK

′
ijk]

are disjoint.
We rewrite the tensor (4.3) as⊗

(i,j,k)∈S8

T
⊗a(ijk)N
ijk =

∑
(I,J,K)∈

∏
(i,j,k)∈S8

S
a(ijk)N
ijk

V [IJK].

Define ã = (aijk)(i,j,k)∈S8
and the three pro-

jections Ã = (Aijk)(i,j,k)∈S8
, B̃ = (Bijk)(i,j,k)∈S8

,

C̃ = (Cijk)(i,j,k)∈S8
. We extend the definition of type

(Definition 2.1) to a product of types: we say, for

(I, J,K) ∈
∏

(i,j,k)∈S8
S
a(ijk)N

ijk , that I is of multi-type

Ã if for every (i, j, k) ∈ S8, Iijk is of type Aijk, and
that (I, J,K) is of multi-type ã if for every (i, j, k) ∈ S8

(Iijk, Jijk,Kijk) is of type aijk.
We set to 0 all the x variables except those that

appear in a V [IJK] where I is of multi-type Ã. We
apply the same procedure for the y variables with the
multi-type B̃ and for the z variables with the multi-type
C̃. We are thus left with only the tensors V [IJK] with

I of multi-type Ã, J of multi-type B̃, K of multi-type
C̃.

By definition of a multi-type, the number of I of
multi-type Ã is

T̃X =
∏

(i,j,k)∈S8

Tijk,X .

For any fixed I of multi-type Ã, the number of remaining
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tensors V [IJK] with (I, J,K) of multi-type ã is

Ñ ∗X =
∏

(i,j,k)∈S8

N ∗ijk,X .

For any fixed I of multi-type Ã, the number of remaining
tensors V [IJK] is

ÑX =
∏

(i,j,k)∈S8

Nijk,X .

For any fixed J of multi-type B̃, the number of remain-
ing tensors V [IJK] is

ÑY =
∏

(i,j,k)∈S8

Nijk,Y .

For any fixed K of multi-type C̃, the number of remain-
ing tensors V [IJK] is

ÑZ =
∏

(i,j,k)∈S8

Nijk,Z .

We now show that we are under the conditions of
Theorem 2.2. We set

Λ′ =

(I, J,K) ∈
∏

(i,j,k)∈S8

S
a(ijk)N
4

 .

Note that as ∀ (i, j, k) ∈ S8, S
a(ijk)N

ijk ⊆ S
a(ijk)N
4 ,

for any remaining tensor V [IJK], we have that
(I, J,K) ∈ Λ′. Let γ =

∑
(i,j,k)∈S8

a(ijk). By defin-

ing an arbitrary ordering θ : (i, j, k, l) 7−→ [[1, γN ]] for
(i, j, k) ∈ S8 and l ∈ [[1, a(ijk)N ]], we have Λ′ ∼= Λ where

Λ =
{

(I, J,K) ∈ [[0, 4]]γN × [[0, 4]]γN × [[0, 4]]γN |

∀ d ∈ [[1, γN ]], I[θ−1(d)] + J [θ−1(d)] +K[θ−1(d)] = 4
}

where we define the notations I[(i, j, k, l)] = Iijk(l),
J [(i, j, k, l)] = Jijk(l), K[(i, j, k, l)] = Kijk(l).

We set U to be set of (I, J,K) of the remain-

ing V [IJK]. We set N1 = ÑX , N2 = ÑY , N3 = ÑZ .
We set U∗ to be the set of (I, J,K) of the remain-
ing V [IJK] with (I, J,K) of multi-type ã. We set

N ∗1 = Ñ ∗X , N ∗2 = Ñ ∗Y , N ∗3 = Ñ ∗Z . We set T1 = T̃X ,

T2 = T̃Y , T3 = T̃Z , and all the conditions of Theo-
rem 2.2 are satisfied. Fix ε > 0. We obtain, from⊗
(i,j,k)∈S8

T
⊗a(ijk)N
ijk , a direct sum of

Ω

(
T̃XÑ ∗X

(ÑX + ÑY + ÑZ)1+ε

)

trilinear forms, each of which being a V [IJK] with
(I, J,K) of multi-type ã, i.e., isomorphic to

⊗
(u,v,w)∈S8

 ⊗
(i,j,k)∈Suvw

Vuvw(ijk)⊗auvw(ijk)a(uvw)N

 .

We now impose the constraint

∏
(i,j,k)∈S8

(
i∏

x=0

Aijk(x)Aijk(x)

)a(ijk)
≥(D3)

∏
(i,j,k)∈S8

(
j∏

y=0

Bijk(y)Bijk(y)

)a(ijk)
.

This implies that

∏
(i,j,k)∈S8

Nijk,Y = O

 ∏
(i,j,k)∈S8

Nijk,X


i.e., ÑY = O(ÑX).

We impose the symmetry condition

∀ (i, j, k) ∈ S8,∀ (u, v, w) ∈ Sijk,(D1)

aijk(uvw) = aijk(i− u,j − v, k − w) = aikj(u,w, v).

The symmetry conditions (C1) and (D1) give ÑY = ÑZ
and ÑZ = O(ÑX). The number of terms in the direct
sum that we obtain is

Ω

(
T̃XÑ ∗X
ÑX

1+ε

)
.

We have seen previously in Subsection 4.2 that
∀ (i, j, k) ∈ S′8,Nijk,X = N ∗ijk,X . Let us rewrite ÑX as ∏

(i,j,k)∈S′
8

Nijk,X

 ∏
(i,j,k)∈{(2,3,3),(3,2,3),(3,3,2)}

Nijk,X


and Ñ ∗X as ∏

(i,j,k)∈S′
8

N ∗ijk,X

 ∏
(i,j,k)∈{(2,3,3),(3,2,3),(3,3,2)}

N ∗ijk,X

 .

We have seen in Section 4.1 that by imposing the
constraints (D2) we have N233,X = O(N2N ∗233,X),

N323,X = O(N2N ∗323,X) and N332,X = O(N2N ∗332,X).
Therefore we have that∏

(i,j,k)∈{(2,3,3),(3,2,3),(3,3,2)}

Nijk,X
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is equal to

O

N6
∏

(i,j,k)∈{(2,3,3),(3,2,3),(3,3,2)}

N ∗ijk,X

 ,

and thus ÑX = O(N6Ñ ∗X) and the number of terms in
the direct sum that we obtain is

Ω

(
T̃X

N6(1+ε)Ñ ∗X
ε

)
.

For any (i, j, k) ∈ S8, by definition we have

N ∗ijk,X ≤ |Sijk|a(ijk)N

≤ |S4|a(ijk)N =

(
5∑
l=1

l

)a(ijk)N
= 15a(ijk)N

and thus Ñ ∗X ≤ 15N , and the number of terms in the
direct sum is

Ω

(
T̃X

15NεN6(1+ε)

)
.

Replacing T̃X by its expression, this is equal to

r2 = Ω

 1

15NεN
6ε+6+

∑
(i,j,k)∈S8

i
2

×

 ∏
(i,j,k)∈S8

 1
i∏

u=0
Aijk(u)Aijk(u)


a(ijk)


N .

We summarize the result of this section in the following
theorem.

Theorem 4.1. Let q be any positive integer. Let a
be any function from P(S8) satisfying the symmetry
constraint (C1). For all (i, j, k) ∈ S8, let aijk be
functions from P(Sijk) satisfying the constraints (D1),
(D2) and (D3). Then for any ε > 0, the trilinear form⊗
(i,j,k)∈S8

T
⊗a(ijk)N
ijk admits a restriction which is a direct

sum of r2 tensors, all isomorphic to

⊗
(u,v,w)∈S8

 ⊗
(i,j,k)∈Suvw

Vuvw(ijk)⊗auvw(ijk)a(uvw)N

 .

5 Third extraction

From the second extraction of Section 4 appeared
tensors of the form Vuvw(ijk), which are formed from

tensors Tijk, (i, j, k) ∈ S4. We will see in Section 6
that all the tensors Tijk with (i, j, k) ∈ S4 \ S4, where
S4 = {(2, 1, 1), (1, 1, 2), (2, 1, 2)}, correspond to matrix
products. The last extraction, that we now realize, deals
with the tensors T211, T121 and T112.

5.1 Properties of the tensors T211, T121 and
T112. We first focus on the tensor T211 and analyze
it as done in Ref. [17]. This tensor can be written as
T211 = t011 + t101 + t110 + t200, where

t011 =

q∑
i=1

x0,q+1yi,0zi,0,

t101 =

q∑
i,k=1

xi,ky0,kzi,0,

t110 =

q∑
i,k=1

xi,kyi,0z0,k,

t200 =

q∑
k=1

xq+1,0y0,kz0,k.

For (I, J,K) = (Il, Jl,Kl)l∈[[1,n]] ∈ Sn2 , define
tIJK =

⊗
l∈[[1,l]]

tIlJlKl
.

We now describe an extraction from

T⊗2m211 =
∑

(I,J,K)∈S2m
2

tIJK ,

where m is an integer. Note that for (i, j, k) ∈ S2,
(i′, j′, k′) ∈ S2, if i 6= i′ the x variables in tijk
and ti′j′k′ are distinct, if j 6= j′ the y variables
in tijk and ti′j′k′ are distinct, and if k 6= k′ the z
variables in tijk and ti′j′k′ are distinct. Thus, for
(I, J,K), (I ′, J ′,K ′) ∈ S2m

2 , if I 6= I ′ the x variables in
tIJK and tI′J′K′ are distinct, if J 6= J ′ the y variables
in tIJK and tI′J′K′ are distinct, and if K 6= K ′ the
z variables in tIJK and tI′J′K′ are distinct. Fix
b ∈ ]0, 1[∩Q and assume (m will later go to infinity)
that bm ∈ N. Define a211(011) = a211(200) = (1− b)/2,
a211(101) = a211(110) = b/2, with projections
A211, B211, C211. Note that by definition of a211,
B211 = C211. We set to 0 all the x variables but the
ones which appear in a tIJK with I of type A211, and
all the y (resp. z) except the ones which appear in a
tIJK with J (resp. K) of type B211.

It was shown in Subsection 6.1 of [17] that this leads
to a sum of forms tIJK isomorphic to

t
⊗(1−b)m
011 ⊗t⊗bm101 ⊗t

⊗bm
110 ⊗t

⊗(1−b)m
200

∼= 〈q2bm, q2bm, q2(1−b)m〉

and that, adopting the same notations as in the previous
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extractions of Sections 3 and 4, we have

T211,X =

(
2m

(1− b)m, (1− b)m, 2mb

)
= Θ

(
1

m
·
[

2

(2b)b(1− b)1−b

]2m)

N211,X = N ∗211,X =

(
2mb

mb

)
= Θ

(
1√
m
·
[
2b
]2m)

T211,Y = T211,Z =

(
2m

m

)
= Θ

(
1√
m
· [2]

2m

)
N211,Y = N211,Z = N ∗211,Y = N ∗211,Z

=

(
m

m(1− b)

)(
m

m(1− b)

)
= Θ

(
1

m
·
[

1

bb(1− b)1−b

]2m)
.

The forms T112 and T121 can be analyzed in the
same way as T211 by permuting the roles of the x
variables, the y variables and the z variables.

5.2 Joint extraction of the tensors T211, T121

and T112. From the extraction of Sections 3 and 4, we
obtain tensors isomorphic to

T⊗α112N
112 ⊗ T⊗α121N

121 ⊗ T⊗α211N
211

where for (i, j, k) ∈ {(2, 1, 1), (1, 1, 2), (2, 1, 2)}, αijk is
defined as ∑
(u,v,w)∈S8,∃(i′,j′,k′)∈S4,((i,j,k),(i′,j′,k′))∈Suvw

a(uvw)auvw(ijk) +

∑
(u,v,w)∈S8,∃(i′,j′,k′)∈S4,((i′,j′,k′),(i,j,k))∈Suvw

a(uvw)auvw(i′j′k′).

Note that the symmetry conditions (C1) and (D1) imply
that α112 = α121.

Using the parameters from Subsection 5.1,
we realize a joint extraction on the tensor
T⊗α112N
112 ⊗ T⊗α112N

121 ⊗ T⊗α211N
211 , just as in Subsec-

tion 4.3. We actually use a constant b ∈ ]0, 1[ for
defining the types used for T112 and T121 and another
constant b̃ for the type used for T211. We impose the
constraint

(E3)

(
2b̃
)α211

(bb(1− b)1−b)α112
≥

(
2b
)α112(

b̃b̃(1− b̃)1−b̃
)α211

which ensures that

N211,YN112,YN121,Y = N211,ZN112,ZN121,Z

= O (N211,XN112,XN121,X) .

We then get a direct sum of

Ω

(
T211,XT112,XT121,X

(N211,XN112,XN121,X)ε

)
trilinear forms, all isomorphic to

T̂211 = 〈q(α112+α211b̃)N , q(α112+α211b̃)N , q(2α112b+α211(1−b̃))N 〉.

Replacing the T by their values, and using the bounds
N211,X ≤ 4α211N , N112,X = N121,X ≤ 4α112N , we get
that the number of terms in the direct sum is

r3 = Ω

 1

4(α211+2α112)NεN2

 22α112+α211(
(2b̃)b̃(1− b̃)1−b̃

)α211

N
 .

We summarize the result of this last extraction in the
following theorem.

Theorem 5.1. For any positive α211, α112, for any
b, b̃ ∈ ]0, 1[∩Q satisfying (E3) and for any ε > 0, the
trilinear form

T⊗α112N
112 ⊗ T⊗α112N

121 ⊗ T⊗α211N
211

admits a restriction which is a direct sum of r3 trilinear
forms, all isomorphic to T̂211.

6 The full extraction

Let us first extend the definition of the values αijk,
which were introduced only for (i, j, k) ∈ S4 in Section
5.2, to all triples in S4: for any (i, j, k) ∈ S4 define αijk
as ∑
(u,v,w)∈S8,∃(i′,j′,k′)∈S4,((i,j,k),(i′,j′,k′))∈Suvw

a(uvw)auvw(ijk)N +

∑
(u,v,w)∈S8,∃(i′,j′,k′)∈S4,((i′,j′,k′),(i,j,k))∈Suvw

a(uvw)auvw(i′j′k′)N.

From the three consecutive extractions described in
Sections 3–5, we get a direct sum of r1r2r3 trilinear
forms, each of them being isomorphic to ⊗

(i,j,k)∈S8\S8

T
a(ijk)N
ijk

⊗
 ⊗

(i,j,k)∈S4\S4

T
αijkN
ijk

⊗T̂211,
denoted (∗). For any (i, j, k) ∈ S4 \ S4, the trilinear
form Tijk represent a matrix product (cf. [10]):

T004 ∼= T040 ∼= T400 ∼= 〈1, 1, 1〉
T013 ∼= T031 ∼= 〈1, 1, 2q〉
T103 ∼= T301 ∼= 〈2q, 1, 1〉
T130 ∼= T310 ∼= 〈1, 2q, 1〉

T022 ∼= 〈1, 1, q2 + 2〉
T202 ∼= 〈q2 + 2, 1, 1〉
T220 ∼= 〈1, q2 + 2, 1〉.
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It can be seen from the definitions of the trilinear form
Tijk, (i, j, k) ∈ S8 \S8 that they also represent a matrix
product. We have:

T008 ∼= T080 ∼= T800 ∼= 〈1, 1, 1〉
T017 ∼= T071 ∼= 〈1, 1, 4q〉
T107 ∼= T170 ∼= 〈4q, 1, 1〉
T701 ∼= T710 ∼= 〈1, 4q, 1〉
T026 ∼= T062 ∼= 〈1, 1, 6q2 + 4〉
T206 ∼= T260 ∼= 〈6q2 + 4, 1, 1〉
T602 ∼= T620 ∼= 〈1, 6q2 + 4, 1〉
T035 ∼= T053 ∼= 〈1, 1, 4q3 + 12q〉
T305 ∼= T350 ∼= 〈4q3 + 12q, 1, 1〉
T503 ∼= T530 ∼= 〈1, 4q3 + 12q, 1〉

T044 ∼= 〈1, 1, q4 + 12q2 + 6〉
T404 ∼= 〈q4 + 12q2 + 6, 1, 1〉
T440 ∼= 〈1, q4 + 12q2 + 6, 1〉.

As we have seen in Section 5, T̂211 is also a matrix prod-
uct. Hence, the r1r2r3 isomorphic trilinear forms that
we have extracted all represent the same matrix prod-
uct. By the symmetry constraints (C1) and (D1), we get
that this matrix product is of the form 〈QN , QN , RN 〉.
The expressions of Q and R are obtained by replacing in
(∗) the Tijk and T̂211 by the matrix products they cor-
respond to. We refrain from giving here the complete
expressions forR andQ since the formulas are extremely
long (they can be found in the files of the programs used
for the numerical analysis [36]). We have shown:

r1r2r3 · 〈QN , QN , RN 〉 ≤ F⊗N .

As we already saw in Subsection 2.2, R (F ) ≤ (q + 2)4

and thus by submultiplicativity of the border rank
R
(
F⊗N

)
≤ (q+ 2)4N . By Schönhage’s asymptotic sum

inequality (Theorem 2.1), we have:

r1r2r3Q
Nω( log R

log Q ) ≤ (q + 2)4N ,

and taking the N -th root, we get:

(r1r2r3)
1
NQω(

log R
log Q ) ≤ (q + 2)4.

Let

M = lim
ε→0

lim
N→∞

(r1r2r3)
1
N

=
1

8∏
i=0

A(i)A(i)

∏
(i,j,k)∈S8

 1
i∏

u=0
Aijk(u)Aijk(u)


a(ijk)

×

22α112+α211(
(2b̃)b̃(1− b̃)1−b̃

)α211
.

We have
MQω(

log R
log Q ) ≤ (q + 2)4.

We summarize the result of the whole process in the
following theorem.

Theorem 6.1. Let q be any positive integer. Let a
be any function from P(S8) satisfying the constraints
(C1), (C2) and (C3). For all (u, v, w) ∈ S8, let auvw be
functions from P(Suvw) satisfying the constraints (D1),
(D2) and (D3). Finally, let b and b̃ be any two values
from ]0, 1[∩Q satisfying the constraint (E3). Then the
following inequality holds:

MQω(
log R
log Q ) ≤ (q + 2)4.

Theorem 6.1 enables us to obtain our new upper
bounds on ω(k): for any k, if we find values q, a, auvw
for each (u, v, w) ∈ S8, b and b̃ satisfying the constraints
in Theorem 6.1 such that logR

logQ = k andMQν ≥ (q+2)4

for some ν , then we get, since MQω(k) ≤ (q + 2)4,
that ω(k) ≤ ν. The bounds given in Table 3 and
Theorem 1.1 are obtained by finding the optimal values
for q, a, auvw for each (u, v, w) ∈ S8 , b and b̃ by
numerical analysis using Maple. The source code of the
Maple programs used for the numerical analysis, which
include the complete formulas for the terms R and Q,
is available at [36].
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