Spanners and emulators with sublinear distance errors

Mikkel Thorup *

Abstract

Let k£ > 2 be an integer. We show that any undirected
and unweighted graph G = (V, E) on n vertices has
a subgraph G’ = (V, E') with O(kn'*t'/*) edges such
that for any two vertices w,v € V, if dg(u,v) = d,
then 8¢ (u,v) = d+ O(d'~#7). Furthermore, we show
that such subgraphs can be constructed in O(mn!/*)
time, where m and n are the number of edges and
vertices in the original graph. We also show that it
is possible to construct a weighted graph G* = (V, E*)
with O(knl“/(Qk_l)) edges such that for every u,v € V,
if 6c(u,v) = d, then d < 8 (u,v) = d + O(d'~F71).
These are the first such results with additive error terms
of the form o(d), i.e., additive error terms that are
sublinear in the distance being approximated.

1 Introduction

Let G = (V,E) be an undirected graph. For two
vertices u,v € V, we let dg(u,v) denote the distance
between w and v in G. A subgraph G' = (V| E’)
of G is said to be a t-spanner of G if and only if
for every u,v € V we have dg/(u,v) < ¢t - dg(u,v).
The parameter ¢ is said to be the stretch factor of the
spanner. The notion of spanners is implicit in [3]. It was
formally defined in [16]. It is known that for any integer
k > 1, any undirected, possibly weighted, graph on n
vertices has a (2k — 1)-spanner with O(n'*t1/*) edges,
and that this is essentially the optimal tradeoff between
size and stretch (see [16], [2]). Baswana and Sen [7],
improving a result of [20], obtained a randomized linear
time algorithm for constructing (2k — 1)-spanner with
O(kn'*t1/k) edges. Finally, a deterministic linear time
algorithm for constructing such spanners appears in
[18].

Spanners are useful in solving various distributed
computing problems, such a network synchronization
[3], and routing [17, 5, 13, 11, 19], for computing
approximate shortest paths [4, 9] and constructing
approximate distance oracles [20]. They are also an

T FAT&T Labs - Research, 180 Park Avenue, Florham Park, NJ
07932, USA. E-mail address: mthorup@research.att.com.

TSchool of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel. E-mail: zwick@cs.tau.ac.il.

SODA °06, January 22-26, Miami, FL
©2006 SIAM ISBN 0-89871-605-5/06/01

Uri Zwick T

appealing mathematical concept in their own right.

Spanners, as defined above, approximate distances
with a multiplicative error. Is it possible to obtain sim-
ilar results with an additive error? Perhaps surpris-
ingly, the answer for unweighted graphs is yes! It is
shown in [12], using ideas of [1], that any graph G =
(V,E) on n vertices has a subgraph G’ = (V, E’) with
O(n?/?) edges such that 8¢ (u,v) < d¢q(u,v) + 2, for
every u,v € V. Recently, Baswana et al. [6] have
shown that any graph G = (V,E) on n vertices has
a subgraph G’ = (V, E) with O(n*/3) edges such that
dgr(u,v) < dg(u,v) + 6, for every u,v € V. It is a ma-
jor open problem whether there exist sparser additive
spanners.

It is also shown in [12] that for any unweighted
graph G = (V, E') on n vertices it is possible to construct
a weighted graph G* = (V,E*) with O(n%/3) edges
such that dg(u,v) < dg(u,v) < dg(u,v) + 4, for every
u,v € V. Note that G* is a weighted graphs and that it
usually contains edges not present in the original graph.
The graph G* is said to be a 4-emulator of G. It is again
an open problem whether there exist sparser emulators.

Another notion of spanners is introduced in [15]. A
subgraph G’ = (V, E’) is said to be an (a,b)-spanner
of an unweighted undirected graph G = (V, E) if and
only if dg/(u,v) < a-dg(u,v) + b, for every u,v €
V. Thus, a conventional t-spanner is a (¢, 0)-spanner,
while an additive ¢-spanner is a (1,t)-spanner. Elkin
and Peleg [15] show that for every €, > 0, there
exists § = B(e, d) such any n-vertex graph has a (1 +
€, B)-spanner with O(Bn'*?) edges. (More specifically,
B(e,8) = 2Uesz—Dloglog3+los 1)) Elkin [14] obtains
a faster construction of spanners with slightly worse
parameters. The constructions presented in [15, 14] are
fairly complicated.

Bollobéds et al. [8], introduce the notion of d-
preservers. A subgraph G' = (V,E') of G = (V, E)
is said to be a d-preserver of G if and only if d¢ (u,v) =
0c(u,v), for every u,v € V such that dg(u,v) > d.
They show that any n-vertex graph has a d-preserver
with O(n?/d) edges. Combining this result with the
constructions of [15, 14], they get that for any inte-
ger k > 1, any graph n-vertex graph G = (V,E)
has a subgraph G’ = (V,E’) such that dg(u,v) <
da(u,v) + O(2Fn'=2/%), for every u,v € V. Finally

802

Coppersmith and Elkin [10] show that for every set
P C V x V of vertex pairs of an n-vertex undirected
graph G = (V, E) there exists a subgraph G’ = (V, E’)
with O(min{n'/?p, np'/?}) edges, where p = |P|, that
preserves all the distances between the pairs of vertices
in P.

We obtain for the first time arbitrarily sparse sub-
graphs with additive error terms that are sublinear in
the distance being approximated. Our constructions are
very simple. They also provide alternative derivations
of the results of Elkin and Peleg [15] and Elkin [14], as
well as some other results.

The rest of the paper is organized as follows.
In the next two Sections we describe two different
constructions that show that for any integer k > 2,
any unweighted undirected graph G = (V,E) on n
vertices has a subgraph G’ = (V, E’) with O(kn'*1/F)
edges such that for every two vertices uw,v € V, if
6c(u,v) = d, then d¢r(u,v) = d + O(d'~*71). The
first construction, presented in Section 2, is new. It
provides the simplest possible setting for presenting our
new ideas. A disadvantage of this first construction,
however, is that the construction of the subgraph G’ =
(V,E') with the required properties, at least using
a naive implementation, requires O(mn) time. A
second construction, which is as simple as the first
construction, but with a slightly more complicated
analysis, is presented in Section 3. The advantage of
this second construction is that it can be carried out
in O(mn'/®) time, where m = |E| is the number of
edges in the original graphs. The second construction
is actually not new. We show that the multiplicative
spanner construction algorithm of [20], when applied to
unweighted graphs, actually constructs subgraphs with
the required properties. A new analysis, very different
from the one given in [20], is needed, however, to show
that.

In Section 4 we show that for any integer k > 2,
and any unweighted undirected graph G = (V, E) on n
vertices there exists a weighted graph G = (V, E*) with
O(kn'+1/2"=1)) edges such that for every two vertices
u,v € V, if dg(u,v) = d, then d < dg/(u,v) = d +
O(dlfﬁ). Note that by allowing the use of weighted
edges that are not present in the original graph the
number of edges needed to obtain an error term of the
form O(dlfﬁ) is drastically reduced from O(kn'*1/*)
to O(k‘n”l/@k_l)). We end in Section 5 with some
concluding remarks and open problems.

2 First spanner construction

We start by choosing a sequence Ag 2 A; D -+ D
Ap_1 D Ag of vertex sets as follows. We let Ag = V.

SPAN, (G, k):

Ag=V; A =9
fori<—1tok—1do

// Get A, by picking each vertex of A;_1,
// independently, with probability n~1/%,

A; « SAMPLE(A;_1,n~/k)

fori<—1tok—1do
for each v € A; — A;41 do

// Construct a BF'S search tree rooted at v. Stop
// at the first level containing vertices from A; 1.
// Out of the A;+1 vertices reached, choose the one
// with the smallest index and add it to the tree.

E(v) « BFS(G,v,A;+1)
return (V, Uyev E(v))

Figure 1: Constructing a sparse subgraph that approx-
imates all distances fairly well.

For 1 < i < k, we obtain A; by picking each vertex
of A;_1, independently, with probability n='/*. We let
A = ¢. If v € V is a vertex, then the distance 6(v, A;)
from v to A; is naturally defined as

(v, A;) = min{o(v,w) |w € A;}.

As A = ¢, we let §(v,Ay) = oco. For v € V and
0 < i < k, we let p;(v) be a vertex of A; that satisfies
0(v,pi(v)) = (v, A;). (If there are several such vertices,
we take the one with the smallest serial number.) We
now define the open and closed balls, Ball(v) and Ball[v],
respectively, of a vertex v € A; — A;41, where 0 < i < k,
as follows:

Ball(v) =
Balljv] =

{weV|dv,w) <d(v,Ait1)},
Ball(v) U {pi+1(v)} -

Note that if v € Aj_1, then Ball(v) = V. (This follows
as Ar = ¢ and 6(v, Ax) = oc0.) We also define then
Balllv] = V. Tt is easy to see that if v € A; — A1,
where 0 < ¢ < k — 1, then Ballv] N 4,11 = {pi+1(v)}.
It is also easy to check that if u € Ball[v] and p is a
shortest path from u to v, then all vertices on the path p
are also in Balljv]. We let Tree(v) = (Ball[v], E(v))
be a tree of shortest paths from v to all other vertices
of Ball[v]. Obviously, E(v) contains only |Ballv]| — 1
edges. The sparse subgraph of G that approximates
well all distances in G is then G' = (V,E’), where
E’' = Uyev E(v). A pseudo-code of the algorithm used
to construct this subgraph is given in Figure 1.

LEMMA 2.1. The expected number of edges in the sub-
graph G' = (V, E’) returned by the call SPAN,(G, k) is
O(kn'*1/k),

803

FIND-PATH; (u, v):

if u = v then return

i« level(u)

w — FAR(u,v)

if w=wv or §(u,w) > x; then
WALK (u, w)

else
u' — pig1(u)
WALK(u,)
FIND-PATH, (v, v)

Figure 2: The path finding strategy used in the proof
of Theorem 2.1.

Proof. Consider a vertex v € A; — A;41. Each vertex
u € V becomes an element of A;;1, independently,
with probability n~(+1/k Tt follows easily then that
E[|Ball(v)|] = nV/k - As E[|A;]] = n'~*, we get
that the expected number of edges in the subgraph
constructed is at most O(kn'**), as required. O

THEOREM 2.1. Let G’ is a subgraph of G returned by
the call SPAN1(G,k). Then, for every u,v € V, if
0c(u,v) =d, then

Scr(u,0) < d + 4(2 + [dY/ BV

In other words, éq/(u,v) = d+ O(dl—ﬁ)'

Proof. For brevity, we use d(u,v) = dg(u,v) to denote
distances in G, and ¢ (u,v) = d¢g (u,v) to denote
distances in G’. We show that for every two vertices
u,v € V such that §(u,v) = d and every € > 0, we have

5 (u,0) < (14 d+2[2+ 2152
€

The choice € = 2d~Y/* =1 then yields the claim of the
theorem. To prove the bound ¢’ (u,v) < (1+€)d+2[2+
%]k_Q, we use a path-finding strategy described below.
Before describing the path-finding strategy, it is useful
to define the notion of a farthest reachable vertex in G’
on the way to of a given vertex:

DEFINITION 2.1. (WAY(u,v) AND FAR(u,v))
Let G=(V,E) be a graph and let G' =
be a subgraph of G. Let w,v € V.
WAY (u,v) = {w € V | §'(u,w) + 6(w,v) = 6(u,v)}
be the set of wertices for which there is a shortest

path from u to v in G that pass through w and for
which &' (u,w) = 6(u,w). Informaly, we say that the
vertices of WAY(u,v) are on the way from u to v.
Let FAR(u,v) be a vertex w € WAY(u,v) which is
farthest away from u, i.e., a vertex w € WAY(u,v) for

which §'(u,w) = §(u,w) is as large as possible. (As
u € WAY(u,v), FAR(u,v) is well defined.)
Note that the definitions of WAY(u,v) and

FAR(u,v) depend on the G and the subgraph G’ whose
identity will always be clear from the context.

LEMMA 2.2. Let u € A; — Aj41, where 0 < i < k —1,
v € V and let w = FAR(u,v). If w # wv, then
&' (u, pit1(u)) < 6(u, w) + 1.

Proof. Let p be a shortest path in G from u to v that
passes through w. Let w’ be the vertex that follows w
on p. As w' & WAY(u,v), we have § (u,w") > d(u,w’).
Thus, w' ¢ Ball(u). It follows, that 6'(u,p;y1(u)) =
O(u, piy1(w)) < d(u,w') = 6(u, w) + 1, as required. O

Our path-finding strategy finds a short path from u
to v in the subgraph G’ as follows. Suppose that
u € A; — Aiqq, where 1 < i < k. Let w = FAR(u,v).
Let x; be a parameter to be chosen later. The z;’s will
grow exponentially in ¢. If ¢'(u,w) = §(u,w) > x;, or
if w = v, we use a shortest path of G’ to walk from u
and w. If w = v, we are done. If w # v, we apply the
path-finding strategy recursively to find a short path
from w to v. Otherwise, if §'(u,w) = 6(u,w) < z;, we
use a shortest path of G’ to walk from u to v’ = p;11(u).
By Lemma 2.2, we have ¢’ (u, v') < §(u,w)+1 < z;. We
then again use the path-finding strategy to find a short
path from v’ to v. The intuition behind this strategy
is the following: if we cannot move far enough along
a shortest path to v, we are better off heading to the
nearest vertex of the next level, from which we will
hopefully be able to make much more progress. Note
that such ‘diversions’ can occur at most k — 2 times, as
when a vertex from Ay_; is reached, its ball contains all
the vertices of the graph. A formal description of this
path-finding strategy is given in Figure 2. For every
vertex u € V, we let level(u) be the index 0 < i < k
such that u € A; — A;41.

The parameters x;, for 0 < ¢ < k, used by the path-
finding strategy are set as follows. We let y; = [2+ %]z,
for 0 < i < k—2, and then x; = y; — y;_1, for
1<i<k—2 Wealsolet xg =1 and xx_1 = o0.

LEMMA 2.3. Let u,v € V and suppose that 6(u,v) = d.
Then, the path-finding strategy finds a path from u to v
in G whose length is at most (1 + €)d + 2[2 + 2]*=2,

804

Proof. We prove the lemma by induction on d. The
lemma clearly holds for d = 0. Assume the lemma holds
for all values smaller than d. Consider the sequence
u = Ug,U1,...,u;, where u; € Aj;, for 1 < j < 4, of
centers reached before we could finally reach v, or make
at least x; steps in its direction. Note that ¢ < k — 1,
as the spanner contains shortest paths trees rooted at
all the vertices of Ax_1. By Lemma 2.2, we then have
8 (uj,ujy1) < zj, and therefore

O(u,u;)) <

i—1
Z‘S/(ujvufrl)

j=0

< xot+rit..ot+Tio1 = Yot

We also have 6(u;,v) < §(ui, uo) + 0(ug,v) < yi—1 +d.

Suppose, at first, that the destination v is reached
by taking at most x; steps from u;. Then the path
in G’ returned by the path-finding strategy is of length
at most d + 2y;—1 < d+2yr—o =d+2[1+ %]k_Q, as
required.

Consider now the more interesting case in which we
have made z; > z; steps in the direction of v from wu;
and reached a vertex w # v. The total length of the
path followed from w to w is then at most y;_1 + 27, and
the distance to v decreased by at least x} —y;—1. To see
that, note that as w € WAY(u;,v), we have §(w,v) =
0(ui,v) — xh. As 6(ug,v) < d(ug,u) +0(u,v) < yimq +d,
we get that §(w,v) < (yi—1 +d) —) =d — (2 — yi—1),
as claimed.

By the induction hypothesis, the subgraph G’ con-
tains a path from w to v of length at most (1+4¢€)(d—(x}—
Yi—1)) +2[24 %]k_Q. Together with the path of length
at most y;_1 +2; from u to w, we get a path of length at
most (1+€)(d — (¢} — yi—1)) + (yi—1 +a}) +2[24+ 27772
from u to v.

All that remains, therefore, is to check that (1 +
6)(d — (I; - yi_l)) + (yi_l + x;) < (1 + €)d. This is
equivalent to y;,—1 + =, < (1 + €)(x, — y;—1) which is
in turn equivalent to (2 + €)y;—1 < ex}. As zi > wz;,
it is enough to check this condition for z; = z;. As
T; = Y; — Yi—1, the condition becomes y; > wyi_l,
which is exactly the property the sequence y; was chosen
to satisfy. O

This completes the proof of the Theorem. O

It is interesting to note that Theorem 2.1 implies
the result obtained by Elkin and Peleg [15]. Namely,
that for every €,d > 0, there exists § = (e, §) such any
n-vertex graph has a (1 + €, 3)-spanner with O(Bn!'*?)
edges. To see that just use k = [1/4] and (e, 0) =
2[2+21%72. Lemma 2.3 then says that G’ is an (1+¢, §)-
spanner of G. Theorem 2.1 is, however, stronger than

the result of [15], as the same graph is an (1 + ¢, 8)-
spanner of G, for any € > 0. The parameter € is not
used in the construction of our subgraph G’, only in
the analysis. (See also the discussion after the proof of
Theorem 4.1.)

A naive implementation of the above construction
takes O(mn) time. Can we get a similar construction
with a faster running time? This question is answered
in the next Section.

3 Second spanner construction

The construction of the previous section is very simple,
but not as efficient as we would like it to be. Borrowing
ideas from the analysis of the construction of the previ-
ous section, we can show that our ‘good old’ multiplica-
tive spanners from [20], which we already know how to
construct efficiently, give even slightly better sublinear
distance errors when applied to unweighted graphs.

Let us briefly review the spanners constructed
in [20]. We start, as in the previous section, by defining
a hierarchy of centers Ag D A1 D --- D Ap_1 D A. We
let Ag = V. For 1 < i < k, we obtain A; by picking each
vertex of A;_1, independently, with probability n—/%.
We let Ay, = ¢. Instead of defining balls, we now define
clusters. The cluster, Clust(v), of a vertex v € A;— A, 1
is defined as follows:

Clust(v) = {w eV |dv,w) < d(w, Aix1)} .

The definition of clusters is very similar to the definition
of balls. (They differ in fact by only one character!)
Yet, balls and clusters have quite different properties.
In particular, it is shown in [20] that the clusters of all
the vertices can be found in O(mn'/*) time.

One property that clusters do have in common with
balls is the following: If w € Clust(v) and p is a shortest
path in G from v to w, then all the vertices on p are
also in Clust(v). That means that we can construct
a tree of shortest paths for Clust(v) rooted at v. The
spanners of [20] are simply composed of a tree of shortest
paths of Clust(v), rooted at v, for every v € G. The
constructions of the spanners of the previous Section,
and the spanners of [20] are compared in Figure 3. We
use SPAN>(G, k) to refer to the spanner construction
algorithm of [20] and use SP-Tree(S, v) to denote a tree
of shortest paths of the set S rooted at v. Note that the
only difference between the two constructions is that
balls are used in the first, while clusters are used in the
second. The following theorem summarizes some of the
results of [20]:

THEOREM 3.1. ([20]) Let G = (V,E) be a graph on
n = |V| vertices with m = |E| edges, Let G' = (V, E’) be
the subgraph returned by the call SPANy(G, k). Then,

805

SPAN: (G, k):
SPAN(G, k):

E" « J,cy SP-Tree(Ball[v], v)
E" ey SP-Tree(Clust(v),v)

Figure 3: A concise description and comparison of the
spanner construction algorithm of Section 2, and the
algorithm of [20] used in Section 3.

G’ is a (2k — 1)-spanner of G. The expected number
of edges in G is O(kn*t1/*). Furthermore, algorithm
SPAN, (G, k) can be implemented to run in O(mn'/*)
expected time.

Here we show that the subgraph G’ = (V,FE’)
generated by SPANy(G, k) also gives sublinear distance
errors:

THEOREM 3.2. Let G = (V, E) be a graph on n = |V|
vertices and let k > 2 be an integer. Let G' = (V, E’) be
the subgraph returned by the call SPANy(G, k). Then,
for every u,v € V, if dg(u,v) = d, then dg(u,v) <
d + A(1 + [dV/k=D7)* 2,
d+O(d"~ 7).

In other words, dg/(u,v) =

Proof. The proof is similar to the proof of Theorem 2.1,
with some subtle differences. As before, we use 0(u,v) =
0c(u,v) to denote distances in G, and ¢ (u,v) =
dgr(u,v) to denote distances in G’. We show that
for every two vertices u,v € V such that d(u,v) = d
and every € > 0, we have ¢'(u,v) < (1 4+ ¢)d + 2[1 +
27k=2_ The choice € = 2d~1/(*=1) would then yield the
claim of the theorem. To prove the bound ¢'(u,v) <
(1+e)d+2[1+ 2]%72 we use the path-find strategy
FIND-PATH;(u,v) given in Figure 4.

The path-finding strategy FIND-PATH,(u, v) again
uses an exponentially growing sequence of integers x; to
be defined below. It finds a relatively short path in G’
from u to v in the following way. Assume that level(u) =
i,i.e.,u € A;—A;+1. Let w = FAR(u,v). The path con-
structed by FIND-PATHs(u, v) starts by walking from u
to w along a shortest path of G'. (Note that this is dif-
ferent from the behavior of FIND-PATH;(u,v) which
walks to w only if w = v or ¢’ (u,w) = §(u,w) > x;.) If
w = v, we are done. If w # v but §' (u, w) > x;, we apply
the path-finding strategy recursively from w. If w # v
and ¢’ (u,w) = §(u, w) < x;, then the path generated by
FIND-PATH,(u,v) continues by taking a shortest path
in G’ from w to a vertex v’ = DIVERT(w,v) € A;11, to
be defined below, and then using the path generated by
a recursive call to the path-finding strategy from «’. In
many cases, but not all, the vertex v’ = DIVERT(w, v)
is piy1(w). To define DIVERT(w,v), we need the fol-

lowing Lemma which is somewhat analogous, though
more complicated, than Lemma 2.2:

LEMMA 3.1. Let u € A; — Aj41, where 0 < i < k —1,
let v € V and let w = FAR(u,v). If w # v, then
there exists a verter v’ € A;y1, which we denote by
DIVERT(w,v), such that 6'(w,v') < 6(u,w) + 2 and
either (i) 6(u',v) < &(u,v), or (ii) v € Aira and
o(u',v) < 6(u,v) + 2.

Proof. Let p be a shortest path from u to v in G that
passes through w. Let w’ be the vertex that follows w
on p. As w' & WAY(u,v), we have § (u, w') > d(u,w’).
It follows that w’' ¢ Clust(u), and therefore, there
exists a vertex w;+1 € A;y1 such that §(w',u;p1) <
§(u,w’). Thus §(uir1,v) < 6(u,v). Also 6(w,uir1) <
1+ 0w, uip1) < 140w, w) < 6(u,w) + 2. Thus,
if ¢'(w,uir1) = 6(w,u;y1), then we can take v/ =
u;+1 and condition (i) is satisfied. Otherwise, we
have w ¢ Clust(u;+1). Thus, there exists a vertex
Uiy2 € Aijyo such that §(w,uir2) < 6(w,u;y1). (For
simplicity, we assume that wu;11 € A;41 — Aijp2. The
argument can be easily generalized.) Let u;io be
a vertex with a highest level number satisfying the
condition 0(w, ui+2) < 6(w,u;+1). It follows then that
w € Clust(uit2) and therefore ¢’ (w, uit+2) = d(w, uiy2).
We now have d(ujy2,v) < O(ujyo,w) + o(w,v) <
(0(u,w) +2) 4+ 0(w,v) = 6(u,v) + 2. We can therefore
take v’ = u;42 and condition (%) is satisfied. O

We return to the proof of Theorem 3.2. The
parameters z;, for 0 < i < k, used by the path-finding
strategy are set as follows. We let y; = [1 + %V, for
0<i<k-—2 and then z; = y; —y;—1, for 1 <i < k—2.
We also let xp = 1 and z;_1 = co. We are now ready
to prove:

LEMMA 3.2. Let u,v € V and suppose that 6(u,v) = d.
Then FIND-PATHs(u,v) finds a path from u to v in G’
whose length is at most (1 + €)d +2[1 + 27772

Proof. We prove the lemma by induction on d. The
lemma clearly holds for d = 0. Assume the lemma holds
for all values smaller than d. Consider the sequence
U = Ug,U1,...,U;, where u; € Aj;, for 1 < j < 4,
of centers reached before we could finally reach v, or
directly make at least z; steps in its direction. Note
that ¢ < k — 1, as the spanner contains shortest paths
trees rooted at all the vertices of A;p_1. Let us assume
that all the vertices uq,...,u; satisfy condition (i) of
Lemma 3.1. (The other case is much more favorable
for us, as it amounts to ‘jumping’ two levels of the
hierarchy at almost no extra cost. The simple, but
somewhat technical, verification of this claim is omitted

806

FIND-PATH;(u, v):
if u = v then return
i« level(u)

w «— FAR(u,v)
WALK(u, w)
if w = v then return
if §(u, w) > x; then
FIND-PATH,(w, ’U)
else
u’ «— DIVERT(w, v)
WALK(w, u')
FIND-PATH, (v, ’U)

Figure 4: The path-finding strategy used in the proof
of Theorem 3.2.

from this extended abstract.) Let w; = FAR(u;,v), for
0 < j <. Thus ¢ (uj,w;) = 6(uj,w,;) < x; — 1, for
0<j<i,and z; = (u;,w;) > x;, or w; = v. We have
0 (wj,ujp1) < 6(uj,wj) +2 < z; +1, for 0 < j < i
Thus, 6" (uj, uj41) < 6(uy,wy) + 0wy, ujpr) < (25 —
1) + (z; + 1) = 2z;. We therefore have ¢'(u,u;) <
E;;é 5/(7.Lj, uj+1) < 2(£E0 +x1+.. .+£L’i,1) = 2y;_1. By
condition () we also have §(u;,v) < d(u,v) = d.

If w; = v, then the path found from u to v is
of length at most 2y;—1 + d(u;,v) < d+ 2yp—2 =
d+2[1+ %1’“2, as required. Suppose therefore that we
have made z; > x; steps in the direction of v from u; and
reached a vertex w; # v. The total length of the path
used is at most 2y;—1 + x}. Also §(w;,v) < §(u,v) —).
Thus, by the induction hypothesis, FIND-PATHz(w;, v)
finds a path of length at most (1 + €)(d — z}) + yr_2
in G’ from w; to v. Concatenating this path to the path
found from u to w;, we get a path of length at most
(1+e€)(d—z7) + (2yi—1 +) + 2yx—2 in G’ from u to v.

All that remains, therefore, is to check that (1 +
e)(d —) 4+ (2y;—1 + z}) < (14 €)d. This is easily seen
to be equivalent to 2y;_; < ez} which is indeed satisfied
as @} >y =y; —yi—1 and y; > (14 2)y; 1. O

This completes the proof of the Theorem. a

4 Emulator construction

In the previous two sections we constructed sparse
subgraphs of an unweighted undirected graph G =
(V, E) that approximated all distances with a sublinear
error term in the distance. In this section we show

that even smaller error terms are possible, using the
same number of edges, if instead of being restricted
to choosing a subset of the edges of the graph, we
are allowed to construct an arbitrary weighted graph
G* = (V, E*) on the vertices of the original graph G.
Following [12], we call such graphs emulators.

An algorithm for constructing a sparse emulator of
a given graph G = (V, E) is given in Figure 5. The
parameter k again determines the number of levels in
the center hierarchy, and the tradeoff between the size
and the accuracy. We again use a hierarchy Ay D
Ay D -+ D Ag_1 of k non-empty levels. We again let
Ay, = ¢. The hierarchy is, however, chosen in a different
way this time. We let v = 1/(2F — 1) and start again
with Ag = V. Each element of A; then, independently,
becomes an element of A; 1 with probability |A;|/n!t.
Thus E[|Ait1]] = |Ai]?/n'TY, for 0 < i < k. It thus
follows easily by induction that E[|4;]] = n!=('~Dv,
for 0 < i < k. By the definition of v, we then get that
E[|Ap_1|] = n(1+)/2,

For every vertex u € A;, we let p;+1(u) be a vertex
of A;y1 closest to u. (This is what meant by the
command p;i1(u) < CLOSEST(A;t1,u).) We then
define a ball B;(u) composed of all the vertices of A; that
are closer to u then p;11(u). The essential difference
with respect to the balls defined in Section 2 is that
the ball of a vertex of A; is now a subset of A4;. The
closed ball B;[u] is obtained by adding p;4+1(u) to B;(u).
Direct weighted edges from u to all the other vertices of
B;Ju] are added to the emulator. (This is accomplished
by the command E* — E*U ({u} x B;[u]). The set E*
is the edge set of the emulator.) The weight of every
edge (u,v) € E* added to the spanner is always (u, v),
the distance from u to v in G. Finally direct edges are
added between any pair of vertices of Ax_1. We now
claim:

THEOREM 4.1. Let G = (V, E) be an unweighted graph,
and k > 2 be an integer. Let G* = (V, E*) be the graph
returned by a call to EMUL(G, k). Then, the expected
number of edges in G* = (V,E) is O(kn't1/2" 1)
For every u,v € V with §(u,v) = d, we have d <
5 (u,v) = d + O(kd' =/ (k=1)),

Proof. The O(kn1+1/(2k_1)) bound on the expected
number of edges in the graph G* = (V, E*) is obtained
using standard arguments. The proof is omitted from
this extended abstract.

In the sequel, we let 6(u,v) = dg(u,v) denote the
distance from u to v in G, and §*(u,v) = dg=(u,v)
denote the distance from u to v in the emulator G*.
As the weight of each edge (u,v) € E* added to the
emulator is d(u,v), we clearly have 0*(u,v) > d(u,v)
for every w,v € V. The interesting part of the proof,

807

EMUL(G, k):
v=1/(2F-1)
Ao~V ; E* — ¢
fori<—0tok—2
Ai+1 — SAMPLE(A“ |Ai|/n1+”)
for every u € A;
piﬂ(u) — CLOSEST(AHA, u)
Bi(u) — {v € A; | (uv) < 6(u, A1) }
Bi[u] = Bi(u) U {pit1(u)}
E* — E*U ({u} x B;[u])
end-for
end-for

E* — E*U (Ak,1 X Akfl)

Figure 5: Constructing a sparse emulator of G.

of course, is showing that for every u,v € V with
d(u,v) = d, we have 6*(u,v) = d+ O(k C D). We
start by proving the following lemma:

LEMMA 4.1. Let A > 1 be an integer. Then, for every
0 <i <k and every u,v € V such that §(u,v) < A’
either

(4.1) 5 (u,v) < 6(u,v) + (A+4) — A

or, there exists u;41 € A;41 such that

(4.2) 5 (u,uis1) < (A+4)° .

Proof. The proof is by induction on i. For i = 0, we
have to show that if é(u,v) < 1, ie., if (u,v) € E,
then either §*(u,v) = d(u,v) or there exists u; € Ay
such that 0*(u,u1) < 1. Indeed, if §*(u,v) > 0(u,v)
then (u,v) ¢ E* and therefore v € By[u]. (We assume
that v € Ay — Aj, as otherwise the claim trivially
holds by taking u; = w.) Let w3 = pi(u). Then,
0*(u,u1) = 8(u,u1) < d(u,v) =1, as required.

We next show that if the claim holds for i, then
it also holds for ¢ + 1. Let u,v € V be such that
S(u,v) < AL Let p be a shortest path in G from u
to v. Let us break p into at most A segments each of
length at most A’. (This can always be done as the
graph is unweighted.)

If condition (4.1) holds for all these segments, then

< 0(u,v) +A((A+4) - A
< O(u,v) + (A+4)TE - AT

5" (u,v)

as required.

Suppose, therefore, condition (4.1) does not hold
for at least one of the segments of p. Let ug be
the start vertex of the first segment of p for which
condition (4.1) does not hold, and let vy be the end
vertex of the last segment of p for which condition (4.1)
does not hold. (Note that vy is not necessarily the
last vertex on the segment beginning with ug.) By
the induction hypothesis, condition (4.2) holds for both
these segments, so we get that there exist u; 1,011 €
A;4+1 such that both

(A+4),
(A+4)".

0" (o, ir1) <
8" (vo,vit1) <
By the triangle inequality
O(uit1,viv1) < 0(uig1,uo) + 0(uo,vo) + 6(vo, vit1)
< S(uo,vo) + 2(A+4) .

There are two cases now. If (u;11,v,41) € E*, then

0" (Uit1,viy1) = 0(uit1,vip1), and then

0" (u,v) < 0" (u,ug) + 8" (wo, wit1) + 0 (wig1, vig1) +
0" (vig1,v0) + 6™ (vo,v)
< 0% (uyug) + (A+4) +
(6 uo,v0)+2(A+4)) (A+4)° —|—5*(v0,)
= 0(u,v) + A((A+4) = AY) +4(A+4)
§(u,v) + (A+4)F — AT

as required. To justify the transition from the second
to the third line, note that A ((A+4)* — A?) bounds the
total error accumulated from (4.1) over the at most A
segments connecting u to ug and vy and v.

Finally, suppose that (u;y1,vi41) € E*. Let ujyo =
piva(uit1) € Aiya. As vipr & Bip1(uip1), we get that
O(uiy1, uiv2) < 0(Uit1,vip1). Now,

0" (u, uo) + 6" (w0, wig1) + 0™ (Wig1, Uit2)
8 (u,ug) + 6% (wo, wit1) + 0(wit1,vig1) -

0" (u, uip2) <
<

This expression is smaller than the expression we
bounded above. (We even had there the extra terms
0*(vit1,v0) + 6*(vo,v).) Thus, it is also at most
§(u, v)+(A+4)F — AT which is at most (A+4)*+! as
5(u,v) < A1, This completes the proof of the lemma.
O

We now return to the proof of Theorem 4.1. We
apply Lemma 4.1 with i = k — 1 and A = [d@*/ k=17,
As Ay, = ¢, condition (4.1) must hold, and therefore

5" (u,v) d+ (A4 41— Ak-L
(dl/(k—l) +5)k—1

d+ Ok d*=/ (k=1 |

INIA

808

as desired. O

The emulator construction of this Section can be
used to obtain yet another proof of the result of Elkin
and Peleg [15]. For any fixed ¢ > 0, we can convert
the emulator G* = (V,E*) produced by a call to
EMUL(G, k), where k = [1/§], into an (1+4¢, 8) spanner
by replacing every edge of G* of length at most 1/¢ by
a path of at most 1/e¢ edges. The graph obtained in
this way does depend on ¢, but the value obtained for
B8 = B(e,) is essentially the same as that of [15]. (The
value of 3(e,d) obtained using the argument given at
the end of Section 2 is larger, but the result obtained
there is stronger as the same subgraph was used for all
values of e.)

5 Concluding remarks and open problems

For every k > 2, we showed that any undirected un-
weighted graph G = (V, E) on n vertices has a sub-
graph G/ = (V, E') with O(kn'*t'/*) edges such that
for every u,v € V, if dg(u,v) = d, then g/ (u,v) =
d+ O(dl_ﬁ). We in fact showed that our multiplica-
tive spanners from [20], which can be constructed in
O(mn!/*) time, have these properties. (Here m = |E|
is the number of edges in the original graph.) We
also showed that there always exists a weighted graph
G = (V,E*) with O(kn'*1/"=D) edges such that for
every u,v € V, if dg(u,v) = d, then d < d¢g/(u,v) =
d+ O(dl_ﬁ). The construction of these graphs is also
quite simple.

Our main objective in this paper was to present the
simplest possible constructions with o(d) additive error
terms. Previous constructions with o(n*/3) edges had
additive terms that were either of the form ed, for some
e >0, or o(n).

Seth Pettie (private communication) was recently
able to combine our techniques with the techniques of [6]
and [10] to obtain constructions with slightly smaller
error terms. The constructions are more involved,
however, and the error terms obtained are still of the
form d'~©(/F) Tt seems that major new ideas will be
needed to get significantly smaller, and in particular,
constant, error terms.

Another intriguing open problem is whether it is
possible to turn our constructions into approximate
distance oracles with additive error terms.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.
Fast estimation of diameter and shortest paths (with-
out matrix multiplication). SIAM Journal on Comput-
ing, 28:1167-1181, 1999.

809

[2] I. Althofer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs. Dis-
crete & Computational Geometry, 9:81-100, 1993.

[3] B. Awerbuch. Complexity of network synchronization.
Journal of the ACM, 32:804-823, 1985.

[4] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg.
Near-linear time construction of sparse neighborhood
covers. SIAM Journal on Computing, 28:263-277,
1999.

[5] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM Journal on Dis-
crete Mathematics, 5(2):151-162, 1992.

[6] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie.
New constructions of («, 8)-spanners and purely addi-
tive spanners. In Proc. of 16th SODA, pages 672-681,
2005.

[7] S. Baswana and S. Sen. A simple linear time algorithm
for computing (2k — 1)-spanner of O(n'*/*) size for
weighted graphs. In Proc. of 30th ICALP, pages 384—
296, 2003.

[8] B. Bollobds, D. Coppersmith, and M. Elkin. Sparse
distance preservers and additive spanners. In Proc. of
14th SODA, pages 414-423, 2003.

[9] E. Cohen. Fast algorithms for constructing ¢-spanners
and paths with stretch t. STAM Journal on Computing,
28:210-236, 1999.

[10] D. Coppersmith and M. Elkin. Sparse source-wise and
pair-wise distance preservers. In Proc. of 16th SODA,
pages 660-669, 2005.

[11] L.J. Cowen. Compact routing with minimum stretch.
Journal of Algorithms, 38:170-183, 2001.

[12] D. Dor, S. Halperin, and U. Zwick. All pairs almost
shortest paths. SIAM Journal on Computing, 29:1740—
1759, 2000.

[13] T. Eilam, C. Gavoille, and D. Peleg. Compact routing
schemes with low stretch factor. In Proc. of 17th
PODC, pages 11-20, 1998.

[14] M. Elkin. Computing almost shortest paths. In Proc.
of 20th PODC, pages 5362, 2001.

[15] M.L. Elkin and D. Peleg. (1 + ¢, 3)-Spanner construc-
tions for general graphs. SIAM Journal on Computing,
33(3):608-631, 2004. (Announced in STOC’01).

[16] D. Peleg and A.A. Schéiffer. Graph spanners. Journal
of Graph Theory, 13:99-116, 1989.

[17] D. Peleg and E. Upfal. A trade-off between space
and efficiency for routing tables. Journal of the ACM,
36(3):510-530, 1989.

[18] L. Roditty, M. Thorup, and U. Zwick. Determinis-
tic constructions of approximate distance oracles and
spanners. In Proc. of 32th ICALP, pages 261-272,
2005.

[19] M. Thorup and U. Zwick. Compact routing schemes.
In Porceedings of the 13th SPAA, pages 1-10, 2001.

[20] M. Thorup and U. Zwick. Approximate distance or-
acles. Journal of the ACM, 52(1):1-24, 2005. (An-
nounced in STOC’01).

