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Abstract: We present an algorithm for solving linear program- 
ming problems which requires O( ( n ~ + n ) ' . ~ n L )  arithmetic 
operations in the worst case where m is the number of con- 
straints, and n is the number of variables. This improves on the 
best known time complexity for linear programming by about 
G. A key ingredient in obtaining the speed-up is a proper 
combination and balancing of precomputation of certain matrices 
via fast matrix multiplication and low rank incremental updating 
of inverses of other matrices. Specializing our algorithm to 
problems such as minimum cost flow, flow with losses and 
gains, and multicommodity flow leads to algorithms whose time 
complexity closely matches or is better than the time complexity 
of the best known algorithms for these problems. 

1. Introduction 

We study the linear programming problem 

max cTx 

s.t. Ax 2 b 

where A E RmX",  b E R", and c E R". We assume that the 
given polytope { x : Ax 2 b } is bounded and has a non-zero 
interior. As the polytope is bounded we can assume that m 2 n, 
and that the columns of A are linearly independent. Let det,, 
denote the largest absolute value of the determinant of any 

square submatrix of 1: :] . We assume that each number in 

the input is a rational number, and let p denote the least com- 
mon multiple of the denominators of all the numbers in the 
input. The parameter L is defined as 

L = logz(l+det,,) + logzp + logz(m+n) .  

Note that the coordinates of a vertex of the given polytope are 
rational numbers with numerators and a common denominator 
bounded by 2°(L). 

A polynomial time algorithm for the linear programming 
problem was first presented by Khachian [l 11 using the ellipsoid 
method. In [lo] Karmarkar presented an interior point algorithm 
that required O( ( m  n2 + m z  n )  L) arithmetic operations, 
each operation being performed to a precision of O ( L )  bits. 
Using the ideas in [lo, 161, in [22] the worst case time complex- 
ity of linear programming was reduced to 
O( (m n 2  + m1.5 n )  L )  arithmetic operations, each operation 
being peformed to a precision of O ( L )  bits. An algorithm 
requiring O(m3 L )  operations was also independently developed 

in [6]. In this paper we shall give an algorithm for solving 
linear programming problems that requires O(m'.' nL) arithmetic 
operations, and it is adequate to perform each operation to a pre- 
cision of O ( L )  bits. Thus our algorithm is asymptotically faster 
than the one in [22] for m I n4.  (Typically, m and n are of the 
same order.) Furthermore, specialization of our algorithm to 
problems such as minimum cost network flow, generalized flow, 
and multicommodity flow leads to algorithms whose time com- 
plexity either closely matches or is better than that of previously 

In the algorithms described in [6. 221, the bottleneck is the 
number of operations required to maintain the inverse of a 
matrix that approximates the Hessian of a barrier (potential) 
function. We use three key ideas in our algorithm to reduce the 
number of operations required for maintaining the inverse of this 
matrix; this reduction leads to a better time complexity for linear 
programming. Suppose M denotes this matrix. The first idea is 
to maintain an expression for the inverse of M rather than main- 
taining the inverse explicitly; the expression involves a constant 
number of additions, subtractions and multiplications of matrices 
that have been explicitly computed. Such an expression for M-' 
suffices because the only computation in which M-' is involved 
consists of multiplying M-' by a vector. The second idea is to 
divide the maintainence of the expression for M-' into two 
parts: precomputations that use fast matrix multiplication, and 
incremental updates. The o(GL) iterations in the algorithm 
are divided into periods, each period consisting of r consecutive 
iterations. The precomputations are performed at the beginning 
of each period, and consist of explicitly recomputing M-' and 
certain related matrices using fast matrix multiplication. During 
a period the expression for M-' is incrementally updated using 
the precomputed matrices. The third idea is to balance the 
number of operations for the precomputations and the number of 
operations for the incremental updates; the period size r is 
chosen to achieve this balance. A combination of the three ideas 
allows us to prove a bound of O(m'.'nL) on the number arith- 
metic operations performed by our algorithm. 

For problems such as minimum cost flow, generalized 
flow, and multicommodity flow, our algorithm can be sped up 
even further. Such problems are of the form 
{ max wTz I Gz = 0, Hz 2 b } where H is block diagonal and 
G has at most a constant number of nonzeros per column. The 
extra speedup for network problems is obtained by exploiting the 
sparsity of G and the block diagonal structure of H. For these 
problems we let V and E denote the number of nodes (vertices) 
and arcs (edges) in the associated network. The bounds for 

known algorithms. 
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minimum cost flow, generalized flow and multicommodity flow 
are summarized below. 

Minimum Cost Flow. We are given a network with a 
source and a sink, and a lower and an upper bound and a Cost 
for each edge. A flow satisfies lower and upper bound con- 
straints and conservation constraints at all vertices except the 
source and the sink. The value of the flow is the amount flow- 
ing into the sink and the cost of a flow is the sum over all edges 
of the cost of the edge times the flow through the edge. The 
problem is to find a flow of a fixed value that has the minimum 
cost among all flows of that value. We assume that the costs 
and the uppernower bounds are integers whose magnitudes are 
less than y. A detailed formulation of the problem may be found 
in [7, 12, 151. In this case L = O(logz(Vy), and the total 
number of arithmetic operations in our algorithm is bounded by 
O(Vz d? log(Vy)). Our bound is within a logarithmic factor 
of the best known bound for this problem for dense networks 
[4]. (For minimum cost flow the best known bound for dense 
networks is O(V310g(Vyl)) operations where y1 is the largest 
magnitude of any edge cost [41.) 

Minimum Cost Generalized Flow. This problem is the 
same as the minimum cost flow problem except that each edge 
has a gain (loss) factor [see 3, 121. Hence the flow going into 
an edge may not equal the flow coming out of an edge; the out- 
going flow is given by the gain (loss) factor of the edge times 
the incoming flow. The cost of a flow is the sum over all edges 
of the cost of the edge times the flow coming into the edge. We 
assume that the gain (loss) factors, the costs and the uppernower 
bounds are rationals with the absolute value of numerator and 
denominator bounded by y. Then L = O(E log(Vy)) and the 
total number of arithmetic operations in our algorithm is 
bounded by O(V2 log(Vy)). This bound is better than the 
one in [3] by fi and better than one in [9] by fi; the bound in 
[9] is currently the best known and hence we obtain an improve- 
ment of fi. 

Minimum cost multicommodity flow. We are given a net- 
work with s source-sink pairs, a capacity for each edge, and a 
cost per unit of flow of each commodity through each edge. The 
sum of the flows of all the commodities through an edge cannot 
exceed the capacity of the edge. For each i, the flow of the irh 
commodity satisfies conservation constraints at all vertices 
except the ith source and sink; the value of the flow of the ith 
commodity is the amount flowing into the irh sink. The cost of 
a flow is defined in the natural way; the value of a flow specifies 
the flow value for each commodity in each edge. The problem 
is to find a flow of a fixed value that has the minimum cost 
among all flows of that value. For a detailed formulation of the 
problem, see [7, 121. In this case the bound on the total number 
of arithmetic operations is O ( S * ~ ~ V * ~ ? L ) .   his improves on 
the best known bound [9] for this problem by G. 

At this p i n t  we note that a bound of O ( m Z . 5 + V 2 L )  

arithmetic operations for linear programming is claimed in [131 
for m = O(n),  where m 2 + ’  is the number of arithmetic opera- 
tions required to multiply two mxm matrices. The bound in [131 
is claimed using a combination of fast matrix multiplication and 
the method of conjugate gradients [5 ] .  However, [13] does not 
give a proof of this claimed bound; no explicit algorithm that 
might possibly achieve the bound is given either. Futhermore, 
[13] also does not address the issue of the precision of arithmetic 
operations. Even though the claimed arithmetic complexity of 
the algorithm in [13] is better than that of the ones in [6, 221, the 
bit complexity may be worse since the method of conjugate gra- 
dients requires very high precision in the worst case. Our bound 
of ~ ( m ’ . ~ r z ~ . )  on the number of arithmetic operations is better 
than the one claimed in [I31 by at least O(m”). (The best 
known upper bound for v is about 0.38). In addition it suffices 
to perform arithmetic operations to a precision of O(L)  bits in 
our algorithm; as a result we obtain an improvement in the arith- 
metic complexity as well as the bit complexity of linear pro- 
gramming. Moreover, the worst case time complexity of special- 
izations of our algorithm for network problems closely matches 
or is better than the time complexity of the best known algo- 
rithms for these problems. 

It is worth noting that our algorithm does not use the 
fastest known matrix multiplication algorithm; an algorithm that 
can multiply two nxn matrices in ~ ( n ~ ~ )  operations suffices. 
(The best known matrix multiplication algorithm requires 
O(n2.38) operations [see 21.) Furthermore, using a faster algo- 
rithm for matrix multiplication does not lead to a better upper 
bound on the number of operations required for solving linear 
programming problems. This is because the bottleneck in our 
algorithm is the computation of the gradient of the potential 

function 5 h(uTx - bi) + mln(cTx - p) which requires 

O(mn) operations per iteration and a total of O ( m 1 . 5 d )  opera- 
tions. 

In section 2 we give an overview of a generic path follow- 
ing algorithm for linear programming and in section 3 we dis- 
cuss how to perform the computations in the algorithm to reduce 
the worst case time complexity to O ( m ’ . ’ d )  operations. ~n the 
full paper we shall describe how to further speed up our algo- 
rithm for problems of the form { max wTz I Gz = 0, HZ t b } 
where H is block diagonal and G has at most a constant number 
of nomros per column; problems such as minimum cost flow, 
generalized flow and multicommodity flow are of this form. 
The full paper will also address the issue of the precision 
requirement of arithmetic operations. 

i = l  
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2. A generic path following algorithm 

Let P be the given polytope 

P = { x : A x 2 b }  

and let p" be the maximum value of the objective function 
cTx over P. Let UT denote the ith row of the constraint matrix 
A. Let p be a scalar parameter. The center o(p) of the system 
of linear inequalities { Ax2 b,  c T x 2  p } is the unique point 
that maximizes the strictly concave potential function 

m 

i = l  
F ( x .  p) = C l n ( a T x - b i )  + mln(cTx - p) 

over the interior of the polytope { x  : Ax 2 b ,  cTx 2 p }. 
We shall give a brief overview of the linear programming 

algorithm that follows the path of centers. A complete descrip- 
tion may be found in [16, 221. As the parameter p continuously 
varies from - 00 to pmu, the center o(p) moves along a con- 
tinuous trajectory and the limit point of this trajectory as p tends 
to pmu is a point that maximizes cTx over the polytope P. The 
l i ea r  programming algorithm generates a strictly increasing 
sequence of parameters Po, p', . . . , p', . . . such that 

pmlX - p' 5 (1 - L ) ( f Y "  - p'-') where 8 is a small 

constant. The algorithm also generates a sequence of points 
x o ,  xl ,  . . . , x ' ,  . . . such that X' is a good approximation to 
the center o(pk); specifically 

The sequence x o ,  xl ,  . . . , x ' ,  . . . geometrically converges 
to a point that optimizes cTx over the polytope P. 

We shall now describe our algorithm, it is a modification 
of the one in [22]. The algorithm starts with a Po such that 
pmax - Po 5 2°(L). The issue of obtaining a suitable starting 
point is addressed in [16, 221. At the beginning of the kth itera- 
tion we have a parameter p k - ' ,  and a feasible point x k - l  such 
that cTx'-' > p k - l ,  and 

We also have a diagonal matrix D such that the irh diagonal 
entry D j j  satisfies the condition 

3% 

F ( o ( P ' ) ,  p') - F(x' ,  p', I 0.04. 

F(w(p'-'), p k - l )  - F(x' - ' ,  p - 1 )  5 0.04. 

Let r be a positive integer parameter. During the kth iteration 
we perform the following computations in sequence. 

2. Let qk be the gradient of F ( x ,  p') evaluated at x k - ' .  
Determine a direction 6' as 

r 

3. Compute a sCalar t C  > 0 such that 

0.018 I (r')' (ATDA + C C T )  tk 
(cTx'-' - p"2 

I 0.0196. 

1 if Dii d [ 1 1 . 1  
1 . 1  (aTx'-bi)' ' ( a T x k - b j ) 2  

1 
(a:xk -bj)'  

then D i i  := 

6. If the iteration number k is a multiple of r then 

for each i , 1 5 i 5 m, Dii := 
1 

(UT,' -bi)' 

The number of iterations in the above algorithm does not 
depend on the choice of r. only the computational effort per 
iteration is affected by the choice of r. The above algorithm 
halts when cTxk - pk S 2-a'L, for some suitably large positive 
constant a', and an exact optimum may then be found as 
described in [16]. The following Lemma is proved in [22]. 

Iterations Lemma. If m 2 16 then 

halts in O ( d m L )  iterations. 
It is worth noting that the scheme for updating D in the 

above algorithm is quite different from the one in [6, 221. The 
choice of the parameter r will depend on the structure and the 
sparsity of the constraint matrix in the given linear program. 
The next Lemma bounds the number of updates to D in Step 5 
of the algorithm between successive resettings in Step 6, and 
will be useful in proving the desired bound on the number of 
arithmetic operations performed by the algorithm. 

Update Lemma. Between successive resettings of D in 
Step 6, the total number of modifications to elements of D in 
step 5 is o(r2>, if r <: G. 

A proof of the Update Lemma will be given in the full 
paper. 

3. Bounding the number of arithmetic operations 

We shall show that the algorithm in section 2 can be 
implemented so that the total number of arithmetic operations 
performed is O(m1.5nL). During an iteration we perform the 
following computations. 

1. Solve a system of linear equations to determine the direc- 
tion t'. 

2. Compute the gradient qk of the potential F ( x ,  p k )  and also 
compute the scalar r' .  

We shall maintain an expression for (ATDA)- '  involving a 
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constant number of multiplications, additions and subtractions of 
matrices, each matrix containing O(mn) entries. Once such an 
expression for (ATDA)- '  is available, the remaining computa- 
tions such as determining the gradient q k ,  the scalar t k  and the 
direction kk may be performed in O(mn) operations. We shall 
show that a suitable expression for ( A  TDA)-' can be maintained 
at the average cost of O(mn) operations per iteration. Since the 
number of iterations is O ( G L )  this leads to a bound of 
O(m'.5nL) on the total number arithmetic operations performed 
by the algorithm. 

The maintainence of (ATDA)-'  consists of two kinds of 
computations: the precomputation that is performed when D is 
reset i.e. whenever the iteration number k is a multiple of r, and 
the incremental updates between successive resettings of D .  In 
section 3.1 we shall show that the average number of arithmetic 

operations per iteration for the precomputations is 0(-). 

In section 3.2 we shall show that the average number of arith- 
metic operations per iteration for the incremental updates is 
O ( r 5  + n r2.4). Choosing r = balances the number of 
operations for the precomputations and the number of operations 
for the incremental updates, and gives a bound of O(mn) on the 
average number of operations per iteration for maintaining 

mn1.4 
r 

( A  T ~ ~ ) - l .  

3.1. Precomputations 

The precomputations are performed whenever D is reset i.e. 
whenever the iteration number k is a multiple of r. The matrices 
(ATDA)-'  and (ATDA)- 'AT are recomputed and stored for use 
in the next r iterations. We utilize fast matrix multiplication to 
obtain these matrices quickly. It is well-known that using fast 
matrix multiplication the product of two nxn  matrices and the 
inverse of a non-singular nxn matrix can each be computed in 
O(n2.4) arithmetic operations [2, 141. Computing (ATDA)-'  
involves multiplying an nxm matrix and an mxn matrix (m Z n), 
and then inverting an nxn  matrix; moreover, computing the pro- 
duct of an nxm matrix and an mxn matrix can be reduced to 

computing rml products of two nxn matrices followed by 

additions of nxn matrices. Furthermore, once (ATDA)-'  

is available, evaluating ( A T D A ) - ' A T  requires multiplying an 
nxn  matrix and an nxm matrix which can be also reduced to 

computing r"1 products of pairs of nxn matrices. Thus com- 

puting both the matrices requires O(F n 2 . 4 )  = 0(mn'.4) 

operations. Since the precomputation is performed only once 
every r iterations, the average number of arithmetic operations 

per iteration for the precomputation is O( -). mn'.4 
r 

3.2. Incremental updates 
The incremental updates to ( A ~ D A ) - '  are performed 

between successive resettings of D in Step 6 of the algorithm i.e. 
between successive precomputations. The goal is to incremen- 
tally maintain an expression for (ATDA)-'  which involves a 
constant number of additions, subtractions and multiplications of 
matrices, each matrix containing O(mn) entries. We shall show 
that the average number of operations per iteration for incremen- 
tally updating such an expression for (ATDA)-' is 
0 ( r 5  + nr2.4). The strategy for incremental updating will be 
the same for the period between any two successive resettings of 
D; so we shall focus on the period between the k$ and the 
( k o  + r)Ih iteration where ko is some multiple of r. 

Suppose an update to D consists of adding 0 to the ith 
diagonal element of D, and suppose D' denotes the matrix D 
after this update. Then we may write A ~ D ' A  as 

A ~ D ' A  = A ~ D A  + oaiaT 

where a i  is the ith column of A '. Thus an update to D leads to 
a rank one correction to A ~ D A .  BY the Update Lemma there are 
O ( r 2 )  such rank one corrections during the period. 

Let B be the matrix ATDA at the beginning of the period 
under consideration. After q updates to D during the period, 
A ~ D A  may be expressed as 

ATDA = B + UAUT = B + W T  = B + 5 u , v ~  
i = l  

where A is a diagonal matrix, V = UA, and ui. vi denote the ith 
column of U, V respectively. Notice that uivT is the rank one 
correction to ATDA resulting from the ith update to D during the 
period. Also, note that each column of U is also a column of 
A T ,  and that by the Update Lemma, U and V have O ( r 2 )  
columns. 

Using the Sherman-Momson-Woodbury formula [5 ,  181, 
(ATDA)-'  may be expressed as 

( A ~ D A ) - ~  = ( B  + U V T ) - I  

= B - I  - B - ~ U ( I  + V T B - I U ) - ' V T B - '  . 

Note that B-' is available because of the precomputation at the 
beginning of the period. Thus to maintain the above expression 
for (ATDA)-'  its suffices to maintain U ,  V ,  and 
( I  + VTB-' U ) - ' .  We shall prove the following Lemmas about 
maintaining these matrices. 

Lemma 3.2.1. Given U and V ,  the average number of operations 
per iteration for maintaining VTB-' U is O ( d 4 ) .  

Lemma 3.22. Given VTB-' U,  the average number of opera- 
tions per iteration for maintaining ( I  + v ~ B - '  U)-'  is 0 ( r 5 ) .  

U and V can be maintained at the average cost of O(nr)  
operations per iteration, since the average number of columns 
added to U and V per iteration is O ( r ) .  So from Lemmas 3.2.1 
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and 3.2.2 we can conclude that the average number of operations 
per iteration for maintaining the above expression for ( A ~ D A ) - '  
is O(r5+nr2 .4 ) .  The matrices B - ' ,  U, V,  and 
(I + V T B - ' U ) - l ,  have O(nZ), O(nrz ) ,  O(nr2) ,  and O ( r 4 ) ,  
entries respectively; hence for our choice of r = each of 
these matrices has O ( n 2 )  = O(mn) entries. Therefore each 
matrix in the above expression for (ATDA)-'  has O(mn) entries 
as desired. 

We shall now prove Lemmas 3.2.2 and 3.2.1. 
Proof of Lemma 32.2. Note that V T B - ' U  has O ( r z )  

rows and columns. An update to D leads to the addition of a 
column to U and V and a row and a column to VTB-' U .  Sup- 
pose that the row and the column that get added to VTB-' U as 
a result of the update to D are available. Then the change in 
( I  + v ~ B - '  U)-' resulting from the update to D may be com- 
puted in O(r4) additional operations using the formula 

where X = d - v T M - ' u ,  and M ,  U, v, d, are 0x0, 0x1, 0x1, 
1 x 1, matrices respectively. By the Update Lemma. the average 
number of updates to D per iteration is O ( r ) ,  So the average 
number of operations per iteration for computing the changes in 
(I + VTB-'U)- '  given the changes in VTB-' U is O ( r s ) .  w 

Proof of Lemma 3.2.1. Note that V = U A ,  that 
VTB-' U = AUTB-' U ,  and that A is a diagonal matrix. Given 
UTB-'U and A, V T B - ' U  is computable in 0 ( r 4 )  operations 
since UTB-' U has O ( r z )  rows and columns. The average cost 
per iteration for maintaining A is O ( r )  operations, since the aver- 
age number of updates to D per iteration is O(r ) .  So to prove 
Lemma 3.2.1 it suffices to show that given U we can update 
U ~ B - ' U  at the average cost of ~ ( n r ' . ~ )  operations per itera- 
tion. 

An update to D leads to the addition of a column to U and 
a row and a column to UTB-' U. The number of updates to D 
over the period is O ( r 2 ) ,  and so the number of columns added 
to U over the period is also O ( r z ) .  During an iteration the 
columns that are added to U are batched together in batches of 
size r, and when a batch is added to U we compute the change 
in UTB-' U resulting from the addition of this batch. Note that 
during each iteration only the last batch may contain less than r 
columns. Thus the total number of batches during the period is 
O(rL  and the average number of batches per iteration is O(1). 
From Lemma 3.2.3 below it follows that when a batch of r 
columns is added to U the resulting changes in UTB-' U can be 
computed in O(nr2 .4 )  operations. This gives a bound O(nr2.4) 
on the average number of operations per iteration for updating 
UTB-' U and Lemma 3.2.1 then follows. 

Lemma 3.23. The changes in UTB-' U resulting from the 

addition of a batch of r columns to U can be computed in 
0 ( d 4 )  operations. 
Proof of Lemma 3.23. Let U = [ U 1 ,  U,] where Uz is the 
batch of r columns that is being added and U 1 is the matrix U 
before the addition of this batch. Then U T B - ' U  may be 
expressed as 

Note that B - ' A T  is available because of the precomputation at 
the beginning of the period. Since each column of U is also a 
column of AT and B-'AT is available, each column of B - ' U  
can be obtained in O(n)  operations. Thus B-'U1 and B - ' U 2  
can be obtained in O ( n r 2 )  operations since the number of 
columns in U is O(r2) .  So to prove Lemma 3.2.3 it suffices to 
show that given B - ' U 1 ,  B - ' U z .  and Uz. we can compute 
U;B-'UI ,  UTB-'Uz .  and UTB-'Uz  in O ( E ? . ~ )  operations. 

Note that B - ' U 1 ,  B - ' U 2 .  and U 2 .  are nx0, nxr, and 
nxr, matrices respectively where 0 = O ( r 2 ) .  Computing 
UTB-' U1 requires computing the product of UT and B-' U1 i.e. 
computing the product of an rxn matrix and and an nx0 matrix 
where 0 = O ( r 2 ) ;  for r 2 n this can be reduced to computing 

O(*) = O ( n )  products of two r x r  matrices followed by 

O ( n )  additions of two r x r  matrices. (For our choice of 
r = r I n .) Using fast matrix multiplication the product of 
two r x r  matrices may be computed in O(r24) operations, and 
hence U2TB-I U 1  can be obtained in O(n  r2.4) operations. Simi- 
larly, it is easily seen U i B - ' U 2  may be obtained in 

O ( r  r24) = O(n r1 .4)  operations. Moreover, since B is sym- 

metric, UTB-'Uz = (UTB-'Ul)T. Thus given B - ' U 1 ,  
B - ' U  , and U2, we can compute U$B-'U1,  UTB-'U2, and 
U$B-fU2 in O(nr2.4)  operations. m 

References 

r2  

1. 

2. 

3. 

4. 

5.  

D. A. Bayer, and J. C. Lagarias, The non-linear geometry of 
Linear Programming I. Affine and Projective scaling trajectories, 
Trans. Amer. Math. Soc., (to appear). 
D. Coppersmith and S. Winograd, Matrix multiplication via arith- 
metic progressions, 19rh Annual ACM Symp. Theory of Comput- 
ing, 1987, pp. 1-6. 
A. Goldberg, S .  Plotkin, and E. Tardos, Combinatorial Algo- 
rithms for the generalized circulation problem, Proc. 29rh Annual 
IEEE Symp. Foundazions of Computer Science, 1988, pp.432- 
443. 
A. Goldberg and R. E. Tarjan, Solving minimum cost flow prob- 
lems by successive approximation, 19rh Annual ACM Symp. 
Theory of Computing, 1987, pp. 7-18. 
G. H. Golub and C. F. Van Loan, Matrix Computations, The 
John Hopkins University Press, Baltimore, MD, 1983. 

336 



6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

C. C. Gonzaga, An algorithm for solving linear programming 
problems in O ( n 3 L )  operations, Memorandum 
UCB/ERLM87/10, Electronics Research Laboratory, University 
of Califomia, Berkeley, 1987. 
T. C. Hu, Integer Programming and Network Flows, Addison- 
Wesley, Reading, MA, 1969. 
S. Kapoor and P. M. Vaidya, Fast algorithms for convex qua- 
dratic programming and multicommodity flows, Proceedings 
18th Annual Symp. Theory o f  Computing, May 1986, 147-159. 
S. Kapoor and P. M. Vaidya, Speeding up Karmarkar’s algorithm 
for multicommodity flows, to appear, Mathematical Program- 
ming. 
N. Karmarkar, A new polynomial time algorithm for linear‘pro- 
gramming, Combinatorica, 4 (1984). 373-395. 
L. G. Khachian, Polynomial algorithms in linear programming, 
Zhurnal Vychislitelnoi Mathematiki i Matematicheskoi Fiziki, 20 

E. Lawler, Combinatorial Optimization: Networks and Matroids, 
Holt Rinehart and Winston, New York, 1976. 
Ju. E. Nesterov, and A. S. Nemirovsky, Self-Concordant func- 
tions and polynomial-time methods for convex programming, 
(summary, Moscow, July 1988). Handout at the 13th Intema- 
tional Symposium on Mathematical Programming, Tokyo, 
August 1988. 
V. Pan, How to multiply matrices faster, Lecture notes in Com- 
puter Science, Springer-Verlag Berlin Heidelberg, 1984. 
C. Papadimitriou, and K. Steiglitz, Combinatorial Optimization : 
Algorithms and Complexity (Prentice-Hall, Inc., Englewd 
Cliffs, New Jersey, 1982). 
J. Renegar, A polynomial-time algorithm, based on Newton’s 
method, for linear programming, Mathematical Programming, 40 

G. Zoutendijk, Mathematical Programming Methods (North- 
Holland, New York, 1976). 
G. W. Stewart, Introduction to matrix computations (Academic 
Press, Inc., New York, 1973). 
J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford 
University Press (Clarendon), London and New York, 1965). 
J. Edmonds, Systems of distinct representatives and linear alge- 
bra, Journal o f  Research o f  the National Bureau o f  Standards, 
71B (1967), 241-245. 
F. R. Gantmacher, Matrix Theory, vol. 1 (Chelsea, London, 
1959), Chapter 2. 
P. M. Vaidya, An algorithm for linear programming which 
requires O( ( ( m + n ) n 2  + (m+n)’.’n) L) arithmetic operations, 
Proceedings 19th Annual ACM Symposium Theory of Computing 
(May 1987), 29-38, to appear Mathematical Programming. 

(1980). 53-72. 

(1988). 59-93. 

337 


