
6.S078: Fixed-Parameter and Fine-Grained Computation MIT
Problem Set Due: April 5, 11:59pm (Thursday) Due: April 5, 11:59pm (Thursday)
Ryan and Virginia Spring 2018

Rules: You may collaborate with other students, but please do not consult research papers, textbooks, or the internet
in general. All submitted solutions must be your own, written in your own words. Write down the set of students you
collaborated with, at the top of your homework submission. Email your pset to both rrw and virgi at mit.edu

You are strongly encouraged to at least look at the problem set before Spring Break!

1 Listing versions of 3SUM, OV and Negative Triangle

(a) The All-Ints 3SUM problem is as follows. Given a set S of n integers, for each s ∈ S, output 1 if there exist
a, b ∈ S with a+ b+ s = 0 and 0 otherwise. (That is, the output consists of n bits, where n = |S|.)
Show that All-Ints 3SUM is subquadratically equivalent to 3SUM, i.e. give two fine-grained reductions, one
from 3SUM to All-Ints 3SUM and one from All-Ints 3SUM to 3SUM, implying that if one of these problems
has an O(n2−ε) time algorithm for ε > 0, then the other problem has an O(n2−δ) time algorithm for some
δ > 0.

(b) The All-Vectors OV problem is as follows. Given two sets U, V ⊆ {0, 1}d of vectors, for each u ∈ U , output 1
if there is a v ∈ V with u · v = 0, and 0 otherwise. (n bit output, where n is the number of vectors)

Show that All-Vectors OV is subquadratically equivalent to OV, i.e. give two fine-grained reductions, one from
OV to All-Vectors OV and one from All-Vectors OV to OV, implying that if one of these problems has an
n2−εpoly(d) time algorithm for ε > 0, then the other problem has an n2−δpoly(d) time algorithm for some
δ > 0.

(c) The All-Nodes Negative Triangle problem is as follows. Given a graph G = (V,E) with integer edge weights
w(·, ·), for each v ∈ V , output 1 if there are some a, b ∈ V so that (a, b), (b, v), (v, a) ∈ E and w(a, b) +
w(b, v) + w(v, a) < 0, and output 0 otherwise. (n bit output, where n is the number of nodes.)

Show that All-Nodes Negative Triangle is subcubically equivalent to Negative Triangle, i.e. give two fine-
grained reductions, one from Negative Triangle to All-Nodes Negative Triangle and one from All-Nodes Neg-
ative Triangle to Negative Triangle, implying that if one of these problems has an O(n3−ε) time algorithm for
ε > 0, then the other problem has an O(n3−δ) time algorithm for some δ > 0.

2 APSP is Equivalent to (min,+)-Product

In class we reduced (min,+)-Product to APSP, so that if APSP can be solved in T (n) time in n-node graphs, (min,+)-
Product of n× n matrices can be solved in O(T (n)) time. We also reduced APSP to (min,+)-Product, showing that
a T (n) time algorithm for (min,+)-Product can be converted into a O(T (n) log n) time algorithm for APSP. Here we
will remove the log n factor.

Notation: For an n × n matrix M and subsets S, T ⊆ [n], let M(X,Y ) denote the submatrix of M composed from
the rows indexed by X and columns indexed by Y .

For a graph G = (V,E) and a subset S ⊆ V , let G[S] be the subgraph of G induced by the vertices in S. Let DG be
the distance matrix of G: i.e. DG[u, v] is the distance in G between u and v.

APSP and (min,+)-Product Equivalence: Let G = (V,E) be an instance of APSP with weights w(·, ·); G is a
directed graph. Let A be the generalized adjacency matrix of G with A[u, v] = w(u, v) if (u, v) ∈ E, w(u, u) = 0
and w(u, v) =∞ if u 6= v and (u, v) /∈ E.
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Split V roughly in equal (disjoint) parts X and Y , so that |X| = |Y | = |V |/2 = n/2.

Consider the matrix Z̄ = (A(X,Y ) ? DG[Y ] ? A(Y,X) ? DG[X]). It defines a new weighted graph Z on node set X .
Similarly, consider the matrix Q̄ = (A(Y,X) ? DG[X] ? A(X,Y ) ? DG[Y ]). It defines a new weighted graph Q on
node set Y .

Below you will show how to compute DG, given A,DG[X], DG[Y ], DZ , DQ.

(a) Show that DG(X,X) = min{DG[X], DG[X] ? DZ}, where the minimum is taken componentwise.

(b) Relate DG(X,Y ), DG(Y,X), DG(Y, Y ) to A,DG[X], DG[Y ], DZ , DQ.

(c) Assume that there is some constant c > 2 such that for all ` ≥ 1 and all n, T (n/`) ≤ T (n)/`c. Conclude that
if (min,+) product is in T (n) time, then APSP is in O(T (n)) time.

3 Probabilistic Polynomials and Equality Product of Matrices

In lecture, we noted that using −1 for true and 1 for false could potentially yield better algorithms via probabilistic
polynomials. In this problem we will work through an example of this phenomenon. (Recall a probabilistic polynomial
is just a distribution of polynomials over a common set of variables.)

Let Sm = {0, 1}m. The equality product of two matrices A,B ∈ Sn×nm is the n × n Boolean matrix C such that for
all i, j,

C(i, j) = 1 ⇐⇒ there is a k such that A[i, k] = B[k, j].

The equality product has been a useful primitive in the design of algorithms for other graph and matrix problems. We
will use probabilistic polynomials over −1/1 to derive an O(n3−δ)-time algorithm for δ > 0 for the problem.

(a) Define the AND : {−1, 1}n → {0, 1} function, which outputs 1 if all inputs are −1, and 0 otherwise. Define a
probabilistic polynomial on x1, . . . , xn as follows: Pick a random subset S ⊆ [n], and output the polynomial

pS(x1, . . . , xn) =

(
1 + (−1)|S| ·

∏
i∈S

xi

)
.

Note these polynomials pS have only two monomials! Prove:

- For all x ∈ {−1, 1}n, if AND(x) = 1 then PrS [pS(x) = 2] = 1.

- For all x ∈ {−1, 1}n, if AND(x) = 0 then PrS [pS(x) = 0] ≥ 1/2.

Hint: Remember the “XOR trick”!

(b) Let’s amplify part (a). Take the probabilistic polynomial defined by taking random subsets S1, . . . , Sk ⊆ [n]
and outputting

pS1,...,Sk
(x1, . . . , xn) =

k∏
j=1

1 + (−1)|Sj | ·
∏
i∈Sj

xi

 .

Prove:

- For all x ∈ {−1, 1}n, if AND(x) = 1 then PrS1,...,Sk
[pS1,...,Sk

(x) = 2k] = 1.

- For all x ∈ {−1, 1}n, if AND(x) = 0 then PrS1,...,Sk
[pS1,...,Sk

(x) = 0] ≥ 1− 1/2k.

- The number of monomials in pS1,...,Sk
is O(2k).

(c) Define the function EQ : {−1, 1}m × {−1, 1}m → {0, 1} to be 1 on input (x, y) ∈ {−1, 1}m × {−1, 1}m if
x = y, and 0 otherwise. Use part (b) (and the properties of theEQ function) to design a probabilistic polynomial
D for EQ with the properties:
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- For all x, y ∈ {−1, 1}m, if EQ(x, y) = 1 then Prp∼D[p(x, y) = 2k] = 1.

- For all x, y ∈ {−1, 1}m, if EQ(x, y) = 0 then Prp∼D[p(x, y) = 0] ≥ 1− 1/2k.

- For all p ∼ D, the number of monomials in p is O(2k).

(d) The function EQIP : ({−1, 1}m)2d → {0, 1} (a.k.a. “equality inner product”) is defined as follows: given
two vectors x = (x1, . . . , xd), y = (y1, . . . , yd) where each xi, yi ∈ {0, 1}m, output 1 if and only if there is an
i such that xi = yi. Use part (c) to design a probabilistic polynomial D for EQIP with the properties:

- For all x, y ∈ ({−1, 1}m)d, if EQIP (x, y) = 1 then Prp∼D[p(x, y) 6= 0] = 1.

- For all x, y ∈ ({−1, 1}m)d, if EQIP (x, y) = 0 then Prp∼D[p(x, y) = 0] ≥ 1− d/2k.

- For all p ∼ D, the number of monomials in p is O(d2k).

(e) Use the probabilistic polynomial of part (d) to show that the equality product of an n × d and d × n matrix
can be computed in randomized O(M(n,O(d2)) log n) time, where M(a, b) is the time complexity for matrix
multiplication of a× b and b× a matrices over Z with O(log(a · b)) bit entries.
Hint: Set k from part (d) wisely, and use the evaluation lemma from lecture.

(f) Use the algorithm from part (d) to derive a subcubic algorithm for equality product of n × n matrices. How
small can you make the exponent? You may assume that M(n, n) ≤ O(n2.4).
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