6.S078 A FINE-GRAINED APPROACH TO ALGORITHMS AND COMPLEXITY

LECTURE 1

PERSONNEL

Profs. Ryan Williams and Virginia Vassilevska Williams

TA: Nicole Wein

6.S078 WORKLOAD

- Three Problem sets: worth 50% of grade, will come out about 2 weeks apart Can work with a partner; write up your own solutions.
- 2. Class Project: worth 50% of grade

Can work individually or with 1 partner

Project proposal (1 page): due TBA

Progress report (2 pages): due TBA

Final presentation: during the last 1-2 weeks of class

3. Flipped Class: After this lecture, most other lectures will be informal discussions of the material. You should read/watch the provided lecture notes (and other materials) before class. We'll release the relevant material late the previous week.

WEBSITE AND PIAZZA

http://bit.ly/FGAC20

- Sign up for Piazza: link on the website
- Announcements will be made on both piazza and the website
- Assignments will be released on piazza

PLAN FOR THE DAY

What is this class about?

THE CENTRAL QUESTION OF ALGORITHMS RESEARCH

``How fast can we solve fundamental problems, in the worst case?"

HARD PROBLEMS

For many problems, the known techniques get stuck:

- Very important computational problems from diverse areas
- They have simple, often brute-force, textbook algorithms
- That are slow.
- No improvements in many decades!

A CANONICAL HARD PROBLEM

k-SAT

Input: variables $x_1, ..., x_n$ and a formula $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ so that each C_i is of the form $\{y_1 \lor y_2 \lor ... \lor y_k\}$ and $\forall i, y_i$ is either x_t or $\neg x_t$ for some t.

Output: A boolean assignment to $\{x_1, \dots, x_n\}$ that satisfies all the clauses, or NO if the formula is not satisfiable

Brute-force algorithm: try all 2^n assignments Best known algorithm: $O(2^{n-(cn/k)}m^d)$ time for const c,d

Goes to 2ⁿ as k grows.

ANOTHER HARD PROBLEM: LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

Example 2

ATCGGGTTCCTTAAGGG AATTGGTACCTTCAGGG

Find a subsequence of both strings of maximum length.

Algorithms:

Classical O(n²) time

Best algorithm: $O(n^2 / \log^2 n)$ time [MP'80]

Applications both in computational biology and in spellcheckers.

Solved daily on huge strings! (Human genome: 3 x 10⁹ base pairs.)

IN THEORETICAL CS, POLYNOMIAL TIME = EFFICIENT/EASY.

This is for a variety of reasons.

E.g. composing two efficient algorithms results in an efficient algorithm. Also, model-independence.

However, noone would consider an O(n¹⁰⁰) time algorithm efficient in practice.

If n is huge, then $O(n^2)$ is also inefficient.

No $N^{2-\epsilon}$ time algorithms known for:

Many string matching problems: Edit distance, Sequence local alignment, LCS, jumbled indexing ...

General form: given two sequences of length n, how similar are they? All variants can be solved in $O(n^2)$ time by dynamic programming.

> ATCGGGTTCCTTAAGGG ATTGGTACCTTCAGG

No $N^{2-\epsilon}$ time algorithms known for:

Many string matching problems

Many problems in computational geometry: e.g
 Given n points in the plane, are any three collinear?
 A very important primitive!

No $N^{2-\epsilon}$ time algorithms known for:

Many string matching problems

Many problems in computational geometry
Many graph problems in sparse graphs: e.g.

Given an n node, O(n) edge graph, what is its diameter? Fundamental problem. Even approximation algorithms seem hard!

No $N^{2-\epsilon}$ time algorithms known for:

Many string matching problems

Many problems in computational geometry
 Many graph problems in sparse graphs
 Many other problems ...

Why are we stuck?

Are we stuck because of the same reason?

PLAN FOR TODAY

Traditional hardness in complexity

- A fine-grained approach
- Some simple results

TIME HIERARCHY THEOREMS IN COMPLEXITY THEORY

For most natural computational models one can prove: for any constant c, there exist problems solvable in O(n^c) time but not in O(n^{c-ε}) time for any ε > 0.

It is completely unclear how to show that a particular problem in $O(n^c)$ time is not in $O(n^{c-\epsilon})$ time for any $\epsilon > 0$.

It is not even known if SAT is in linear time!

It also does not apply to problems in P! Unle P=NI

NP

N – size

of input

WHY IS K-SAT HARD?

Theorem [Cook, Karp'72]: k-SAT is NP-complete for all $k \ge 3$. NP-completeness addresses runtime, but it is too coarse-grained!

I.e. k-SAT is considered hard because "fast" algorithms for it imply "fast" algorithms for many important problems.

We'll develop a *fine-grained theory of hardness* that is conditional and mimics NP-completeness.

Traditional hardness in complexity

• A fine-grained approach

• Some simple results

FINE-GRAINED HARDNESS

Idea: Mimic NP-completeness

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes

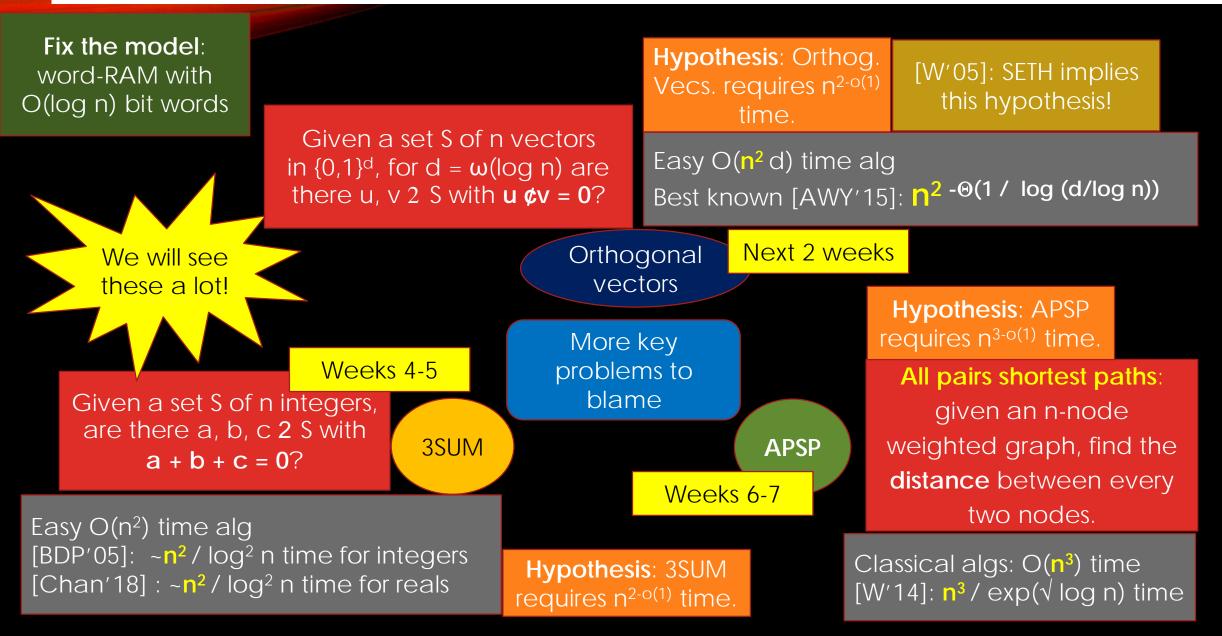
CNF SAT IS CONJECTURED TO BE REALLY HARD

We will see these in detail next lecture! Two popular conjectures about SAT on n variables [IPZ01]: ETH (Exponential Time Hypothesis): 3-SAT requires $2^{\delta n}$ time for some constant $\delta > 0$.

SETH (Strong Exponential Time Hypothesis): For every $\varepsilon > 0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly m time.

So we can use k-SAT as our hard problem and ETH or SETH as the hypothesis we base hardness on.

Strengthening of SETH [CGIMPS'16] suggests these are not equivalent...



FINE-GRAINED HARDNESS

Idea: Mimic NP-completeness

1. Identify key hard problems

2. Reduce these to all (?) other hard problems

3. Hopefully form equivalence classes

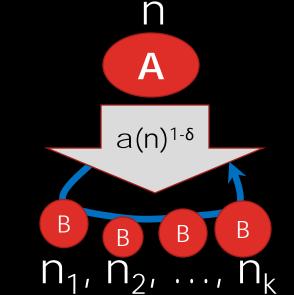
FINE-GRAINED REDUCTIONS

Intuition: a(n),b(n) are the naive runtimes for A and B. A reducible to B implies that beating the naive runtime for B implies also beating the naive runtime for A.

• A is (a,b)-reducible to B if

for every $\varepsilon > 0 \exists \delta > 0$, and an $O(a(n)^{1-\delta})$ time algorithm that adaptively transforms any A-instance of size n to B-instances of size n_1, \dots, n_k so that $\sum_i b(n_i)^{1-\varepsilon} < a(n)^{1-\delta}$.

- If B is in O(b(n)^{1-ε}) time,
 then A is in O(a(n)^{1-δ}) time.
- Focus on exponents.
- We can build equivalences.



Don't worry! We will see many examples!

Using other hardness assumptions, one can unravel even more structure

N – input size n – number of variables or vertices

SOME STRUCTURE WITHIN P

Orthog.

Graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [Bl'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [Bl16,BGL17]...

Ν2-ε

Many dynamic problems [P'10],[AV'14], [HKNS'15], [D16], [RZ'04], [AD'16],...

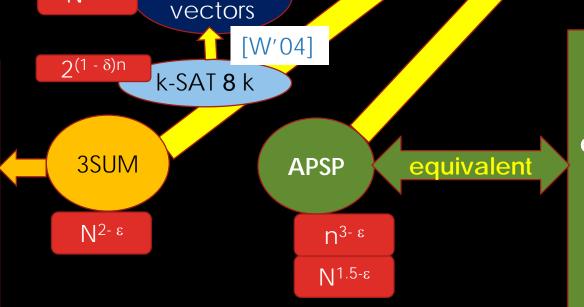
N^{2- ε′}

N^{1.5- ε'} n^{3- ε}

N^{2- ε′}

Huge literature in comp. geom. [GO'95, BHP98, ...]: Geombase, 3PointsLine, 3LinesPoint, Polygonal Containment, Planar Motion Planning, 3D Motion Planning ...

String problems: Sequence local alignment [AVW'14], jumbled indexing [ACLL'14], ...



In dense graphs: radius, median, betweenness centrality [AGV'15], negative triangle, second shortest path, replacement paths, shortest cycle [VW'10], ...

Traditional hardness in complexity

• A fine-grained approach

• First reductions: from SETH

SETH

SETH: for every $\varepsilon > 0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly m time.

If there is an $2^{(1-\epsilon)n}$ poly m time algorithm for some $\epsilon > 0$ that can solve SAT on CNF Formulas (for all k) on n variables and m clauses, then SETH is false.

FAST OV IMPLIES SETH IS FALSE [W'04]

F- CNF-formula on n vars, m clauses E.g. $(x_1 \lor x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$

Split the vars into V₁ and V₂ on n/2 vars each E.g. V₁ = { x_1, x_2 }, V₂ = { x_3, x_4 } OV: Given a set S of N vectors
in {0, 1}^d, are there u, v 2 S
with u ¢v = 0?

Given F, we want to create a set of vectors S in $\{0,1\}^d$ so that there is an orthogonal pair if and only if F is satisfiable and $|S| \sim 2^{n/2}$ and $d \sim m$.

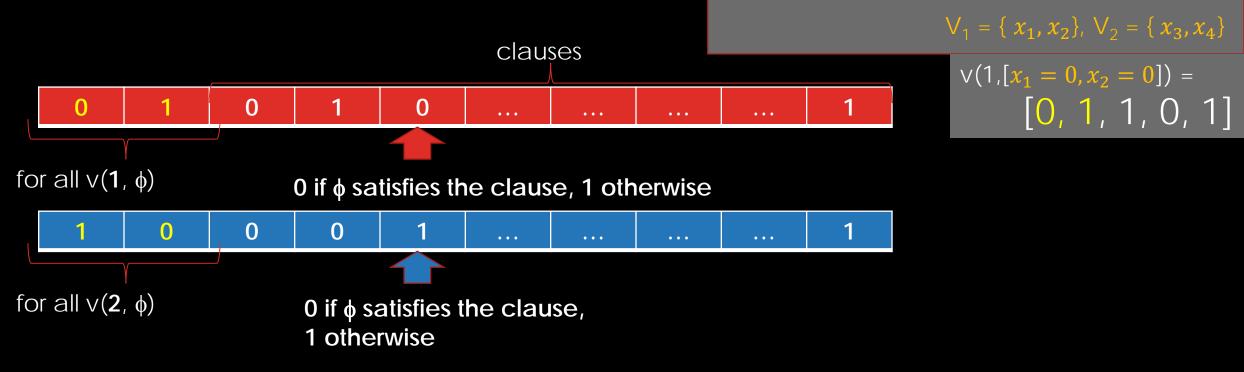
For j=1,2 consider the partial assignments of V_j : there are $2^{n/2}$ of them. E.g. for V_1 : { [$x_1 = 0, x_2 = 0$], [$x_1 = 0, x_2 = 1$], [$x_1 = 1, x_2 = 0$], [$x_1 = 1, x_2 = 1$]}

FAST OV IMPLIES SETH IS FALSE [W'04]

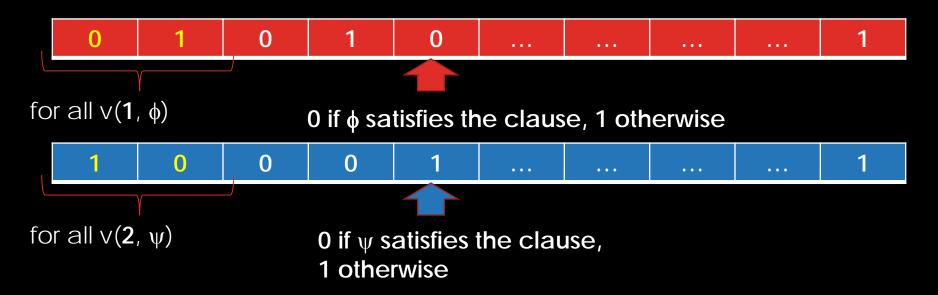
F- CNF-formula on n vars, m clauses

Split the vars into V_1 and V_2 on n/2 vars each

For j=1,2 and each **partial assignment** ϕ of V_j create (m+2) length vector v(j, ϕ): E.g. $(x_1 \lor x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_3 \lor \neg x_4)$



FAST OV IMPLIES SETH IS FALSE



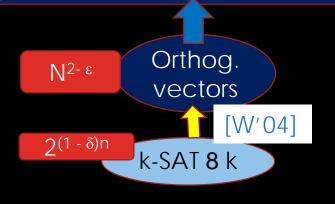
Claim: $v(1, \phi) \notin v(2, \psi) = 0$ iff $\phi \odot \psi$ is a sat assignment.

N = 2^{n/2} vectors of dimension $d = O(m) \rightarrow$ an OV instance. So N^{2-δ} poly(d) time for OV for $\delta > 0$ implies $2^{n(1-\frac{\delta}{2})}$ poly(m) time for SAT and SETH is false.

Diameter: Given G = (V, E), determine $D = \max_{u,v \in V} d(u, v)$. $\frac{3}{2}$ – Approximate Diameter: output D' such that $\frac{2D}{3} \le D' \le D$.

N^{2- ε′}

Graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [BI'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [BI16,BGL17]...



Say G has m edges, n vertices.

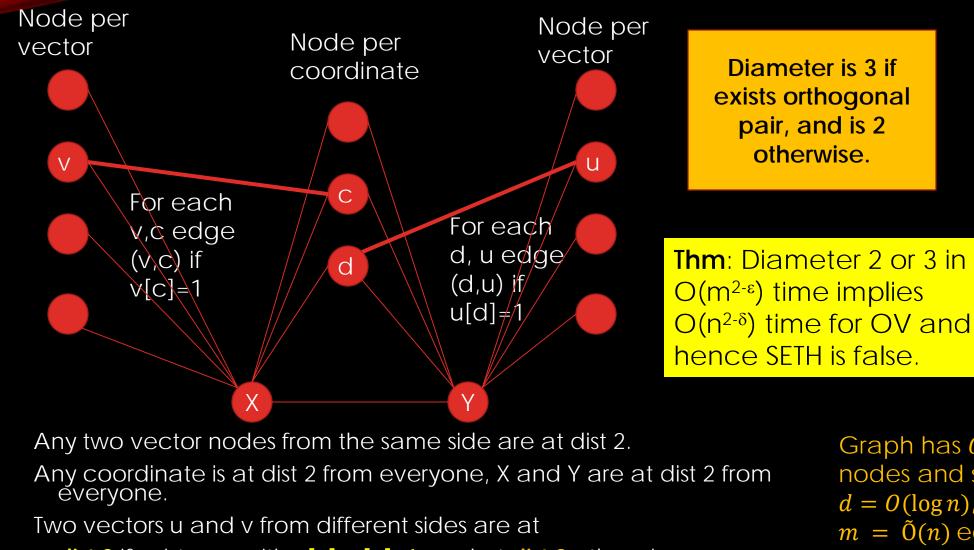
Using BFS: *O(mn)* time Diameter. Best known even in sparse graphs.

RV'13: 3/2-Approximate Diameter in $\tilde{o}(m^{\frac{3}{2}})$ time – better than mn in sparse graphs!

We'll show $3/2 - \epsilon$ – Diameter for $\epsilon > 0$ requires $mn^{1-o(1)}$ time under SETH.

Hard: distinguishing between Diameter 2 or 3 in sparse graphs. Reduce from OV on n vectors; due to "Sparsification Lemma" can assume dimension is $d = O(\log n) \dots$

DIAMETER 2 OR 3



[RV'13]

dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise.

Graph has O(n)nodes and since $d = O(\log n)_{\scriptscriptstyle L}$ $m = \tilde{O}(n)$ edges

SEE YOU NEXT TIME!

- Check Piazza and the website for the lecture notes.
- Please read them before the next class!
- PS: If there's any related topic you'd like more lecture notes to read (e.g., NP-completeness) please let us know via piazza! (You can also email, but it's better if other students can see your questions too, so they can upvote it!)

