
6.S078
A FINE-GRAINED APPROACH TO 
ALGORITHMS AND COMPLEXITY

LECTURE 1



PERSONNEL

Profs. Ryan Williams and Virginia Vassilevska Williams

TA: Nicole Wein



6.S078 WORKLOAD

1. Three Problem sets: worth 50% of grade, will come out about 2 weeks apart
Can work with a partner; write up your own solutions.

2. Class Project: worth 50% of grade
Can work individually or with 1 partner
Project proposal (1 page): due TBA
Progress report (2 pages): due TBA
Final presentation: during the last 1-2 weeks of class

3.   Flipped Class: After this lecture, most other lectures will be informal 
discussions of the material. You should read/watch the provided lecture notes 
(and other materials) before class. We’ll release the relevant material late the 
previous week.

No 
exams!



WEBSITE AND PIAZZA

• http://bit.ly/FGAC20
• Sign up for Piazza: link on the website
• Announcements will be made on both piazza and the website
• Assignments will be released on piazza



PLAN FOR THE DAY

What is this class about?



THE CENTRAL QUESTION OF 
ALGORITHMS RESEARCH

``How fast can we solve fundamental 
problems, in the worst case?’’

etc.



HARD PROBLEMS

For many problems, the known techniques get stuck:

• Very important computational problems from diverse areas
• They have simple, often brute-force, textbook algorithms
• That are slow.
• No improvements in many decades!



A CANONICAL HARD PROBLEM
k-SAT
Input: variables x1, … ,xn and a formula
F = C1 ∧ C2 ∧ … ∧ Cm so that each Ci is of the form
{y1 ∨ y2 ∨ … ∨ yk} and ∀i, yi is either xt or ¬xt for some t.

Output: A boolean assignment to {x1,…,xn} that satisfies all the clauses, or 
NO if the formula is not satisfiable

Brute-force algorithm: try all 2n assignments

Best known algorithm: O(2n-(cn/k)md) time for const c,d Goes to 2n

as k grows.



ANOTHER HARD PROBLEM:
LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

Find a subsequence of both strings of maximum length.

Applications both in computational biology and in spellcheckers.

Solved daily on huge strings!
(Human genome: 3 x 109 base pairs.)

ATCGGGTTCCTTAAGGG
AT T GG_TACCTTCA_GG
ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

Algorithms:
Classical O(n2) time

Best algorithm:
O(n2 / log2 n) time [MP’80]

???



IN THEORETICAL CS, 
POLYNOMIAL TIME = EFFICIENT/EASY.

This is for a variety of reasons. 
E.g. composing two efficient algorithms results in an 

efficient algorithm. Also, model-independence.

However, noone would consider an O(n100) time 
algorithm efficient in practice.

If n is huge, then O(n2) is also inefficient.



WE ARE STUCK ON MANY PROBLEMS, 
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems: 
Edit distance, Sequence local alignment, LCS, jumbled indexing …

General form: given two sequences of length n, how similar are they?
All variants can be solved in O(n2) time by dynamic programming.

ATCGGGTTCCTTAAGGG
ATTGGTACCTTCAGG



WE ARE STUCK ON MANY PROBLEMS, 
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry: e.g
Given n points in the plane, are any three collinear?
A very important primitive!



WE ARE STUCK ON MANY PROBLEMS, 
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs: e.g. 

Given an n node, O(n) edge graph, what is its diameter? 
Fundamental problem. Even approximation algorithms seem hard!



WE ARE STUCK ON MANY PROBLEMS, 
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs
Many other problems …

Why are we stuck?

Are we stuck because of the same reason?



PLAN FOR TODAY

• Traditional hardness in complexity

• A fine-grained approach

• Some simple results



TIME HIERARCHY THEOREMS IN 
COMPLEXITY THEORY

For most natural computational models one can prove:

for any constant c, there exist problems solvable in 
O(nc) time but not in O(nc-ε) time for any ε > 0.

It is completely unclear how to show that a particular
problem in O(nc) time is not in O(nc-ε) time for any ε > 0. 

It is not even known if SAT is in linear time!



WHY IS K-SAT HARD?

Theorem [Cook, Karp’72]: 
k-SAT is NP-complete for all k ≥ 3.

I.e. k-SAT is considered hard because
“fast” algorithms for it imply “fast” algorithms 

for many important problems.

We’ll develop a fine-grained theory of hardness that is 
conditional and mimics NP-completeness.

NP-completeness 
addresses runtime, but it is 

too coarse-grained!

N – size 
of input

It also does not apply to 
problems in P! Unless 

P=NP

NP
P



PLAN

• Traditional hardness in complexity

• A fine-grained approach

• Some simple results



FINE-GRAINED HARDNESS
IDEA

1. Identify key hard problems 

2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes 

Idea: Mimic   
NP-completeness



CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on n variables [IPZ01]:
ETH (Exponential Time Hypothesis): 
3-SAT requires 2δn time for some constant δ > 0.

SETH (Strong Exponential Time Hypothesis): For every ε > 0, 
there is a k such that k-SAT on n variables, m clauses 
cannot be solved in 2(1-ε)n poly m time.

So we can use k-SAT as our hard problem and ETH or SETH 
as the hypothesis we base hardness on.

We will see 
these in 

detail next 
lecture!



Orthogonal  
vectors

3SUM APSP

Given a set S of n integers, 
are there a, b, c 2 S with 

a + b + c = 0?

All pairs shortest paths: 
given an n-node 

weighted graph, find the 
distance between every 

two nodes.

Given a set S of n vectors      
in {0,1}d, for d = ω(log n) are 
there u, v 2 S with u ¢v = 0?

Easy O(n2) time alg
[BDP’05]:  ~n2 / log2 n time for integers
[Chan’18] : ~n2 / log2 n time for reals

Easy O(n2 d) time alg
Best known [AWY’15]: n2 -Θ(1 /  log (d/log n))

Classical algs: O(n3) time
[W’14]: n3 / exp(√ log n) time

More key 
problems to 

blame

Strengthening of SETH [CGIMPS’16] suggests these are not equivalent…

Hypothesis: Orthog. 
Vecs. requires n2-o(1)

time.

Hypothesis: 3SUM 
requires n2-o(1) time.

Hypothesis: APSP 
requires n3-o(1) time.

[W’05]: SETH implies 
this hypothesis!

Fix the model: 
word-RAM with 

O(log n) bit words

We will see 
these a lot!

Next 2 weeks

Weeks 4-5

Weeks 6-7



FINE-GRAINED HARDNESS

1. Identify key hard problems 

2. Reduce these to all (?) other hard problems

3. Hopefully form equivalence classes 

Idea: Mimic   
NP-completeness



• A is (a,b)-reducible to B if 
for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm 
that  adaptively transforms any A-instance of size n to B-instances   
of size n1,…,nk so that Σi b(ni)1-ε < a(n)1-δ.

FINE-GRAINED REDUCTIONS

 If B is in O(b(n)1-ε) time, 
then A is in O(a(n)1-δ) time.

 Focus on exponents.
 We can build equivalences.

A

a(n)1-δ

B B B B

Intuition: a(n),b(n) are the naive 
runtimes for A and B. A reducible 
to B implies that beating the 
naive runtime for B implies also 
beating the naive runtime for A.

n1, n2, …, nk

n

Don’t worry! We will see many examples!



SOME STRUCTURE WITHIN P

Orthog. 
vectors

3SUM APSP

Graph diameter [RV’13,BRSVW’18], eccentricities 
[AVW’16] , local alignment, longest common 

substring* [AVW’14], Frechet distance [Br’14], Edit 
distance [BI’15], LCS, Dyn. time warping [ABV’15, 

BrK’15], subtree isomorphism [ABHVZ’15], 
Betweenness [AGV’15], Hamming Closest Pair 

[AW15], Reg. Expr. Matching [BI16,BGL17]…

N2- ε

N2- ε’

In dense graphs: 
radius, median, 
betweenness

centrality [AGV’15], 
negative triangle, 
second shortest 

path, replacement 
paths, shortest 

cycle  [VW’10], …
N1.5-ε

n3- ε

N1.5- ε’

n3- ε

Huge literature in comp. geom. 
[GO’95, BHP98, …]: Geombase, 

3PointsLine, 3LinesPoint, 
Polygonal Containment, Planar 

Motion Planning, 3D Motion 
Planning …

String problems: Sequence local 
alignment [AVW’14], jumbled 

indexing [ACLL’14], …

N2- ε

N2- ε’

equivalent

Many 
dynamic 
problems

[P’10],[AV’14], 
[HKNS‘15], 

[D16], [RZ’04], 
[AD’16],…

N2- ε’

k-SAT 8 k2(1 - δ)n

Using other 
hardness 

assumptions, one 
can unravel even 

more structure

N – input size
n – number of 
variables or 
vertices

[W’04]



PLAN

• Traditional hardness in complexity

• A fine-grained approach

• First reductions: from SETH



SETH

SETH: for every ε > 0, there is a k such that k-SAT on n 
variables, m clauses cannot be solved in 2(1-ε)n poly m time.

If there is an 2(1-ε)n poly m time algorithm for some ε > 0 that 
can solve SAT on CNF Formulas (for all k) on n variables and 
m clauses, then SETH is false.



FAST OV IMPLIES SETH IS FALSE [W’04]
F- CNF-formula on n vars, m clauses
E.g. 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥2 ∨ ¬ 𝑥𝑥4

Split the vars into V1 and V2 on 𝑛𝑛/2 vars each
E.g. V1 = { 𝑥𝑥1, 𝑥𝑥2}, V2 = { 𝑥𝑥3, 𝑥𝑥4}

For j=1,2 consider the partial assignments of Vj : there are 𝟐𝟐𝒏𝒏/𝟐𝟐 of them.
E.g. for V1:   { [𝑥𝑥1 = 0, 𝑥𝑥2 = 0], [𝑥𝑥1 = 0, 𝑥𝑥2 = 1], [𝑥𝑥1 = 1, 𝑥𝑥2 = 0], [𝑥𝑥1 = 1, 𝑥𝑥2 = 1]}

OV: Given a set S of N vectors      
in {0, 1}d, are there u, v 2 S 

with u ¢v = 0?

Given F, we want to create a 
set of vectors S in {0,1}d so 
that there is an orthogonal 

pair if and only if F is satisfiable
and |S|~2𝑛𝑛/2 and 𝑑𝑑~𝑚𝑚.



FAST OV IMPLIES SETH IS FALSE 
[W’04]

F- CNF-formula on n vars, m clauses
Split the vars into V1 and V2 on n/2 vars each

For j=1,2 and each partial assignment φ of Vj create (m+2) length 
vector v(j, φ):

0 1 0 1 0 … … … … 1

0 if φ satisfies the clause, 1 otherwisefor all v(1, φ)

1 0 0 0 1 … … … … 1

for all v(2, φ) 0 if φ satisfies the clause, 
1 otherwise

clauses

E.g. 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥3 ∨ ¬ 𝑥𝑥4
V1 = { 𝑥𝑥1, 𝑥𝑥2}, V2 = { 𝑥𝑥3, 𝑥𝑥4}

v(1,[𝑥𝑥1 = 0, 𝑥𝑥2 = 0]) =   

[0, 1, 1, 0, 1]



FAST OV IMPLIES SETH IS FALSE

0 1 0 1 0 … … … … 1

0 if φ satisfies the clause, 1 otherwisefor all v(1, φ)

1 0 0 0 1 … … … … 1

for all v(2, ψ) 0 if ψ satisfies the clause, 
1 otherwise

Claim:   v(1, φ) ¢ v(2, ψ) = 0 iff φ⊙ ψ is a sat assignment.

N = 2𝑛𝑛/2 vectors of dimension 𝑑𝑑 = 𝑂𝑂(𝑚𝑚) → an OV instance.

So 𝑁𝑁2−𝛿𝛿 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) time for OV for 𝛿𝛿 > 0 implies 2𝑛𝑛(1−𝛿𝛿2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚)
time for SAT and SETH is false.



Orthog. 
vectors

Graph diameter [RV’13,BRSVW’18], eccentricities 
[AVW’16] , local alignment, longest common 

substring* [AVW’14], Frechet distance [Br’14], Edit 
distance [BI’15], LCS, Dyn. time warping [ABV’15, 

BrK’15], subtree isomorphism [ABHVZ’15], 
Betweenness [AGV’15], Hamming Closest Pair 

[AW15], Reg. Expr. Matching [BI16,BGL17]…

N2- ε

N2- ε’

k-SAT 8 k2(1 - δ)n
[W’04]

Diameter:
Given 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), determine 𝐷𝐷 = max

𝑢𝑢,𝑣𝑣∈𝑉𝑉
𝑑𝑑(𝑢𝑢, 𝑣𝑣).

𝟑𝟑
𝟐𝟐
−Approximate Diameter: output D’ such that 2𝐷𝐷

3
≤ 𝐷𝐷′ ≤ 𝐷𝐷.

Say G has m edges, n vertices.

Using BFS: 𝑂𝑂(𝑚𝑚𝑛𝑛) time Diameter.
Best known even in sparse graphs.

RV’13: 3/2-Approximate Diameter in 
�𝑂𝑂 𝑚𝑚

3
2 time – better than mn in sparse 

graphs!

We’ll show 3/2−𝜖𝜖 – Diameter for 𝜖𝜖 > 0
requires 𝑚𝑚𝑛𝑛1−𝑜𝑜(1) time under SETH.

Hard: distinguishing between 
Diameter 2 or 3 in sparse graphs.



DIAMETER 2 OR 3 

Any two vector nodes from the same side are at dist 2.
Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from 

everyone.
Two vectors u and v from different sides are at

dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise.

Node per 
vector Node per 

coordinate

Node per 
vector

For each 
v,c edge 
(v,c) if 
v[c]=1

For each 
d, u edge 
(d,u) if 
u[d]=1

X Y

Graph has 𝑂𝑂(𝑛𝑛)
nodes and since 
𝑑𝑑 = 𝑂𝑂(log𝑛𝑛),
𝑚𝑚 = Õ(𝑛𝑛) edges

Thm: Diameter 2 or 3 in 
O(m2-ε) time implies 
O(n2-δ) time for OV and 
hence SETH is false.

Reduce from OV on n vectors; due 
to “Sparsification Lemma” can 
assume dimension is 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛)…

Diameter is 3 if 
exists orthogonal 

pair, and is 2 
otherwise.v

c

d

u

[RV’13]



SEE YOU NEXT TIME!

• Check Piazza and the website for the 
lecture notes. 

• Please read them before the next class!
• PS: If there’s any related topic you’d like more lecture 

notes to read (e.g., NP-completeness) please let us 
know via piazza! 
(You can also email, but it’s better if other students can 
see your questions too, so they can upvote it!)
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