
6.S078
A FINE-GRAINED APPROACH TO
ALGORITHMS AND COMPLEXITY

LECTURE 1

PERSONNEL

Profs. Ryan Williams and Virginia Vassilevska Williams

TA: Nicole Wein

6.S078 WORKLOAD

1. Three Problem sets: worth 50% of grade, will come out about 2 weeks apart
Can work with a partner; write up your own solutions.

2. Class Project: worth 50% of grade
Can work individually or with 1 partner
Project proposal (1 page): due TBA
Progress report (2 pages): due TBA
Final presentation: during the last 1-2 weeks of class

3. Flipped Class: After this lecture, most other lectures will be informal
discussions of the material. You should read/watch the provided lecture notes
(and other materials) before class. We’ll release the relevant material late the
previous week.

No
exams!

WEBSITE AND PIAZZA

• http://bit.ly/FGAC20
• Sign up for Piazza: link on the website
• Announcements will be made on both piazza and the website
• Assignments will be released on piazza

PLAN FOR THE DAY

What is this class about?

THE CENTRAL QUESTION OF
ALGORITHMS RESEARCH

``How fast can we solve fundamental
problems, in the worst case?’’

etc.

HARD PROBLEMS

For many problems, the known techniques get stuck:

• Very important computational problems from diverse areas
• They have simple, often brute-force, textbook algorithms
• That are slow.
• No improvements in many decades!

A CANONICAL HARD PROBLEM
k-SAT
Input: variables x1, … ,xn and a formula
F = C1 ∧ C2 ∧ … ∧ Cm so that each Ci is of the form
{y1 ∨ y2 ∨ … ∨ yk} and ∀i, yi is either xt or ¬xt for some t.

Output: A boolean assignment to {x1,…,xn} that satisfies all the clauses, or
NO if the formula is not satisfiable

Brute-force algorithm: try all 2n assignments

Best known algorithm: O(2n-(cn/k)md) time for const c,d Goes to 2n

as k grows.

ANOTHER HARD PROBLEM:
LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

Find a subsequence of both strings of maximum length.

Applications both in computational biology and in spellcheckers.

Solved daily on huge strings!
(Human genome: 3 x 109 base pairs.)

ATCGGGTTCCTTAAGGG
AT T GG_TACCTTCA_GG
ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

Algorithms:
Classical O(n2) time

Best algorithm:
O(n2 / log2 n) time [MP’80]

???

IN THEORETICAL CS,
POLYNOMIAL TIME = EFFICIENT/EASY.

This is for a variety of reasons.
E.g. composing two efficient algorithms results in an

efficient algorithm. Also, model-independence.

However, noone would consider an O(n100) time
algorithm efficient in practice.

If n is huge, then O(n2) is also inefficient.

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems:
Edit distance, Sequence local alignment, LCS, jumbled indexing …

General form: given two sequences of length n, how similar are they?
All variants can be solved in O(n2) time by dynamic programming.

ATCGGGTTCCTTAAGGG
ATTGGTACCTTCAGG

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry: e.g
Given n points in the plane, are any three collinear?
A very important primitive!

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs: e.g.

Given an n node, O(n) edge graph, what is its diameter?
Fundamental problem. Even approximation algorithms seem hard!

WE ARE STUCK ON MANY PROBLEMS,
EVEN JUST IN O(N2) TIME

No N2 - ε time algorithms known for:

Many string matching problems
Many problems in computational geometry
Many graph problems in sparse graphs
Many other problems …

Why are we stuck?

Are we stuck because of the same reason?

PLAN FOR TODAY

• Traditional hardness in complexity

• A fine-grained approach

• Some simple results

TIME HIERARCHY THEOREMS IN
COMPLEXITY THEORY

For most natural computational models one can prove:

for any constant c, there exist problems solvable in
O(nc) time but not in O(nc-ε) time for any ε > 0.

It is completely unclear how to show that a particular
problem in O(nc) time is not in O(nc-ε) time for any ε > 0.

It is not even known if SAT is in linear time!

WHY IS K-SAT HARD?

Theorem [Cook, Karp’72]:
k-SAT is NP-complete for all k ≥ 3.

I.e. k-SAT is considered hard because
“fast” algorithms for it imply “fast” algorithms

for many important problems.

We’ll develop a fine-grained theory of hardness that is
conditional and mimics NP-completeness.

NP-completeness
addresses runtime, but it is

too coarse-grained!

N – size
of input

It also does not apply to
problems in P! Unless

P=NP

NP
P

PLAN

• Traditional hardness in complexity

• A fine-grained approach

• Some simple results

FINE-GRAINED HARDNESS
IDEA

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes

Idea: Mimic
NP-completeness

CNF SAT IS CONJECTURED TO BE REALLY HARD

Two popular conjectures about SAT on n variables [IPZ01]:
ETH (Exponential Time Hypothesis):
3-SAT requires 2δn time for some constant δ > 0.

SETH (Strong Exponential Time Hypothesis): For every ε > 0,
there is a k such that k-SAT on n variables, m clauses
cannot be solved in 2(1-ε)n poly m time.

So we can use k-SAT as our hard problem and ETH or SETH
as the hypothesis we base hardness on.

We will see
these in

detail next
lecture!

Orthogonal
vectors

3SUM APSP

Given a set S of n integers,
are there a, b, c 2 S with

a + b + c = 0?

All pairs shortest paths:
given an n-node

weighted graph, find the
distance between every

two nodes.

Given a set S of n vectors
in {0,1}d, for d = ω(log n) are
there u, v 2 S with u ¢v = 0?

Easy O(n2) time alg
[BDP’05]: ~n2 / log2 n time for integers
[Chan’18] : ~n2 / log2 n time for reals

Easy O(n2 d) time alg
Best known [AWY’15]: n2 -Θ(1 / log (d/log n))

Classical algs: O(n3) time
[W’14]: n3 / exp(√ log n) time

More key
problems to

blame

Strengthening of SETH [CGIMPS’16] suggests these are not equivalent…

Hypothesis: Orthog.
Vecs. requires n2-o(1)

time.

Hypothesis: 3SUM
requires n2-o(1) time.

Hypothesis: APSP
requires n3-o(1) time.

[W’05]: SETH implies
this hypothesis!

Fix the model:
word-RAM with

O(log n) bit words

We will see
these a lot!

Next 2 weeks

Weeks 4-5

Weeks 6-7

FINE-GRAINED HARDNESS

1. Identify key hard problems

2. Reduce these to all (?) other hard problems

3. Hopefully form equivalence classes

Idea: Mimic
NP-completeness

• A is (a,b)-reducible to B if
for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm
that adaptively transforms any A-instance of size n to B-instances
of size n1,…,nk so that Σi b(ni)1-ε < a(n)1-δ.

FINE-GRAINED REDUCTIONS

 If B is in O(b(n)1-ε) time,
then A is in O(a(n)1-δ) time.

 Focus on exponents.
 We can build equivalences.

A

a(n)1-δ

B B B B

Intuition: a(n),b(n) are the naive
runtimes for A and B. A reducible
to B implies that beating the
naive runtime for B implies also
beating the naive runtime for A.

n1, n2, …, nk

n

Don’t worry! We will see many examples!

SOME STRUCTURE WITHIN P

Orthog.
vectors

3SUM APSP

Graph diameter [RV’13,BRSVW’18], eccentricities
[AVW’16] , local alignment, longest common

substring* [AVW’14], Frechet distance [Br’14], Edit
distance [BI’15], LCS, Dyn. time warping [ABV’15,

BrK’15], subtree isomorphism [ABHVZ’15],
Betweenness [AGV’15], Hamming Closest Pair

[AW15], Reg. Expr. Matching [BI16,BGL17]…

N2- ε

N2- ε’

In dense graphs:
radius, median,
betweenness

centrality [AGV’15],
negative triangle,
second shortest

path, replacement
paths, shortest

cycle [VW’10], …
N1.5-ε

n3- ε

N1.5- ε’

n3- ε

Huge literature in comp. geom.
[GO’95, BHP98, …]: Geombase,

3PointsLine, 3LinesPoint,
Polygonal Containment, Planar

Motion Planning, 3D Motion
Planning …

String problems: Sequence local
alignment [AVW’14], jumbled

indexing [ACLL’14], …

N2- ε

N2- ε’

equivalent

Many
dynamic
problems

[P’10],[AV’14],
[HKNS‘15],

[D16], [RZ’04],
[AD’16],…

N2- ε’

k-SAT 8 k2(1 - δ)n

Using other
hardness

assumptions, one
can unravel even

more structure

N – input size
n – number of
variables or
vertices

[W’04]

PLAN

• Traditional hardness in complexity

• A fine-grained approach

• First reductions: from SETH

SETH

SETH: for every ε > 0, there is a k such that k-SAT on n
variables, m clauses cannot be solved in 2(1-ε)n poly m time.

If there is an 2(1-ε)n poly m time algorithm for some ε > 0 that
can solve SAT on CNF Formulas (for all k) on n variables and
m clauses, then SETH is false.

FAST OV IMPLIES SETH IS FALSE [W’04]
F- CNF-formula on n vars, m clauses
E.g. 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥2 ∨ ¬ 𝑥𝑥4

Split the vars into V1 and V2 on 𝑛𝑛/2 vars each
E.g. V1 = { 𝑥𝑥1, 𝑥𝑥2}, V2 = { 𝑥𝑥3, 𝑥𝑥4}

For j=1,2 consider the partial assignments of Vj : there are 𝟐𝟐𝒏𝒏/𝟐𝟐 of them.
E.g. for V1: { [𝑥𝑥1 = 0, 𝑥𝑥2 = 0], [𝑥𝑥1 = 0, 𝑥𝑥2 = 1], [𝑥𝑥1 = 1, 𝑥𝑥2 = 0], [𝑥𝑥1 = 1, 𝑥𝑥2 = 1]}

OV: Given a set S of N vectors
in {0, 1}d, are there u, v 2 S

with u ¢v = 0?

Given F, we want to create a
set of vectors S in {0,1}d so
that there is an orthogonal

pair if and only if F is satisfiable
and |S|~2𝑛𝑛/2 and 𝑑𝑑~𝑚𝑚.

FAST OV IMPLIES SETH IS FALSE
[W’04]

F- CNF-formula on n vars, m clauses
Split the vars into V1 and V2 on n/2 vars each

For j=1,2 and each partial assignment φ of Vj create (m+2) length
vector v(j, φ):

0 1 0 1 0 … … … … 1

0 if φ satisfies the clause, 1 otherwisefor all v(1, φ)

1 0 0 0 1 … … … … 1

for all v(2, φ) 0 if φ satisfies the clause,
1 otherwise

clauses

E.g. 𝑥𝑥1 ∨ 𝑥𝑥2 ∧ ¬ 𝑥𝑥1 ∨ 𝑥𝑥3 ∨ 𝑥𝑥4 ∧ ¬ 𝑥𝑥3 ∨ ¬ 𝑥𝑥4
V1 = { 𝑥𝑥1, 𝑥𝑥2}, V2 = { 𝑥𝑥3, 𝑥𝑥4}

v(1,[𝑥𝑥1 = 0, 𝑥𝑥2 = 0]) =

[0, 1, 1, 0, 1]

FAST OV IMPLIES SETH IS FALSE

0 1 0 1 0 … … … … 1

0 if φ satisfies the clause, 1 otherwisefor all v(1, φ)

1 0 0 0 1 … … … … 1

for all v(2, ψ) 0 if ψ satisfies the clause,
1 otherwise

Claim: v(1, φ) ¢ v(2, ψ) = 0 iff φ⊙ ψ is a sat assignment.

N = 2𝑛𝑛/2 vectors of dimension 𝑑𝑑 = 𝑂𝑂(𝑚𝑚) → an OV instance.

So 𝑁𝑁2−𝛿𝛿 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) time for OV for 𝛿𝛿 > 0 implies 2𝑛𝑛(1−𝛿𝛿2) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑚𝑚)
time for SAT and SETH is false.

Orthog.
vectors

Graph diameter [RV’13,BRSVW’18], eccentricities
[AVW’16] , local alignment, longest common

substring* [AVW’14], Frechet distance [Br’14], Edit
distance [BI’15], LCS, Dyn. time warping [ABV’15,

BrK’15], subtree isomorphism [ABHVZ’15],
Betweenness [AGV’15], Hamming Closest Pair

[AW15], Reg. Expr. Matching [BI16,BGL17]…

N2- ε

N2- ε’

k-SAT 8 k2(1 - δ)n
[W’04]

Diameter:
Given 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), determine 𝐷𝐷 = max

𝑢𝑢,𝑣𝑣∈𝑉𝑉
𝑑𝑑(𝑢𝑢, 𝑣𝑣).

𝟑𝟑
𝟐𝟐
−Approximate Diameter: output D’ such that 2𝐷𝐷

3
≤ 𝐷𝐷′ ≤ 𝐷𝐷.

Say G has m edges, n vertices.

Using BFS: 𝑂𝑂(𝑚𝑚𝑛𝑛) time Diameter.
Best known even in sparse graphs.

RV’13: 3/2-Approximate Diameter in
�𝑂𝑂 𝑚𝑚

3
2 time – better than mn in sparse

graphs!

We’ll show 3/2−𝜖𝜖 – Diameter for 𝜖𝜖 > 0
requires 𝑚𝑚𝑛𝑛1−𝑜𝑜(1) time under SETH.

Hard: distinguishing between
Diameter 2 or 3 in sparse graphs.

DIAMETER 2 OR 3

Any two vector nodes from the same side are at dist 2.
Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from

everyone.
Two vectors u and v from different sides are at

dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise.

Node per
vector Node per

coordinate

Node per
vector

For each
v,c edge
(v,c) if
v[c]=1

For each
d, u edge
(d,u) if
u[d]=1

X Y

Graph has 𝑂𝑂(𝑛𝑛)
nodes and since
𝑑𝑑 = 𝑂𝑂(log𝑛𝑛),
𝑚𝑚 = Õ(𝑛𝑛) edges

Thm: Diameter 2 or 3 in
O(m2-ε) time implies
O(n2-δ) time for OV and
hence SETH is false.

Reduce from OV on n vectors; due
to “Sparsification Lemma” can
assume dimension is 𝑑𝑑 = 𝑂𝑂(log𝑛𝑛)…

Diameter is 3 if
exists orthogonal

pair, and is 2
otherwise.v

c

d

u

[RV’13]

SEE YOU NEXT TIME!

• Check Piazza and the website for the
lecture notes.

• Please read them before the next class!
• PS: If there’s any related topic you’d like more lecture

notes to read (e.g., NP-completeness) please let us
know via piazza!
(You can also email, but it’s better if other students can
see your questions too, so they can upvote it!)

	6.S078�A Fine-grained Approach to algorithms and Complexity
	Personnel
	6.S078 workload
	Website and PIAZZA
	Plan for the day
	the central question of Algorithms research
	HARD problems
	A canonical hard problem
	Another Hard problem:�Longest Common Subsequence (LCS)
	In theoretical CS, � polynomial time = efficient/easy.�
	We are stuck on many problems, even just in O(n2) time
	We are stuck on many problems, even just in O(n2) time
	We are stuck on many problems, even just in O(n2) time
	We are stuck on many problems, even just in O(n2) time
	PLAN FOR TODAY
	Time hierarchy theorems in complexity theory
	why is k-SAT hard?
	PLAN
	Fine-Grained Hardness�Idea
	CNF SAT is conjectured to be really hard
	Slide Number 21
	Fine-Grained Hardness
	Fine-grained reductions
	Some structure within P
	PLAN
	SETH
	Fast OV implies SETH is false [W’04]
	Fast OV implies SETH is false [W’04]
	Fast OV implies SETH is false
	Slide Number 30
	Diameter 2 or 3
	See you next time!
	Slide Number 33

