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1 Sparsification

Recall the Exponential Time Hypothesis (ETH) of [1]: ∃δ > 0 such that 3-SAT requires 2δn time.

ETH is a strengthening of P 6= NP: not only does 3-SAT require super-polynomial time, but it requires exponential
time.

Now, when you saw NP-hardness reductions in prior algorithms classes, there were many of them from 3-SAT. Could
we use these, and by replacing P 6= NP as an assumption by ETH, obtain that a variety of other problems require
exponential time?

Let us explore this question by revisiting the standard reduction from 3-SAT to Independent Set.

The standard reduction from 3-SAT to Independent Set. Recall the Independent Set (IS) Problem: Given a graph
G = (V,E) and an integer k, is there a subset I ⊆ V with |I| ≥ k so that for every (u, v) ∈ E, either u /∈ I or v /∈ I
(or both), i.e. I is independent.

Let us recall how to reduce 3-SAT to IS. Given a 3-CNF formula F with m clauses and n variables, we produce a
graph as follows. For every clause Cj with literals `1, `2, `3, we create three nodes, one for each literal. Let’s call the
node corresponding to literal `k appearing in clause Cj , v(Cj , `k). We make the three nodes corresponding to each
clause into a triangle: connect every two vertices corresponding to the same clause by an edge.

Then, consider every variable xk of F . If xk appears as xk in clause Cj and as ¬xk in some other clause Ct, then
connect v(Cj , xk) and v(Ct,¬xk) by an edge.

In other words, there are two types of edges: those connecting nodes for the same clause, and those connecting nodes
for the same variable occurring negated and not-negated.

We will show that this graph G contains an independent set of size m if and only if F is satisfiable.

Now, suppose that F is satisfied by some assignment σ. Assignment σ selects (at least) one literal per clause to set
to true. Let `(j) denote that literal for clause Cj . Consider I = {v(C1, `(1)), . . . , v(Cm, `(m))}. I has m vertices
of G, one for each clause. Let’s see why I is independent. There are no edges of the first type since there are no two
nodes for the same clause. Suppose then that there is an edge in G between v(Ci, `(i)) and v(Cj , `(j)). But then,
`(i) = ¬`(j) since it must be an edge of the second type. This is a contradiction since the assignment σ cannot set
both `(j) and ¬`(j) to true.

Now suppose that G has an independent set I of size m. I can have at most one vertex v(Cj ,�) for each clause Cj
since any two vertices for the same clause are connected by an edge. Since I has size m, it must actually have exactly
one vertex per clause. Let v(Cj , `(j)) be the node for clause Cj . Then we create an assignment for the variables of F
as follows: for every `(j), let the assignment be such that `(j) is set to true. Notice that since there are no `(j) and `(i)
for which `(j) = ¬`(i), the assignment to the variables corresponding to the literals `(j) are consistent. To complete
this to a full assignment, assign 1 to all variables that do not appear in the literals `(j). We get an assignment that sets
at least one literal to true in each clause, and hence F is satisfiable.

An example IS instance is shown in Figure 1. The triangles in the figure correspond to the clauses.

Independent Set requires exponential time, under ETH. Let’s attempt to use the above reduction to show that IS
requires exponential time under ETH. Our supposed proof would proceed by contradiction. Suppose that for every
δ > 0, there is an O(2δN ) time algorithm for IS in N -node graphs. Now, given a 3-CNF F on n variables and m
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F = (x1 ∨ ¬x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ y′1) ∧ (¬y′1 ∨ ¬x3 ∨ x4).

x1 ¬x2

y1

¬y1 x3

¬x4
¬x1 x2

y′1
¬y′1 ¬x3

x4

x1 = 0, x2 = 0, x3 = 1, x4 = 1, y1 = 1, y′1 = 1

Figure 1: The reduction from 3-SAT to IS for a particular formula F . The corresponding Independent Set is shown,
together with the corresponding satisfying assignment of F .

clauses, we want to use this algorithm to solve F in O(2εnpoly(m)) time for all ε > 0. We pick our favorite ε > 0
and we want to pick the δ as a function of ε for the 2δN time IS algorithm.

We use the reduction to form a graph G from F . The number of nodes N of G is 3m as we have three nodes per
clause. So for the δ we pick, we would be solving 3-SAT in time O(2δ·3m). Now since m can be as large as n3, there
can be no constant δ that we can pick to get an 2εnpoly(m) time algorithm for 3-SAT!

What we would like is a reduction that produces an IS instance graph on O(n) vertices instead of O(m). Then, our
approach would work. Suppose that we could get a graph G out of a 3-SAT formula F so that G has N ≤ cn nodes
when F has n variables. Then, for every ε > 0, we set δ = ε/c > 0 and use the supposed O(2δN ) time IS algorithm
to solve F in time O(2εn) due to our choice of δ.

One way to achieve such a reduction would be to sparsify 3-SAT, i.e. reduce 3-SAT on n variables and an arbitrary
number of clauses to 3-SAT onO(n) variables andO(n) clauses. Then, we can just use the reduction we already have.
Such a reduction is not known. In fact, if such a reduction could be carried out in polynomial time, then coNP would
be in NP/poly, something that we do not believe is true [3] (actually via [2] even sparsifying to a single formula on
O(n3−ε) number of clauses for any ε > 0 would imply the same conclusion; more on the limits of sparsification can
be found in [4]).

Fortunately, an almost as good sparsification is known. It is an algorithm that takes an arbitrary k-CNF (for any k ≥ 3)
formula on n variables (possibly with a huge number of clauses) and produces a family of formulas with a linear
number of clauses. Specifically, the following “Sparsification Lemma” was proven by Impagliazzo, Paturi and Zane
(2001) [1]:

Theorem 1.1 (“Sparsification Lemma”) Let ε > 0, k ≥ 3 constant. There is a 2εn · poly(n) time algorithm that
takes a k-CNF F on n variables and produces F1, . . . , F2εn , 2εn k-CNFs such that F is satisifed if and only if

∨
i Fi

is satisfied and each Fi has n variables and n · (kε )O(k) clauses. In fact, each variable is in at most poly( 1
ε ) clauses,

and the Fi are over the same variables as F .

We won’t prove the theorem above, but at the end of the notes we will give some intuition for the proof.

Now, let’s see how to use Theorem 1.1 together with the 3-SAT to IS reduction to show that IS requires exponential
time under ETH.
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Assume that IS on N node graphs can be solved in O(2δN ) time for all δ > 0. Suppose that the term (kε )O(k) from
Theorem 1.1 is (kε )Ck (i.e. C is the constant in the big-O). Consider any γ > 0 and let δ = γ3C+1/(6 · 27C · 8C) > 0
and ε = γ/2 > 0. Run the reduction from Theorem 1.1 for that choice of ε, obtaining F1, . . . , F2εn on n(3/ε)3C

clauses each.

Let f(ε) = (3/ε)3C for brevity. For every i, reduce Fi to IS using the standard reduction, obtaining a graph Gi on
3nf(ε) nodes. Then we solve IS on Gi in time O(23δnf(ε)). The total runtime over all i is O(2n(3δf(ε)+ε)).

Consider the coefficient in front of n in the exponent of this runtime:

ε+ 3δf(ε) = γ/2 + 3 · (3 · 2/γ)3C · γ3C+1/(6 · 27C · 8C) =

= γ/2 + γ/2 = γ.

2 SETH implies ETH.

Recall SETH: For every ε > 0 there is a k so that k-SAT on n variables cannot be solved in O(2(1−ε)n) time.

Does SETH imply ETH?

To address this question, let us consider a more believable hypothesis than ETH:

More Believable ETH (MBETH): There exists a k ≥ 3 and a δ > 0 so that k-SAT on n variables cannot be solved in
O(2δn) time.

Clearly, ETH implies MBETH. Similarly, SETH implies MBETH: SETH implies for instance that there is a k that
cannot be solved in O(20.8n) time (choosing ε = 0.2) which clearly implies MBETH.

We will actually show that MBETH is equivalent to ETH! If there is any k for which k-SAT requires exponential time,
then 3-SAT also does. As a byproduct we get that SETH implies ETH.

To prove this, we use Sparsification again.

We will show that if 3-SAT is in 2δn time for all δ > 0, then k-SAT is also in 2δn time for all δ.

We begin with F , a k-CNF with n variables and m clauses.

Consider the standard reduction from k-SAT to 3-SAT. Given a k-CNF F we perform the following conversion: for
each clause (x1 ∨ . . . ∨ xk), where the xi are literals, replace it with (x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2) ∧ . . . ∧
(¬yk−3 ∨ xk−1 ∨ xk). Each original clause gives rise to k − 3 new variables and k − 2 clauses, giving a 3-CNF with
n + m(k − 3) ≤ mk variables and ≤ mk clauses. Now, armed with this reduction, we take a k-CNF F and first
sparsify F via Theorem 1.1. Then we apply our k-CNF to 3-CNF transformation. This yields 2εn k-CNFs with O(n)
clauses, and then 2εn 3-CNFs but with only O(nk) variables and clauses. We solve these CNFs with our supposedly
fast algorithm for 3-SAT.

Our final running time is 2εn · 2O(δnk), so we just choose ε = ε′/2 and δ ≈ ε′

2kc . This leads to a 2ε
′n algorithm for

k-SAT, as desired.

3 K-SUM

Recall that the K-SUM problem is as follows: Given a set S of n integers and a target integer T , determine whether
S contains K integers a1, . . . , aK so that

∑K
i=1 ai = T . We can solve K-SUM in time O(ndK/2e) via a “meet-in-

the-middle” approach. We will see this in later lectures. We will now show that under ETH the exponent of Ω(k) is
necessary.

Theorem 3.1 If ∀ε > 0∃k such that k-SUM on “small” numbers is in O(nεk) time, then ETH is false.
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Proof. Recall that using the Sparsification lemma we can convert any 3-CNF formula into 2εn many sparse formulas.
For simplicity, we will assume that we are working with a single sparse formula. To complete this to a formal argument,
one needs to set some parameters properly, so that the 2εn overhead is negligible.

Let F be a 3-CNF with n variables and O(n) clauses. We first convert it to F ′ which is a “1 in 3 SAT” instance
(exactly one literal must be true in each clause). We do this by replacing each clause (x ∨ y ∨ z) with (x ∨ a ∨ d) ∧
(y ∨ b ∨ d) ∧ (a ∨ b ∨ e) ∧ (c ∨ d ∨ f) ∧ (z ∨ c), where a, b, c, d, e, f are variables that only appear in these 5 clauses
corresponding to the original clause (x ∨ y ∨ z).

It is not hard to see that the clause (x∨ y ∨ z) is satisfied by an assignment φ to x, y, z iff the 5 clauses corresponding
to the clause can be satisfied in a 1-in-3 manner by tacking onto φ an assignment to {a, b, c, d, e, f}.
This yields 6 new variables per clause and 5 clauses per clause, so F ′ has O(m) variables and clauses.

Now we will create an instance of k-SUM. Partition the variables of the 1-in-3 formula into k groups of n/k size
each: V1, . . . , Vk. Look at all possible 2n/k partial assignments for each group. We will assign a number to each
partial assignment for each group, written in base (k + 1). The number corresponding to the partial assignment φ has
a section corresponding to its group and a section corresponding to clauses it satisfies. In the group section, there are k
positions, and there is a 1 in position i for the Vi that φ corresponds to and a 0 otherwise. The target t has a 1 for each
digit in this section, forcing the numbers chosen to solve the k-SUM problem to use one assignment from each group.

For the clause section, record the number of literals for each clause j that φ sets to true (if there is more than one for
any clause, omit φ since it satisfies too many already). The target t has 1 for the digit corresponding to each clause j.

The numbers have m+ k components in base k+ 1, so their size is (k+ 1)m+k and when m = O(n) this is ≈ kO(n)

size. The number of numbers is N = k2n/k so that the size of the bit representation of the numbers, O(log(kn)), is
O(k log k logN).

If k-SUM on n, (k log k) log n-bit numbers is in O(nδk) time ∀δ, then our resulting instance can be solved in
O((k2n/k)δk) time, which is kO(k)2δn time. (Recall one needs to also deal with the 2εn overhead due to the fact
that we have 2εn sparse formulas to start with, but since ε can be made arbitrarily small, one can make it work.) �

4 Sparsification Revisited

We now outline how the sparsification algorithm in Theorem 1.1 works.

Suppose we have the two clauses c1 = (x ∨ y ∨ z) and c2 = (x ∨ y′ ∨ z′). If x is true, we can remove both clauses c1
and c2. If x is false, we can replace the two with (y ∨ z) and (y′ ∨ z′).

This method generalizes to finding a “weak-sunflower”, a set of clauses that share some common sub-clause (weak
because the petals can intersect). Either they can all be removed and replaced with the subclause or this common
subclause can be removed from each clause. There is a tradeoff between the number of clauses involved and the size
of the subclause.

If a k-CNF formula F on n variables has> cn clauses, then consider the literal x that appears in the maximum number
of clauses q. Then the number of clauses must be at most 2nq. So x must appear in > c/2 clauses. Thus any such
dense enough formula must contain a weak-sunflower on > c/2 clauses with a “heart” containing a literal common to
all sunflower clauses. Thus, if no large weak sunflower can be found, the formula has become sparse.

The sparsification algorithm goes through the clauses by size: iterate over i from 2 to k and then j from 1 to k − 1 (i
is the size of clauses being looked at, and j corresponds to the size of the petals). Find `i i-clauses that intersect in
(i− j) literals. In one case remove the clauses and add the core as a clause; in the other case, set all literals in the core
to false (and shrink the `i clauses into j-clauses).

Branch like this for depth εn, yielding 2εn leaves. Each one of these is one of the output formulas. A careful analysis
states that they must be sparse.
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