
6.S078 3SUM Reductions
Lecture 10 Date: October 7, 2020

1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist a, b, c ∈ S with a + b + c = 0? Also,
the 3SUM’ problem: given sets A,B,C of n integers each, are there a ∈ A, b ∈ B, c ∈ C with a+ b+ c = 0?

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using
these interchangeably. We will introduce one more version: 3SUM∗: The input here is a set S of integers
and one needs to decide whether there are a, b, c ∈ S such that a+ b = c.

Theorem 1.1. There is an O(n) time reduction from 3SUM’ on n numbers to 3SUM∗ on n numbers.

Proof. Let A, B, C be an instance of 3SUM’ with n numbers. Suppose that the numbers are in the interval
{−W, . . . ,W}. Let M = W + 1, so that the numbers are in {−M + 1, . . . ,M − 1}.

Let A′ = {a− 5M | a ∈ A}, B′ = {b+ 13M | b ∈ B} and C ′ = {8M − c | c ∈ C}. Let S = A′ ∪B′ ∪C ′.
Notice that the range of A′ is {−6M + 1, . . . ,−4M − 1}, the range of B′ is {12M + 1, . . . , 14M − 1}, and

the range of C ′ is {7M + 1, . . . , 9M − 1}.
If a ∈ A, b ∈ B, c ∈ C, with a+ b+ c = 0, then (a− 5M) + (b+ 13M) = (−c+ 8M), and so if there is a

3SUM’ solution, then there is a 3SUM∗ solution.
Suppose now that there is a 3SUM∗ solution s1 + s2 = s3 with s1, s2, s3 ∈ S. WLOG, s1 ≤ s2.
Suppose that s1 /∈ A′. Then s1, s2 > 7M and so s1 + s2 > 14M which exceeds the range of all A′, B′ and

C ′. Hence s1 ∈ A′.
If s2 /∈ B′, s2 < 9M and since s1 ∈ A′, s1 < −4M . Thus s1 + s2 < 5M , and this only intersects the

range of A′, but not that of B′ or C ′. Thus s1 + s2 = s3 ∈ A′. This also means that s2 ∈ A′, as otherwise
s2 > 7M , and s1 + s2 > 3M which contradicts the previous assertion that s1 + s2 ∈ A′. But on the other
hand, if s2 ∈ A′, we have s1, s2 < −4M and so s1 + s2 < −8M which is a contradiction since all numbers
in A′ are > −6M . Thus we must have s1 ∈ A′ and s2 ∈ B′. But then s1 + s2 > −6M + 12M = 6M , and
s1 + s2 < −4M + 14M = 10M . Hence s3 = s1 + s2 ∈ C ′. Thus we have a ∈ A, b ∈ B, c ∈ C such that
(a− 5M) + (b+ 13M) = (−c+ 8M) so that a+ b+ c = 0. �

One can also reduce 3SUM∗ to 3SUM’, so that 3SUM∗ is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM∗ back to 3SUM’?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane
(x1, y1), . . . , (xn, yn) with integer coordinates xi and with yi ∈ {0, 1, 2} for all i. The question is, is there a
non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points (xi, 0), (xj , 1), (xk, 2) ∈ S so that
xi + xk = 2xj , i.e. (xj , 1) is in the middle between (xi, 0) and (xk, 2).

1

Exercise: Using the above fact, show how you can reduce Geombase to 3SUM’, so that given an
instance S of Geombase on n points you can create A,B,C on at most n integers each so that the
Geombase instance has a solution if and only if there are a ∈ A, b ∈ B, c ∈ C with a+ b+ c = 0.

Now we show the reverse direction. Given a 3SUM’ instance A, B, C, we create a Geombase instance S
that contains for every a ∈ A, a point (2a, 0), for every b ∈ B, a point (2b, 2) and for every c ∈ C, a point
(−c, 1). A Geombase solution corresponds to (2a, 0), (2b, 2), (−c, 1) with 2a+ 2b = −2c, i.e. a+ b+ c = 0, a
3SUM’ solution. �

The second problem we’ll look at is 3-Points-on-a-Line: Given n points in the plane, (x1, y1), . . . , (xn, yn)
with integer coordinates xi and yi, are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-
Line requires n2−o(1) time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every s ∈ S, the
point (s, s3).

(a, a3), (b, b3), (c, c3) are collinear if and only if (c− a)/(b− a) = (c3 − a3)/(b3 − a3). Since a 6= c, b 6= a,
this is equivalent to (b2 + ab + a2) = (c2 + ac + a2), which is the same as (b2 − c2) + a(b − c) = 0. This is
equivalent to (b − c)(a + b + c) = 0. Since b 6= c, this is the same as a + b + c = 0. I.e. (a, b, c) is a 3SUM
solution if and only if (a, a3), (b, b3), (c, c3) is a 3-Points-on-a-Line solution. �

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there i, j, i 6= j so that
A[i] +A[j] = A[i+ j]?

This problem has a trivial O(n2) time algorithm: just try all pairs i, j. This is much more trivial than
the O(n2) time algorithm for 3SUM.

Let’s first show that 3SUM-Convolution can be reduced to 3SUM∗. Given an instance A of length n of
3SUM-Convolution, let S = {(2n+ 1)A[i] + i | i ∈ [n]} be an instance of 3SUM∗.

Exercise: Show that there exist i and j s.t. A[i]+A[j] = A[i+ j] if and only if there are s, s′, s′′ ∈ S
with s+ s′ = s′′.

Now, let us reduce 3SUM∗ to 3SUM-Convolution. Say S is the 3SUM∗ instance. Suppose that we have
some 1 to 1 function f that maps S to [t], where t = O(n) and such that f(i) + f(j) = f(i + j). Then, we
can create an array A of length t, and set for each s ∈ S, set A[f(s)] = s. Then, i + j = k if and only if
A[f(i)] +A[f(j)] = A[f(i) + f(j)] = A[f(k)]. However, we don’t know how to create such a function.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a
be a random odd w bit integer. Let 1 ≤ s < w, and consider the following hash family parameterized by a,
ha : {0, . . . , 2w − 1} 7→ {0, . . . , 2s − 1}:

ha(x) := (a · x mod 2w) >> (w − s).

In other words, ha multiplies x by a and then keeps only the s top-order bits.
These hash functions have the following nice properties which we will not prove.

� Almost Linearity: For all x, y ∈ {0, . . . , 2w − 1}, ha(x+ y) ∈ ha(x) + ha(y) + {0, 1} mod 2s.

� Few False Positives: For any x, y, z ∈ {0, . . . , 2w − 1}, with x+ y 6= z,

Pr[h(z) ∈ h(x) + h(y) + {0, 1} mod 2s] ≤ O(1/2s).

2

� Load Balancing: If n numbers are hashed into R = 2s buckets, then the expected number of elements
mapped to buckets with more than 3n/R elements mapped to them is O(R).

Now we are ready to prove our main theorem.

Theorem 3.1 (Patrascu’10). If 3SUM-Convolution on an n length array is in O(n2−δ) time for some
δ > 0, then there is an ε > 0 so that 3SUM has an O(n2−ε) time randomized algorithm that succeeds with
high probability.

Proof. Suppose that 3SUM-Convolution is in O(n2−δ) time for δ > 0. Let ε = δ/(2 + δ) > 0. Let S be an
instance of 3SUM∗ (we want to find a, b, c ∈ S with a+ b = c).

Set R = n1−ε and hash all elements of S to {0, . . . , R − 1} with a Dietzfelbinger hash function h. For
x ∈ {0, . . . , R− 1}, let B(x) = {s ∈ S | h(s) = x}, i.e. these are the elements hashed to bucket x. Pick some
order of the elements in B(x) (e.g. lexicographic) and for that order, let B(x)[i] denote the ith element in
the bucket.

By the Load Balancing property, the expected number of s ∈ S for which |B(h(s))| > 3n/R is O(R).

Exercise: Show that in O(nR) time you can check whether there is a 3SUM∗ solution involving
some s ∈ S for which |B(h(s))| > 3n/R.

Now, we can assume that for every s, |B(h(s))] ≤ 3n/R ≤ 3nε.
Now, we will iterate through all 27n3ε triples (i, j, k) where i, j, k ∈ [3nε]. For triple (i, j, k) we will try

to figure out if there are x, y, z ∈ {0, . . . , R− 1} so that z = x+ y mod R or z = x+ y + 1 mod R and the
ith element of B(x) plus the jth element of B(y) equals the kth element of B(x+ y mod R) or B(x+ y+ 1
mod R), i.e.

B(x)[i] +B(y)[j] = B((x+ y) mod R)[k] or B(x)[i] +B(y)[j] = B((x+ y + 1) mod R)[k].

We will now show how to do this.
Fix a triple (i, j, k) where i, j, k ∈ [3nε]. Let’s first show how to check if there are x, y, z ∈ {0, . . . , R− 1}

so that x+ y = z and B(x)[i] +B(y)[j] = B(z)[k]. (We will later show how to extend this to check for x, y, z
with z = x+ y mod R and also z = x+ y + 1 mod R.)

Create an array A of length 8R. For each x ∈ {0, . . . , R − 1}, set A[8x + 1] = B(x)[i], set A[8x + 3] =
B(x)[j], A[8x+ 4] = B(x)[k]. Set all remaining elements of A to ∞ (or some sufficiently large element that
cannot participate in a 3SUM∗ solution).

Suppose that B(x)[i] + B(y)[j] = B(x + y)[k]. Then A[8x + 1] + A[8y + 3] = A[8(x + y) + 4], a
3SUM-Convolution solution. On the other hand, suppose that A[8x + s1] + A[8y + s2] = A[8z + s3] and
8x+ s1 + 8y + s2 = 8z + s3, for some s1, s2, s3 ∈ {1, 3, 4} (as all positions of the array A(t) with t mod 8 /∈
{1, 3, 4} do not participate in a 3SUM).

Now, s1 + s2 = s3 mod 8 has a unique solution s1 = 1, s2 = 3, s3 = 4, and in fact then s1 + s2 = s3
mod 8 is equivalent to s1 + s2 = s3. Thus also 8x+ 1 + 8y + 3 = 8z + 4 implies x+ y = z.

Exercise: Convince yourself of the above statement.

We get, A[8x + 1] + A[8y + 3] = A[8(x + y) + 4] and hence B(x)[i] + B(y)[j] = B(x + y)[k], a 3SUM∗

solution.
Now that we showed how to handle the case when x+ y = z, let’s see how to handle x+ y = z mod R.

Since x, y, z ∈ {0, . . . , R− 1}, if x+ y = z mod R, then z = x+ y or z = x+ y+R. Hence, we can just add
another copy of A after A, creating an array A′. The indices of the second copy of A in A′ go from 8R+ 0 to
8R+ (8R− 1), and so any z +R appears as an index for z ∈ {0, . . . , R− 1}, and so the proof of correctness
for the case of x+ y = z +R proceeds exactly as before.

3

Now we have shown how to handle x + y = z mod R. We want to show how to handle x + y + 1 = z
mod R. To do this, we create a second instance of 3SUM-Convolution, again for each fixed (i, j, k). Consider
an array Ā of length 8R formed similarly to A with a slight change. As before, for each x ∈ {0, . . . , R− 1},
set Ā[8x + 3] = B(x)[j], Ā[8x + 4] = B(x)[k]; the change is for i: set Ā[8(x + 1) + 1] = B(x)[i] (instead of
A[8x + 1] = B(x)[i]). As before, set all remaining elements of Ā to ∞ (or some sufficiently large element
that cannot participate in a 3SUM∗ solution). Then, we create an array Ā′ consisting of two concatenated
copies of Ā to handle the mod R behavior.

The proof correctness is similar to before. Suppose that B(x)[i] + B(y)[j] = B(x + y + 1)[k]. Then
Ā′[8(x + 1) + 1] + Ā′[8y + 3] = Ā′[8(x + y + 1) + 4], a 3SUM-Convolution solution. On the other hand,
suppose that Ā′[8(x + 1) + s1] + Ā′[8y + s2] = Ā′[8z + s3] and 8(x + 1) + s1 + 8y + s2 = 8z + s3, for some
s1, s2, s3 ∈ {1, 3, 4}. Now, s1 + s2 = s3 mod 8 has a unique solution s1 = 1, s2 = 3, s3 = 4, and in fact then
s1+s2 = s3 mod 8 is equivalent to s1+s2 = s3. Thus also 8(x+1)+1+8y+3 = 8z+4 implies x+y+1 = z.
We get, Ā′[8(x+ 1) + 1] + Ā′[8y+ 3] = Ā′[8(x+ y+ 1) + 4] and hence B(x)[i] +B(y)[j] = B(x+ y+ 1)[k], a
3SUM solution.

After O(n2−ε) time of work, we get 2 · (3nε)3 instances of 3SUM-Convolution on arrays of size 16n1−ε.
Now, we assumed that 3SUM-Convolution can be solved in O(N2−δ) time for δ > 0 on sequences of

length N . We apply this algorithm to get a runtime of O(n2−ε)+

O(n3εn(1−ε)(2−δ)) = O(n2+ε(1+δ)−δ).

If we set ε = δ/(2 + δ) > 0, the exponent above becomes 2− ε, and the overall runtime is O(n2−
δ

δ+2). �

4

