6.5078 3SUM Reductions
Lecture 10 Date: October 7, 2020

1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist a,b,c € S with a + b+ ¢ = 07 Also,
the 3SUM’ problem: given sets A,B,C of n integers each, are there a € A,b € B,c € C with a4+ b+ ¢ =07

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using
these interchangeably. We will introduce one more version: 3SUM*: The input here is a set S of integers
and one needs to decide whether there are a,b,c € S such that a + b = c.

Theorem 1.1. There is an O(n) time reduction from 3SUM’ on n numbers to 3SUM* on n numbers.

Proof. Let A, B, C be an instance of 3SUM’ with n numbers. Suppose that the numbers are in the interval
{-W,...,W}. Let M =W + 1, so that the numbers are in {—M +1,..., M — 1}.

Let A ={a—5M |ac A}, BB ={b+13M |be Byand C'={8M —c|ce C}. Let S=A"UB' UC".

Notice that the range of A’ is {—6M +1,...,—4M — 1}, the range of B' is {12M +1,...,14M — 1}, and
the range of C' is {TM +1,...,9M — 1}.

Ifae Ajbe B,ce C, witha+b+c=0, then (a —5M) + (b4 13M) = (—c+ 8M), and so if there is a
3SUM’ solution, then there is a 3SUM™* solution.

Suppose now that there is a 3SSUM* solution s; + s3 = s3 with s, 83,53 € S. WLOG, s1 < s5.

Suppose that s1 ¢ A’. Then s1,s5 > 7TM and so s1 + s2 > 14M which exceeds the range of all A’, B’ and
C'. Hence s; € A'.

If 55 ¢ B’, s5 < 9M and since s;7 € A', 517 < —4M. Thus $; + s < 5M, and this only intersects the
range of A’, but not that of B’ or C’. Thus s; + so = s3 € A’. This also means that so € A’, as otherwise
s9 > TM, and s; + s > 3M which contradicts the previous assertion that s; + so € A’. But on the other
hand, if s5 € A’, we have s1,s5 < —4M and so s + sy < —8M which is a contradiction since all numbers
in A" are > —6M. Thus we must have s; € A’ and s, € B’. But then s1 + so > —6M + 12M = 6M, and
$1 + 89 < —4M + 14M = 10M. Hence s3 = s1 + so € C’. Thus we have a € A,b € B,c € C such that
(a—=5M)+ (b+13M) = (—c+8M) so that a + b+ ¢ = 0. O

One can also reduce 3SUM* to 3SUM’, so that 3SUM* is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM* back to 3SUM’?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane
(1,91),- -+, (Tn,yn) with integer coordinates z; and with y; € {0,1,2} for all i. The question is, is there a
non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points (x;,0), (;,1), (x%,2) € S so that
x; + xp = 225, i.e. (z;,1) is in the middle between (x;,0) and (z, 2).



Exercise: Using the above fact, show how you can reduce Geombase to 3SUM’, so that given an
instance S of Geombase on n points you can create A,B,C' on at most n integers each so that the
Geombase instance has a solution if and only if there are a € A,b € B,c € C with a+ b+ ¢c=0.

Now we show the reverse direction. Given a 3SUM’ instance A, B, C, we create a Geombase instance S
that contains for every a € A, a point (2a,0), for every b € B, a point (2b,2) and for every ¢ € C, a point
(—¢,1). A Geombase solution corresponds to (2a,0), (2b,2), (—¢,1) with 2a 4+ 2b = —2¢, i.e. a+b+c¢=0, a
3SUM’ solution. a

The second problem we’ll look at is 3-Points-on-a-Line: Given n points in the plane, (x1,y1), .-, (Tn, Yn)
with integer coordinates x; and y;, are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-
Line requires n?>~°M) time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every s € S, the
point (s, s?).

(a,a®), (b,b3), (c,c?) are collinear if and only if (¢ —a)/(b—a) = (3 — a®)/(b® — a®). Since a # ¢, b # a,
this is equivalent to (b + ab + a?) = (¢* + ac + a?), which is the same as (b?> — ¢?) + a(b — ¢) = 0. This is
equivalent to (b —¢)(a+ b+ ¢) = 0. Since b # ¢, this is the same as a + b+ ¢ = 0. Le. (a,b,c) is a 3SUM
solution if and only if (a, a®), (b,b%), (¢, ¢?) is a 3-Points-on-a-Line solution. O

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there 4,7, i # j so that
All) + A[j] = Afi + 4]?

This problem has a trivial O(n?) time algorithm: just try all pairs 4,. This is much more trivial than
the O(n?) time algorithm for 3SUM.

Let’s first show that 3SUM-Convolution can be reduced to 3SUM*. Given an instance A of length n of
3SUM-Convolution, let S = {(2n + 1)A[i] + i | ¢ € [n]} be an instance of 3SUM*.

Exercise: Show that there exist ¢ and j s.t. A[i]+ A[j] = A[i + 7] if and only if there are s,s’,s" € S
with s + ¢ = s".

Now, let us reduce 3SUM* to 3SUM-Convolution. Say S is the 3SUM* instance. Suppose that we have
some 1 to 1 function f that maps S to [t], where ¢ = O(n) and such that f(i) + f(j) = f(i + j). Then, we
can create an array A of length ¢, and set for each s € S, set A[f(s)] = s. Then, i + j = k if and only if
A[f(D)]) + A[f(4)] = Alf (@) + f(5)] = A[f(k)]. However, we don’t know how to create such a function.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a
be a random odd w bit integer. Let 1 < s < w, and consider the following hash family parameterized by a,
hae: {0,...,2% =1} — {0,...,2° — 1}:

he(z) :==(a-x mod 2¥) >> (w — s).

In other words, h, multiplies x by a and then keeps only the s top-order bits.
These hash functions have the following nice properties which we will not prove.

e Almost Linearity: For all x,y € {0,...,2¥ — 1}, ho(z 4+ y) € ha(x) + ha(y) + {0,1} mod 2°.
e Few False Positives: For any z,y,z € {0,...,2% — 1}, with  + y # z,
Prih(z) € h(z) + h(y) + {0,1} mod 2°] < O(1/2%).



¢ Load Balancing: If n numbers are hashed into R = 2° buckets, then the expected number of elements
mapped to buckets with more than 3n/R elements mapped to them is O(R).

Now we are ready to prove our main theorem.

Theorem 3.1 (Patrascu’l0). If 3SUM-Convolution on an n length array is in O(n>~%) time for some
§ > 0, then there is an € > 0 so that 3SUM has an O(n*~¢) time randomized algorithm that succeeds with
high probability.

Proof. Suppose that 3SUM-Convolution is in O(n?>~°%) time for § > 0. Let ¢ = /(2 4+ d) > 0. Let S be an
instance of 3SUM* (we want to find a,b,c € S with a + b = ¢).

Set R = n'~¢ and hash all elements of S to {0,...,R — 1} with a Dietzfelbinger hash function h. For
x€{0,...,R—1},1et B(z) = {s € S| h(s) = z}, i.e. these are the elements hashed to bucket z. Pick some
order of the elements in B(z) (e.g. lexicographic) and for that order, let B(z)[i] denote the ith element in
the bucket.

By the Load Balancing property, the expected number of s € S for which |B(h(s))| > 3n/R is O(R).

Exercise: Show that in O(nR) time you can check whether there is a 3SUM* solution involving
some s € S for which |B(h(s))| > 3n/R.

Now, we can assume that for every s, |B(h(s))] < 3n/R < 3n°.

Now, we will iterate through all 27n3¢ triples (i, j, k) where i, j, k € [3n°]. For triple (i, j, k) we will try
to figure out if there are z,y,2 € {0,...,R— 1} sothat z =2 +y mod Ror z=2+y+1 mod R and the
ith element of B(z) plus the jth element of B(y) equals the kth element of B(z +y mod R) or B(zx +y+1
mod R), i.e.

B(@)[i] + B(y)ljl = B((z +y) mod R)[k] or B(z)[i] + B(y)[j] = B((x +y +1) mod R)[k].

We will now show how to do this.

Fix a triple (i, j, k) where 4, j, k € [3n°]. Let’s first show how to check if there are z,y,z € {0,...,R—1}
so that x +y = z and B(x)[i| + B(y)[j] = B(z)[k]. (We will later show how to extend this to check for z,y, z
with z=2 4y mod R and also z=2+y+1 mod R.)

Create an array A of length 8R. For each x € {0,...,R — 1}, set A[8x + 1] = B(z)[i], set A8z + 3] =
B(z)[j], A8z + 4] = B(z)[k]. Set all remaining elements of A to oo (or some sufficiently large element that
cannot participate in a 3SUM* solution).

Suppose that B(x)[i] + B(y)[j] = B(x + y)[k]. Then A[8z + 1] + A8y + 3] = AB(z +y) + 4], a
3SUM-Convolution solution. On the other hand, suppose that A[8z + s1] + A[8y + s2] = A[8z + s3] and
8x + s1 + 8y + s9 = 8z + s3, for some 1, s9,83 € {1,3,4} (as all positions of the array A(t) with ¢ mod 8 ¢
{1,3,4} do not participate in a 3SUM).

Now, s; + s = s3 mod 8 has a unique solution s; = 1,59 = 3,s3 = 4, and in fact then s; + s = s3
mod 8 is equivalent to s; + so = s3. Thus also 8x + 1+ 8y + 3 =8z + 4 implies z +y = z.

Exercise: Convince yourself of the above statement.

We get, A[8z + 1] + A8y + 3] = A[8(z + y) + 4] and hence B(z)[i] + B(y)[j] = B(z + y)[k], a 3SUM*
solution.

Now that we showed how to handle the case when x + y = z, let’s see how to handle z + y = z mod R.
Since z,y,z € {0,...,R—1},if z+y =2z mod R, then z =2 +y or z = x +y + R. Hence, we can just add
another copy of A after A, creating an array A’. The indices of the second copy of A in A’ go from 8 R+ 0 to
8R+ (8R — 1), and so any z + R appears as an index for z € {0,..., R — 1}, and so the proof of correctness
for the case of x + y = z + R proceeds exactly as before.



Now we have shown how to handle x + y = z mod R. We want to show how to handle x + y + 1 = 2
mod R. To do this, we create a second instance of 3SUM-Convolution, again for each fixed (i, j, k). Consider
an array A of length 8 R formed similarly to A with a slight change. As before, for each z € {0,..., R — 1},
set A[8z + 3] = B(x)[j], A[8x + 4] = B(z)[k]; the change is for i: set A[8(x + 1) + 1] = B(z)]i] (instead of
A[8z 4+ 1] = B(x)[i]). As before, set all remaining elements of A to oo (or some sufficiently large element
that cannot participate in a 3SUM* solution). Then, we create an array A’ consisting of two concatenated
copies of A to handle the mod R behavior.

The proof correctness is similar to before. Suppose that B(x)[i] + B(y)[j] = B(z + y + 1)[k]. Then
A'8(x +1)+ 1] + A8y + 3] = A'[8(x +y + 1) + 4], a 3SUM-Convolution solution. On the other hand,
suppose that A'[8(z + 1) + s1] + A'[8y + s2] = A'[82 + s3] and 8(x + 1) + s1 + 8y + s2 = 8z + s3, for some
s1, 82,83 € {1,3,4}. Now, s1 + s2 = s3 mod 8 has a unique solution s; = 1,59 = 3, s3 = 4, and in fact then
$1+52 = s3 mod 8 is equivalent to s;+s = s3. Thus also 8(z+1)+1+48y+3 = 8z+4 implies z+y+1 = z.
We get, A'[8(z+ 1)+ 1]+ A'[8y + 3] = A'[8(x +y + 1) + 4] and hence B(z)[i] + B(y)[j] = B(z +y + 1)[k], a
3SUM solution.

After O(n?~¢) time of work, we get 2 - (3n°)? instances of 3SUM-Convolution on arrays of size 16n'~¢.

Now, we assumed that 3SUM-Convolution can be solved in O(N?~?) time for § > 0 on sequences of
length N. We apply this algorithm to get a runtime of O(n?~¢)+

O(n3€n(175)(275)) _ O(n2+5(1+5)75)'

If we set € = 6/(2+ d) > 0, the exponent above becomes 2 — ¢, and the overall runtime is O(n2_5%). O



