6.S078 Lecture 10

1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist $a, b, c \in S$ with a + b + c = 0? Also, the 3SUM' problem: given sets A, B, C of n integers each, are there $a \in A, b \in B, c \in C$ with a + b + c = 0?

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using these interchangeably. We will introduce one more version: $3SUM^*$: The input here is a set S of integers and one needs to decide whether there are $a, b, c \in S$ such that a + b = c.

Theorem 1.1. There is an O(n) time reduction from 3SUM' on n numbers to $3SUM^*$ on n numbers.

Proof. Let A, B, C be an instance of 3SUM' with n numbers. Suppose that the numbers are in the interval $\{-W, \ldots, W\}$. Let M = W + 1, so that the numbers are in $\{-M + 1, \ldots, M - 1\}$.

Let $A' = \{a - 5M \mid a \in A\}, B' = \{b + 13M \mid b \in B\}$ and $C' = \{8M - c \mid c \in C\}$. Let $S = A' \cup B' \cup C'$. Notice that the range of A' is $\{-6M + 1, \dots, -4M - 1\}$, the range of B' is $\{12M + 1, \dots, 14M - 1\}$, and the range of C' is $\{7M + 1, \dots, 9M - 1\}$.

If $a \in A, b \in B, c \in C$, with a + b + c = 0, then (a - 5M) + (b + 13M) = (-c + 8M), and so if there is a 3SUM' solution, then there is a 3SUM* solution.

Suppose now that there is a 3SUM^{*} solution $s_1 + s_2 = s_3$ with $s_1, s_2, s_3 \in S$. WLOG, $s_1 \leq s_2$.

Suppose that $s_1 \notin A'$. Then $s_1, s_2 > 7M$ and so $s_1 + s_2 > 14M$ which exceeds the range of all A', B' and C'. Hence $s_1 \in A'$.

If $s_2 \notin B'$, $s_2 < 9M$ and since $s_1 \in A'$, $s_1 < -4M$. Thus $s_1 + s_2 < 5M$, and this only intersects the range of A', but not that of B' or C'. Thus $s_1 + s_2 = s_3 \in A'$. This also means that $s_2 \in A'$, as otherwise $s_2 > 7M$, and $s_1 + s_2 > 3M$ which contradicts the previous assertion that $s_1 + s_2 \in A'$. But on the other hand, if $s_2 \in A'$, we have $s_1, s_2 < -4M$ and so $s_1 + s_2 < -8M$ which is a contradiction since all numbers in A' are > -6M. Thus we must have $s_1 \in A'$ and $s_2 \in B'$. But then $s_1 + s_2 > -6M + 12M = 6M$, and $s_1 + s_2 < -4M + 14M = 10M$. Hence $s_3 = s_1 + s_2 \in C'$. Thus we have $a \in A, b \in B, c \in C$ such that (a - 5M) + (b + 13M) = (-c + 8M) so that a + b + c = 0.

One can also reduce 3SUM^{*} to 3SUM^{*}, so that 3SUM^{*} is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM^{*} back to 3SUM'?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is **Geombase** in which we are given n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$ with integer coordinates x_i and with $y_i \in \{0, 1, 2\}$ for all i. The question is, is there a non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points $(x_i, 0), (x_j, 1), (x_k, 2) \in S$ so that $x_i + x_k = 2x_j$, i.e. $(x_j, 1)$ is in the middle between $(x_i, 0)$ and $(x_k, 2)$.

Exercise: Using the above fact, show how you can reduce Geombase to 3SUM', so that given an instance S of Geombase on n points you can create A,B,C on at most n integers each so that the Geombase instance has a solution if and only if there are $a \in A, b \in B, c \in C$ with a + b + c = 0.

Now we show the reverse direction. Given a 3SUM' instance A, B, C, we create a Geombase instance S that contains for every $a \in A$, a point (2a, 0), for every $b \in B$, a point (2b, 2) and for every $c \in C$, a point (-c, 1). A Geombase solution corresponds to (2a, 0), (2b, 2), (-c, 1) with 2a + 2b = -2c, i.e. a + b + c = 0, a 3SUM' solution.

The second problem we'll look at is 3-Points-on-a-Line: Given n points in the plane, $(x_1, y_1), \ldots, (x_n, y_n)$ with integer coordinates x_i and y_i , are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-Line requires $n^{2-o(1)}$ time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every $s \in S$, the point (s, s^3) .

 $(a, a^3), (b, b^3), (c, c^3)$ are collinear if and only if $(c-a)/(b-a) = (c^3 - a^3)/(b^3 - a^3)$. Since $a \neq c, b \neq a$, this is equivalent to $(b^2 + ab + a^2) = (c^2 + ac + a^2)$, which is the same as $(b^2 - c^2) + a(b-c) = 0$. This is equivalent to (b-c)(a+b+c) = 0. Since $b \neq c$, this is the same as a+b+c=0. I.e. (a,b,c) is a 3SUM solution if and only if $(a, a^3), (b, b^3), (c, c^3)$ is a 3-Points-on-a-Line solution.

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there $i, j, i \neq j$ so that A[i] + A[j] = A[i+j]?

This problem has a trivial $O(n^2)$ time algorithm: just try all pairs i, j. This is much more trivial than the $O(n^2)$ time algorithm for 3SUM.

Let's first show that 3SUM-Convolution can be reduced to 3SUM^{*}. Given an instance A of length n of 3SUM-Convolution, let $S = \{(2n+1)A[i] + i \mid i \in [n]\}$ be an instance of 3SUM^{*}.

Exercise: Show that there exist i and j s.t. A[i] + A[j] = A[i+j] if and only if there are $s, s', s'' \in S$ with s + s' = s''.

Now, let us reduce 3SUM^{*} to 3SUM-Convolution. Say S is the 3SUM^{*} instance. Suppose that we have some 1 to 1 function f that maps S to [t], where t = O(n) and such that f(i) + f(j) = f(i+j). Then, we can create an array A of length t, and set for each $s \in S$, set A[f(s)] = s. Then, i + j = k if and only if A[f(i)] + A[f(j)] = A[f(i) + f(j)] = A[f(k)]. However, we don't know how to create such a function.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let $1 \le s < w$, and consider the following hash family parameterized by a, h_a : $\{0, \ldots, 2^w - 1\} \mapsto \{0, \ldots, 2^s - 1\}$:

$$h_a(x) := (a \cdot x \mod 2^w) >> (w - s).$$

In other words, h_a multiplies x by a and then keeps only the s top-order bits.

These hash functions have the following nice properties which we will not prove.

- Almost Linearity: For all $x, y \in \{0, \dots, 2^w 1\}$, $h_a(x + y) \in h_a(x) + h_a(y) + \{0, 1\} \mod 2^s$.
- Few False Positives: For any $x, y, z \in \{0, \dots, 2^w 1\}$, with $x + y \neq z$,

$$Pr[h(z) \in h(x) + h(y) + \{0, 1\} \mod 2^{s}] \le O(1/2^{s})$$

• Load Balancing: If n numbers are hashed into $R = 2^s$ buckets, then the expected number of elements mapped to buckets with more than 3n/R elements mapped to them is O(R).

Now we are ready to prove our main theorem.

Theorem 3.1 (Patrascu'10). If 3SUM-Convolution on an n length array is in $O(n^{2-\delta})$ time for some $\delta > 0$, then there is an $\varepsilon > 0$ so that 3SUM has an $O(n^{2-\varepsilon})$ time randomized algorithm that succeeds with high probability.

Proof. Suppose that 3SUM-Convolution is in $O(n^{2-\delta})$ time for $\delta > 0$. Let $\varepsilon = \delta/(2+\delta) > 0$. Let S be an instance of 3SUM^{*} (we want to find $a, b, c \in S$ with a + b = c).

Set $R = n^{1-\varepsilon}$ and hash all elements of S to $\{0, \ldots, R-1\}$ with a Dietzfelbinger hash function h. For $x \in \{0, \ldots, R-1\}$, let $B(x) = \{s \in S \mid h(s) = x\}$, i.e. these are the elements hashed to bucket x. Pick some order of the elements in B(x) (e.g. lexicographic) and for that order, let B(x)[i] denote the *i*th element in the bucket.

By the Load Balancing property, the expected number of $s \in S$ for which |B(h(s))| > 3n/R is O(R).

Exercise: Show that in O(nR) time you can check whether there is a 3SUM^{*} solution involving some $s \in S$ for which |B(h(s))| > 3n/R.

Now, we can assume that for every s, $|B(h(s))| \le 3n/R \le 3n^{\varepsilon}$.

Now, we will iterate through all $27n^{3\varepsilon}$ triples (i, j, k) where $i, j, k \in [3n^{\varepsilon}]$. For triple (i, j, k) we will try to figure out if there are $x, y, z \in \{0, \ldots, R-1\}$ so that $z = x + y \mod R$ or $z = x + y + 1 \mod R$ and the *i*th element of B(x) plus the *j*th element of B(y) equals the *k*th element of $B(x + y \mod R)$ or $B(x + y + 1 \mod R)$, i.e.

 $B(x)[i] + B(y)[j] = B((x+y) \mod R)[k] \text{ or } B(x)[i] + B(y)[j] = B((x+y+1) \mod R)[k].$

We will now show how to do this.

Fix a triple (i, j, k) where $i, j, k \in [3n^{\varepsilon}]$. Let's first show how to check if there are $x, y, z \in \{0, \ldots, R-1\}$ so that x + y = z and B(x)[i] + B(y)[j] = B(z)[k]. (We will later show how to extend this to check for x, y, z with $z = x + y \mod R$ and also $z = x + y + 1 \mod R$.)

Create an array A of length 8R. For each $x \in \{0, ..., R-1\}$, set A[8x+1] = B(x)[i], set A[8x+3] = B(x)[j], A[8x+4] = B(x)[k]. Set all remaining elements of A to ∞ (or some sufficiently large element that cannot participate in a 3SUM^{*} solution).

Suppose that B(x)[i] + B(y)[j] = B(x+y)[k]. Then A[8x+1] + A[8y+3] = A[8(x+y)+4], a 3SUM-Convolution solution. On the other hand, suppose that $A[8x+s_1] + A[8y+s_2] = A[8z+s_3]$ and $8x+s_1+8y+s_2=8z+s_3$, for some $s_1, s_2, s_3 \in \{1,3,4\}$ (as all positions of the array A(t) with $t \mod 8 \notin \{1,3,4\}$ do not participate in a 3SUM).

Now, $s_1 + s_2 = s_3 \mod 8$ has a unique solution $s_1 = 1, s_2 = 3, s_3 = 4$, and in fact then $s_1 + s_2 = s_3 \mod 8$ is equivalent to $s_1 + s_2 = s_3$. Thus also 8x + 1 + 8y + 3 = 8z + 4 implies x + y = z.

Exercise: Convince yourself of the above statement.

We get, A[8x + 1] + A[8y + 3] = A[8(x + y) + 4] and hence B(x)[i] + B(y)[j] = B(x + y)[k], a 3SUM* solution.

Now that we showed how to handle the case when x + y = z, let's see how to handle $x + y = z \mod R$. Since $x, y, z \in \{0, ..., R-1\}$, if $x + y = z \mod R$, then z = x + y or z = x + y + R. Hence, we can just add another copy of A after A, creating an array A'. The indices of the second copy of A in A' go from 8R + 0 to 8R + (8R - 1), and so any z + R appears as an index for $z \in \{0, ..., R-1\}$, and so the proof of correctness for the case of x + y = z + R proceeds exactly as before. Now we have shown how to handle $x + y = z \mod R$. We want to show how to handle $x + y + 1 = z \mod R$. To do this, we create a second instance of 3SUM-Convolution, again for each fixed (i, j, k). Consider an array \overline{A} of length 8R formed similarly to A with a slight change. As before, for each $x \in \{0, \ldots, R-1\}$, set $\overline{A}[8x + 3] = B(x)[j]$, $\overline{A}[8x + 4] = B(x)[k]$; the change is for i: set $\overline{A}[8(x + 1) + 1] = B(x)[i]$ (instead of A[8x + 1] = B(x)[i]). As before, set all remaining elements of \overline{A} to ∞ (or some sufficiently large element that cannot participate in a 3SUM^{*} solution). Then, we create an array \overline{A}' consisting of two concatenated copies of \overline{A} to handle the mod R behavior.

The proof correctness is similar to before. Suppose that B(x)[i] + B(y)[j] = B(x + y + 1)[k]. Then $\bar{A}'[8(x + 1) + 1] + \bar{A}'[8y + 3] = \bar{A}'[8(x + y + 1) + 4]$, a 3SUM-Convolution solution. On the other hand, suppose that $\bar{A}'[8(x + 1) + s_1] + \bar{A}'[8y + s_2] = \bar{A}'[8z + s_3]$ and $8(x + 1) + s_1 + 8y + s_2 = 8z + s_3$, for some $s_1, s_2, s_3 \in \{1, 3, 4\}$. Now, $s_1 + s_2 = s_3 \mod 8$ has a unique solution $s_1 = 1, s_2 = 3, s_3 = 4$, and in fact then $s_1 + s_2 = s_3 \mod 8$ is equivalent to $s_1 + s_2 = s_3$. Thus also 8(x+1) + 1 + 8y + 3 = 8z + 4 implies x + y + 1 = z. We get, $\bar{A}'[8(x + 1) + 1] + \bar{A}'[8y + 3] = \bar{A}'[8(x + y + 1) + 4]$ and hence B(x)[i] + B(y)[j] = B(x + y + 1)[k], a 3SUM solution.

After $O(n^{2-\varepsilon})$ time of work, we get $2 \cdot (3n^{\varepsilon})^3$ instances of 3SUM-Convolution on arrays of size $16n^{1-\varepsilon}$.

Now, we assumed that 3SUM-Convolution can be solved in $O(N^{2-\delta})$ time for $\delta > 0$ on sequences of length N. We apply this algorithm to get a runtime of $O(n^{2-\varepsilon})+$

$$O(n^{3\varepsilon}n^{(1-\varepsilon)(2-\delta)}) = O(n^{2+\varepsilon(1+\delta)-\delta}).$$

If we set $\varepsilon = \delta/(2+\delta) > 0$, the exponent above becomes $2-\varepsilon$, and the overall runtime is $O(n^{2-\frac{\delta}{\delta+2}})$.