1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist $a, b, c \in S$ with $a+b+c=0$? Also, the 3SUM' problem: given sets A, B, C of n integers each, are there $a \in A, b \in B, c \in C$ with $a+b+c=0$?

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using these interchangeably. We will introduce one more version: $3 \mathrm{SUM}^{*}$: The input here is a set S of integers and one needs to decide whether there are $a, b, c \in S$ such that $a+b=c$.

Theorem 1.1. There is an $O(n)$ time reduction from $3 S U M^{\prime}$ on n numbers to $3 S U M^{*}$ on n numbers.
Proof. Let A, B, C be an instance of 3 SUM' with n numbers. Suppose that the numbers are in the interval $\{-W, \ldots, W\}$. Let $M=W+1$, so that the numbers are in $\{-M+1, \ldots, M-1\}$.

Let $A^{\prime}=\{a-5 M \mid a \in A\}, B^{\prime}=\{b+13 M \mid b \in B\}$ and $C^{\prime}=\{8 M-c \mid c \in C\}$. Let $S=A^{\prime} \cup B^{\prime} \cup C^{\prime}$.
Notice that the range of A^{\prime} is $\{-6 M+1, \ldots,-4 M-1\}$, the range of B^{\prime} is $\{12 M+1, \ldots, 14 M-1\}$, and the range of C^{\prime} is $\{7 M+1, \ldots, 9 M-1\}$.

If $a \in A, b \in B, c \in C$, with $a+b+c=0$, then $(a-5 M)+(b+13 M)=(-c+8 M)$, and so if there is a 3 SUM' solution, then there is a $3 \mathrm{SUM}^{*}$ solution.

Suppose now that there is a $3 \mathrm{SUM}^{*}$ solution $s_{1}+s_{2}=s_{3}$ with $s_{1}, s_{2}, s_{3} \in S$. WLOG, $s_{1} \leq s_{2}$.
Suppose that $s_{1} \notin A^{\prime}$. Then $s_{1}, s_{2}>7 M$ and so $s_{1}+s_{2}>14 M$ which exceeds the range of all A^{\prime}, B^{\prime} and C^{\prime}. Hence $s_{1} \in A^{\prime}$.

If $s_{2} \notin B^{\prime}, s_{2}<9 M$ and since $s_{1} \in A^{\prime}, s_{1}<-4 M$. Thus $s_{1}+s_{2}<5 M$, and this only intersects the range of A^{\prime}, but not that of B^{\prime} or C^{\prime}. Thus $s_{1}+s_{2}=s_{3} \in A^{\prime}$. This also means that $s_{2} \in A^{\prime}$, as otherwise $s_{2}>7 M$, and $s_{1}+s_{2}>3 M$ which contradicts the previous assertion that $s_{1}+s_{2} \in A^{\prime}$. But on the other hand, if $s_{2} \in A^{\prime}$, we have $s_{1}, s_{2}<-4 M$ and so $s_{1}+s_{2}<-8 M$ which is a contradiction since all numbers in A^{\prime} are $>-6 M$. Thus we must have $s_{1} \in A^{\prime}$ and $s_{2} \in B^{\prime}$. But then $s_{1}+s_{2}>-6 M+12 M=6 M$, and $s_{1}+s_{2}<-4 M+14 M=10 M$. Hence $s_{3}=s_{1}+s_{2} \in C^{\prime}$. Thus we have $a \in A, b \in B, c \in C$ such that $(a-5 M)+(b+13 M)=(-c+8 M)$ so that $a+b+c=0$.

One can also reduce $3 \mathrm{SUM}^{*}$ to $3 \mathrm{SUM}^{\prime}$, so that $3 \mathrm{SUM}^{*}$ is yet another equivalent version to 3 SUM .

Exercise: How can you reduce $3 \mathrm{SUM}^{*}$ back to 3 SUM'?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with integer coordinates x_{i} and with $y_{i} \in\{0,1,2\}$ for all i. The question is, is there a non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to $3 S U M$.
Proof. Geombase is equivalent to the problem whether there exist points $\left(x_{i}, 0\right),\left(x_{j}, 1\right),\left(x_{k}, 2\right) \in S$ so that $x_{i}+x_{k}=2 x_{j}$, i.e. $\left(x_{j}, 1\right)$ is in the middle between $\left(x_{i}, 0\right)$ and $\left(x_{k}, 2\right)$.

Exercise: Using the above fact, show how you can reduce Geombase to 3SUM', so that given an instance S of Geombase on n points you can create A, B, C on at most n integers each so that the Geombase instance has a solution if and only if there are $a \in A, b \in B, c \in C$ with $a+b+c=0$.

Now we show the reverse direction. Given a 3 SUM' $^{\prime}$ instance A, B, C, we create a Geombase instance S that contains for every $a \in A$, a point $(2 a, 0)$, for every $b \in B$, a point $(2 b, 2)$ and for every $c \in C$, a point $(-c, 1)$. A Geombase solution corresponds to $(2 a, 0),(2 b, 2),(-c, 1)$ with $2 a+2 b=-2 c$, i.e. $a+b+c=0$, a 3SUM' solution.

The second problem we'll look at is 3-Points-on-a-Line: Given n points in the plane, $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ with integer coordinates x_{i} and y_{i}, are there three points that lie on the same line?

Theorem 2.2. 3 SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-aLine requires $n^{2-o(1)}$ time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every $s \in S$, the point $\left(s, s^{3}\right)$.
$\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ are collinear if and only if $(c-a) /(b-a)=\left(c^{3}-a^{3}\right) /\left(b^{3}-a^{3}\right)$. Since $a \neq c, b \neq a$, this is equivalent to $\left(b^{2}+a b+a^{2}\right)=\left(c^{2}+a c+a^{2}\right)$, which is the same as $\left(b^{2}-c^{2}\right)+a(b-c)=0$. This is equivalent to $(b-c)(a+b+c)=0$. Since $b \neq c$, this is the same as $a+b+c=0$. I.e. (a, b, c) is a 3SUM solution if and only if $\left(a, a^{3}\right),\left(b, b^{3}\right),\left(c, c^{3}\right)$ is a 3-Points-on-a-Line solution.

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there $i, j, i \neq j$ so that $A[i]+A[j]=A[i+j]$?

This problem has a trivial $O\left(n^{2}\right)$ time algorithm: just try all pairs i, j. This is much more trivial than the $O\left(n^{2}\right)$ time algorithm for 3SUM.

Let's first show that 3 SUM-Convolution can be reduced to $3 \mathrm{SUM}^{*}$. Given an instance A of length n of 3SUM-Convolution, let $S=\{(2 n+1) A[i]+i \mid i \in[n]\}$ be an instance of $3 \mathrm{SUM}^{*}$.

Exercise: Show that there exist i and j s.t. $A[i]+A[j]=A[i+j]$ if and only if there are $s, s^{\prime}, s^{\prime \prime} \in S$ with $s+s^{\prime}=s^{\prime \prime}$.

Now, let us reduce $3 \mathrm{SUM}^{*}$ to 3 SUM-Convolution. Say S is the $3 \mathrm{SUM}^{*}$ instance. Suppose that we have some 1 to 1 function f that maps S to $[t]$, where $t=O(n)$ and such that $f(i)+f(j)=f(i+j)$. Then, we can create an array A of length t, and set for each $s \in S$, set $A[f(s)]=s$. Then, $i+j=k$ if and only if $A[f(i)]+A[f(j)]=A[f(i)+f(j)]=A[f(k)]$. However, we don't know how to create such a function.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let $1 \leq s<w$, and consider the following hash family parameterized by a, $h_{a}:\left\{0, \ldots, 2^{w}-1\right\} \mapsto\left\{0, \ldots, 2^{s}-1\right\}:$

$$
h_{a}(x):=\left(a \cdot x \quad \bmod 2^{w}\right) \gg(w-s) .
$$

In other words, h_{a} multiplies x by a and then keeps only the s top-order bits.
These hash functions have the following nice properties which we will not prove.

- Almost Linearity: For all $x, y \in\left\{0, \ldots, 2^{w}-1\right\}, h_{a}(x+y) \in h_{a}(x)+h_{a}(y)+\{0,1\} \bmod 2^{s}$.
- Few False Positives: For any $x, y, z \in\left\{0, \ldots, 2^{w}-1\right\}$, with $x+y \neq z$,

$$
\operatorname{Pr}\left[h(z) \in h(x)+h(y)+\{0,1\} \quad \bmod 2^{s}\right] \leq O\left(1 / 2^{s}\right)
$$

- Load Balancing: If n numbers are hashed into $R=2^{s}$ buckets, then the expected number of elements mapped to buckets with more than $3 n / R$ elements mapped to them is $O(R)$.

Now we are ready to prove our main theorem.
Theorem 3.1 (Patrascu'10). If $3 S U M$-Convolution on an n length array is in $O\left(n^{2-\delta}\right)$ time for some $\delta>0$, then there is an $\varepsilon>0$ so that $3 S U M$ has an $O\left(n^{2-\varepsilon}\right)$ time randomized algorithm that succeeds with high probability.

Proof. Suppose that 3SUM-Convolution is in $O\left(n^{2-\delta}\right)$ time for $\delta>0$. Let $\varepsilon=\delta /(2+\delta)>0$. Let S be an instance of $3 \mathrm{SUM}^{*}$ (we want to find $a, b, c \in S$ with $a+b=c$).

Set $R=n^{1-\varepsilon}$ and hash all elements of S to $\{0, \ldots, R-1\}$ with a Dietzfelbinger hash function h. For $x \in\{0, \ldots, R-1\}$, let $B(x)=\{s \in S \mid h(s)=x\}$, i.e. these are the elements hashed to bucket x. Pick some order of the elements in $B(x)$ (e.g. lexicographic) and for that order, let $B(x)[i]$ denote the i th element in the bucket.

By the Load Balancing property, the expected number of $s \in S$ for which $|B(h(s))|>3 n / R$ is $O(R)$.

Exercise: Show that in $O(n R)$ time you can check whether there is a $3 \mathrm{SUM}^{*}$ solution involving some $s \in S$ for which $|B(h(s))|>3 n / R$.

Now, we can assume that for every $s, \mid B(h(s))] \leq 3 n / R \leq 3 n^{\varepsilon}$.
Now, we will iterate through all $27 n^{3 \varepsilon}$ triples (i, j, k) where $i, j, k \in\left[3 n^{\varepsilon}\right]$. For triple (i, j, k) we will try to figure out if there are $x, y, z \in\{0, \ldots, R-1\}$ so that $z=x+y \bmod R$ or $z=x+y+1 \bmod R$ and the i th element of $B(x)$ plus the j th element of $B(y)$ equals the k th element of $B(x+y \bmod R)$ or $B(x+y+1$ $\bmod R$), i.e.

$$
B(x)[i]+B(y)[j]=B((x+y) \bmod R)[k] \text { or } B(x)[i]+B(y)[j]=B((x+y+1) \bmod R)[k] .
$$

We will now show how to do this.
Fix a triple (i, j, k) where $i, j, k \in\left[3 n^{\varepsilon}\right]$. Let's first show how to check if there are $x, y, z \in\{0, \ldots, R-1\}$ so that $x+y=z$ and $B(x)[i]+B(y)[j]=B(z)[k]$. (We will later show how to extend this to check for x, y, z with $z=x+y \bmod R$ and also $z=x+y+1 \bmod R$.)

Create an array A of length $8 R$. For each $x \in\{0, \ldots, R-1\}$, set $A[8 x+1]=B(x)[i]$, set $A[8 x+3]=$ $B(x)[j], A[8 x+4]=B(x)[k]$. Set all remaining elements of A to ∞ (or some sufficiently large element that cannot participate in a $3 \mathrm{SUM}^{*}$ solution).

Suppose that $B(x)[i]+B(y)[j]=B(x+y)[k]$. Then $A[8 x+1]+A[8 y+3]=A[8(x+y)+4]$, a 3SUM-Convolution solution. On the other hand, suppose that $A\left[8 x+s_{1}\right]+A\left[8 y+s_{2}\right]=A\left[8 z+s_{3}\right]$ and $8 x+s_{1}+8 y+s_{2}=8 z+s_{3}$, for some $s_{1}, s_{2}, s_{3} \in\{1,3,4\}$ (as all positions of the array $A(t)$ with $t \bmod 8 \notin$ $\{1,3,4\}$ do not participate in a 3 SUM).

Now, $s_{1}+s_{2}=s_{3} \bmod 8$ has a unique solution $s_{1}=1, s_{2}=3, s_{3}=4$, and in fact then $s_{1}+s_{2}=s_{3}$ $\bmod 8$ is equivalent to $s_{1}+s_{2}=s_{3}$. Thus also $8 x+1+8 y+3=8 z+4$ implies $x+y=z$.

Exercise: Convince yourself of the above statement.

We get, $A[8 x+1]+A[8 y+3]=A[8(x+y)+4]$ and hence $B(x)[i]+B(y)[j]=B(x+y)[k]$, a 3 SUM * solution.

Now that we showed how to handle the case when $x+y=z$, let's see how to handle $x+y=z$ mod R. Since $x, y, z \in\{0, \ldots, R-1\}$, if $x+y=z \bmod R$, then $z=x+y$ or $z=x+y+R$. Hence, we can just add another copy of A after A, creating an array A^{\prime}. The indices of the second copy of A in A^{\prime} go from $8 R+0$ to $8 R+(8 R-1)$, and so any $z+R$ appears as an index for $z \in\{0, \ldots, R-1\}$, and so the proof of correctness for the case of $x+y=z+R$ proceeds exactly as before.

Now we have shown how to handle $x+y=z \bmod R$. We want to show how to handle $x+y+1=z$ $\bmod R$. To do this, we create a second instance of 3 SUM -Convolution, again for each fixed (i, j, k). Consider an array \bar{A} of length $8 R$ formed similarly to A with a slight change. As before, for each $x \in\{0, \ldots, R-1\}$, set $\bar{A}[8 x+3]=B(x)[j], \bar{A}[8 x+4]=B(x)[k]$; the change is for i : set $\bar{A}[8(x+1)+1]=B(x)[i]$ (instead of $A[8 x+1]=B(x)[i])$. As before, set all remaining elements of \bar{A} to ∞ (or some sufficiently large element that cannot participate in a $3 \mathrm{SUM}^{*}$ solution). Then, we create an array \bar{A}^{\prime} consisting of two concatenated copies of \bar{A} to handle the $\bmod R$ behavior.

The proof correctness is similar to before. Suppose that $B(x)[i]+B(y)[j]=B(x+y+1)[k]$. Then $\bar{A}^{\prime}[8(x+1)+1]+\bar{A}^{\prime}[8 y+3]=\bar{A}^{\prime}[8(x+y+1)+4]$, a 3 SUM-Convolution solution. On the other hand, suppose that $\bar{A}^{\prime}\left[8(x+1)+s_{1}\right]+\bar{A}^{\prime}\left[8 y+s_{2}\right]=\bar{A}^{\prime}\left[8 z+s_{3}\right]$ and $8(x+1)+s_{1}+8 y+s_{2}=8 z+s_{3}$, for some $s_{1}, s_{2}, s_{3} \in\{1,3,4\}$. Now, $s_{1}+s_{2}=s_{3} \bmod 8$ has a unique solution $s_{1}=1, s_{2}=3, s_{3}=4$, and in fact then $s_{1}+s_{2}=s_{3} \bmod 8$ is equivalent to $s_{1}+s_{2}=s_{3}$. Thus also $8(x+1)+1+8 y+3=8 z+4$ implies $x+y+1=z$. We get, $\bar{A}^{\prime}[8(x+1)+1]+\bar{A}^{\prime}[8 y+3]=\bar{A}^{\prime}[8(x+y+1)+4]$ and hence $B(x)[i]+B(y)[j]=B(x+y+1)[k]$, a 3SUM solution.

After $O\left(n^{2-\varepsilon}\right)$ time of work, we get $2 \cdot\left(3 n^{\varepsilon}\right)^{3}$ instances of 3SUM-Convolution on arrays of size $16 n^{1-\varepsilon}$.
Now, we assumed that 3 SUM-Convolution can be solved in $O\left(N^{2-\delta}\right)$ time for $\delta>0$ on sequences of length N. We apply this algorithm to get a runtime of $O\left(n^{2-\varepsilon}\right)+$

$$
O\left(n^{3 \varepsilon} n^{(1-\varepsilon)(2-\delta)}\right)=O\left(n^{2+\varepsilon(1+\delta)-\delta}\right)
$$

If we set $\varepsilon=\delta /(2+\delta)>0$, the exponent above becomes $2-\varepsilon$, and the overall runtime is $O\left(n^{2-\frac{\delta}{\delta+2}}\right)$.

