6.S078 3SUM Reductions Part IT
Lecture 11 Date: October 13, 2020

Today we will continue the topic of reducing 3SUM to other problems. We will focus on reductions from
3SUM-Convolution. Recall that the 3SUM-Convolution problem is, given an integer array A of length n,
are there i, j, i # j so that A[i] + A[j] = A[i + j]?

Last time we showed that 3SUM and 3SUM-Convolution are subquadratically equivalent. Today we will
reduce 3SUM-Convolution to two problems: Triangle Listing and Exact Triangle.

We use the hash functions from last time due to Dietzfelbinger [2]. Recall their definition and properties:

Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let 1 < s < w,
and consider the following hash family parameterized by a, h, : {0,...,2¥ — 1} — {0,...,2° — 1}:

he(z) == (a-x mod 2¥) >> (w — s).

In other words, h, multiplies x by a and then keeps only the s top-order bits.
These hash functions have the following nice properties.

e Almost Linearity: For all z,y € {0,...,2¥ — 1}, ho(z +y) € ho(z) + ha(y) +{0,1} mod 25.
e Few False Positives: For any z,y,z € {0,...,2% — 1}, with + y # z,

Prih(z) € h(z) + h(y) + {0,1} mod 2°] < O(1/2%).

¢ Load Balancing: If n numbers are hashed into R = 2° buckets, then the expected number of elements
mapped to buckets with more than 3n/R elements mapped to them is O(R).

1 Triangle Listing is 3SSUM-Hard

The Triangle Listing problem is as follows: Given a graph G = (V, E) and an integer ¢, if G has at least ¢
triangles, report ¢ of them, and otherwise, report all triangles of G.

Assume that the matrix multiplication exponent w is 2. Then, an algorithm by Bjorklund, Pagh, Vas-
silevska W. and Zwick [1] can list ¢ triangles in an m edge graph in time O(m*/3 + mt'/3). For t < O(m),
this is O(m?*/3).

We will give a reduction, originally due to Patrascu [3] from 3SUM-Convolution to Triangle Listing where
the graph G has m edges and the integer ¢ is ©(m).

For any R > /n, the reduction runs in O(nR + n?/R?) time and produces a graph with O(R\/n) nodes
and m = O(nR) edges.

If one can list O(n?/R) triangles in the graph in O(m?*/3~¢) time for some ¢ > 0 and R between /n
and n, then using this listing algorithm with the reduction from 3SUM-Convolution to Triangle Listing,
3SUM-Convolution would be in time

O(nR + n®/R* + (nR)*/37*).

If we set R = n1+9/2 for some 6 > 0, a function of ¢, then we get that nR + n®/R? < O(n?>~%), and the
running time for 3SUM-Convolution becomes asymptotically

(nR)‘VS’E — n(3+0)(2/3—¢/2) _ ,,2+6(2/3—¢/2)—3¢/2

If we set 0(2/3 —¢/2) —3¢/2 < 0, i.e. § < 9¢/(4 — 3¢), we'd get a subquadratic time algorithm for
3SUM-Convolution. Since we want R < n, we should also make sure that é < 1, so just set J to be the
minimum of 3¢/(4 — 3¢) and 0.9. Since 9¢/(4 — 3¢) > 0, we can do this.

Let’s present the reduction now.

Given an array A which is an input to the 3SUM-Convolution problem, hash all elements A(7) using a
Dietzfelbinger hash function with range {0,..., R—1}. Let B(x) = {i | h(A[i]) = x} be the bucket of indices
whose array values are hashed to z.

Consider every A[i] for which |B(A[é])| > 3n/R and for each such A[i], try all j € [n] and check whether
Ali] + A[j] = Ali + j]. If so, return YES. Otherwise, let’s assume that for every A[i], |B(A[i])| < 3n/R.

Recall that the number of A[i] that have |[B(A[é])| > 3n/R is O(R), so the above step takes O(nR) time.

Now, consider some i € [n]. We will search for some ¢ such that A[i] + A[¢] = A[i + ¢]. Let x = h(A[]),
and we'll try all y € {0,..., R — 1} that are options for h(A[{]) = y.

We have fixed ¢ and y. By almost linearity, if Afi] + A[¢] = Ali + £], then h(A[i + £]) € h(A[]) +
h(A[]) +{0,1} mod R. In other words, if h(A[{]) =y, then ¢ € B(y) and either i + ¢ € B(z +y mod R)
ori+/¢eBx+y+1 mod R).

Moreover, because of the few false positives condition, for any fixed i and y, the expected number of ¢
for which i+ ¢ € B(x +y mod R)or i + ¢ € B(x +y+ 1 mod R) and A[i] + A[{] # A[i + /] (i.e. a false
positive), is O(1/R), thus over all i,y, the total expected number of such false £ is O(n?/R).

Define (for fixed i,z,y) T={j—i|j€ B(x+y mod R)} andT'={j—i|j€ Blx+y+1 mod R)}.

Notice that the test TN B(y) # 0 is equivalent to whether there exists an ¢ with h(A[¢]) = y mod R,
and h(Afi+/]) =z +y mod R. Similarly, the test 7" N B(y) # 0 is equivalent to whether there exists an ¢
with h(A[(]) =y mod R, and h(A[i +¢]) =z +y+ 1 mod R.

By the discussion from before, any "Yes’ answer to one of these intersection tests is either a true 3SUM-
Convolution solution, or one of the O(n?/R) false positives.

Consider the following “algorithm”:

e For i from 1 to n, let z = h(A[i]), and for all y from 0 to R — 1:

— Define T and 7" as above tobe ' = {j—i | j € B(x+y mod R)} and T" ={j—i|j € B(z+y+1
mod R)}.
— Run the intersection test TN B(y) # 0 or T N B(y) # 0. If the test says yes,

* then go through all £ € B(y), testing if A[i] + A[{] = A[i + 4.

Exercise: Suppose that we can run the intersection tests in O(n?~7) time for v > 0 for some choice
of R = n%%+9 for § € (0,0.5). Show that the total running time of the above algorithm would be
O(n?=7 + n'>+9 £ n2=2%) which is subquadratic.

Now we want to simulate the intersection tests. Recall that for fixed i, 2 = h(A[i]) and y, we want to
check if there is some ¢ for which ¢ € B(y) and { +i € B(x +y mod R) (or { +i € B(x +y+1 mod R)).
Let’s handle the first test. The second is handled similarly, with a new call.

Let i = i14/n + iz for some 41,9 € {0,...,+/n}. Then the test is the same as:

Is there some ¢’ (here ¢/ = £ + igy/n) such that ¢’ —is\/n € B(y) and ¢’ + 41 € B((x +y) mod R)?

We will now create a tripartite graph with partitions A, B,C. A contains nodes of the form (z,i1) €
{0,...,R—1} x [\/n], B contains nodes of the form (y,i2) € {0,..., R — 1} x [y/n] and C contains nodes of
the form ¢’ € [2n].

Let us describe the edges. For nodes (z,41) € A and ¢ € C, we create an edge ((z,41),¢) if and only if
¢’ 4+ i1 € B(z) (here z represents x + y). For nodes (y,i2) € B and ¢’ € C, we add an edge ((y,42),¢’) if and
only if ¢/ —isy/n € B(y). The number of such edges is O(Ry/n) x O(n/R) = O(n'®) since the buckets are
all small.

Finally, we add edges from (z,i1) € A to (y,i2) € B whenever = h(A[i2\/n + i1]) and z = x 4 y; the
number of such edges is nR.

Exercise: Convince yourself that any triangle in the above graph corresponds to a positive answer
to an intersection query from our algorithm from before.

The above graph has O(n+ Ry/n) vertices and m = O(n''> + nR) edges. How many triangles do we need
to list? Well, we know that the total expected number of false positives is ' = O(n?/R) and each triangle
in the graph we created is either a true 3SUM-Convolution solution or a false positive. Thus, we only need
to list F+1 < O(n?/R) triangles to make sure that if there is a true solution, then at least one true solution
will be listed as a triangle.

The final algorithm looks like this:

(1) Take care of all elements hashing to heavy buckets, in O(nR) time; return YES if any of them participate
in a 3SUM-Convolution solution. Remove them.

(2) Now, form the O(nR) edge graph G described above.

(3) List ' +1 < O(n?/R) triangles in G: {[(zq,i14), (Yq: 72¢), €] }a=1,.... F41-

(4) For each triangle [(zq,714), (Yq,t24),¢,]: Let i = 14 + i2qv/n. Go through every j € B(y,) and if
Ali] + A[j] = A[i + j], return YES.

(5) Return NO.

g

2 Exact Triangle.

The Exact Triangle problem is as follows. One is given a graph G = (V, E) with integer edge weights w(-, -)
and one needs to determine if there are a,b,c € V with (a,b), (b, c), (a,¢) € E such that w(a,b) + w(b,c) +
w(a,c) = 0.

As previously, we can always assume that the input graph is tripartite with partitions A,B,C and we are
looking for a € A,b € B,ce C.

We will reduce 3SUM-Convolution on an array of length n in O(n'®) time to y/n instances of Exact
Triangle in tripartite graphs with O(y/n) nodes each.

Suppose we have this reduction and assume that Exact Triangle on N node graphs can be solved in
O(N3~¢) time for some ¢ > 0. Then 3SUM-Convolution on n length arrays can be solved in asymptotic time

7’L1'5 + \/ﬁ (\/ﬁ)?)fs _ TL1'5 + n276/2’

which is subquadratic and would refute the 3SUM Hypothesis. Thus, under the 3SUM Hypothesis, Exact
Triangle requires N3~°() time in N node graphs.

We now give the reduction.

Suppose we are given an instance of 3SUM-Convolution, an array X of length n, [X[0],..., X [n — 1]].

For every index i € {0,...,y/n — 1}, we create a graph G, as follows. G, is tripartite with partitions
Ui, Vi, W;. U; contains a node t for every t € {0,...,/n—1}, V; contains a node q for every q € {0,...,2y/n—
2}, and W; contains a node s for every s € {0,...,y/n —1}.

The edges of G; are as follows.

e Forevery g e W, t € U;,if g—t € {0,...,/n—1}, we add an edge (q,t) with weight X[i/n+ (q—1)].
e For every s € V;,t € U;, add an edge X[s\/n + t].
e For every s € V;,q € W;, add an edge —X|[(s + i)v/n + q|.

Claim 1. X has a 3SUM-Convolution solution if and only if for some i € {0,...,\/n— 1}, G; contains an
Ezact Triangle.

Proof. Suppose that X has a 3SUM-Convolution: some k, j, k # j such that X[k] + X[j] = X[k + j]. Now,
k = iy/n+ ¢ for some i,¢ € {0,...,y/n— 1}, and j = sy/n +t for some s,t € {0,...,v/n — 1}. Thus also,
E+j=(s+i)v/n+(t+7).

Consider graph G;. The nodes t € U;,s € Vi, (t + () € W; in G; form a triangle (since (t +¢) —t €
{0,...,v/n —1}). The weight of this triangle is

X[svn+t]+ X[ivn+{] = X[(s + i)vn + (t + £)] = X[j] + X[k] = X[k + j] = 0.

Now, let us assume that for some i, G; contains an Exact Triangle (¢ € W;,s € V;,t € U;). The weight
of the triangle is X[sy/n +t] + X[ivn+ (¢ —t)] — X[(s + i)y/n+¢] = 0.

Let a = sy/n+1t,b=1iy/n+ (g —t),c = (s +1)y/n + q. Notice that ¢ = a+b. Also X[a] + X[b] = X|c].
We thus have a 3SUM Convolution solution. O

We also have a reduction from Negative Triangle to Exact Triangle:

Theorem 2.1 (R. and V. Williams'2009). There is an O(n?log M) time reduction that given an n node
graph with edge weights in {—M, ..., M} produces O(log M) instances of Exact Triangle on n nodes each and
with weights in {—O(M),...,O(M)}. Thus if Exact Triangle in n node graphs with polynomial edge weights
is in O(n3~¢) time for some € > 0, then Negative Triangle with polynomial edge weights is in O(n3~¢logn)
time.

Exact Triangle is thus a problem that requires n?~°() time under both the APSP and the 3SUM Hy-
potheses. So even if one of the hypothesis fails, Exact Triangle would still be hard as long as the other one
is true.

References

[1] Andreas Bjorklund, Rasmus Pagh, Virginia Vassilevska Williams, Uri Zwick: Listing Triangles. ICALP
(1) 2014: 223-234.

[2] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic
without primes. In Proc. 13th Symposium on Theoretical Aspects of Computer Science (STACS), pages
569-580, 1996.

[3] Mihai Patrascu: Towards polynomial lower bounds for dynamic problems. STOC 2010: 603-610.

