
6.S078 3SUM Reductions Part II
Lecture 11 Date: October 13, 2020

Today we will continue the topic of reducing 3SUM to other problems. We will focus on reductions from
3SUM-Convolution. Recall that the 3SUM-Convolution problem is, given an integer array A of length n,
are there i, j, i 6= j so that A[i] +A[j] = A[i+ j]?

Last time we showed that 3SUM and 3SUM-Convolution are subquadratically equivalent. Today we will
reduce 3SUM-Convolution to two problems: Triangle Listing and Exact Triangle.

We use the hash functions from last time due to Dietzfelbinger [2]. Recall their definition and properties:
Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let 1 ≤ s < w,

and consider the following hash family parameterized by a, ha : {0, . . . , 2w − 1} 7→ {0, . . . , 2s − 1}:

ha(x) := (a · x mod 2w) >> (w − s).

In other words, ha multiplies x by a and then keeps only the s top-order bits.
These hash functions have the following nice properties.

� Almost Linearity: For all x, y ∈ {0, . . . , 2w − 1}, ha(x+ y) ∈ ha(x) + ha(y) + {0, 1} mod 2s.

� Few False Positives: For any x, y, z ∈ {0, . . . , 2w − 1}, with x+ y 6= z,

Pr[h(z) ∈ h(x) + h(y) + {0, 1} mod 2s] ≤ O(1/2s).

� Load Balancing: If n numbers are hashed into R = 2s buckets, then the expected number of elements
mapped to buckets with more than 3n/R elements mapped to them is O(R).

1 Triangle Listing is 3SUM-Hard

The Triangle Listing problem is as follows: Given a graph G = (V,E) and an integer t, if G has at least t
triangles, report t of them, and otherwise, report all triangles of G.

Assume that the matrix multiplication exponent ω is 2. Then, an algorithm by Bjorklund, Pagh, Vas-
silevska W. and Zwick [1] can list t triangles in an m edge graph in time Õ(m4/3 + mt1/3). For t ≤ O(m),
this is Õ(m4/3).

We will give a reduction, originally due to Patrascu [3] from 3SUM-Convolution to Triangle Listing where
the graph G has m edges and the integer t is Θ(m).

For any R ≥
√
n, the reduction runs in O(nR+ n3/R2) time and produces a graph with O(R

√
n) nodes

and m = O(nR) edges.
If one can list O(n2/R) triangles in the graph in O(m4/3−ε) time for some ε > 0 and R between

√
n

and n, then using this listing algorithm with the reduction from 3SUM-Convolution to Triangle Listing,
3SUM-Convolution would be in time

O(nR+ n3/R2 + (nR)4/3−ε).

If we set R = n(1+δ)/2 for some δ > 0, a function of ε, then we get that nR + n3/R2 ≤ O(n2−δ), and the
running time for 3SUM-Convolution becomes asymptotically

(nR)4/3−ε = n(3+δ)(2/3−ε/2) = n2+δ(2/3−ε/2)−3ε/2.

If we set δ(2/3 − ε/2) − 3ε/2 < 0, i.e. δ < 9ε/(4 − 3ε), we’d get a subquadratic time algorithm for
3SUM-Convolution. Since we want R < n, we should also make sure that δ < 1, so just set δ to be the
minimum of 3ε/(4− 3ε) and 0.9. Since 9ε/(4− 3ε) > 0, we can do this.

Let’s present the reduction now.

1

Given an array A which is an input to the 3SUM-Convolution problem, hash all elements A(i) using a
Dietzfelbinger hash function with range {0, . . . , R−1}. Let B(x) = {i | h(A[i]) = x} be the bucket of indices
whose array values are hashed to x.

Consider every A[i] for which |B(A[i])| > 3n/R and for each such A[i], try all j ∈ [n] and check whether
A[i] +A[j] = A[i+ j]. If so, return YES. Otherwise, let’s assume that for every A[i], |B(A[i])| < 3n/R.

Recall that the number of A[i] that have |B(A[i])| > 3n/R is O(R), so the above step takes O(nR) time.
Now, consider some i ∈ [n]. We will search for some ` such that A[i] + A[`] = A[i+ `]. Let x = h(A[i]),

and we’ll try all y ∈ {0, . . . , R− 1} that are options for h(A[`]) = y.
We have fixed i and y. By almost linearity, if A[i] + A[`] = A[i + `], then h(A[i + `]) ∈ h(A[i]) +

h(A[`]) + {0, 1} mod R. In other words, if h(A[`]) = y, then ` ∈ B(y) and either i + ` ∈ B(x + y mod R)
or i+ ` ∈ B(x+ y + 1 mod R).

Moreover, because of the few false positives condition, for any fixed i and y, the expected number of `
for which i + ` ∈ B(x + y mod R) or i + ` ∈ B(x + y + 1 mod R) and A[i] + A[`] 6= A[i + `] (i.e. a false
positive), is O(1/R), thus over all i, y, the total expected number of such false ` is O(n2/R).

Define (for fixed i, x, y) T = {j − i | j ∈ B(x+ y mod R)} and T ′ = {j − i | j ∈ B(x+ y + 1 mod R)}.
Notice that the test T ∩ B(y) 6= ∅ is equivalent to whether there exists an ` with h(A[`]) = y mod R,

and h(A[i+ `]) = x+ y mod R. Similarly, the test T ′ ∩B(y) 6= ∅ is equivalent to whether there exists an `
with h(A[`]) = y mod R, and h(A[i+ `]) = x+ y + 1 mod R.

By the discussion from before, any ’Yes’ answer to one of these intersection tests is either a true 3SUM-
Convolution solution, or one of the O(n2/R) false positives.

Consider the following “algorithm”:

� For i from 1 to n, let x = h(A[i]), and for all y from 0 to R− 1:

– Define T and T ′ as above to be T = {j−i | j ∈ B(x+y mod R)} and T ′ = {j−i | j ∈ B(x+y+1
mod R)}.

– Run the intersection test T ∩B(y) 6= ∅ or T ′ ∩B(y) 6= ∅. If the test says yes,

* then go through all ` ∈ B(y), testing if A[i] +A[`] = A[i+ `].

Exercise: Suppose that we can run the intersection tests in O(n2−γ) time for γ > 0 for some choice
of R = n0.5+δ for δ ∈ (0, 0.5). Show that the total running time of the above algorithm would be
O(n2−γ + n1.5+δ + n2−2δ), which is subquadratic.

Now we want to simulate the intersection tests. Recall that for fixed i, x = h(A[i]) and y, we want to
check if there is some ` for which ` ∈ B(y) and `+ i ∈ B(x+ y mod R) (or `+ i ∈ B(x+ y + 1 mod R)).
Let’s handle the first test. The second is handled similarly, with a new call.

Let i = i1
√
n+ i2 for some i1, i2 ∈ {0, . . . ,

√
n}. Then the test is the same as:

Is there some `′ (here `′ = `+ i2
√
n) such that `′ − i2

√
n ∈ B(y) and `′ + i1 ∈ B((x+ y) mod R)?

We will now create a tripartite graph with partitions A,B,C. A contains nodes of the form (z, i1) ∈
{0, . . . , R− 1} × [

√
n], B contains nodes of the form (y, i2) ∈ {0, . . . , R− 1} × [

√
n] and C contains nodes of

the form `′ ∈ [2n].
Let us describe the edges. For nodes (z, i1) ∈ A and `′ ∈ C, we create an edge ((z, i1), `′) if and only if

`′ + i1 ∈ B(z) (here z represents x+ y). For nodes (y, i2) ∈ B and `′ ∈ C, we add an edge ((y, i2), `′) if and
only if `′ − i2

√
n ∈ B(y). The number of such edges is O(R

√
n) × O(n/R) = O(n1.5) since the buckets are

all small.
Finally, we add edges from (z, i1) ∈ A to (y, i2) ∈ B whenever x = h(A[i2

√
n + i1]) and z = x + y; the

number of such edges is nR.

2

Exercise: Convince yourself that any triangle in the above graph corresponds to a positive answer
to an intersection query from our algorithm from before.

The above graph has O(n+R
√
n) vertices and m = O(n1.5 +nR) edges. How many triangles do we need

to list? Well, we know that the total expected number of false positives is F = O(n2/R) and each triangle
in the graph we created is either a true 3SUM-Convolution solution or a false positive. Thus, we only need
to list F + 1 ≤ O(n2/R) triangles to make sure that if there is a true solution, then at least one true solution
will be listed as a triangle.

The final algorithm looks like this:

(1) Take care of all elements hashing to heavy buckets, in O(nR) time; return YES if any of them participate
in a 3SUM-Convolution solution. Remove them.
(2) Now, form the O(nR) edge graph G described above.
(3) List F + 1 ≤ O(n2/R) triangles in G: {[(zq, i1q), (yq, i2q), `′q]}q=1,...,F+1.
(4) For each triangle [(zq, i1q), (yq, i2q), `

′
q]: Let i = i1q + i2q

√
n. Go through every j ∈ B(yq) and if

A[i] +A[j] = A[i+ j], return YES.
(5) Return NO.

2 Exact Triangle.

The Exact Triangle problem is as follows. One is given a graph G = (V,E) with integer edge weights w(·, ·)
and one needs to determine if there are a, b, c ∈ V with (a, b), (b, c), (a, c) ∈ E such that w(a, b) + w(b, c) +
w(a, c) = 0.

As previously, we can always assume that the input graph is tripartite with partitions A,B,C and we are
looking for a ∈ A, b ∈ B, c ∈ C.

We will reduce 3SUM-Convolution on an array of length n in O(n1.5) time to
√
n instances of Exact

Triangle in tripartite graphs with O(
√
n) nodes each.

Suppose we have this reduction and assume that Exact Triangle on N node graphs can be solved in
O(N3−ε) time for some ε > 0. Then 3SUM-Convolution on n length arrays can be solved in asymptotic time

n1.5 +
√
n · (
√
n)3−ε = n1.5 + n2−ε/2,

which is subquadratic and would refute the 3SUM Hypothesis. Thus, under the 3SUM Hypothesis, Exact
Triangle requires N3−o(1) time in N node graphs.

We now give the reduction.
Suppose we are given an instance of 3SUM-Convolution, an array X of length n, [X[0], . . . , X[n− 1]].
For every index i ∈ {0, . . . ,

√
n − 1}, we create a graph Gi as follows. Gi is tripartite with partitions

Ui, Vi,Wi. Ui contains a node t for every t ∈ {0, . . . ,
√
n−1}, Vi contains a node q for every q ∈ {0, . . . , 2

√
n−

2}, and Wi contains a node s for every s ∈ {0, . . . ,
√
n− 1}.

The edges of Gi are as follows.

� For every q ∈Wi, t ∈ Ui, if q− t ∈ {0, . . . ,
√
n− 1}, we add an edge (q, t) with weight X[i

√
n+ (q− t)].

� For every s ∈ Vi, t ∈ Ui, add an edge X[s
√
n+ t].

� For every s ∈ Vi, q ∈Wi, add an edge −X[(s+ i)
√
n+ q].

Claim 1. X has a 3SUM-Convolution solution if and only if for some i ∈ {0, . . . ,
√
n− 1}, Gi contains an

Exact Triangle.

3

Proof. Suppose that X has a 3SUM-Convolution: some k, j, k 6= j such that X[k] +X[j] = X[k + j]. Now,
k = i

√
n + ` for some i, ` ∈ {0, . . . ,

√
n − 1}, and j = s

√
n + t for some s, t ∈ {0, . . . ,

√
n − 1}. Thus also,

k + j = (s+ i)
√
n+ (t+ `).

Consider graph Gi. The nodes t ∈ Ui, s ∈ Vi, (t + `) ∈ Wi in Gi form a triangle (since (t + `) − t ∈
{0, . . . ,

√
n− 1}). The weight of this triangle is

X[s
√
n+ t] +X[i

√
n+ `]−X[(s+ i)

√
n+ (t+ `)] = X[j] +X[k]−X[k + j] = 0.

Now, let us assume that for some i, Gi contains an Exact Triangle (q ∈ Wi, s ∈ Vi, t ∈ Ui). The weight
of the triangle is X[s

√
n+ t] +X[i

√
n+ (q − t)]−X[(s+ i)

√
n+ q] = 0.

Let a = s
√
n + t, b = i

√
n + (q − t), c = (s + i)

√
n + q. Notice that c = a + b. Also X[a] +X[b] = X[c].

We thus have a 3SUM Convolution solution. �

We also have a reduction from Negative Triangle to Exact Triangle:

Theorem 2.1 (R. and V. Williams’2009). There is an O(n2 logM) time reduction that given an n node
graph with edge weights in {−M, . . . ,M} produces O(logM) instances of Exact Triangle on n nodes each and
with weights in {−O(M), . . . , O(M)}. Thus if Exact Triangle in n node graphs with polynomial edge weights
is in O(n3−ε) time for some ε > 0, then Negative Triangle with polynomial edge weights is in O(n3−ε log n)
time.

Exact Triangle is thus a problem that requires n3−o(1) time under both the APSP and the 3SUM Hy-
potheses. So even if one of the hypothesis fails, Exact Triangle would still be hard as long as the other one
is true.

References

[1] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, Uri Zwick: Listing Triangles. ICALP
(1) 2014: 223–234.

[2] M. Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic
without primes. In Proc. 13th Symposium on Theoretical Aspects of Computer Science (STACS), pages
569–580, 1996.

[3] Mihai Patrascu: Towards polynomial lower bounds for dynamic problems. STOC 2010: 603–610.

4

