Today we will continue the topic of reducing 3SUM to other problems. We will focus on reductions from 3SUM-Convolution. Recall that the 3SUM-Convolution problem is, given an integer array A of length n, are there $i, j, i \neq j$ so that $A[i] + A[j] = A[i + j]$?

Last time we showed that 3SUM and 3SUM-Convolution are subquadratically equivalent. Today we will reduce 3SUM-Convolution to two problems: Triangle Listing and Exact Triangle.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let $1 \leq s < w$, and consider the following hash family parameterized by a,

$$h_a : \{0, \ldots, 2^w - 1\} \rightarrow \{0, \ldots, 2^s - 1\};$$

$$h_a(x) := (a \cdot x \mod 2^w) \gg (w - s).$$

In other words, h_a multiplies x by a and then keeps only the s top-order bits.

These hash functions have the following nice properties.

- **Almost Linearity:** For all $x, y \in \{0, \ldots, 2^w - 1\}$, $h_a(x + y) \in h_a(x) + h_a(y) + \{0, 1\} \mod 2^s$.

- **Few False Positives:** For any $x, y, z \in \{0, \ldots, 2^w - 1\}$, with $x + y \neq z$,

$$Pr[h(z) \in h(x) + h(y) + \{0, 1\} \mod 2^s] \leq O(1/2^s).$$

- **Load Balancing:** If n numbers are hashed into $R = 2^s$ buckets, then the expected number of elements mapped to buckets with more than $3n/R$ elements mapped to them is $O(R)$.

1 Triangle Listing is 3SUM-Hard

The Triangle Listing problem is as follows: Given a graph $G = (V, E)$ and an integer t, if G has at least t triangles, report t of them, and otherwise, report all triangles of G.

Assume that the matrix multiplication exponent ω is 2. Then Bjorklund et al. give an algorithm that can list t triangles in an m edge graph in time $\tilde{O}(m^{4/3} + mt^{1/3})$. For $t \leq O(m)$, this is $\tilde{O}(m^{4/3})$.

We will give a reduction from 3SUM-Convolution to Triangle Listing where the graph G has m edges and the integer t is $\Theta(m)$. For any $R \geq \sqrt{n}$, the reduction runs in $O(nR + n^3/R^2)$ time and produces a graph with $O(R\sqrt{n})$ nodes and $m = O(nR)$ edges. If one can list $O(n^2/R)$ triangles in the graph in $O(n^{4/3-\varepsilon})$ time for some $\varepsilon > 0$ and R between \sqrt{n} and n, then 3SUM-Convolution would be in time $O(nR + n^3/R^2 + (nR)^{4/3-\varepsilon})$.

Set $R = n^{(1+\delta)/2}$ for some $\delta > 0$, a function of ε. Then $nR + n^3/R^2 \leq O(n^{2-\delta})$, and

$$(nR)^{4/3-\varepsilon} = n^{(3+\delta)(2/3-\varepsilon/2)} = n^{2+\delta(2/3-\varepsilon/2)-3\varepsilon/2}.$$
of \(\ell \) for which \(i + \ell \in B(x + y \mod R) \) or \(i + \ell \in B(x + y + 1 \mod R) \) and \(A[i] + A[\ell] \neq A[i + \ell] \), is \(O(1/R) \), thus over all \(i, y \), the total expected number of such false \(\ell \) is \(O(n^2/R) \).

If we define \(T = \{j - i \mid j \in B(x + y \mod R)\} \), \(T' = \{j - i \mid j \in B(x + y + 1 \mod R)\} \), then this becomes \(T \cap B(y) \neq \emptyset \) or \(T' \cap B(y) \neq \emptyset \). Also, any Yes answer to this intersection test is either a true 3SUM-Convolution solution, or one of the \(O(n^2/R) \) false positives.

Consider the following algorithm: For \(i \) from 1 to \(n \), let \(x = h(A[i]) \), and for all \(y \) from 0 to \(R - 1 \), define \(T \) and \(T' \) as above, run the intersection test \(T \cap B(y) \neq \emptyset \) or \(T' \cap B(y) \neq \emptyset \), and if the test says yes, then go through all \(\ell \in B(y) \), testing if \(A[i] + A[\ell] = A[i + \ell] \).

If the time due to intersection tests is \(O(n^{2-\gamma}) \) for \(\gamma > 0 \) for some choice of \(R = n^{0.5+\delta} \) for \(\delta \in (0,0.5) \), then the rest of the runtime is \(O(nR + n^3/R^2) \), where the \(nR \) term is due to the heavy buckets, and the \(n^3/R^2 \) term is due to running an \(O(n/R) \) time test \(A[i] + A[\ell] = A[i + \ell] \) for at most \(O(n^2/R) \) false positives.

For the choice of \(R = n^{0.5+\delta} \), the total runtime is \(O(n^{2-\gamma} + n^{1.5+\delta} + n^{2-2\delta}) \), which is subquadratic.

Now we want to simulate the intersection tests. Recall that for \(i \), \(x = h(A[i]) \) and \(y \) we want to check if there is some \(\ell \) for which \(\ell \in B(y) \) and \(i + \ell \in B(x + y \mod R) \) (or \(i + \ell \in B(x + y + 1 \mod R) \)). Let’s handle the first test. The second is handled similarly, with a new call.

Let \(i = i_2\sqrt{n} + i_2 \) for some \(i_1, i_2 \in \{0, \ldots, \sqrt{n}\} \). Then the test is the same: does there exist some \(\ell' \) (here \(\ell' = \ell + i_2\sqrt{n} \)) such that \(\ell' - i_2\sqrt{n} \in B(y) \) and \(i + \ell' \in B(x + y \mod R) \)?

So create \(A \) with nodes \((z, i_1), B \) with nodes \((y, i_2) \) and \(C \) with nodes \(\ell' \). Now, edges \((z, i_1), \ell' \) if and only if \(\ell' + i_1 \in B(z) \) (here \(z \) represents \(x+y \)), and \((y, i_2), \ell' \) if and only if \(\ell' - i_2\sqrt{n} \in B(y) \); the number of such edges is \(O(R/\sqrt{n}) \times O(n/R) = O(n^{1.5}) \) since the buckets are all small. Finally, edges \((z, i_1) \) to \((y, i_2) \) whenever \(x = h(A[i_2\sqrt{n} + i_1]) \) and \(x = x+y \); the number of such edges is \(nR \).

Thus \(m = O(nR) \). How many triangles do we need to list? Well, we know that the total expected number of false positives is \(F = O(n^2/R) \) and each triangle in the graph we created is either a true 3SUM-Convolution solution or a false positive. Thus, we only need to list \(F + 1 \leq O(n^2/R) \) triangles to make sure that any true solution is contained in one of them.

The final algorithm looks like this:

1. Take care of all elements hashing to heavy buckets, in \(O(nR) \) time; return YES if any of them participate in a 3SUM-Convolution solution. Remove them.
2. Now, form the \(O(nR) \) edge graph \(G \) described above.
3. List \(F + 1 \leq O(n^2/R) \) triangles in \(G \): \{\((z_q, i_1q), (y_q, i_2q), \ell_q')\}q=1,...,F+1.
4. For each triangle \((z_q, i_1q), (y_q, i_2q), \ell_q') \). Let \(i = i_1q + i_2q\sqrt{n} \). Go through every \(j \in B(y_q) \) and if \(A[i] + A[j] = A[i + j] \), return YES.
5. Return NO.

2 Exact Triangle.

The Exact Triangle problem is as follows. One is given a graph \(G = (V, E) \) with integer edge weights \(w(\cdot, \cdot) \) and one needs to determine if there are \(a, b, c \in V \) with \((a, b), (b, c), (a, c) \in E \) such that \(w(a, b) + w(b, c) + w(a, c) = 0 \).

As previously, we can always assume that the input graph is tripartite with partitions \(A, B, C \) and we are looking for \(a \in A, b \in B, c \in C \).

We will reduce 3SUM-Convolution on an array of length \(n \) in \(O(n^{1.5}) \) time to \(\sqrt{n} \) instances of Exact Triangle in tripartite graphs with \(O(\sqrt{n}) \) nodes each.

Suppose we have this reduction and assume that Exact Triangle on \(N \) node graphs can be solved in \(O(N^{3-\varepsilon}) \) time for some \(\varepsilon > 0 \). Then 3SUM-Convolution on \(n \) length arrays can be solved in asymptotic time \(n^{1.5 + \sqrt{n} \cdot (\sqrt{n})^{3-\varepsilon}} = n^{1.5} + n^{2-\varepsilon/2} \), which is subquadratic and would refute the 3SUM Hypothesis. Thus, under the 3SUM Hypothesis, Exact Triangle requires \(N^{3-\omega(1)} \) time in \(N \) node graphs.
We now give the reduction.

Suppose we are given an instance of 3SUM-Convolution, an array \(X \) of length \(n \), \([X[0], \ldots, X[n-1]] \).

For every index \(i \in \{0, \ldots, \sqrt{n}-1\} \), we create a graph \(G_i \) as follows. \(G_i \) is tripartite with partitions \(U_i, V_i, W_i \). \(U_i \) contains a node \(t \) for every \(t \in \{0, \ldots, \sqrt{n}-1\} \), \(V_i \) contains a node \(q \) for every \(q \in \{0, \ldots, 2\sqrt{n}-2\} \), and \(W_i \) contains a node \(s \) for every \(s \in \{0, \ldots, \sqrt{n}-1\} \).

The edges of \(G_i \) are as follows.

- For every \(q \in W_i, t \in U_i \), if \(q-t \in \{0, \ldots, \sqrt{n}-1\} \), we add an edge \((q, t)\) with weight \(X[i\sqrt{n}+(q-t)] \).
- For every \(s \in V_i, t \in U_i \), add an edge \(X[s\sqrt{n}+t] \).
- For every \(s \in V_i, q \in W_i \), add an edge \(-X[(s+i)\sqrt{n}+q] \).

Claim 1. \(X \) has a 3SUM-Convolution solution if and only if for some \(i \in \{0, \ldots, \sqrt{n}-1\} \), \(G_i \) contains an Exact Triangle.

Proof. Suppose that \(X \) has a 3SUM-Convolution: some \(k, j, k \neq j \) such that \(X[k] + X[j] = X[k+j] \). Now, \(k = i\sqrt{n} + \ell \) for some \(i, \ell \in \{0, \ldots, \sqrt{n}-1\} \), and \(j = s\sqrt{n} + t \) for some \(s, t \in \{0, \ldots, \sqrt{n}-1\} \). Thus also, \(k+j = (s+i)\sqrt{n} + (t+\ell) \).

Consider graph \(G_i \). The nodes \(t \in U_i, s \in V_i, (t+\ell) \in W_i \) in \(G_i \) form a triangle (since \((t+\ell) - t \in \{0, \ldots, \sqrt{n}-1\}\)). The weight of this triangle is

\[
X[s\sqrt{n}+t] + X[i\sqrt{n}+\ell] - X[(s+i)\sqrt{n}+(t+\ell)] = X[j] + X[k] - X[k+j] = 0.
\]

Now, let us assume that for some \(i \), \(G_i \) contains an Exact Triangle \((q \in W_i, s \in V_i, t \in U_i)\). The weight of the triangle is \(X[s\sqrt{n}+t] + X[i\sqrt{n}+(q-t)] - X[(s+i)\sqrt{n}+q] = 0 \).

Let \(a = s\sqrt{n}+t, b = i\sqrt{n}+(q-t), c = (s+i)\sqrt{n}+q \). Notice that \(c = a+b \). Also \(X[a] + X[b] = X[c] \).

We thus have a 3SUM Convolution solution.

Now, we also have a reduction from Negative Triangle to Exact Triangle:

Theorem 2.1 (R. and V. Williams’2009). There is an \(O(n^2 \log M) \) time reduction that given an \(n \) node graph with edge weights in \(\{-M, \ldots, M\} \) produces \(O(\log M) \) instances of Exact Triangle on \(n \) nodes each and with weights in \(\{-O(M), \ldots, O(M)\} \). Thus if Exact Triangle in \(n \) node graphs with polynomial edge weights is in \(O(n^{3-\varepsilon}) \) time for some \(\varepsilon > 0 \), then Negative Triangle with polynomial edge weights is in \(O(n^{3-\varepsilon}\log n) \) time.

Exact Triangle is thus a problem that requires \(n^{3-o(1)} \) time under both the APSP and the 3SUM Hypotheses. So even if one of the hypothesis fails, Exact Triangle would still be hard as long as the other one is true.

\(\square \)