
Popular Conjectures and
Dynamic Problems

Thanks to Amir Abboud for some of his slides!
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➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs



Dynamic graph algorithms

Given initial graph G, can preprocess it.
Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? …



Dynamic graph algorithms

Given initial graph G, can preprocess it.
Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? …

Want to minimize the preprocessing, update and query times.

• Worst case time
• Amortized time
• Total time (over all updates)



Dynamic Problems

Updates: Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: O(m) time per update.
[Thorup STOC 01]: O(log m (log log m)3) amortized time per update.

[Păt raşcu - Demaine STOC 05]:
Ω(log m) Cell-probe lower bound.

Dynamic (undirected) Connectivity

Input: an undirected graph G

s t

Great!



Trivial algorithm: O(m) time updates

Updates: Add or remove edges. 
Query:
s,t-Reach: Is there a path from s to t?
#SSR: How many nodes can s reach?

Using fast matrix multiplication
[Sankowski FOCS 04’] O(n1.58)

Best cell probe lower bound still Ω(log m)

Dynamic (directed) Reachability

Input: A directed graph G.

s t

Not great.

Dynamic Problems



Many successes for the partially dynamic setting and related problems.

Huge gaps --what is the right answer?

Today:

Many Examples
Problem Upper bound (Unconditional) 

Lower bound

s,t--Reach

O(m) or O(n)

Ω(log m)

#SSR

Strongly Connected Components

Maximum Matching

Connectivity with node updates O(m)

Approximate Diameter O(mn)

Much higher lower bounds via 
the fine-grained approach



3SUM Lower Bounds

3-SUM: Given n integers, are there 3 that sum to 0?

Theorem [Pătraşcu STOC10] : The 3--SUM conjecture implies 
polynomial lower bounds for many dynamic problems.

The 3-SUM Conjecture: “No O(n2-eps) time algorithm”

A very cool series of reductions…

No poly log updates for Reachability!

Problem Upper bound (3-SUM)
Lower bound

s,t--Reach
O(m) or O(n)

ma#SSR

Connectivity with node updates O(m) for some a>0



3SUM Lower Bounds
[Abboud-VW FOCS '14], [K opelowitz - Pettie - Porat. SODA '16]
Optimized Pătraşcu’s reductions and added problems to the list

Some steps in the reduction are lossy --stuck at m1/3.

3SUM might not be the most appropriate…

Problem Upper bound (3-SUM)
Lower bound

s,t-Reach

O(m) or O(n)

m1/3

#SSR

Strongly Connected Components

Maximum Matching

Connectivity with node updates O(m)

Approximate Diameter O(mn)



BMM Lower Bounds
[Abboud-VW FOCS 14’]
The BMM conjecture implies tight lower bounds for combinatorial algorithms

The BMM conjecture:
“No O(n3--eps) time combinatorial algorithm

for Boolean Matrix Multiplication”

Any improvement for these problems will probably have to use 
fast matrix mult.

Problem (combinatorial) 
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n



OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well, 
under the Online Matrix Vector Multiplication Conjecture.
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OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well, 
under the Online Matrix Vector Multiplication Conjecture.

OMv  problem: Given n x n Boolean matrix A and n Boolean vectors  
v1,…,vn, given online, return each A ∙ vi right after vi has been given.

[Green-Larsen, Williams’17]: One can compute A ∙ vi for all i online, in 
𝑛𝑛3/2Ω( log 𝑛𝑛) total time.

OMv Conjecture: OMv requires n3-o(1) total time.

[Cl-Gr-L’15] : Cell probe lower bounds for OMv problem over very
large finite fields F,  space usage S = min (n log |F|, n2) when
|F|=nΩ(1), S=O(n).



Problem (combinatorial) 
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n

(BMM, OMv)
Lower bound

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai – Saranurak 2015]:
Most BMM lower bounds hold for non--combinatorial 
algorithms as well, under the OMv Conjecture.



What about diameter? Another conjecture?

Problem (combinatorial) 
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n

(BMM, OMv)
Lower bound

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai – Saranurak 2015]:
Most BMM lower bounds hold for non--combinatorial 
algorithms as well, under the OMv Conjecture.



SETH / OVC  Lower Bounds

3SUM
Reachability

BMM

OMv
Maximum Matching

Strongly Connect
Components

…

[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all ε>0, there’s a k  s.t.
k--SAT cannot be solved in (2-- ε)n time”

m1/3

m

m

OVC: “Checking if a set of n vectors over {0,1}d

contains an orthog. pair requires n2-o(1) poly(d) time”
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APSP Lower Bounds
[Abboud-VW FOCS 14’]
The APSP conjecture implies tight lower bounds for some weighted problems.

The APSP conjecture:
“No O(n3--ε) time algorithm for All--Pairs--Shortest--Paths”

Different conjectures are bet t er for explaining different barriers
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APSP Lower Bounds
[Abboud-VW FOCS 14’]
The APSP conjecture implies tight lower bounds for some weighted problems.

The APSP conjecture:
“No O(n3--ε) time algorithm for All--Pairs--Shortest--Paths”

Different conjectures are bet t er for explaining different barriers

Ω(n2) per update!

3SUM
Reachability

BMM

OMv
Maximum Matching

edStrongly Connect
Components

…

APSP s,t-Shortest Path

Weighted Matching

m1/3

m

m

m
mn

SETH / OVC

4
3
− 𝜖𝜖 Approx. Diameter
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➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path



Dynamic single source reachability

Single source reachability: given a source s, which nodes 
can s reach?      O(m+n) time, DFS
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Dynamic single source reachability

Single source reachability: given a source s, which nodes 
can s reach?      O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution: 
O(m + n) time updates or O(m + n) time queries
[Sankowski’04]: O(n1.495) update and query time

No nontrivial solution for sparse graphs!
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Thm: O(m1 - ε) queries and updates for #SS-reach 
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
(1) Insert ≤ d edges into G
(2) Query #SS-reach
(3) Remove the ≤ d inserted edges

n queries, O(n d) updates



v
c

e

Node per 
vector

Edge (c,v) if v[c]=1
s

Thm: O(m1 - ε) queries and updates for #SS-reach imply 
OV in O(n2 - ε’) time and hence SETH is false.

Graph after 
preprocessing
(static)
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v
c
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Node per 
vector

Edge (c,v) if v[c]=1
s

Edge (s,e) 
for each e 
with u[e]=1

(1) s can reach itself

Thm: O(m1 - ε) queries and updates for #SS-reach imply 
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part
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s

Edge (s,e) 
for each e 
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e 

with u[e]=1. Say X such.
(3) s can reach all vectors   

that are not orthog to u

There is some v orthog to u 
iff the # of reachable nodes 
from s is < X + n + 1

m ~ n d
O(n d) updates, n queries

Thm: O(m1 - ε) queries and updates for #SS-reach imply 
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

So m1-o(1) lower bound 
from OV and SETH.



Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path



Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:



Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?



Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?
- query2: how many SCCs does G have?



Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?
- query2: how many SCCs does G have?

(All known algorithms for query1 also solve query2.)
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types of queries in constant time and 

update time is “small”. 
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Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both 
types of queries in constant time and 

update time is “small”. 
T = Sum over all m update times.

Inserts only:
BFGT’09: T ~ n2 log n, 
HKMST.’08: T ~ min{m3/2,mn2/3}
Bernstein, Chechik’18: T~ mn1/2, rand.
Bhattacharya Kulkarni‘20: T~ m4/3, rand.

Deletes only: R.Z.’02, Lacki’11, Roditty’12: T ~ mn.

Amortized update time is 
n for deletes only, min(m1/3 , n2/m) for inserts only.
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Fully dynamic SCC
If both inserts and deletes allowed: best known 
solution is to recompute SCCs after each update!

Thm: Under OVC, any fully dynamic algorithm that 
can answer queries “Is the number of SCCs>2?” 
requires 𝑚𝑚1−𝑜𝑜(1) update or query time.

If SETH is true, might as well recompute the SCCs 
after each update!



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges

O(n d) updates, n queries, m ~ nd edges 



Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges

O(n d) updates, n queries, m ~ nd edges 
OV/SETH lower bound of m1 – o(1) for query or update
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Stage for vector v (updates red):
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s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. Node per 

coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff 

there is a c with u[c]=v[c]=1,    
i.e. iff u and v are not orthog.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff 

there is a c with u[c]=v[c]=1,    
i.e. iff u and v are not orthog.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff 

there is a c with u[c]=v[c]=1,    
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is 
no vector orthogonal to v.

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff 

there is a c with u[c]=v[c]=1,    
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is 
no vector orthogonal to v.

O(n d) updates, n queries

Node per 
coordinate



Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per 
vector

Edge (c,u) if 
u[c]=1

s

t

Edge (s,d) if 
v[d]=1

Edges (c,t) 
and (t,c) if 
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. 
(3) t is in an SCC with 

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff 

there is a c with u[c]=v[c]=1,    
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is 
no vector orthogonal to v.

O(n d) updates, n queries
So a n1 – o(1) lower bound.

Node per 
coordinate



With additional gadgets, lower bounds for: 
(more) Strongly Connected Components 

Undirected Connectivity with node
updates and more.

Next: even higher lower bounds!



Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path



Dynamic Diameter

Input: an undirected graph G 

Updates: Add or remove edges. 

Query: What is the diameter of G?

Upper bounds for dynamic All--Pairs--Shortest--Paths: 
Naive: ~O(mn) per update.

[Demetrescu-Italiano 03’, Thorup 04’]: amortized ~O(n2).

Theorem [Abboud --VW FOCS 14’]:

A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates 

with amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!



Proof outline:
Three Orthogonal Vectors (3-OV) dynamic Diameter

(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

Given three lists of n vectors in {0,1}d is 
there an “orthogonal” triple?

Recall: 3--OV in n3--εpoly d time refutes SETH

Theorem [Abboud --VW FOCS 14’]:
1.33--approximation for the diameter of a sparse graph under edge updates 

with amortized O(n2--ε) update time refutes SETH!

d = polylog(n)



Proof outline:
Three Orthogonal Vectors (3-OV) dynamic Diameter

(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

Graph G on m=O(nd) nodes and edges,
O(nd) updates and queries

is the diameter 3 or more?

Amortized O(m1.9) 
update/query time

O(nd) updates/queries 
in n2.9poly d time

3--OV in n2.9 poly d time

(refutes SETH)
d=polylog(n), m=~O(n)

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with 

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

Given three lists of n vectors in {0,1}d

is there an “orthogonal” triple?



Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1
static: 

encodes B

dynamic: 
will encode C

Theorem [Abboud --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with 

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

static: 
encodes A

u1

ud

u’1

u’d

x y



For each ci:

Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d

1. add edges uj u’j iff ci[j]=1
2. ask Diameter query.

( ci )

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with 

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y



Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d
( ci )

Observation:
The distance from a to b is more than 3 iff

a,b,ci are an orthogonal triple.

(no coordinate with all three 1’s)

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with 

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y



Proof:
dynamic Diameter

b1

bn

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d
( ci )

Theorem [Abboud --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with 

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y

For each ci:

uj u’j1. add edges iff ci[j]=1

2. Query. If Diameter > 3, output “yes”.

3. remove edges and move on to next ci

O(nd) updates, 
m = O(nd) edges

𝑛𝑛2−𝑜𝑜(1) per 
update!



Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path



Decremental s-t Shortest Path

Input: an weighted graph G, nodes s,t

Updates: Remove weighted edges.     

Query: What is 𝑑𝑑(𝑠𝑠, 𝑡𝑡)?

Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 

s t
10 11 1

103

Upper bounds:
Naive: �𝑂𝑂(𝑚𝑚) per update. �𝑂𝑂(𝑛𝑛2) for dense graphs



Reduction from Negative Triangle:

Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 



Reduction from Negative Triangle:

We are given tripartite G with parts A,B,C and want to know 
if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶:𝑤𝑤 𝑎𝑎, 𝑏𝑏 + 𝑤𝑤 𝑏𝑏, 𝑐𝑐 + 𝑤𝑤 𝑐𝑐,𝑎𝑎 < 0.

Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 

𝐴𝐴

𝐵𝐵

𝐶𝐶
𝑎𝑎

𝑏𝑏

𝑐𝑐



This is the same as: Given G’ with parts A,B,C, A’ and want to 
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑤𝑤 𝑎𝑎, 𝑏𝑏 + 𝑤𝑤 𝑏𝑏, 𝑐𝑐 + 𝑤𝑤 𝑐𝑐,𝑎𝑎𝑎 < 0.

Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑐𝑐𝑏𝑏
𝑎𝑎𝑎

𝑎𝑎



This is the same as: Given directed layered G’ with parts 
A,B,C, A’ and want to know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.

Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑐𝑐𝑏𝑏
𝑎𝑎𝑎

𝑎𝑎 𝑤𝑤 𝑎𝑎, 𝑏𝑏
𝑤𝑤 𝑏𝑏, 𝑐𝑐

𝑤𝑤 𝑐𝑐,𝑎𝑎



Given directed layered G’ with parts A,B,C, A’ and want to 
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎



Given directed layered G’ with parts A,B,C, A’ and want to 
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

2
1

s
6𝑊𝑊

𝑖𝑖

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊



Given directed layered G’ with parts A,B,C, A’ and want to 
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t
6𝑊𝑊

6𝑊𝑊

𝑖𝑖 𝑗𝑗𝑎

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑗𝑗𝑊𝑊

6𝑛𝑛𝑊𝑊



Given directed layered G’ with parts A,B,C, A’ and want to 
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t
6𝑊𝑊

6𝑊𝑊

𝑖𝑖 𝑗𝑗𝑎

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑗𝑗𝑊𝑊

6𝑛𝑛𝑊𝑊

Claim: 𝑑𝑑 𝑠𝑠, 𝑡𝑡 = 12𝑊𝑊 + distance between 1 in A and 1’ in A’.
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Dist through 1,1𝑎 is ≤ 12𝑊𝑊 + 3𝑊𝑊 = 15𝑊𝑊.
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Build the graph.
For 𝑖𝑖 from 1 to 𝑛𝑛:

if 𝑑𝑑 𝑠𝑠, 𝑡𝑡 < 12𝑖𝑖𝑊𝑊, return “Neg Triangle!”
else remove edges (𝑠𝑠, 𝑖𝑖) and (𝑖𝑖′, 𝑡𝑡)

Return “No Neg Triangle!”
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Claim: 𝑑𝑑 𝑠𝑠, 𝑡𝑡 = 12𝑖𝑖𝑊𝑊 +
distance between 𝑖𝑖 in A 

and 𝑖𝑖′in A’.



Theorem [RZ’04, A VW’14] 
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per 
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎,  then APSP in 𝒏𝒏 node graphs is 

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time. 

The graph we build has 𝑁𝑁 = 𝑂𝑂(𝑛𝑛) nodes and 𝑀𝑀 = 𝑂𝑂 𝑛𝑛2 edges.
We then perform 2𝑛𝑛 deletions.

If s-t Shortest Path preprocessing is 𝑂𝑂(𝑁𝑁3−𝜖𝜖) time, the amortized 
deletion time is 𝑂𝑂 𝑀𝑀1−𝜖𝜖 = 𝑂𝑂(𝑛𝑛2−2𝜖𝜖), then 
we can solve Neg. Triangle in 𝑂𝑂(𝑛𝑛3−𝜖𝜖) time.

Exercise: Show how to modify the reduction so that it 
works for undirected graphs as well.



Summary:

Very high lower bounds for fundamental problems

After identifying the conjecture,
the proofs are often very simple!
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