
Popular Conjectures and
Dynamic Problems

Thanks to Amir Abboud for some of his slides!

Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs

Dynamic graph algorithms

Given initial graph G, can preprocess it.
Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? …

Dynamic graph algorithms

Given initial graph G, can preprocess it.
Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? …

Want to minimize the preprocessing, update and query times.

• Worst case time
• Amortized time
• Total time (over all updates)

Dynamic Problems

Updates: Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: O(m) time per update.
[Thorup STOC 01]: O(log m (log log m)3) amortized time per update.

[Păt raşcu - Demaine STOC 05]:
Ω(log m) Cell-probe lower bound.

Dynamic (undirected) Connectivity

Input: an undirected graph G

s t

Great!

Trivial algorithm: O(m) time updates

Updates: Add or remove edges.
Query:
s,t-Reach: Is there a path from s to t?
#SSR: How many nodes can s reach?

Using fast matrix multiplication
[Sankowski FOCS 04’] O(n1.58)

Best cell probe lower bound still Ω(log m)

Dynamic (directed) Reachability

Input: A directed graph G.

s t

Not great.

Dynamic Problems

Many successes for the partially dynamic setting and related problems.

Huge gaps --what is the right answer?

Today:

Many Examples
Problem Upper bound (Unconditional)

Lower bound

s,t--Reach

O(m) or O(n)

Ω(log m)

#SSR

Strongly Connected Components

Maximum Matching

Connectivity with node updates O(m)

Approximate Diameter O(mn)

Much higher lower bounds via
the fine-grained approach

3SUM Lower Bounds

3-SUM: Given n integers, are there 3 that sum to 0?

Theorem [Pătraşcu STOC10] : The 3--SUM conjecture implies
polynomial lower bounds for many dynamic problems.

The 3-SUM Conjecture: “No O(n2-eps) time algorithm”

A very cool series of reductions…

No poly log updates for Reachability!

Problem Upper bound (3-SUM)
Lower bound

s,t--Reach
O(m) or O(n)

ma#SSR

Connectivity with node updates O(m) for some a>0

3SUM Lower Bounds
[Abboud-VW FOCS '14], [K opelowitz - Pettie - Porat. SODA '16]
Optimized Pătraşcu’s reductions and added problems to the list

Some steps in the reduction are lossy --stuck at m1/3.

3SUM might not be the most appropriate…

Problem Upper bound (3-SUM)
Lower bound

s,t-Reach

O(m) or O(n)

m1/3

#SSR

Strongly Connected Components

Maximum Matching

Connectivity with node updates O(m)

Approximate Diameter O(mn)

BMM Lower Bounds
[Abboud-VW FOCS 14’]
The BMM conjecture implies tight lower bounds for combinatorial algorithms

The BMM conjecture:
“No O(n3--eps) time combinatorial algorithm

for Boolean Matrix Multiplication”

Any improvement for these problems will probably have to use
fast matrix mult.

Problem (combinatorial)
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the Online Matrix Vector Multiplication Conjecture.

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given n x n Boolean matrix A and n Boolean vectors
v1,…,vn, given online, return each A ∙ vi right after vi has been given.

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given n x n Boolean matrix A and n Boolean vectors
v1,…,vn, given online, return each A ∙ vi right after vi has been given.

[Green-Larsen, Williams’17]: One can compute A ∙ vi for all i online, in
𝑛𝑛3/2Ω(log 𝑛𝑛) total time.

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given n x n Boolean matrix A and n Boolean vectors
v1,…,vn, given online, return each A ∙ vi right after vi has been given.

[Green-Larsen, Williams’17]: One can compute A ∙ vi for all i online, in
𝑛𝑛3/2Ω(log 𝑛𝑛) total time.

OMv Conjecture: OMv requires n3-o(1) total time.

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘ 15]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given n x n Boolean matrix A and n Boolean vectors
v1,…,vn, given online, return each A ∙ vi right after vi has been given.

[Green-Larsen, Williams’17]: One can compute A ∙ vi for all i online, in
𝑛𝑛3/2Ω(log 𝑛𝑛) total time.

OMv Conjecture: OMv requires n3-o(1) total time.

[Cl-Gr-L’15] : Cell probe lower bounds for OMv problem over very
large finite fields F, space usage S = min (n log |F|, n2) when
|F|=nΩ(1), S=O(n).

Problem (combinatorial)
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n

(BMM, OMv)
Lower bound

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai – Saranurak 2015]:
Most BMM lower bounds hold for non--combinatorial
algorithms as well, under the OMv Conjecture.

What about diameter? Another conjecture?

Problem (combinatorial)
Upper bound

(BMM)
Lower bound

(3-SUM)
Lower bound

#SSR

O(m) m
m1/3

Strongly Connected Components

s,t-Reach

Maximum Matching

Approximate Diameter O(mn) n

(BMM, OMv)
Lower bound

OMv Lower Bounds
[Henzinger - Krinninger - Nanongkai – Saranurak 2015]:
Most BMM lower bounds hold for non--combinatorial
algorithms as well, under the OMv Conjecture.

SETH / OVC Lower Bounds

3SUM
Reachability

BMM

OMv
Maximum Matching

Strongly Connect
Components

…

[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all ε>0, there’s a k s.t.
k--SAT cannot be solved in (2-- ε)n time”

m1/3

m

m

OVC: “Checking if a set of n vectors over {0,1}d

contains an orthog. pair requires n2-o(1) poly(d) time”

SETH / OVC Lower Bounds

3SUM
Reachability

BMM

OMv
Maximum Matching

edStrongly Connect
Components

…

SETH / OVC

[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all ε>0, there’s a k s.t.
k--SAT cannot be solved in (2-- ε)n time”

m1/3

m

m

4
3
− 𝜖𝜖 Approx. Diameter

m
mn

OVC: “Checking if a set of n vectors over {0,1}d

contains an orthog. pair requires n2-o(1) poly(d) time”

SETH / OVC Lower Bounds

3SUM
Reachability

BMM

OMv
Maximum Matching

edStrongly Connect
Components

…

SETH / OVC

[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all ε>0, there’s a k s.t.
k--SAT cannot be solved in (2-- ε)n time”

m1/3

m

m

4
3
− 𝜖𝜖 Approx. Diameter

m
mn

OVC: “Checking if a set of n vectors over {0,1}d

contains an orthog. pair requires n2-o(1) poly(d) time”

Different conjectures are bet t er for explaining different barriers

APSP Lower Bounds
[Abboud-VW FOCS 14’]
The APSP conjecture implies tight lower bounds for some weighted problems.

The APSP conjecture:
“No O(n3--ε) time algorithm for All--Pairs--Shortest--Paths”

Different conjectures are bet t er for explaining different barriers

3SUM
Reachability

BMM

OMv
Maximum Matching

edStrongly Connect
Components

…

m1/3

m

m

m
mn

SETH / OVC

4
3
− 𝜖𝜖 Approx. Diameter

APSP Lower Bounds
[Abboud-VW FOCS 14’]
The APSP conjecture implies tight lower bounds for some weighted problems.

The APSP conjecture:
“No O(n3--ε) time algorithm for All--Pairs--Shortest--Paths”

Different conjectures are bet t er for explaining different barriers

Ω(n2) per update!

3SUM
Reachability

BMM

OMv
Maximum Matching

edStrongly Connect
Components

…

APSP s,t-Shortest Path

Weighted Matching

m1/3

m

m

m
mn

SETH / OVC

4
3
− 𝜖𝜖 Approx. Diameter

Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:
O(m + n) time updates or O(m + n) time queries

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:
O(m + n) time updates or O(m + n) time queries
[Sankowski’04]: O(n1.495) update and query time

Dynamic single source reachability

Single source reachability: given a source s, which nodes
can s reach? O(m+n) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:
O(m + n) time updates or O(m + n) time queries
[Sankowski’04]: O(n1.495) update and query time

No nontrivial solution for sparse graphs!

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
(1) Insert ≤ d edges into G

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
(1) Insert ≤ d edges into G
(2) Query #SS-reach

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
(1) Insert ≤ d edges into G
(2) Query #SS-reach
(3) Remove the ≤ d inserted edges

Thm: O(m1 - ε) queries and updates for #SS-reach
imply OV in O(n2 - ε’) time and hence SETH is false.

Reduction from OV, vector dimension d
Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
(1) Insert ≤ d edges into G
(2) Query #SS-reach
(3) Remove the ≤ d inserted edges

n queries, O(n d) updates

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Graph after
preprocessing
(static)

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.
(3) s can reach all vectors

that are not orthog to u

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.
(3) s can reach all vectors

that are not orthog to u

There is some v orthog to u
iff the # of reachable nodes
from s is < X + n + 1

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.
(3) s can reach all vectors

that are not orthog to u

There is some v orthog to u
iff the # of reachable nodes
from s is < X + n + 1

m ~ n d

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.
(3) s can reach all vectors

that are not orthog to u

There is some v orthog to u
iff the # of reachable nodes
from s is < X + n + 1

m ~ n d
O(n d) updates, n queries

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

v
c

e

Node per
vector

Edge (c,v) if v[c]=1
s

Edge (s,e)
for each e
with u[e]=1

(1) s can reach itself
(2) s can reach all coords e

with u[e]=1. Say X such.
(3) s can reach all vectors

that are not orthog to u

There is some v orthog to u
iff the # of reachable nodes
from s is < X + n + 1

m ~ n d
O(n d) updates, n queries

Thm: O(m1 - ε) queries and updates for #SS-reach imply
OV in O(n2 - ε’) time and hence SETH is false.

Stage for vector u:
Dynamic part

So m1-o(1) lower bound
from OV and SETH.

Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path

Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?

Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?
- query2: how many SCCs does G have?

Dynamic maintenance of SCCs

Strongly connected components:
Can find them in O(m) time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- query1(u,v): are u and v in the same SCC?
- query2: how many SCCs does G have?

(All known algorithms for query1 also solve query2.)

Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both
types of queries in constant time and

update time is “small”.

Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both
types of queries in constant time and

update time is “small”.
T = Sum over all m update times.

Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both
types of queries in constant time and

update time is “small”.
T = Sum over all m update times.

Inserts only:
BFGT’09: T ~ n2 log n,
HKMST.’08: T ~ min{m3/2,mn2/3}
Bernstein, Chechik’18: T~ mn1/2, rand.
Bhattacharya Kulkarni‘20: T~ m4/3, rand.

Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both
types of queries in constant time and

update time is “small”.
T = Sum over all m update times.

Inserts only:
BFGT’09: T ~ n2 log n,
HKMST.’08: T ~ min{m3/2,mn2/3}
Bernstein, Chechik’18: T~ mn1/2, rand.
Bhattacharya Kulkarni‘20: T~ m4/3, rand.

Deletes only: R.Z.’02, Lacki’11, Roditty’12: T ~ mn.

Dynamic SCC: prior work
If only inserts or only deletes allowed, can answer both
types of queries in constant time and

update time is “small”.
T = Sum over all m update times.

Inserts only:
BFGT’09: T ~ n2 log n,
HKMST.’08: T ~ min{m3/2,mn2/3}
Bernstein, Chechik’18: T~ mn1/2, rand.
Bhattacharya Kulkarni‘20: T~ m4/3, rand.

Deletes only: R.Z.’02, Lacki’11, Roditty’12: T ~ mn.

Amortized update time is
n for deletes only, min(m1/3 , n2/m) for inserts only.

Fully dynamic SCC
If both inserts and deletes allowed: best known
solution is to recompute SCCs after each update!

Fully dynamic SCC
If both inserts and deletes allowed: best known
solution is to recompute SCCs after each update!

Thm: Under OVC, any fully dynamic algorithm that
can answer queries “Is the number of SCCs>2?”
requires 𝑚𝑚1−𝑜𝑜(1) update or query time.

Fully dynamic SCC
If both inserts and deletes allowed: best known
solution is to recompute SCCs after each update!

Thm: Under OVC, any fully dynamic algorithm that
can answer queries “Is the number of SCCs>2?”
requires 𝑚𝑚1−𝑜𝑜(1) update or query time.

If SETH is true, might as well recompute the SCCs
after each update!

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges

O(n d) updates, n queries, m ~ nd edges

Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:

Insert ≤ d edges
Query #SCC>2.

If #SCC>2 is yes, return that some u is orthogonal to v.
Delete the ≤ d edges

O(n d) updates, n queries, m ~ nd edges
OV/SETH lower bound of m1 – o(1) for query or update

Dynamic #SCC>2 is hard

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Node per
coordinate

Graph after preprocessing

Dynamic #SCC>2 is hard

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t. Node per

coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff

there is a c with u[c]=v[c]=1,
i.e. iff u and v are not orthog.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff

there is a c with u[c]=v[c]=1,
i.e. iff u and v are not orthog.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff

there is a c with u[c]=v[c]=1,
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is
no vector orthogonal to v.

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff

there is a c with u[c]=v[c]=1,
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is
no vector orthogonal to v.

O(n d) updates, n queries

Node per
coordinate

Dynamic #SCC>2 is hard

Stage for vector v (updates red):

u
c

d

Node per
vector

Edge (c,u) if
u[c]=1

s

t

Edge (s,d) if
v[d]=1

Edges (c,t)
and (t,c) if
v[c]=0

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with

all c s.t. v[c]=0.
(4) s is in an SCC with

all c s.t. v[c]=1.
(5) u and s are in the same SCC iff

there is a c with u[c]=v[c]=1,
i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is
no vector orthogonal to v.

O(n d) updates, n queries
So a n1 – o(1) lower bound.

Node per
coordinate

With additional gadgets, lower bounds for:
(more) Strongly Connected Components

Undirected Connectivity with node
updates and more.

Next: even higher lower bounds!

Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path

Dynamic Diameter

Input: an undirected graph G

Updates: Add or remove edges.

Query: What is the diameter of G?

Upper bounds for dynamic All--Pairs--Shortest--Paths:
Naive: ~O(mn) per update.

[Demetrescu-Italiano 03’, Thorup 04’]: amortized ~O(n2).

Theorem [Abboud --VW FOCS 14’]:

A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates

with amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

Proof outline:
Three Orthogonal Vectors (3-OV) dynamic Diameter

(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

Given three lists of n vectors in {0,1}d is
there an “orthogonal” triple?

Recall: 3--OV in n3--εpoly d time refutes SETH

Theorem [Abboud --VW FOCS 14’]:
1.33--approximation for the diameter of a sparse graph under edge updates

with amortized O(n2--ε) update time refutes SETH!

d = polylog(n)

Proof outline:
Three Orthogonal Vectors (3-OV) dynamic Diameter

(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

Graph G on m=O(nd) nodes and edges,
O(nd) updates and queries

is the diameter 3 or more?

Amortized O(m1.9)
update/query time

O(nd) updates/queries
in n2.9poly d time

3--OV in n2.9 poly d time

(refutes SETH)
d=polylog(n), m=~O(n)

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

Given three lists of n vectors in {0,1}d

is there an “orthogonal” triple?

Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1
static:

encodes B

dynamic:
will encode C

Theorem [Abboud --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

static:
encodes A

u1

ud

u’1

u’d

x y

For each ci:

Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d

1. add edges uj u’j iff ci[j]=1
2. ask Diameter query.

(ci)

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y

Proof:
dynamic Diameter

b1

bn

biu’j

add edge

iff bi[j]=1

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d
(ci)

Observation:
The distance from a to b is more than 3 iff

a,b,ci are an orthogonal triple.

(no coordinate with all three 1’s)

Theorem [A --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y

Proof:
dynamic Diameter

b1

bn

Three Orthogonal Vectors

(1,0,1,…,0)

(0,1,1,…,0)

(1,1,1,…,0)

B

(1,0,…,1)
(0,1,…,0)

…
(1,0,…,1)

A
(0,0,…,1)
(0,1,…,1)

…
(1,0,…,0)

C
(1,0,…,1)
(0,0,…,1)

…
(1,1,…,0)

a1

an

u1

ud

u’1

u’d
(ci)

Theorem [Abboud --VW FOCS 14’]:
A 𝟒𝟒
𝟑𝟑
− 𝝐𝝐 approximation for the diameter of a sparse graph under edge updates with

amortized 𝑶𝑶(𝒏𝒏𝟐𝟐−𝜹𝜹) update time for 𝝐𝝐,𝜹𝜹 > 𝟎𝟎 refutes SETH!

x y

For each ci:

uj u’j1. add edges iff ci[j]=1

2. Query. If Diameter > 3, output “yes”.

3. remove edges and move on to next ci

O(nd) updates,
m = O(nd) edges

𝑛𝑛2−𝑜𝑜(1) per
update!

Plan

➡Overview of some lower bounds for dynamic problems

➡Simple and powerful proofs
• Single Source Reachability
• #ss-Reach
• Strongly Connected Components
• Diameter
• s-t Shortest Path

Decremental s-t Shortest Path

Input: an weighted graph G, nodes s,t

Updates: Remove weighted edges.

Query: What is 𝑑𝑑(𝑠𝑠, 𝑡𝑡)?

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

s t
10 11 1

103

Upper bounds:
Naive: �𝑂𝑂(𝑚𝑚) per update. �𝑂𝑂(𝑛𝑛2) for dense graphs

Reduction from Negative Triangle:

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

Reduction from Negative Triangle:

We are given tripartite G with parts A,B,C and want to know
if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶:𝑤𝑤 𝑎𝑎, 𝑏𝑏 + 𝑤𝑤 𝑏𝑏, 𝑐𝑐 + 𝑤𝑤 𝑐𝑐,𝑎𝑎 < 0.

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

𝐴𝐴

𝐵𝐵

𝐶𝐶
𝑎𝑎

𝑏𝑏

𝑐𝑐

This is the same as: Given G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑤𝑤 𝑎𝑎, 𝑏𝑏 + 𝑤𝑤 𝑏𝑏, 𝑐𝑐 + 𝑤𝑤 𝑐𝑐,𝑎𝑎𝑎 < 0.

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑐𝑐𝑏𝑏
𝑎𝑎𝑎

𝑎𝑎

This is the same as: Given directed layered G’ with parts
A,B,C, A’ and want to know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑐𝑐𝑏𝑏
𝑎𝑎𝑎

𝑎𝑎 𝑤𝑤 𝑎𝑎, 𝑏𝑏
𝑤𝑤 𝑏𝑏, 𝑐𝑐

𝑤𝑤 𝑐𝑐,𝑎𝑎

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

2
1

s
6𝑊𝑊

𝑖𝑖

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t
6𝑊𝑊

6𝑊𝑊

𝑖𝑖 𝑗𝑗𝑎

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑗𝑗𝑊𝑊

6𝑛𝑛𝑊𝑊

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t
6𝑊𝑊

6𝑊𝑊

𝑖𝑖 𝑗𝑗𝑎

12𝑊𝑊
6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑗𝑗𝑊𝑊

6𝑛𝑛𝑊𝑊

Claim: 𝑑𝑑 𝑠𝑠, 𝑡𝑡 = 12𝑊𝑊 + distance between 1 in A and 1’ in A’.
Pf: If 𝑖𝑖 > 1 or 𝑗𝑗 > 1, dist through 𝑖𝑖, 𝑗𝑗𝑎 is ≥ 18𝑊𝑊 − 3𝑊𝑊 = 15𝑊𝑊.
Dist through 1,1𝑎 is ≤ 12𝑊𝑊 + 3𝑊𝑊 = 15𝑊𝑊.

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

Remove
𝑠𝑠, 𝑗𝑗 , 𝑗𝑗′, 𝑡𝑡 for

all 𝑗𝑗 < 𝑖𝑖.

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

Claim: 𝑑𝑑 𝑠𝑠, 𝑡𝑡 = 12𝑖𝑖𝑊𝑊 + distance between 𝑖𝑖 in A and 𝑖𝑖′in A’.
Pf: If a > 𝑖𝑖 or 𝑏𝑏 > 𝑖𝑖, dist through 𝑎𝑎, 𝑏𝑏𝑎 is ≥ 12𝑖𝑖𝑊𝑊 + 6𝑊𝑊 − 3𝑊𝑊 =
(12𝑖𝑖 + 3)𝑊𝑊. Dist through 𝑖𝑖, 𝑖𝑖𝑎 is ≤ 12𝑖𝑖𝑊𝑊 + 3𝑊𝑊.

Remove
𝑠𝑠, 𝑗𝑗 , 𝑗𝑗′, 𝑡𝑡 for

all 𝑗𝑗 < 𝑖𝑖.

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊Reduction:

6𝑊𝑊
6𝑊𝑊

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊
Build the graph.
For 𝑖𝑖 from 1 to 𝑛𝑛:

if 𝑑𝑑 𝑠𝑠, 𝑡𝑡 < 12𝑖𝑖𝑊𝑊, return “Neg Triangle!”
else remove edges (𝑠𝑠, 𝑖𝑖) and (𝑖𝑖′, 𝑡𝑡)

Return “No Neg Triangle!”

Reduction:

6𝑊𝑊
6𝑊𝑊

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊
Build the graph.
For 𝑖𝑖 from 1 to 𝑛𝑛:

if 𝑑𝑑 𝑠𝑠, 𝑡𝑡 < 12𝑖𝑖𝑊𝑊, return “Neg Triangle!”
else remove edges (𝑠𝑠, 𝑖𝑖) and (𝑖𝑖′, 𝑡𝑡)

Return “No Neg Triangle!”

Reduction:

Given directed layered G’ with parts A,B,C, A’ and want to
know if ∃𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵, 𝑐𝑐 ∈ 𝐶𝐶,𝑎𝑎′ ∈ 𝐴𝐴′:

𝑎𝑎 = 𝑎𝑎′,𝑑𝑑(𝑎𝑎,𝑎𝑎′) < 0.
All edge weights lie in −𝑊𝑊, … ,𝑊𝑊 .

𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐴𝐴𝑎𝑛𝑛

1𝑎

2
1

𝑛𝑛𝑎

2𝑎

s t

𝑖𝑖
𝑖𝑖𝑎

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊

6𝑖𝑖𝑊𝑊

6𝑛𝑛𝑊𝑊
Build the graph.
For 𝑖𝑖 from 1 to 𝑛𝑛:

if 𝑑𝑑 𝑠𝑠, 𝑡𝑡 < 12𝑖𝑖𝑊𝑊, return “Neg Triangle!”
else remove edges (𝑠𝑠, 𝑖𝑖) and (𝑖𝑖′, 𝑡𝑡)

Return “No Neg Triangle!”

Reduction:

Claim: 𝑑𝑑 𝑠𝑠, 𝑡𝑡 = 12𝑖𝑖𝑊𝑊 +
distance between 𝑖𝑖 in A

and 𝑖𝑖′in A’.

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense 𝒎𝒎 edge graphs can be supported with 𝑶𝑶 𝒎𝒎𝟏𝟏−𝝐𝝐 time per
update, after 𝑶𝑶 𝒏𝒏𝟑𝟑−𝝐𝝐 preprocessing time for 𝝐𝝐 > 𝟎𝟎, then APSP in 𝒏𝒏 node graphs is

in 𝑶𝑶(𝒏𝒏𝟑𝟑−𝝐𝝐) time.

The graph we build has 𝑁𝑁 = 𝑂𝑂(𝑛𝑛) nodes and 𝑀𝑀 = 𝑂𝑂 𝑛𝑛2 edges.
We then perform 2𝑛𝑛 deletions.

If s-t Shortest Path preprocessing is 𝑂𝑂(𝑁𝑁3−𝜖𝜖) time, the amortized
deletion time is 𝑂𝑂 𝑀𝑀1−𝜖𝜖 = 𝑂𝑂(𝑛𝑛2−2𝜖𝜖), then
we can solve Neg. Triangle in 𝑂𝑂(𝑛𝑛3−𝜖𝜖) time.

Exercise: Show how to modify the reduction so that it
works for undirected graphs as well.

Summary:

Very high lower bounds for fundamental problems

After identifying the conjecture,
the proofs are often very simple!

	Popular Conjectures and Dynamic Problems
	Plan
	Dynamic graph algorithms
	Dynamic graph algorithms
	Dynamic	Problems
	Dynamic	Problems
	Many Examples
	3SUM	Lower	Bounds
	3SUM	Lower	Bounds
	BMM	Lower	Bounds
	OMv	Lower	Bounds
	OMv	Lower	Bounds
	OMv	Lower	Bounds
	OMv	Lower	Bounds
	OMv	Lower	Bounds
	Slide Number 16
	Slide Number 17
	SETH / OVC Lower	 Bounds
	SETH / OVC Lower	 Bounds
	SETH / OVC Lower	 Bounds
	APSP	Lower	Bounds
	APSP	Lower	Bounds
	Plan
	Dynamic single source reachability
	Dynamic single source reachability
	Dynamic single source reachability
	Dynamic single source reachability
	Dynamic single source reachability
	Dynamic single source reachability
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Thm: O(m1 - ) queries and updates for #SS-reach imply OV in O(n2 - ’) time and hence SETH is false.
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Plan
	Dynamic maintenance of SCCs
	Dynamic maintenance of SCCs
	Dynamic maintenance of SCCs
	Dynamic maintenance of SCCs
	Dynamic SCC: prior work
	Dynamic SCC: prior work
	Dynamic SCC: prior work
	Dynamic SCC: prior work
	Dynamic SCC: prior work
	Fully dynamic SCC
	Fully dynamic SCC
	Fully dynamic SCC
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Dynamic #SCC>2 is hard
	Slide Number 86
	Plan
	Dynamic Diameter
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Plan
	Decremental s-t Shortest Path
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Summary:

