Popular Conjectures and Dynamic Problems

Thanks to Amir Abboud for some of his slides!
Plan

➡ Overview of some lower bounds for dynamic problems
➡ Simple and powerful proofs
Dynamic graph algorithms

Given initial graph G, can preprocess it.
Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? ...
Dynamic graph algorithms

Given initial graph G, can preprocess it. Edge updates: insert(u,v), delete(u,v)

Queries: (depend on the problem)
How many SCCs are there? Can u reach v? ...

Want to minimize the preprocessing, update and query times.

- Worst case time
- Amortized time
- Total time (over all updates)
Dynamic Problems

Dynamic (undirected) Connectivity

Input: an undirected graph G

Updates: Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: $O(m)$ time per update.

[Thorup STOC 01]: $O(\log m (\log \log m)^3)$ amortized time per update.

[Pătraşcu - Demaine STOC 05]: $\Omega(\log m)$ Cell-probe lower bound.
Dynamic Problems

Dynamic (directed) Reachability

Input: A directed graph G.

Updates: Add or remove edges.

Query:

s,t-Reach: Is there a path from s to t?

#SSR: How many nodes can s reach?

Trivial algorithm: $O(m)$ time updates

Using fast matrix multiplication

[Sankowski FOCS 04'] $O(n^{1.58})$

Best cell probe lower bound still $\Omega(\log m)$

Not great.
Many Examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Upper bound</th>
<th>(Unconditional) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>s,t--Reach</td>
<td>$O(m)$ or $O(n)$</td>
<td>$\Omega(\log m)$</td>
</tr>
<tr>
<td>#SSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Connected Components</td>
<td>$O(m)$ or $O(n)$</td>
<td></td>
</tr>
<tr>
<td>Maximum Matching</td>
<td>$O(m)$</td>
<td></td>
</tr>
<tr>
<td>Connectivity with node updates</td>
<td>$O(mn)$</td>
<td></td>
</tr>
<tr>
<td>Approximate Diameter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Many successes for the partially dynamic setting and related problems.

Huge gaps – what is the right answer?

Today:

Much higher lower bounds via the fine-grained approach
3SUM Lower Bounds

Theorem [Pătraşcu STOC10]: The 3-SUM conjecture implies polynomial lower bounds for many dynamic problems.

3-SUM: Given \(n \) integers, are there 3 that sum to 0?

The 3-SUM Conjecture: “No \(O(n^{2-\epsilon}) \) time algorithm”

A very cool series of reductions...

<table>
<thead>
<tr>
<th>Problem</th>
<th>Upper bound</th>
<th>(3-SUM) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s,t)-Reach</td>
<td>(O(m)) or (O(n))</td>
<td>(m^a) for some (a > 0)</td>
</tr>
<tr>
<td>#SSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity with node updates</td>
<td>(O(m))</td>
<td></td>
</tr>
</tbody>
</table>

No poly log updates for Reachability!
3SUM Lower Bounds

[Abboud-VW FOCS '14], [Kopelowitz - Pettie - Porat. SODA'16]

Optimized Pătraşcu’s reductions and added problems to the list

<table>
<thead>
<tr>
<th>Problem</th>
<th>Upper bound</th>
<th>(3-SUM) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>s,t-Reach</td>
<td>O(m) or O(n)</td>
<td>m^{1/3}</td>
</tr>
<tr>
<td>#SSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly Connected Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Matching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity with node updates</td>
<td>O(m)</td>
<td></td>
</tr>
<tr>
<td>Approximate Diameter</td>
<td>O(mn)</td>
<td></td>
</tr>
</tbody>
</table>

Some steps in the reduction are lossy - stuck at m^{1/3}.

3SUM might not be the most appropriate...
The BMM conjecture implies tight lower bounds for combinatorial algorithms:

```
The BMM conjecture:
“No $O(n^{3-\epsilon})$ time combinatorial algorithm
for Boolean Matrix Multiplication”
```

<table>
<thead>
<tr>
<th>Problem</th>
<th>(combinatorial) Upper bound</th>
<th>(BMM) Lower bound</th>
<th>(3-SUM) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>#SSR</td>
<td>$O(m)$</td>
<td>m</td>
<td>$m^{1/3}$</td>
</tr>
<tr>
<td>Strongly Connected Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s,t-Reach</td>
<td>$O(mn)$</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Maximum Matching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any improvement for these problems will probably have to use fast matrix mult.
Most BMM lower bounds hold for non-combinatorial algorithms as well, under the Online Matrix Vector Multiplication Conjecture.
OMv Lower Bounds

OMv problem: Given $n \times n$ Boolean matrix A and n Boolean vectors v_1, \ldots, v_n, given online, return each $A \cdot v_i$ right after v_i has been given.
OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC '15]

Most BMM lower bounds hold for non-combinatorial algorithms as well, under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given $n \times n$ Boolean matrix A and n Boolean vectors v_1, \ldots, v_n, given online, return each $A \cdot v_i$ right after v_i has been given.

[Green-Larsen, Williams’17]: One can compute $A \cdot v_i$ for all i online, in $n^3 / 2^{\Omega(\sqrt{\log n})}$ total time.
OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC '15]
Most BMM lower bounds hold for non-combinatorial algorithms as well, under the Online Matrix Vector Multiplication Conjecture.

OMv problem: Given $n \times n$ Boolean matrix A and n Boolean vectors v_1, \ldots, v_n, given online, return each $A \cdot v_i$ right after v_i has been given.

[Green-Larsen, Williams’17]: One can compute $A \cdot v_i$ for all i online, in $n^3 / 2^{\Omega(\sqrt{\log n})}$ total time.

OMv Conjecture: OMv requires $n^{3-o(1)}$ total time.
OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC ‘15]
Most BMM lower bounds hold for non-combinatorial algorithms as well, under the **Online Matrix Vector Multiplication Conjecture**.

OMv problem: Given \(n \times n\) Boolean matrix \(A\) and \(n\) Boolean vectors \(v_1, \ldots, v_n\), given online, return each \(A \cdot v_i\) right after \(v_i\) has been given.

[Green-Larsen, Williams’17]: One can compute \(A \cdot v_i\) for all \(i\) online, in \(n^3 / 2^{\Omega(\sqrt{\log n})}\) total time.

OMv Conjecture: OMv requires \(n^{3-o(1)}\) total time.

[Cl-Gr-L’15]: Cell probe lower bounds for OMv problem over very large finite fields \(F\), space usage \(S = \min (n \log |F|, n^2)\) when \(|F| = n^{\Omega(1)}\), \(S = O(n)\).
OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai – Saranurak 2015]: Most BMM lower bounds hold for non-combinatorial algorithms as well, under the **OMv Conjecture**.

<table>
<thead>
<tr>
<th>Problem</th>
<th>(combinatorial) Upper bound</th>
<th>(BMM, OMv) Lower bound</th>
<th>(3-SUM) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>#SSR</td>
<td>$O(m)$</td>
<td>m</td>
<td>$m^{1/3}$</td>
</tr>
<tr>
<td>Strongly Connected Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s,t-Reach</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Matching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate Diameter</td>
<td>$O(mn)$</td>
<td>n</td>
<td></td>
</tr>
</tbody>
</table>
What about diameter? Another conjecture?

OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai – Saranurak 2015]: Most BMM lower bounds hold for non-combinatorial algorithms as well, under the **OMv Conjecture**.

<table>
<thead>
<tr>
<th>Problem</th>
<th>(combinatorial) Upper bound</th>
<th>(BMM, OMv) Lower bound</th>
<th>(3-SUM) Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>#SSR</td>
<td>O(m)</td>
<td>m</td>
<td>m^{1/3}</td>
</tr>
<tr>
<td>Strongly Connected Components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s,t-Reach</td>
<td>O(mn)</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Maximum Matching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What about diameter? Another conjecture?
[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all $\varepsilon > 0$, there’s a k s.t. k-SAT cannot be solved in $(2 - \varepsilon)^n$ time”

OVC: “Checking if a set of n vectors over $\{0,1\}^d$ contains an orthogonal pair requires $n^{2-o(1)} \text{poly}(d)$ time”

- **3SUM**
 - $m^{1/3}$

- **BMM**
 - m

- **OMv**
 - m

Reachability

Strongly Connected Components

Maximum Matching

...
SETH / OVC Lower Bounds

[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all ε>0, there’s a k s.t. k-SAT cannot be solved in \((2-ε)^n\) time”

OVC: “Checking if a set of n vectors over \(\{0,1\}^d\) contains an orthog. pair requires \(n^{2-o(1)}\) poly(d) time”

- **3SUM**
- **BMM**
- **OMv**

\[m^{1/3} \]
\[m \]
\[m \]

Reachability
Strongly Connected Components
Maximum Matching
...

\[\frac{4}{3} - \epsilon \text{ Approx. Diameter} \]

\[mn \]
[A-VW FOCS 14] OVC, SETH imply very high lower bounds!

SETH: “For all $\varepsilon > 0$, there’s a k s.t. k-SAT cannot be solved in $(2^\varepsilon)^n$ time”

OVC: “Checking if a set of n vectors over $\{0,1\}^d$ contains an orthog. pair requires $n^{2-o(1)} \text{ poly}(d)$ time”

3SUM

$3^1/m^3$

BMM

m

OMv

m

Reachability

Strongly Connected Components

Maximum Matching

$\frac{4}{3} - \epsilon$ Approx. Diameter

m^2

Different conjectures are better for explaining different barriers
The APSP conjecture implies tight lower bounds for some weighted problems. The APSP conjecture: “No $O(n^{3-\epsilon})$ time algorithm for All-Pairs-Shortest-Paths”

Different conjectures are better for explaining different barriers
The APSP conjecture implies tight lower bounds for some weighted problems.

The APSP conjecture:
“No $O(n^{3-\epsilon})$ time algorithm for All-Pairs-Shortest-Paths”

Different conjectures are better for explaining different barriers.
Plan

- Overview of some lower bounds for dynamic problems
- Simple and powerful proofs
 - Single Source Reachability
 - #ss-Reach
 - Strongly Connected Components
 - Diameter
 - s-t Shortest Path
Single source reachability: given a source s, which nodes can s reach? O(m+n) time, DFS
Dynamic single source reachability

Single source reachability: given a source s, which nodes can s reach? \(O(m+n) \) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?
Dynamic single source reachability

Single source reachability: given a source s, which nodes can s reach? $O(m+n)$ time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:
Dynamic single source reachability

Single source reachability: given a source s, which nodes can s reach? \(O(m+n) \) time, DFS

Dynamic #SS-reachability:
Updates: delete/insert edge
Query: how many nodes can s reach?

Trivial solution:
\(O(m + n) \) time updates or \(O(m + n) \) time queries
Dynamic single source reachability

Single source reachability: given a source \(s \), which nodes can \(s \) reach? \(O(m+n) \) time, DFS

Dynamic #SS-reachability:
- **Updates:** delete/insert edge
- **Query:** how many nodes can \(s \) reach?

Trivial solution:
- \(O(m + n) \) time updates or \(O(m + n) \) time queries

[Sankowski’04]: \(O(n^{1.495}) \) update and query time
Dynamic single source reachability

Single source reachability: given a source s, which nodes can s reach? \(O(m+n)\) time, DFS

Dynamic #SS-reachability:
- **Updates:** delete/insert edge
- **Query:** how many nodes can s reach?

Trivial solution:
- \(O(m + n)\) time updates or \(O(m + n)\) time queries

[Sankowski’04]: \(O(n^{1.495})\) update and query time

No nontrivial solution for sparse graphs!
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply \OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.
Thm: $O(m^{1-\varepsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d
Thm: $O(m^{1 - \epsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2 - \epsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d

Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply \textit{OV} in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d

Preprocessing: create a special graph G

Then a **stage** for each vector v in OV instance:
(1) Insert $\leq d$ edges into G
Thm: $O(m^{1 - \varepsilon})$ queries and updates for \#SS-reach imply \(\text{OV} \) in $O(n^{2 - \varepsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d

Preprocessing: create a special graph G

Then a **stage** for each vector v in \(\text{OV} \) instance:

1. Insert $\leq d$ edges into G
2. Query \#SS-reach
Thm: $O(m^{1-\varepsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d

Preprocessing: create a special graph G

Then a stage for each vector v in OV instance:
1. Insert $\leq d$ edges into G
2. Query #SS-reach
3. Remove the $\leq d$ inserted edges
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply \OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Reduction from OV, vector dimension d

Preprocessing: create a special graph G

Then a **stage** for each vector v in OV instance:
1. Insert $\leq d$ edges into G
2. **Query** \#SS-reach
3. Remove the $\leq d$ inserted edges

n queries, $O(n \times d)$ updates
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#\textit{SS-reach} imply \textit{OV} in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Node per vector

Edge (c,v) if $v[c]=1$

Graph after preprocessing (static)
Thm: $O(m^{1-\varepsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.
Thm: $O(m^{1-\varepsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.
Thm: $O(m^{1-\varepsilon})$ queries and updates for #SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

(1) s can reach itself

Stage for vector u: Dynamic part

Node per vector:
- v with edge (c,v) if $v[c]=1$
- e with edge (s,e) for each e with $u[e]=1$
- c, s
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Node per vector

Stage for vector u:
Dynamic part

Edge (c,v) if $v[c]=1$

Edge (s,e) for each e with $u[e]=1$. Say X such.

(1) s can reach itself
(2) s can reach all coords e with $u[e]=1$.
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Stage for vector u: Dynamic part

- Node per vector
- Edge (c,v) if $v[c]=1$
- Edge (s,e) for each e with $u[e]=1$. Say X such.

(1) s can reach itself
(2) s can reach all coords e with $u[e]=1$. Say X such.
(3) s can reach all vectors that are not orthog to u
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Node per vector

Stage for vector u: Dynamic part

(1) s can reach itself

(2) s can reach all coords e with $u[e]=1$. Say X such.

(3) s can reach all vectors that are not orthog to u

There is some v orthog to u iff the # of reachable nodes from s is $< X + n + 1$
Thm: $O(m^{1-\varepsilon})$ queries and updates for [#SS-reach](#) imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Node per vector

Stage for vector u:
Dynamic part

- Edge (c,v) if $v[c]=1$
- Edge (s,e) for each e with $u[e]=1$. Say X such.
- (1) s can reach itself
- (2) s can reach all coords e with $u[e]=1$. Say X such.
- (3) s can reach all vectors that are not orthog to u

There is some v orthog to u iff the # of reachable nodes from s is $< X + n + 1$

$m \sim n \cdot d$
Thm: $O(m^{1-\varepsilon})$ queries and updates for $\#SS$-$reach$ imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

- Node per vector
- Edge (c,v) if $v[c]=1$
- Edge (s,e) for each e with $u[e]=1$. Say X such.

Stage for vector u:

1. s can reach itself
2. s can reach all coords e with $u[e]=1$. Say X such.
3. s can reach all vectors that are not orthog to u.

There is some v orthog to u iff the # of reachable nodes from s is $< X + n + 1$

$m \sim n \cdot d$

$O(n \cdot d)$ updates, n queries
Thm: $O(m^{1-\varepsilon})$ queries and updates for \#SS-reach imply OV in $O(n^{2-\varepsilon'})$ time and hence SETH is false.

Node per vector

Stage for vector u:
Dynamic part

(1) s can reach itself
(2) s can reach all coords e with $u[e]=1$. Say X such.
(3) s can reach all vectors that are not orthog to u

There is some v orthog to u iff the # of reachable nodes from s is $< X + n + 1$
$m \sim n d$
$O(n d)$ updates, n queries

So $m^{1-o(1)}$ lower bound from OV and SETH.
Plan

➡️ Overview of some lower bounds for dynamic problems

➡️ Simple and powerful proofs
 • Single Source Reachability
 • #ss-Reach
 • Strongly Connected Components
 • Diameter
 • s-t Shortest Path
Dynamic maintenance of SCCs

Strongly connected components:
Can find them in $O(m)$ time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:
Dynamic maintenance of SCCs

Strongly connected components:
Can find them in $O(m)$ time in a graph with m edges.

Dynamic algorithms: maintain graph G under
insert(u,v), delete(u,v) supporting:

- $\text{query}_1(u,v)$: are u and v in the same SCC?
Dynamic maintenance of SCCs

Strongly connected components:
Can find them in $O(m)$ time in a graph with m edges.

Dynamic algorithms: maintain graph G under insert(u,v), delete(u,v) supporting:

- $\text{query}_1(u,v)$: are u and v in the same SCC?
- query_2: how many SCCs does G have?
Dynamic maintenance of SCCs

Strongly connected components:
Can find them in $O(m)$ time in a graph with m edges.

Dynamic algorithms: maintain graph G under insert(u,v), delete(u,v) supporting:

- **query1** (u,v): are u and v in the same SCC?
- **query2**: how many SCCs does G have?

(All known algorithms for query1 also solve query2.)
Dynamic SCC: prior work

If only inserts or only deletes allowed, can answer both types of queries in \textit{constant} time and update time is "\textit{small}".
Dynamic SCC: prior work

If only inserts or only deletes allowed, can answer both types of queries in \textit{constant} time and update time is "\textit{small}".

\[T = \text{Sum over all } m \text{ update times.} \]
Dynamic SCC: prior work

If only inserts or only deletes allowed, can answer both types of queries in constant time and update time is “small”.

\[T = \text{Sum over all m update times.} \]

Inserts only:

- BFGT’09: \(T \sim n^2 \log n \),
- HKMST.’08: \(T \sim \min\{m^{3/2}, mn^{2/3}\} \)
- Bernstein, Chechik’18: \(T \sim mn^{1/2} \), rand.
- Bhattacharyya Kulkarni‘20: \(T \sim m^{4/3} \), rand.
Dynamic SCC: prior work

If only inserts or only deletes allowed, can answer both types of queries in constant time and update time is “small”.

\[T = \text{Sum over all } m \text{ update times.} \]

Inserts only:
- BFGT’09: \(T \sim n^2 \log n \),
- HKMST.’08: \(T \sim \min\{m^{3/2}, mn^{2/3}\} \)
- Bernstein, Chechik’18: \(T \sim mn^{1/2} \), rand.
- Bhattacharya Kulkarni‘20: \(T \sim m^{4/3} \), rand.

Deletes only: R.Z.’02, Lacki’11, Roditty’12: \(T \sim mn \).
Dynamic SCC: prior work

If only inserts or only deletes allowed, can answer both types of queries in constant time and update time is “small”.

\[T = \text{Sum over all } m \text{ update times.} \]

Inserts only:
- BFGT’09: \(T \sim n^2 \log n \),
- HKMST’08: \(T \sim \min\{m^{3/2}, mn^{2/3}\} \)
- Bernstein, Chechik’18: \(T \sim mn^{1/2}, \text{rand.} \)
- Bhattacharya Kulkarni’20: \(T \sim m^{4/3}, \text{rand.} \)

Deletes only: R.Z.’02, Lacki’11, Roditty’12: \(T \sim mn \).

Amortized update time is
- \(n \) for deletes only, \(\min(m^{1/3}, n^2/m) \) for inserts only.
Fully dynamic SCC

If both inserts and deletes allowed: **best known solution is to recompute SCCs after each update!**
If both inserts and deletes allowed: best known solution is to recomput SCCs after each update!

Thm: Under OVC, any fully dynamic algorithm that can answer queries “Is the number of SCCs > 2?” requires $m^{1-o(1)}$ update or query time.
Fully dynamic SCC

If both inserts and deletes allowed: best known solution is to recomput SCCs after each update!

Thm: Under OVC, any fully dynamic algorithm that can answer queries “Is the number of SCCs>2?” requires $m^{1-o(1)}$ update or query time.

If SETH is true, might as well recompute the SCCs after each update!
Dynamic #SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:
Dynamic \#SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:
 Insert $\leq d$ edges
Dynamic \#SCC>2 is hard

Reduce from OV with vector dimension d
For each vector \(v \), have a stage:
 - Insert \(\leq d \) edges
 - Query \#SCC>2.
Dynamic \#SCC>2 is hard

Reduce from OV with vector dimension d

For each vector v, have a stage:

- Insert $\leq d$ edges
- Query \#SCC>2.

\textit{If \#SCC>2 is yes, return that some }u\textit{ is orthogonal to }v\textit{.}
Dynamic \#SCC>2 is hard

Reduce from OV with vector dimension d
For each vector v, have a stage:
 Insert ≤ d edges
 Query \#SCC>2.
 \textit{If \#SCC>2 is yes, return that some u is orthogonal to v.}
 Delete the ≤ d edges
Dynamic \#SCC>2 is hard

Reduce from OV with vector dimension d
For each vector \(v \), have a stage:

- Insert \(\leq d \) edges
- Query \#SCC>2.

 If \#SCC>2 is yes, return that some \(u \) is orthogonal to \(v \).

Delete the \(\leq d \) edges

\(O(n d) \) updates, \(n \) queries, \(m \sim nd \) edges
Dynamic $\#\text{SCC}>2$ is hard

Reduce from OV with vector dimension d

For each vector v, have a stage:

- Insert $\leq d$ edges
- Query $\#\text{SCC}>2$.

 If $\#\text{SCC}>2$ is yes, return that some u is orthogonal to v.

- Delete the $\leq d$ edges

$O(n\, d)$ updates, n queries, $m \sim nd$ edges

OV/SETH lower bound of $m^{1-o(1)}$ for query or update
Dynamic \#SCC\(>2\) is hard

Graph after preprocessing

Node per vector

Edge \((c, u)\) if \(u[c] = 1\)

Node per coordinate

\(u, c, d, s\)
Dynamic \(\#\text{SCC} > 2\) is hard.

Node per vector

Node per coordinate

Edge \((c, u)\) if \(u[c] = 1\)

\(s\)

\(u\)

\(c\)

\(d\)

\(t\)
Dynamic \#SCC\(>2\) is hard

Stage for vector \(v\) (updates red):

- Node per vector:
 - \(u\)
 - \(c\)
 - \(d\)
- Node per coordinate:
 - \(t\)

Edge \((c,u)\) if \(u[c]=1\)
Dynamic \#SCC>2 is hard

Stage for vector v (updates red):

Node per vector

Edge (c,u) if $u[c]=1$

Node per coordinate

- u
- c
- d
- s
- t
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

- Node per vector
- Node per coordinate

Edge (c,u) if $u[c]=1$

Edge (s,d) if $v[d]=1$
Dynamic $\#\text{SCC} > 2$ is hard

Stage for vector v (updates red):

Node per vector

Node per coordinate

Edge (c, u) if $u[c] = 1$

Edge (s, d) if $v[d] = 1$
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

Node per vector:
- u
- c
- d
- s
- t

Node per coordinate:
- Edge (c, u) if $u[c] = 1$
- Edge (s, d) if $v[d] = 1$
- Edges (c, t) and (t, c) if $v[c] = 0$
Dynamic $\text{#SCC} \geq 2$ is hard

Stage for vector v (updates red):

1. No path from s to c if $v[c] = 0$.

Node per vector

Edge (c,u) if $u[c] = 1$

Edge (s,d) if $v[d] = 1$

Edges (c,t) and (t,c) if $v[c] = 0$
Dynamic $\#\text{SCC}>2$ is hard

Stage for vector v (updates red):

- Node per vector
- Node per coordinate

Edge (c,u) if $u[c]=1$

Edge (s,d) if $v[d]=1$

Edges (c,t) and (t,c) if $v[c]=0$

(1) No path from s to c if $v[c]=0$.
(2) No path from s to t.
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

(1) No path from s to c if $v[c]=0$.
(2) No path from s to t.
(3) t is in an SCC with all c s.t. $v[c]=0$.

Edges (c,t) and (t,c) if $v[c]=0$.

Edge (s,d) if $v[d]=1$.
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

- Node per coordinate
- Node per vector

- Edge (c,u) if $u[c]=1$
- Edge (s,d) if $v[d]=1$
- Edges (c,t) and (t,c) if $v[c]=0$

- (1) No path from s to c if $v[c]=0$.
- (2) No path from s to t.
- (3) t is in an SCC with all c s.t. $v[c]=0$.
Dynamic \#SCC\(>2\) is hard

Stage for vector \(\mathbf{v}\) (updates red):

- Node per vector
- Node per coordinate

- Edge \((c,u)\) if \(u[c]=1\)
- Edge \((s,d)\) if \(v[d]=1\)
- Edges \((c,t)\) and \((t,c)\) if \(v[c]=0\)

1. No path from \(s\) to \(c\) if \(v[c]=0\).
2. No path from \(s\) to \(t\).
3. \(t\) is in an SCC with all \(c\) s.t. \(v[c]=0\).
4. \(s\) is in an SCC with all \(c\) s.t. \(v[c]=1\).
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

(1) No path from s to c if $v[c]=0$.
(2) No path from s to t.
(3) t is in an SCC with all c s.t. $v[c]=0$.
(4) s is in an SCC with all c s.t. $v[c]=1$.
(5) u and s are in the same SCC iff there is a c with $u[c]=v[c]=1$, i.e. iff u and v are not orthog.
Dynamic #SCC>2 is hard

Stage for vector v (updates red):

(1) No path from s to c if $v[c]=0$.
(2) No path from s to t.
(3) t is in an SCC with all c s.t. $v[c]=0$.
(4) s is in an SCC with all c s.t. $v[c]=1$.
(5) u and s are in the same SCC iff there is a c with $u[c]=v[c]=1$, i.e. iff u and v are not orthog.
Dynamic #SCC > 2 is hard

Stage for vector v (updates red):

(1) No path from s to c if v[c]=0.
(2) No path from s to t.
(3) t is in an SCC with all c s.t. v[c]=0.
(4) s is in an SCC with all c s.t. v[c]=1.
(5) u and s are in the same SCC iff there is a c with u[c]=v[c]=1, i.e. iff u and v are not orthog.

Thus #SCC is 2 iff there is no vector orthogonal to v.
Dynamic \#SCC\(>2\) is hard

Stage for vector \(v\) (updates red):

(1) No path from \(s\) to \(c\) if \(v[c]=0\).
(2) No path from \(s\) to \(t\).
(3) \(t\) is in an SCC with all \(c\) s.t. \(v[c]=0\).
(4) \(s\) is in an SCC with all \(c\) s.t. \(v[c]=1\).
(5) \(u\) and \(s\) are in the same SCC iff there is a \(c\) with \(u[c]=v[c]=1\), i.e. iff \(u\) and \(v\) are not orthog.

Thus \#SCC is 2 iff there is no vector orthogonal to \(v\).

\(O(n \cdot d)\) updates, \(n\) queries
Dynamic \#SCC > 2 is hard

Stage for vector \(\mathbf{v} \) (updates red):

(1) No path from \(s \) to \(c \) if \(v[c] = 0 \).
(2) No path from \(s \) to \(t \).
(3) \(t \) is in an SCC with all \(c \) s.t. \(v[c] = 0 \).
(4) \(s \) is in an SCC with all \(c \) s.t. \(v[c] = 1 \).
(5) \(u \) and \(s \) are in the same SCC iff there is a \(c \) with \(u[c] = v[c] = 1 \), i.e. iff \(u \) and \(v \) are not orthog.

Thus \#SCC is 2 iff there is no vector orthogonal to \(v \).

\(O(n d) \) updates, \(n \) queries

So a \(n^{1 - o(1)} \) lower bound.
With additional gadgets, lower bounds for:
(more) Strongly Connected Components
Undirected Connectivity with node updates and more.

Next: even higher lower bounds!
Plan

- Overview of some lower bounds for dynamic problems

- Simple and powerful proofs
 - Single Source Reachability
 - #ss-Reach
 - Strongly Connected Components
 - Diameter
 - s-t Shortest Path
Dynamic Diameter

Input: an undirected graph G

Updates: Add or remove edges.

Query: What is the diameter of G?

Upper bounds for dynamic All-Pairs-Shortest-Paths:

- Naive: $\sim O(mn)$ per update.
- [Demetrescu-Italiano 03', Thorup 04']: amortized $\sim O(n^2)$.

Theorem [Abboud - VW FOCS 14']:

A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!
Theorem [Abboud – VW FOCS 14’]:
1.33-approximation for the diameter of a sparse graph under edge updates
with amortized $O(n^{2-\varepsilon})$ update time refutes SETH!

Proof outline:

Three Orthogonal Vectors (3-OV)

Given three lists of n vectors in $\{0,1\}^d$ is there an “orthogonal” triple? $d = \text{polylog}(n)$

Recall: 3-OV in $n^{3-\varepsilon}\text{poly } d$ time refutes SETH
Theorem [A–VW FOCS 14']:
A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!

Proof outline:

Three Orthogonal Vectors (3-OV)

Given three lists of n vectors in $\{0,1\}^d$ is there an “orthogonal” triple?

3-OV in $n^{2.9} \text{poly} d$ time (refutes SETH)

$O(nd)$ updates/queries in $n^{2.9} \text{poly} d$ time

Amortized $O(m^{1.9})$ update/query time

$d=$polylog(n), $m=\sim O(n)$

dynamic Diameter

Graph G on $m=O(nd)$ nodes and edges, $O(nd)$ updates and queries

is the diameter 3 or more?
Theorem [Abboud - VW FOCS 14’]:

A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!

Proof:

Three Orthogonal Vectors → dynamic Diameter

- **A**: $(0,0,...,1)$, $(0,1,...,1)$, $(1,0,...,0)$, $(1,1,...,0)$

- **B**: $(1,0,...,1)$, $(0,1,...,0)$, $(1,0,...,1)$, $(1,1,...,0)$

- **C**: $(1,0,...,1)$, $(0,0,...,1)$, $(1,1,...,0)$

Add edge $u'_j \rightarrow b_i$ iff $b_i[j]=1$

Dynamic Diameter

- $u_1 \rightarrow a_1 \rightarrow a_2 \rightarrow ... \rightarrow a_n \rightarrow u'_1 \rightarrow u'_a$

- $u'_1 \rightarrow u'_a$

Static Diameter

- $u_1 \rightarrow a_1 \rightarrow a_2 \rightarrow ... \rightarrow a_n \rightarrow u'_1 \rightarrow u'_a$

- $u'_1 \rightarrow u'_a$

Dynamic: will encode C

Static: encodes A

Static: encodes B
Theorem [A – VW FOCS 14’]:
A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!

Proof:

Three Orthogonal Vectors

For each c_i:

1. add edges $u_j \rightarrow u'_j$ iff $c_i[j]=1$
2. ask Diameter query.
Theorem [A – VW FOCS 14’]:

A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!

Proof:

Three Orthogonal Vectors

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,...,1)</td>
<td>(1,0,...,1)</td>
<td>(1,0,...,1)</td>
</tr>
<tr>
<td>(0,1,...,1)</td>
<td>(0,1,...,0)</td>
<td>(0,0,...,1)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(1,0,...,0)</td>
<td>(1,0,...,1)</td>
<td>(1,1,...,0)</td>
</tr>
</tbody>
</table>

Observation:

The distance from a to b is more than 3 iff a, b, c_i are an orthogonal triple.

(no coordinate with all three 1’s)
Theorem [Abboud - VW FOCS 14']:
A $\frac{4}{3} - \epsilon$ approximation for the diameter of a sparse graph under edge updates with amortized $O(n^{2-\delta})$ update time for $\epsilon, \delta > 0$ refutes SETH!

Proof:

Three Orthogonal Vectors

- **A**
 - (0,0,...,1)
 - (0,1,...,1)
 - ...
 - (1,0,...,0)
- **B**
 - (1,0,...,1)
 - (0,1,...,0)
 - ...
 - (1,0,...,1)
- **C**
 - (1,0,...,1)
 - (0,0,...,1)
 - ...
 - (1,1,...,0)

dynamic Diameter

For each c_i:

1. add edges $u_j \cdot \cdot \cdot u'_j$ iff $c_{ij} = 1$
2. Query. If Diameter > 3, output “yes”.
3. remove edges and move on to next c_i
Plan

➡ Overview of some lower bounds for dynamic problems

➡ Simple and powerful proofs
 • Single Source Reachability
 • #ss-Reach
 • Strongly Connected Components
 • Diameter
 • s-t Shortest Path
Decremental s-t Shortest Path

Input: an weighted graph G, nodes s,t

Updates: Remove weighted edges.

Query: What is \(d(s, t)\)?

Upper bounds:
Naive: \(\tilde{O}(m)\) per update. \(\tilde{O}(n^2)\) for dense graphs

Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense \(m\) edge graphs can be supported with \(O(m^{1-\epsilon})\) time per update, after \(O(n^{3-\epsilon})\) preprocessing time for \(\epsilon > 0\), then APSP in \(n\) node graphs is in \(O(n^{3-\epsilon})\) time.
Theorem [RZ’04, A VW’14]
If s-t Shortest Path in dense m edge graphs can be supported with $O(m^{1-\epsilon})$ time per update, after $O(n^{3-\epsilon})$ preprocessing time for $\epsilon > 0$, then APSP in n node graphs is in $O(n^{3-\epsilon})$ time.

Reduction from Negative Triangle:
Theorem [RZ’04, A VW’14]

If \textit{s-t Shortest Path} in dense \(m \) edge graphs can be supported with \(O(m^{1-\epsilon}) \) time per update, after \(O(n^{3-\epsilon}) \) preprocessing time for \(\epsilon > 0 \), then \textbf{APSP} in \(n \) node graphs is in \(O(n^{3-\epsilon}) \) time.

Reduction from Negative Triangle:

We are given tripartite \(G \) with parts \(A, B, C \) and want to know if \(\exists a \in A, b \in B, c \in C : w(a, b) + w(b, c) + w(c, a) < 0 \).
This is the same as: Given \(G' \) with parts \(A, B, C, A' \) and want to know if \(\exists a \in A, b \in B, c \in C, a' \in A' \):

\[
a = a', w(a, b) + w(b, c) + w(c, a') < 0.
\]

Theorem [RZ’04, A VW’14]

If \(s-t \) Shortest Path in dense \(m \) edge graphs can be supported with \(O(m^{1-\epsilon}) \) time per update, after \(O(n^{3-\epsilon}) \) preprocessing time for \(\epsilon > 0 \), then APSP in \(n \) node graphs is in \(O(n^{3-\epsilon}) \) time.
This is the same as: Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

\[a = a', d(a, a') < 0. \]

Theorem [RZ’04, A VW’14]

If s-t Shortest Path in dense m edge graphs can be supported with $O(m^{1-\epsilon})$ time per update, after $O(n^{3-\epsilon})$ preprocessing time for $\epsilon > 0$, then APSP in n node graphs is in $O(n^{3-\epsilon})$ time.
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, \ldots, W\}$.
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, ..., W\}$.

Diagram:
- A directed layered graph with parts A, B, C, A'.
- Edges with weights labeled as $6nW$, $6iW$, $6W$, $12W$.
- Source node S connected to A with a $6W$ edge.
- A has nodes labeled n, i, 1, 2.
- B and C connected to A' with arrows and additional edges.

Note: The diagram is a visual representation to illustrate the directed layered graph and the conditions specified in the natural text. The weights and connections are used to show the edge weights and the directionality of the graph.
Given directed layered G' with parts A, B, C, A' and want to know if \(\exists a \in A, b \in B, c \in C, a' \in A' : a = a', d(a, a') < 0 \).

All edge weights lie in \(\{-W, \ldots, W\} \).
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, \ldots, W\}$.

Claim: $d(s, t) = 12W + \text{distance between 1 in A and 1' in A'}$.

Pf: If $i > 1$ or $j > 1$, dist through i, j' is $\geq 18W - 3W = 15W$. Dist through $1, 1'$ is $\leq 12W + 3W = 15W$.
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A' :$
\[a = a', d(a, a') < 0. \]
All edge weights lie in $\{-W, ..., W\}.$

Remove $(s, j), (j', t)$ for all $j < i.$
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, \ldots, W\}$.

Claim: $d(s, t) = 12iW + \text{distance between } i \text{ in } A \text{ and } i' \text{ in } A'$.

Pf: If $a > i$ or $b > i$, dist through a, b' is $\geq 12iW + 6W - 3W = (12i + 3)W$. Dist through i, i' is $\leq 12iW + 3W$.

Remove $(s, j), (j', t)$ for all $j < i$.

![Diagram showing directed layered graph with parts A, B, C, and A', and edge weights labeled.](image-url)
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, \ldots, W\}$.

Reduction:
Given directed layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, ..., W\}$.

Reduction:

Build the graph.

For i from 1 to n:

- if $d(s, t) < 12iW$, return “Neg Triangle!”
- else remove edges (s, i) and (i', t)

Return “No Neg Triangle!”
Given directed layered G' with parts A,B,C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$ All edge weights lie in $\{-W, ..., W\}$.

Build the graph.

For i from 1 to n:

- if $d(s, t) < 12iW$, return “Neg Triangle!”
- else remove edges (s, i) and (i', t)

Return “No Neg Triangle!”
Given **directed** layered G' with parts A, B, C, A' and want to know if $\exists a \in A, b \in B, c \in C, a' \in A'$:

$$a = a', d(a, a') < 0.$$

All edge weights lie in $\{-W, ..., W\}$.

Claim: $d(s, t) = 12iW + \text{distance between } i \text{ in } A \text{ and } i' \text{ in } A'$.

Reduction:

Build the graph.

For i from 1 to n:

- if $d(s, t) < 12iW$, return “Neg Triangle!”
- else remove edges (s, i) and (i', t)

Return “No Neg Triangle!”
Theorem [RZ’04, A VW’14]

If s-t Shortest Path in dense m edge graphs can be supported with $O(m^{1-\varepsilon})$ time per update, after $O(n^{3-\varepsilon})$ preprocessing time for $\varepsilon > 0$, then APSP in n node graphs is in $O(n^{3-\varepsilon})$ time.

The graph we build has $N = O(n)$ nodes and $M = O(n^2)$ edges. We then perform $2n$ deletions.

If s-t Shortest Path preprocessing is $O(N^{3-\varepsilon})$ time, the amortized deletion time is $O(M^{1-\varepsilon}) = O(n^{2-2\varepsilon})$, then we can solve Neg. Triangle in $O(n^{3-\varepsilon})$ time.

Exercise: Show how to modify the reduction so that it works for undirected graphs as well.
Summary: Very high lower bounds for fundamental problems

After identifying the conjecture, the proofs are often very simple!