
6.S078 Fine-Grained Algorithms and Complexity MIT
Lecture 15: Introduction to Fixed-Parameter Tractability October 26, 2020

1 Prelude

One goal of algorithms and complexity theory is to develop ways to formally measure the quality of algorithms, so
we can compare why we would choose to run one algorithm over another. Many problems we want to solve are often
3SUM-hard, APSP-hard, SETH-hard, or worse, but they need to get solved anyway. What can we do? Over the years,
multiple paradigms for coping with hard problems have been introduced:

• Average-case analysis. The instances we want to solve in practice aren’t “worst case” but instead are ”random”
in some sense. (This is actually true for some problems in crypto.) There are notions of average-case fine-
grained complexity and fine-grained cryptography, as your list of project papers shows!

• Randomized algorithms. Put randomness in the algorithm and see what happens. But complexity theorists
widely believe that P = BPP (polynomial time equals randomized polynomial time) so it’s not clear that
randomized algorithms are much more powerful!

• Approximation algorithms. Here the idea is to not try to solve the problem exactly, but get an approximately
good solution instead. There are now well-known limitations on approximation as well, the most famous ex-
ample being the PCP theorem [ALM+98, Din07]. Also, sometimes the notion of approximation doesn’t make
sense: for example, often the SAT problem is used in cases of “mission-critical verification”: you want to sat-
isfy all the clauses and if not all clauses are satisfied, the rocket will crash! In that case, you don’t want to risk
approximations.

• Focus on solving “structured” practical instances. Suppose you are studying a graph problem that looks hard
to solve, but the graphs come from a real-world map. You might decide to focus on planar graphs where you
can draw the graph on the two-dimensional plane without edges crossing. Or, if the graph is a tree, problems
like Vertex Cover, Hamiltonian Path, and Independent Set become solvable in polynomial time. (If you haven’t
seen such algorithms before, think about how they might work!)

More generally, one can ask, how “close” is a given graph to a tree? The notion of treewidth was designed
to measure this. Without going into details about the actual definition of treewidth (probably a later lecture or
problem set will?), trees have treewidth 1, cycles have treewidth 2, etc. The treewidth of a given graph can
be seen as a parameter measuring how close that graph is to a tree. Moreover, treewidth can be used as a
measure of how “hard” a given graph is to solve NP-hard problems on! It is known that the treewidth of a graph
closely corresponds to how well algorithms can solve various NP-hard problems on graphs. For example,

– Independent Set on graphs of treewidth at most k can be solved in 2k · poly(n) time [Nie06].
(In fact, this running time cannot be improved to (2− ε)k · poly(n) time, unless ETH is false! [LMS18].)

– Hamiltonian Path on graphs of treewidth at most k can be solved in 2O(k) · poly(n) time [BCKN15].

• “Exact” algorithms: Just try to definitively beat the “trivial” algorithm that tries all possible solutions.
Assuming P 6= NP, we forgo all expectations that this algorithm will actually run in polynomial time.

Formally, suppose you have an NP problem V with a verifier algorithm V , and you know:

1. V (x, y) runs in t(|x|, |y|) time, where t(n,m) is a polynomial in n and m.

2. If x ∈ L, then there is a Nifty Proof string y of length at most b(|x|) bits such that V (x, y) accepts.

3. If x /∈ L then no such y exists.
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Then, L can be decided in O(2b(|x|) · t(|x|, |y|)) time: on any input x, simply try all strings y of length up to
b(|x|), plugging these y into V (x, y), and see if V ever accepts.

The witness length b(|x|) can be viewed as a parameter to the problem L, and the length of this parameter can
determine whether or not the problem is “hard”.

Question: When can we decide L in a way that reduces this 2b(|x|) factor in the runtime, for “natural”
verifiers?

What is a natural verifier? It depends on the problem! For a problem like SAT, the natural verifier treats the
input x as a boolean formula, and y as a potential satisfying assignment on n variables. Then exhaustive search
takes 2n · poly(|x|) time. Can we do better than 2n? In some cases, yes! For example, we saw in the early
lectures that 3SAT can be solved in less than 20.3n time.

For some problems, this proof length function b(|x|) can be much smaller than |x|. For example, suppose we
only look at the Boolean formulas which have log(n) variables, but the formula has size n. Then we can solve
SAT for those instances in polynomial time.

What about the formulas with (log2 n) variables? It’s possible they could be solved in polynomial time as well.
This wouldn’t imply P = NP, but would still be a major advance, it would in fact refute ETH!

Although such improvements may look silly at first, it turns out that universal improvements over exhaustive
search would have major implications for computational complexity. In fact, looking for algorithms that run
slightly faster than brute-force is currently the only plausible-looking program we know for proving lower
bounds in circuit complexity! (See for example [Wil17].)

2 Parameterization

The idea of parameterization subsumes the last two approaches discussed above. To introduce it, let’s set up some
notation. Let Σ be some finite alphabet; typically Σ = {0, 1}.

Definition 2.1 A parametric problem is a subset of Σ?{a}?, where a is a symbol not in Σ.

(Contrast with the usual definition of a decision problem, as a subset of Σ?.) We think of a parametric problem
instance xak as having two items: an input x ∈ Σ? and a parameter k ∈ N. In what follows, we will think of
parametric problems as subsets of Σ? ×N, for simplicity. In particular, the notation is a little cleaner: an instance xak

becomes (x, k).

The parameter can have many interpretations, as mentioned above. You might think of k as a “hardness measure”
which tells us how hard the problem instance is. But often in practice, we don’t know how hard a problem instance
is, until we start trying to solve it! It’s better to think of k as just some extra input, an extra constraint on the problem
instance.1

Some Important Examples of Parametric Problems. Here are a few parametric problems to start. Each of them
use the parameter to bound the size of a solution to the instance.

• Recall a graph G = (V,E) has a vertex cover of size k if there is a subset S ⊆ V such that |S| ≤ k and for all
{u, v} ∈ E, either u ∈ S or v ∈ S. Then we define:

k-Vertex Cover = {(G, k) | G has a vertex cover of size at most k}.
1There are some natural situations in practice where we may not know the parameter in advance. (There are sorting algorithms which run faster

if the input is “close” to being sorted, but you don’t know how far it is from being sorted until you run the algorithm. There, the parameter would
be “distance from sorted order” in swap distance, but we wouldn’t know that parameter until the data’s actually sorted!) This is an interesting but
different notion of parameterization.
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• k-Clique = {(G, k) | G has a clique of size at least k}

• k-SUM = {(S, k) | S is a set of numbers and there are k numbers in S that sum to 0}

• A graph G = (V,E) has a dominating set of size k if there is a subset S ⊆ V such that |S| = k and for all
v /∈ S, v is a neighbor of some w ∈ S. Then we define

k-Dominating Set = {(G, k) | G has a dominating set of size k}.

All of these problems have the property that, when k is a fixed constant, they are solvable in polynomial time, indeed
in O(nk+c) time for a constant c ≥ 1. To represent a set of k nodes or k numbers, we need only (k log n) + O(1)
bits, so we can just enumerate and check all of them. We can “blame the difficulty” of Vertex Cover, Clique, and
Subset-Sum on the fact that the solutions can sometimes be large: if k is large, in each of these problems we don’t
know of a significantly faster way to find the object of size k, than to try all possible choices for the object.

2.1 Key Definitions in Fixed-Parameter Tractability (FPT)

Those are examples of problems. Let’s now introduce our notion of feasibility: what will count as a “feasible”
parametric problem? First, we define a notion of a “feasible running time” function. (The below notion takes the place
of “polynomial running time” in parametrized complexity.)

Definition 2.2 A function g : N× N → N is FPT if there is a computable function f : N → N and a constant c ≥ 1
such that for all n, k, g(n, k) ≤ f(k) · nc.

For example, f(n, k) = 2k · n2 and f(n, k) = 22
k · n3 are FPT functions.

Definition 2.3 A parameteric problem L is FPT if there is an FPT function g and an algorithm A such that for all
(x, k) ∈ Σ? × N, A(x, k) runs in O(g(|x|, k)) time and (x, k) ∈ L ⇐⇒ A(x, k) accepts.2

Definition 2.4 FPT is the class of parametric L which are FPT.

This notion was formally introduced by Rod Downey and Mike Fellows in 1992. The intuition is that for every constant
value of the parameter k, we have an algorithm for L that runs in O(nc) time, where c is fixed and does not depend
on k. (The function f(k) is a “constant” factor.) But of course, we put no real bounds on how big f can be! This
is the power of FPT algorithms: as long as the extra parameter is ”small”, we’re guaranteed to be polynomial time,
and the degree of the polynomial is independent of the parameter k. And it’s our hope that, for the instances of the
parametrized problem that we want to solve, this parameter is indeed small. (And of course we want f to grow as
slowly as possible too.)

Here is a silly example of a parameterization. Every decidable problem has some parameterization which makes it
FPT: for every decidable L, you could define L′ = {(x, |x|) | x ∈ L}.

Exercise: Show that L′ is in FPT.

But this is not an interesting parameterization! For one, we want the parameter to be smaller than the input length.
There is an art to defining a “good” parametric problems: you want to choose a parameter which is

(a) likely to be small, but

(b) the instances with a small parameter are still a large and interesting set that you want to solve.
2You might ask: what is the algorithm here? What is the computational model? It’s the one from your algorithms courses – the ”random access

machine” model, where we allow constant-time memory accesses and all that good stuff. Generally speaking though, it doesn’t really matter much:
almost everything we say will also hold for multitape Turing machines, for example, especially up to polynomial factors.
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The following “O-star” notation can be useful.

Definition 2.5 A function f(n, k) is O?(g(k)) if there is a constant c such that for all (n, k), we have f(n, k) ≤
g(k) · nc.

This notation lets us suppress polynomial-in-n factors, and focus on the parameter dependence.

2.2 Case Study in Parameterization: CNF Satisfiability.

Different parameterizations of the CNF-SAT lead to different ways of thinking about this hard problem.

• Consider k-SAT = {(F, k) | F is a satisfiable k-CNF formula}.
This is not a “good” parameter choice, for the following reason.

Exercise: Prove that P 6= NP if and only if k-SAT is not FPT.

So the FPT-ness of this problem depends on whether P = NP; the problem is easy for k = 2 and insanely hard
for k = 3 already.

• Now consider the parametric problem CNF-SAT-VARS = {(F, k) | F is a satisfiable CNF formula on k variables}.

CNF-SAT-VARS is FPT, as it can be solved in O?(2k) time. Is there a faster algorithm, running in O?(1.999k)
time? That question is basically what the Strong Exponential Time Hypothesis asks.

• Consider CNF-SAT-CLAUSES = {(F, k) | F is a satisfiable CNF formula on k clauses}.
As you showed on your problem set, CNF-SAT-CLAUSES is FPT, solvable in time O?(2k). So for this pa-
rameterization, a less-than-2k time bound is possible here. A paper recently appearing on the arXiv claims the
best-known dependence on k, with an algorithm running in O?(1.23k) time [CXZ20].

• Consider CNF-SAT-LENGTH = {(F, k)|FisasatisfiableCNFformulawithktotalliteraloccurrences}.

Exercise: Show that any O?(f(k)) time algorithm for CNF-SAT-CLAUSES yields an O?(f(k)) time
algorithm for CNF-SAT-LENGTH.

Therefore, CNF-SAT-LENGTH is also FPT. I think the best known algorithm for CNF-SAT-LENGTH runs in
O?(1.08k) time [Wah05].3

So CNF-SAT-VARS, CNF-SAT-CLAUSES, and CNF-SAT-LENGTH are FPT, but the bases of the runtime
exponents are different. Once a problem becomes FPT, we still aren’t satisfied. It may be in f(k) · nc time, but
we also want to know how small the function f can get. Do any of the above problems have an (1+ε)k ·nc time
algorithm, for every ε > 0? If so, that would refute ETH! (If this isn’t immediate, think about it for a moment,
and don’t forget the sparsification lemma.)

• WEIGHTED-CNF-SAT = {(F, k) | CNF F has a satisfying assignment with exactly k variables set to true}.
The best known algorithm simply tries all

(
n
k

)
assignments with exactly k true variables.

Is WEIGHTED-CNF-SAT in FPT? This is a major open problem. It is believed the answer is no: if the problem
was in FPT, then ETH would be false. (This is not easy to see; we’ll prove it later.)

In summary, different parameterizations of satisfiability lead to different ways of thinking about this hard problem.
3Note there may well have been a better result published in the last 15 years, but Google scholar doesn’t know about it...
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2.3 Playing With the FPT Notion

Let’s return to the original FPT definitions. Why did we define an FPT function as being of the form f(k) · nc? We
wanted to capture the intuition that for every fixed k, the function is a polynomial that is O(nc). What if we defined
FPT as slightly differently, like f(k) + nc instead? Turns out that doesn’t matter, either!

Theorem 2.1 L ∈ FPT ⇐⇒ L can be solved in O(nc + f(k)) time, for some computable f and constant c.

Exercise: Prove the theorem. Hints: One direction is obvious. For the other direction, you could use the fact that
(x− y)2 ≥ 0 to derive a useful inequality.

Sometimes it’s hard to even tell when your function is FPT! There could be a weird dependence on n and k which
leads to the function being upper bounded by f(k) · nc. (This is actually useful sometimes...)

Proposition 2.1 Let s : N→ N be an unbounded (computable) function, and suppose there is a computable g : N→
N satisfying g(n) ≤ n1/s(n) for all n. Then for every computable h, g(n)h(k) is an FPT function.

Here, the computable function of k is in the exponent, but because g(n) is slow-growing, the overall function turns out
to be FPT. (Recall we defined an FPT function to be any function of n and k that is upper bounded by a function of
the form f(k) · nc.)

For example, if s(n) = (log n)1/2 and g(n) ≤ (log n)3, then g(n) ≤ n1/s(n), so we can conclude that the function
f(n, k) = (logn)3h(k) is FPT for every computable h(k).

Proof. Define s−1(n) to output the largest integer m such that s(m) = n, and output 1 if such an m does not exist.
(Note the latter case will only hold for finitely many m.)

Define f(k) := g(s−1(h(k)))h(k). Note that f is computable.

Exercise: Prove that for all (n, k) ∈ N× N, we have g(n)h(k) ≤ f(k) + n. Hint: Consider two cases, based on
how n and k relate to each other.

Therefore, g(n)h(k) is an FPT function. �

3 An Interesting FPT Algorithm

To conclude these introductory notes on FPT, we’ll give an example of an interesting FPT algorithm for the k-Vertex
Cover problem. Recall that

k-Vertex Cover = {(G, k) | G has a vertex cover of size at most k}.

The obvious algorithm for determining if G has a vertex cover, is to try all possible
(
n
k

)
options for the vertex cover,

and check each one. This takes Ω(nk) time for fixed k, so its running time is not FPT.

Theorem 3.1 k-Vertex Cover is in O?(2k) time.

Proof. We define a recursive algorithm with a working set S of vertices, which is initially empty. Our algorithm A
will take a graph G and vertex subset S, and accept if and only if there is a vertex cover C in G such that |C| ≤ k.
(The working set S holds the “progress” on the vertex cover so far.)

Let G = (V,E). For a vertex u ∈ V , we define G− v to be the graph G with the vertex v removed (all edges to and
from v are removed, along with v itself).
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A(G = (V,E), S):
If |S| = k then { if G has no vertices, then accept else reject }. Pick any edge {u, v} ∈ E. Accept if and only if
A(G− u, S ∪ {u}) accepts or A(G− v, S ∪ {v}) accepts.

To find a k-vertex cover in G, we run A(G, ∅) and output its answer.

Exercise: Prove that A(G, ∅) accepts when there is a k-vertex cover in G, and rejects when there is no k-vertex
cover in G.

Let’s consider the time complexity of A(G, ∅). Let T (n, `) be the running time of A(G,S) where ` = k − |S|. For
` = 0, we have |S| = k and

T (n, 0) ≤ poly(n),

because we only have to just check if G has no vertices. Then for ` > 0, we have |S| < k, and two recursive calls,
where each call has one more vertex in the set S and one less vertex in the graph G. Therefore

T (n, `) ≤ 2T (n− 1, `− 1) + poly(n).

This recurrence solves to T (n, `) ≤ 2` · poly(n). Therefore the running time of A(G, ∅) is O?(2k). �
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