
6.S078 Algorithms for k-Path
Lecture 18 Date: November 4, 2020

Recall that in the k-Path problem one is given a graph G = (V,E) with m = |E|, n = |V |, and one needs to either
return a simple path of length k or return that no such path exists. Here k is the parameter. Last time we saw a ran-
domized FPT algorithm for k-Path running in time O∗(k!), and we also showed how to derandomize it with a slight
overhead. Either way, the running time of the algorithms we have seen so far run in time kO(k)poly(n). Today we will
present several more FPT algorithms whose running time is better, 2O(k)poly(n).

1 Algorithm 2 - Color Coding (Alon, Yuster, Zwick ’94)

In this section we prove the following theorem.

Theorem 1.1 There is an O∗((2e)k+o(k)) time deterministic k-path algorithm. (Note 2e < 5.5.)

The main idea is called “color-coding” and it has been used extensively to design fast FPT algorithms for problems,
especially problems involving finding small subgraphs with certain structure.

Last time we chose a random permutation of the n nodes, and argued that for the k node subgraph we care about (the
k-path), there’s at least a 1/k! chance that the edges of that path are preserved.

This time, we’ll instead choose a random hash function, not from [n] to [n], but from [n] to [k].

Think of the k numbers in our co-domain as “colors” 1, . . . , k.

Our algorithm will have two basic parts (which we will repeat a number of times):

1. Randomly color the nodes of the graph. For every vertex v in [n], pick a color c(v) independently and uniformly
at random from [k];

2. Instead of finding a path that visits distinct nodes, try to find a k-path that “visits distinct colors”. We call this a
colorful path: for all nodes i, j in the path, c(i) 6= c(j).

We show that a colorful k-path can be found in O∗(2k) time, and that if one picks a random k-coloring as above, any
fixed k-path is colorful with probability at least 1/ek.

Let’s first show how one can find a colorful k-path. In the last lecture we discussed a dynamic programming algorithm
for the Hamiltonian path problem. One important observation we made was that at any stage, the exact path one
traverses through does not need to be stored; instead, one only needs to record the set of visited nodes, as well as the
last visited node.

Here, we can make a similar observation: only the set of visited colors and the last node visited are necessary for us
to extend a path.

For S ⊂ [k] and v ∈ V , let g(S, v) be 1 if there exists a path of length |S| (here “length” is the number of vertices in
the path) that ends at v and uses all the colors in S, and 0 otherwise. We initialize g({(̧v)}, v) = 1 for all v ∈ V , and
g(c, v) = 0 if c 6= c(v).

For every size s from 1 to k − 1 and every vertex u, the algorithm processes all pairs (S, u) with |S| = s using the
following principle:

g(S, u) = 1 and (u, v) is an edge and c(v) /∈ S ⇒ g(S ∪ {c(v)}, v) = 1.

In other words, if there is an s-length path to u using all colors from S, u has an edge to v and v is colored using a
color not in S, then we can reach v using an s + 1 length path using all colors in S ∪ {c(v)}.

1

When all sets of size k − 1 are processed, the algorithm can return 1 iff there is a set T of size k and a node u such
that g(T, u) = 1. The correctness of the algorithm follows by induction. The runtime of the algorithm is

k−1∑
s=1

(
k

s

)
m ≤ m2k.

This is since every edge (u, v) is processed once for each set S for which g(S, u) = 1, and no more.

Now let us fix a particular k-path P and consider the probability that our random coloring c : V → [k] assigns the
nodes of P distinct colors. This probability is k!

kk (there are kk possibilities for coloring P , k! of which are colorful).
Since k! > (k

e)k by Stirling’s inequality, we know that

Pr[k-path P is colorful] >
(

1

e

)k

.

Exercise: Show that if we choose 10ek random colorings c and look for a colorful path using each of them, then
the probability we successfully find a k-Path if one exists is constant. This gives a one-sided error: if a k-path
is found, then the graph indeed has a k-path, and if no k-path is found, then the probability that the graph has a
k-path is at most a constant.

Our final algorithm is thus as follows:
(1) Choose 10ek random functions c : [n]→ [k].
(2) For each of them, look for a colorful k-path.

Each call to colorful k-path in step (2) takes O∗(2k) time. Thus we get O∗((2e)k) ≤ O∗(5.437k) time in total, and a
constant probability of success.

A k-perfect hash family of functions can be used to derandomize the algorithm, similar to last time. If one uses the
Naor-Schulman-Srinivasan family, the runtime of the deterministic algorithm is within a kO(log k) factor of the ran-
domized one.

2 Algorithm 3: Using a larger palette

The above algorithm runs in about O∗(5.44k) time. We can in fact get a better running time, by choosing a slightly
“larger” color palette than k.

Theorem 2.1 (Hueffner et al. 07) k-Path is in O∗(4.32k) randomized time.

Consider the following modification of our previous color-coding algorithm. For a parameter a ≥ 1:

(1) Randomly map the n nodes of the graph to a · k colors (instead of k).
(2) Find a colorful k-path in a graph with a · k colors.

For part (1) we need to consider the probability that a fixed k-path P is colorful:

p := Pr
c:[n] 7→[ak]

[k-path P is colorful] =
|{c : [k] 7→ [ak] | P is colorful}|

|{c : [k] 7→ [ak]}|
=

(
ak
k

)
· k!

(ak)k
.

To see the above, note that to specify a function c in the numerator, we can pick the set of k distinct colors from [a · k]
that go in the k-path, then we can pick a permutation on those colors. The denominator is just the total number of such
mappings.

2

This success probability p is slightly better than before (although it may be hard to see in its current form).

For part (2), the running time is

O∗

(
k∑

i=1

(
a · k
i

))
,

as we can proceed with the same algorithm as before, except that the sets of colors come from [a · k] instead of [k].
This is slightly worse than before, but not much worse if a is close to 1.

Define
(
a·k
≤k
)

:=
∑k

i=1

(
a·k
i

)
.

Exercise: Convince yourselves that one can indeed find a colorful k-path in a graph with ak colors in O∗(
(
a·k
≤k
)
)

time.

Repeating for 1/p times, to achieve constant success probability, our running time is then

O∗

(
(ak)k ·

(
a·k
≤k
)(

ak
k

)
· k!

)
.

We want to pick a to minimize this expression.

It turns out that the best choice of a is close to 1, and so we have to use the crude bound
(
ak
≤k
)
≤ 2ak, and we need to

use the binary entropy function to estimate
(
ak
k

)
.

(Note for a ≤ 2, we already have
(
ak
≤k
)
≥ Ω(2ak/

√
ak)).

In particular, setting a := 1.3, we get p ≥ 1/1.752k, and a running time of O∗(21.3k · 1.752k) ≤ O∗(4.32k).

Exercise: Check that the above calculations make sense.

3 Algorithm 4 - Divide and Conquer

One shared weakness of the previous algorithms is their excessive space usage (exponential). To solve this problem,
we introduce a divide-and-conquer algorithm which we call ALGO, similar to the one for Hamiltonian path.

The idea is to randomly assign each node to either a set L or another set R with equal probability, thus partitioning
the nodes. Once we have divided all the nodes into the two sets, we recurse on the two sets, and require the first dk2 e
nodes of the path to be in L and the last bk2 c to be in R; we will show that this happens with good probability. In order
to be able to patch up two subpaths, we solve a more general problem: instead of looking for one k-path, we compute
an n× n matrix, the (u, v) entry of which is nonzero if and only if there is a k-path between u and v.

Specifically, let BV be a n× n matrix where

BV (k, u, v) =

{
1 if there exists a k-path in V from u to v,
0 otherwise.

Then we can compute BV from the matrices BL and BR computed recursively on L and R (i.e. by ALGO(L, dk2 e)
and ALGO(R, bk2 c)) by noticing that

BV (u, v) = 1 if there an edge (x, y) such that BL(dk
2
e, u, x) = 1 and BR(bk

2
c, y, v) = 1.

3

At the end of all recursive calls, we return a k-path, if one is found between any one of the pairs of vertices u, v ∈ V .

Let K be the original value of the parameter, and let k be its value in the current call of ALGO. Suppose that instead of
just one random partition into L and R, we try 2k ln(2K) random partitions, and return ’yes’ iff one of them succeeds
(and also store a corresponding witness path for each ’yes’). Then the running time function T satisfies

T (n, k) ≤ 2k · ln(2K)(T (n, dk
2
e) + T (n, bk

2
c) + n3).

Note that in the above recurrence K is separate from k.

Solving the recurrence gives
T (n, k) = O∗(4k+o(k)(logK)2 log k).

To see this, suppose (for instance) that T (n, k′) ≤ 4k
′+
√
k′
nc(ln(2K))2 log k′

for all k′ < k and c > 3. Then

T (n, k) ≤ 2k ln(2K)[n3 + nc(ln(2K))2 log(dk/2e) · (4dk/2e+
√
dk/2e + 4bk/2c+

√
bk/2c)] ≤

≤ 2k · 4k/2+O(1)+
√

k/2(ln(2K))1+2(log k)−1 · nc

and for k larger than a fixed constant, this is at most

2k(4k/2+
√
knc)(ln(2K))2 log k = 4k+

√
knc(ln(2K))2 log k.

(Above we could have taken a smaller function besides square root but square root suffices.)

Thus, T (n,K) ≤ O∗(4K+o(K)).

Now consider the probability that the algorithm will find a fixed K-path. There are a total of (K − 1) partitions of the
path vertices that the algorithm needs to find correctly: the partition that splits the path into the left dK/2e nodes and
the right bK/2c nodes, and the dK/2e − 1 partitions of the left nodes, and the bK/2c − 1 partitions of the right nodes
(until one node is left in each set).

Consider a fixed partition of k nodes into L and R during a recursive call of the algorithm. The probability that
one random trial works is 1/2k, and the probability that none of the 2k ln(2K) random partitions work is at most
(1−1/2k)2

k ln(2K) ≤ 1/eln(2K) = 1/(2K). By a union bound, the probability that at least one of the K−1 partitions
of the K-path fails is at most (K − 1)/2K < 1/2. Thus with probability at least 1/2 for some branching path of the
algorithm all (K − 1) splits of the path are found, and the K-path is computed.

Finally, let’s see how to derandomize the algorithm. For an n-bit string s and a set U ⊂ [n], let sU be the |U |-bit
substring of s obtained by deleting s[j] for j /∈ U . For a set S = {s1, . . . , sm}, let SU = {s1U , . . . , smU }.

Definition 3.1 A set X of n-length binary strings is (n, k)-universal if and only if for any subset U ⊂ {1, 2, . . . , n}
such that |U | = k, there exists a set S ⊂ X with |S| = 2k such that SU is exactly the possible 2k binary strings of
length k.

If we have a universal set of strings, then instead of the 2k ln(2K) random partitions, we can go through all strings s
in the universal set, and assign each node v to L if s[v] = 0 and to R otherwise. By definition, some s will give the
correct partition of the k-path into L and R. There exists a (n, k)-universal set of binary strings of size 2kkO(log k)

(Naor, Schulman, Srinivasan ’95), and hence there is a nearly optimal derandomization.

4

