6.S078 Algorithms for k-Path
Lecture 18 Date: November 4, 2020

Recall that in the k-Path problem one is given a graph G = (V, E) with m = |E|,n = |V, and one needs to either
return a simple path of length k or return that no such path exists. Here k is the parameter. Last time we saw a ran-
domized FPT algorithm for k-Path running in time O*(k!), and we also showed how to derandomize it with a slight
overhead. Either way, the running time of the algorithms we have seen so far run in time £°*)poly(n). Today we will
present several more FPT algorithms whose running time is better, 20(¥) poly(n).

1 Algorithm 2 - Color Coding (Alon, Yuster, Zwick *94)

In this section we prove the following theorem.
Theorem 1.1 There is an O*((2¢)5T°%) time deterministic k-path algorithm. (Note 2e < 5.5.)
The main idea is called “color-coding” and it has been used extensively to design fast FPT algorithms for problems,

especially problems involving finding small subgraphs with certain structure.

Last time we chose a random permutation of the n nodes, and argued that for the k£ node subgraph we care about (the
k-path), there’s at least a 1/k! chance that the edges of that path are preserved.

This time, we’ll instead choose a random hash function, not from [n] to [n], but from [n] to [k].
Think of the £ numbers in our co-domain as “colors” 1, ..., k.

Our algorithm will have two basic parts (which we will repeat a number of times):

1. Randomly color the nodes of the graph. For every vertex v in [n], pick a color ¢(v) independently and uniformly
at random from [k];

2. Instead of finding a path that visits distinct nodes, try to find a k-path that “visits distinct colors”. We call this a
colorful path: for all nodes 7, j in the path, c(i) # c(j).

We show that a colorful k-path can be found in O*(2*) time, and that if one picks a random k-coloring as above, any
fixed k-path is colorful with probability at least 1/e¥.

Let’s first show how one can find a colorful k-path. In the last lecture we discussed a dynamic programming algorithm
for the Hamiltonian path problem. One important observation we made was that at any stage, the exact path one
traverses through does not need to be stored; instead, one only needs to record the ser of visited nodes, as well as the
last visited node.

Here, we can make a similar observation: only the set of visited colors and the last node visited are necessary for us
to extend a path.

For S C [k] and v € V, let g(S, v) be 1 if there exists a path of length |.S| (here “length” is the number of vertices in
the path) that ends at v and uses all the colors in .S, and O otherwise. We initialize g({(v)},v) = 1 forall v € V, and

g(c,v) = 0if ¢ # ¢(v).
For every size s from 1 to k — 1 and every vertex u, the algorithm processes all pairs (S, «) with |S| = s using the
following principle:

g9(S,u) =1 and (u,v) is an edge and ¢(v) ¢ S = g(S U {c(v)},v) = 1.

In other words, if there is an s-length path to « using all colors from .S, u has an edge to v and v is colored using a
color not in .S, then we can reach v using an s + 1 length path using all colors in S U {¢(v)}.

When all sets of size k — 1 are processed, the algorithm can return 1 iff there is a set T" of size k and a node u such
that g(T',u) = 1. The correctness of the algorithm follows by induction. The runtime of the algorithm is

k-1
k
Z <)m < m2*.
s
s=1
This is since every edge (u, v) is processed once for each set S for which ¢(S,«) = 1, and no more.
Now let us fix a particular k-path P and consider the probability that our random coloring ¢ : V' — [k] assigns the
nodes of P distinct colors. This probability is % (there are k* possibilities for coloring P, k! of which are colorful).
Since k! > (£)* by Stirling’s inequality, we know that

(&

k
1

Pr[k-path P is colorful] > <) .
e

Exercise: Show that if we choose 10e* random colorings ¢ and look for a colorful path using each of them, then
the probability we successfully find a k-Path if one exists is constant. This gives a one-sided error: if a k-path
is found, then the graph indeed has a k-path, and if no k-path is found, then the probability that the graph has a
k-path is at most a constant.

Our final algorithm is thus as follows:
(1) Choose 10e* random functions ¢ : [n] — [k].
(2) For each of them, look for a colorful k-path.

Each call to colorful k-path in step (2) takes O*(2¥) time. Thus we get O*((2¢)*) < O*(5.437%) time in total, and a
constant probability of success.

A k-perfect hash family of functions can be used to derandomize the algorithm, similar to last time. If one uses the
Naor-Schulman-Srinivasan family, the runtime of the deterministic algorithm is within a kOUogk) factor of the ran-
domized one.

2 Algorithm 3: Using a larger palette

The above algorithm runs in about O*(5.44%) time. We can in fact get a better running time, by choosing a slightly
“larger” color palette than k.

Theorem 2.1 (Hueffner et al. 07) k-Path is in O*(4.32%) randomized time.

Consider the following modification of our previous color-coding algorithm. For a parameter a > 1:

(1) Randomly map the n nodes of the graph to a - k colors (instead of k).
(2) Find a colorful k-path in a graph with a - k colors.

For part (1) we need to consider the probability that a fixed k-path P is colorful:
 |{e: [K] = [ak] | Pis colorful}| (%) - k!

= Pr k-path P is colorful] = =
p cz[nMak][P } [{c: [k] — [ak]}] (ak)E

To see the above, note that to specify a function c in the numerator, we can pick the set of k distinct colors from [a - k]
that go in the k-path, then we can pick a permutation on those colors. The denominator is just the total number of such
mappings.

This success probability p is slightly better than before (although it may be hard to see in its current form).

o (2(1).

as we can proceed with the same algorithm as before, except that the sets of colors come from [a - k] instead of [k].
This is slightly worse than before, but not much worse if a is close to 1.

Define (%4) := 321, ().

For part (2), the running time is

Exercise: Convince yourselves that one can indeed find a colorful k-path in a graph with ak colors in O*((‘i:))
time.

Repeating for 1/p times, to achieve constant success probability, our running time is then
k. (ak
o (@9 (D)
(ak:) k! :
A !

It turns out that the best choice of a is close to 1, and so we have to use the crude bound (2'}6) < 29k and we need to

We want to pick a to minimize this expression.

use the binary entropy function to estimate (akk)
(Note for a < 2, we already have (2’;) > Q(29 /\/ak)).
In particular, setting a := 1.3, we get p > 1/1.752’“, and a running time of O*(21-3% . 1.752%) < O*(4.32k).

Exercise: Check that the above calculations make sense.

3 Algorithm 4 - Divide and Conquer

One shared weakness of the previous algorithms is their excessive space usage (exponential). To solve this problem,
we introduce a divide-and-conquer algorithm which we call ALGO, similar to the one for Hamiltonian path.

The idea is to randomly assign each node to either a set L or another set R with equal probability, thus partitioning
the nodes. Once we have divided all the nodes into the two sets, we recurse on the two sets, and require the first [g]
nodes of the path to be in L and the last ng to be in ?; we will show that this happens with good probability. In order
to be able to patch up two subpaths, we solve a more general problem: instead of looking for one k-path, we compute
an n X n matrix, the (u, v) entry of which is nonzero if and only if there is a k-path between u and v.

Specifically, let By be a n X n matrix where

1 if there exists a k-path in V' from w to v,
0 otherwise.

By (k,u,v) = {

Then we can compute By from the matrices By, and Br computed recursively on L and R (i.e. by ALGO(L, [%])
and ALGO(R, LgJ)) by noticing that

k k
By (u,v) = 1 if there an edge (z, y) such that BL((g],uw) = 1and BR(Lij,ym) =1.

At the end of all recursive calls, we return a k-path, if one is found between any one of the pairs of vertices u,v € V.

Let K be the original value of the parameter, and let k be its value in the current call of ALGO. Suppose that instead of
just one random partition into L and R, we try 2* In(2K') random partitions, and return ’yes’ iff one of them succeeds
(and also store a corresponding witness path for each "yes’). Then the running time function 7" satisfies

T(n, k) < 2 (2K (T(n, [51) + T, 15)+ %)

Note that in the above recurrence K is separate from k.

Solving the recurrence gives
T(n, k) = O*(45T°®) (log K)? e k),

To see this, suppose (for instance) that T'(n, k') < 41’“l+‘/yvzc(1n(2K))210g * forall K’ < k and ¢ > 3. Then
T(n, k) < 28 In(2K)[n® + nC(ln(QK))Qlog(fk'/?]) . (4(k/2T+\/ [k/2] 4 glk/2]4+/ Lk'/2J)] <

S 2k . 4k/2+o(1)+\/k/Q(ln(2K))1+2(lng)71 . nc

and for k larger than a fixed constant, this is at most
2k(4k/2+ﬁnc)(ln(2[())z logk _ 4k+‘/Enc(ln(2K))2 logk

(Above we could have taken a smaller function besides square root but square root suffices.)
Thus, T'(n, K) < O*(45K+0(K)),

Now consider the probability that the algorithm will find a fixed K -path. There are a total of (K — 1) partitions of the
path vertices that the algorithm needs to find correctly: the partition that splits the path into the left [K/2] nodes and
the right | K/2| nodes, and the [K /2] — 1 partitions of the left nodes, and the | K/2| — 1 partitions of the right nodes
(until one node is left in each set).

Consider a fixed partition of £ nodes into L and R during a recursive call of the algorithm. The probability that
one random trial works is 1/2%, and the probability that none of the 2¥ In(2K) random partitions work is at most
(1—1/2k)2"In(2K) < 1 /en(2K) = 1 /(2K). By a union bound, the probability that at least one of the K — 1 partitions
of the K -path fails is at most (K — 1)/2K < 1/2. Thus with probability at least 1/2 for some branching path of the
algorithm all (K — 1) splits of the path are found, and the K -path is computed.

Finally, let’s see how to derandomize the algorithm. For an n-bit string s and a set U C [n], let sy be the |U|-bit
substring of s obtained by deleting s[j] for j ¢ U. Foraset S = {s',...,s™}, let Sy = {si;,..., s/ }.

Definition 3.1 A set X of n-length binary strings is (n, k)-universal if and only if for any subset U C {1,2,... ,n}
such that |U| = k, there exists a set S C X with |S| = 2F such that Sy is exactly the possible 2% binary strings of
length k.

If we have a universal set of strings, then instead of the 2¥ In(2K) random partitions, we can go through all strings s
in the universal set, and assign each node v to L if s[v] = 0 and to R otherwise. By definition, some s will give the
correct partition of the k-path into L and R. There exists a (n, k)-universal set of binary strings of size 2¥kC(log%)
(Naor, Schulman, Srinivasan *95), and hence there is a nearly optimal derandomization.

