
6.S078 Fine-Grained Algorithms and Complexity MIT
Lecture 19: Parameterized Complexity November 9, 2020

1 Final Notes on k-Path

Here are the fastest known k-PATH algorithms:

• [Wil09]: k-PATH (on directed or undirected graphs) is in randomized O?(2k) time.

• [Tsu19]: k-PATH (on directed or undirected graphs) in deterministic O?(2.56k) time.

• [BHKK17]: Undirected k-PATH is in randomized O?(1.66k) time.

• [BDH18]: For graphs with at most p distinct k-paths, can find one in O?(p2 · 2k) deterministic time.

These algorithms also use very different techniques from the ones we showed you! Check the references if you’re
interested. In general, one reference for finding the fastest algorithm for various parametrized problems is http:
//fpt.wikidot.com/fpt-races, but note it’s not always up to date (for deterministic k-PATH for example).

The gap between the randomized and deterministic algorithms provokes the question: is there an inherent gap between
randomized and deterministic algorithms? The answer is “probably not”, given the very recent work [CT20] (which
builds on a lot of prior work). Lijie and Roei show that, under plausible hypotheses, that every randomized algorithm
running in T (n) time can be deterministically simulated in O(nT (n)1+ε) time, for every desired ε > 0.

2 Parameterized Complexity

We now turn to developing a theoretical understanding of what parametric problems do not have FPT algorithms, i.e.,
the complexity theory of parametric problems. In these notes, we’ll only cover a few of the known results on this topic,
picking results that are closest to other material from this class. The textbook (https://www.mimuw.edu.pl/
˜malcin/book/parameterized-algorithms.pdf) covers some more results in detail.

Recall the class FPT consists of the parametric problems solvable in time f (k)nc, for some constant c and some
computable f . This “extended” notion of tractability not only includes polynomial-time solvable problems but also
appropriate parameterizations of some NP-hard problems. We have discussed various techniques for deriving FPT
algorithms for problems, but so far we haven’t said much about limitations on solving problems in an FPT way.

2.1 The class XP

What should be considered intractable in the parameterized world? Generally speaking, intractable problems should
be those for which the running time dependence on the parameter is huge, such as nf(k) where f(k) ≥ k. When
the exponent of the polynomial depends on the parameter, this is a much worse dependence: such a bound would be
intractable for large n and even moderately sized k. This motivates the following class:

Definition 2.1 The class XP consists of parameteric problems solvable in nf(k) time, where f is a computable func-
tion.

1

http://fpt.wikidot.com/fpt-races
http://fpt.wikidot.com/fpt-races
https://www.mimuw.edu.pl/~malcin/book/parameterized-algorithms.pdf
https://www.mimuw.edu.pl/~malcin/book/parameterized-algorithms.pdf

On the positive side, any problem L ∈ XP is indeed solvable in polynomial time, for every fixed value of k. To
formalize this, let L be a parametric problem, and for any constant k ∈ N we define the k-slice of L to be

Lk = {(x, k) | (x, k) ∈ L} .

That is, Lk only includes the instances of L with parameter equal to exactly k.

Proposition 2.1 If L ∈ XP, then for all k ∈ N, Lk ∈ P.

Proof. For every k ∈ N, LK is solvable in nf(k) time, where f(K) is some fixed constant. Let A be an algorithm
solving L in at most nf(k) time. Then the following algorithm B solves LK in nf(k) time (which is polynomial for
constant K):

B(x): Run A(x,K) and output the answer. �

On the negative side, the degree of the polynomial in the running time for solving LK can obviously increase with K,
hence we may consider the algorithm A for L to be inefficient.

Exercise: Is the converse of the proposition true? (For all parametric L, if for all k ∈ N, Lk ∈ P , then is
L ∈ XP?) Prove your answer.

2.2 A Lower Bound for XP

So, is XP really an “intractable” complexity class? The following theorem confirms this intuition, in some sense:

Theorem 2.1 FPT 6= XP.

This separation may be viewed as an analogue of the time hierarchy theorem from complexity theory, with FPT ≈ P
and XP ≈ EXP.

Proof. We give an explicit problem L ∈ XP \ FPT. Define

SIM =
{

(M,x, k) |Turing machine M accepts input x in at most (|M |+ |x|)k+1 steps
}
.

(Note: You don’t actually need to know what a Turing machine is here, to get this argument. If it bothers you,
substitute “algorithm” for “Turing machine” in the below.) First, observe that SIM ∈ XP: note the input length n is
O(|M | + |x| + |k|). using a universal Turing machine we can simulate any given Turing machine M on an input x
with polynomial overhead, so L is solvable in nO(k) time.

Suppose SIM ∈ FPT. We will derive a contradiction. This implies that SIM has a g(k) · nc algorithm, for some
computable g and constant c ≥ 1. Then the (c+ 1)-th slice of SIM , SIMc+1, is decidable in g(c+ 1) · nc ≤ O(nc)
time. Let Ac+1 be a Turing machine for SIMc+1 running in this time.

Now let B be any Turing machine running in nc+1 time. We can now simulate B on n-bit inputs in only O(nc) time,
as follows:

C: On input x, run Ac+1 on (B, x) and output its answer.

On input x, C runs in O(|B| + |x|)c ≤ O(|x|c) time, by assumption on Ac+1. But we have given a way to simulate
every Turing machine running in nc+1, that runs in only O(nc) time. Essentially we have derived that

TIME
(
nc+1

)
⊆ TIME (nc) ,

which contradicts the time hierarchy theorem from complexity theory (recall the time hierarchy theorem says that
TIME (nc) (TIME

(
nc+1

)
). �

2

2.3 The W-hierarchy

There are many problems contained in XP that are not believed to be in FPT. In fact there is an infinite hierarchy of
problems between FPT and XP (sort of like the polynomial hierarchy, but not quite). The most widely-studied such
hierarchy is the so-called W -hierarchy. The W has traditionally stood for a circuit parameter called Weft but for our
purposes, we will think of the W as standing for Weight – this is the Weight-hierarchy.

The W -hierarchy is defined with respect to various weighted satisfiability problems.

Definition 2.2 Let x ∈ {0, 1}n. The weight of x is the number of bits set to 1 (that is, its L1 norm).

A parameterized weighted satisfiability problem has the following high-level form:

Given a logical expression E encoding a Boolean function, is there a satisfying assignment to E with
weight equal to k?

The W -hierarchy is obtained by considering parameterized weighted SAT problems over different classes of logical
expressions.

The canonical problem for the W -hierarchy is the Weighted Depth-t SAT problem. Let t ≥ 1 be a fixed constant.

Weighted Depth-t SAT (a.k.a. W-Depth-t-SAT): given an AND, OR, and NOT circuit with t layers of
unbounded fan-in gates, followed by a bottom layer (closest to the inputs) with fan-in at most two, is there
an input assignment x of weight k that satisfies C?

In circuit complexity language, Weighted Depth-t SAT is asking if a given “AC0 circuit of depth t + 1” with bottom
fan-in two has a SAT assignment with exactly k variables set to true. Intuitively, this problem should get harder as the
depth of the circuit increases. (Don’t worry if you are uncomfortable with circuits; we’ll only really deal with CNFs
in these lecture notes!)

To understand the true difficulty of these SAT problems, we would like to set up a complexity class where these
weighted SAT problems are “complete” for those classes, in the sense that if the weighted SAT problem is FPT, then
all problems in the class are also FPT. To have a notion of “completeness” for a complexity class, we first need a notion
of reducibility.

2.4 Reductions

What makes NP-completeness so powerful is that an NP-complete problem can be used to express any other NP prob-
lem Π, with only a polynomial-time reduction from Π. Fine-grained hardness is powerful because its reductions from
A to B “preserve exponents”. We want reductions between parametric problems that “preserve” their parametrized
tractability. The generic form of FPT reducibility, defined below, fits the bill:

Definition 2.3 We say that there is an FPT-reduction fromA toB, which we denoteA ≤fpt B if there is a computable
function g : N → N and an oracle Turing Machine MB (with oracle access to B) such that:

• For all (x, k), MB (x, k) accepts if and only if (x, k) ∈ A.

• The running time of MB is FPT.

• For every query (y, k′) to B, we have k′ ≤ g (k).

The last item says that all queries toB byMB(x, k) must preserve the original parameter k. All parameters appearing
in all queries must solely be a function of the original parameter k in the input to A.

3

Our definition of FPT reduction is more general than normally considered: typically in the literature, people have
considered many-one reductions fromA toB (where there is at most one oracle query). However, since the algorithms
we consider are all either deterministic or randomized, the more general oracle version seems more logical, as it still
satisfies the usual properties one would want from a reducibility notion:

Proposition 2.2 If A ≤fpt B and B ≤fpt C, then A ≤fpt C.

Corollary 2.1 If B is FPT and A ≤fpt B, then A is FPT.

Exercise: Prove these.

We now define the parametrized complexity class W[t], for integers t ≥ 1.

Definition 2.4 Let t ≥ 1 be an integer. W[t] is the class of parametric problems that have an FPT-reduction to
W-Depth-t-SAT.

Exercise: Prove that for every t, FPT ⊆W [t].

Note also that for every t, W[t] ⊆ W [t + 1] (we are increasing the depth from t to t + 1, which can only make the
circuit more expressive).

There is one more interesting parameterized class that fits in the above inclusions:

Definition 2.5 The class W[P] ⊆ XP consists of the set of problems FPT-reducible to satisfying an arbitrary Boolean
circuit consisting of any number of ANDs, ORs, and NOTs (as long as it is still directed and acyclic), while setting
exactly k variables to true. This latter problem is called Weighted Circuit-SAT.

By definition, W[t] ⊆W[P] for every t ≥ 1, and W[P] ⊆ XP.

Note that the W -classes are all defined with respect to NP-complete problems (NP-hard variants on satisfiability),
so this hierarchy could be seen as a parameterized refinement of the class NP (although, there can be even harder
problems in the W-hierarchy, depending on how a problem is parameterized!). Note that:

Proposition 2.3 If P = NP then Weighted Circuit-SAT ∈ P, hence is in FPT, hence W[P] = FPT.

That is, separating W[P] from FPT is only harder than separating NP from P. An interesting open problem is to find
interesting consequences of W[1] = W[100].

3 W[1] and k-Clique

For the class W[1], it suffices to look at a simpler problem.

Weighted 2-SAT (a.k.a. W2SAT):
Given a 2CNF formula F and a parameter k, does F have a satisfying assignment of exactly k ones?

Theorem 3.1 W[1] equals the class of parametric problems that have an FPT-reduction to W2SAT.

We won’t prove the above theorem in this class; it’s a bit complicated, and it’s not clear how instructive the proof is.

4

Conjecture 3.1 FPT 6= W [1].

Why do we think W[1] contain hard problems? Let’s give some evidence. For one, k-Clique is in W[1].

Theorem 3.2 k-Clique ∈W [1].

Proof. We give an FPT reduction from k-Clique to W2SAT. Given a graph G = (V,E) with vertices {1, . . . , n}, take
the variables x1, . . . , xn and create the 2CNF instance

F = ∧(i,j)/∈E(¬xi ∨ ¬xj).

We claim that F has a weight-k satisfying assignment if and only if G has a k-clique. If F has a satisfying assignment
with xi1 , . . . , xik true, then among each clause ¬xi ∨ ¬xj in F , one of the variables must be false. Therefore, no pair
xij , xij′ appears in F , so there is an edge between ij and ij′ . Conversely, if we have a k-clique i1, . . . , ik then we can
set xij to be true for all j = 1, . . . , k and the other variables false, and this assignment will satisfy F . �

In fact there is an FPT reduction from W2SAT to k-Clique (omitted in these notes), so the two problems are FPT
equivalent. We could have simply defined W[1] to be the class of problems that are FPT-reducible to k-Clique, instead!

3.1 k-Clique and ETH

That’s all fine and good... but why is k-Clique hard? For one, the best known algorithms for k-Clique only run in nδk

time for some constants δ > 0. But we have never settled for this kind of explanation in fine-grained complexity: we
always want to know if there are any unexpected consequences of actually having a faster k-clique algorithm. One
thing we can show is that, if we could get an FPT algorithm for k-Clique, then much of fine-grained complexity would
look very different! Perhaps the most compelling evidence that W[1] 6= FPT is:

Theorem 3.3 If k-Clique ∈ FPT then ETH is false.

Proof. Recall in the Max-2-SAT problem, we are given a 2CNF formula F and an integer K we wish to find an
assignment that satisfies at least K clauses. Max-2-SAT is NP-complete. We’ll break the proof into two parts:

(1) k-Clique ∈ FPT =⇒Max-2-SAT is in O(2εn) time, for all ε > 0.

(2) Max-2-SAT is in O(2εn) time for all ε > 0 =⇒ 3-SAT is in O(2εn) time for all ε > 0.

Part (2) follows from standard stuff:

• Given a 3SAT instance, use the sparsification lemma so that the instance has O(n) clauses, WLOG.

• Given a 3SAT instance F with O(n) clauses, the standard proof that Max-2-SAT is NP-complete shows that we
can reduce F to a Max-2SAT instance with at most O(n) variables and O(n) clauses.1

Part (1) is more interesting. Suppose k-Clique is in f(k) · nc time. Let F be a 2CNF on n variables with m ≤ O(n2)
clauses. We want to solve Max-2-SAT on it. Let k be a parameter to be chosen later.

Partition the n variables of F (arbitrarily) into k groups G1, G2, . . . , Gk, where each group has at most n/k + 1
variables.

Now we construct a k-Clique instance G. For each group Gi associated with some n/k+ 1 variables, make a separate
node in G for all possible O(2n/k) Boolean assignments on these n/k + 1 variables, so our graph G will have G has

1If you haven’t seen this proof before, it’s pretty tricky: you replace every clause (x∨ y ∨ z) in your 3SAT instance by ten 2CNF clauses (along
with a new variable appearing in some of these 10 clauses) such that every satisfying assignment to (x ∨ y ∨ z) can be extended to satisfy 7 of
the 10 clauses, and x = 0, y = 0, z = 0 can only be extended to satisfy at most 6 of the 10 clauses. It’s just something you stumble across after
trial-and-error (or after googling). I’m definitely not giving it as an exercise!

5

O(k · 2n/k) nodes. We’ll make G complete k-partite, so it only has edges between distinct pairs of groups Gi and Gj
with i 6= j.

Now we’ll put some positive and negative weights on the edges and nodes (which will be removed later).

• For each node i = 1, . . . , k, we put a weight on node v ∈ Gi with weight ` ⇐⇒ the partial assignment given
by v satisfies exactly ` clauses.

• For each pair of groups (i, j) ∈ [k], put an edge between v1 ∈ Gi, v2 ∈ Gj with weight −K ⇐⇒ there are
exactly K clauses C1, . . . , CK in F such that v1 satisfies all Ci and v2 also satisfies Ci.
(Note: this latter condition can only happen if the clause Ci = (xj ∨ xk) has one variable in group Gi and the
other variable in group Gj .)

Claim: There is a k-clique in G with total node and edge weight exactly m? if and only if there is an assignment to
the variables of F satisfying exactly m? clauses.

Exercise: Convince yourself of the claim. The idea is that the node weights count up many satisfied clauses, but
the sum of all node weights will overcount those clauses that are satisfied “twice”, by variable assignments from
two different groups. Those clauses are subtracted from the edge weights.

Here we are exploiting the fact that each clause has at most two variables; if clauses had three variables we’d have to
worry about a clause’s variables appearing among three different groups.

So far, we have reduced Max-2-SAT to finding a k-clique of maximum node and edge weight in a graph withO(k2n/k)
nodes. To get rid of the weights, we can simply “brute force” all possible values for the weights!

Suppose we want to know if F has a satisfying assignment of weight exactly m?. We try all O(m)k+(k
2) possible

ways to assign weights in {0, 1, . . . ,m} to k nodes, and weights in {0,−1, . . . ,−m} to
(
k
2

)
edges, such that the

sum of weights equals m?. Think of it as going over all vectors w = (W1, . . . ,Wk,W1,2, . . . ,Wk−1,k) such that∑
iWi −

∑
i,jWi,j = m?.

Make an unweighted graph Gw which only includes nodes and edges that obey these node and edge assignments: we
only include node vi in Gi if the weight of v is exactly Wi, and only include edge (vi, vj) ∈ Gi ×Gj if it has weight
exactly −Wi,j . Observe that there is a k-clique in G with total node and edge weight exactly m? if and only if there
is a w such that the unweighted graph Gw has a k-clique.

So our final algorithm for Max-2-SAT is as follows: for decreasing m? = m,m − 1, . . . and for all vectors w as
described above, we run our FPT algorithm for k-clique on Gw, in time f(k) ·N c ≤ f(k) · 2cn/k. As soon as we find
a k-clique, we know that m? is the maximum number of clauses in F that can be simultaneously satisfied.

The total running time of our algorithm is mO(k2) · f(k) · 2cn/k. Setting k to be an arbitrarily large constant, this
runtime will be O(2εn) for any desired ε > 0. �

In fact this proof also shows a stronger statement: if k-Clique is in nk/ log log log log k time, then ETH is false. (We
could substitute log log log log k with any slowly growing unbounded function of k. As a result, W[1] 6= FPT is
widely believed.

Exercise: The clique problem and the vertex cover problem are both NP-complete, yet there seems to be a
difference between them in the parameterized world: k-Clique is W[1]-hard (every W[1] problem can be reduced
to it) while k-vertex cover is FPT. How can this be? (Why doesn’t the polynomial-time reduction from clique to
vertex cover work?)

6

3.2 Weighted CNF-SAT?

There are other W[1] complete problems, but we won’t cover them here. (An example: k-SUM with numbers in the
range [−n2k, . . . , n2k] is also in W[1] [ALW14].) Instead, we’ll look at problems that don’t seem to be in W[1]. What
about the Weighted CNF-SAT problem, where we are given a CNF and parameter k, and wish to know if there’s
a satisfying assignment of weight exactly k. Can we get an FPT reduction from Weighted CNF-SAT to Weighted
3-SAT?

We of course have a polynomial time reduction from Weighted CNF-SAT to weighted 3-SAT in the usual NP-
completeness sense. However, this reduction works by introducing a new set of variables: for each clause C of
the CNF-SAT instance C = (x1 ∨ x2 ∨ · · · ∨ x`), we replace it with a series of clauses (each of size 3):

(x1 ∨ x2 ∨ z1), (z1 ∨ x3 ∨ z2), (z2 ∨ x4 ∨ z3), . . . , (z`−3 ∨ x`−1 ∨ x`).

If the original CNF had a weight k assignment that set all clauses to true, then the new instance has Ω(`) variables set
to true: the new is not just a function of k, so this reduction is not FPT with respect to the parameter k.

Of course, the above reasoning does not rule out an FPT reduction from Weighted CNF-SAT to Weighted 3-SAT: it
just says that the standard reduction from CNF-SAT to 3-SAT does not provide an FPT reduction. There could in
fact be an FPT reduction from Weighted CNF-SAT to Weighted 3-SAT—we will see later that this would imply that
W[1] = W[2]. We do not know of any evidence against W[1] = W [2].

4 W[2] (Optional)

Recall the definition of the class W[2]: it is the set of parametric problems that are FPT-reducible to finding a weight-k
SAT assignment to circuits with two layers of unbounded fan-in gates, and another layer of gates with fan-in at most 2
at the bottom level. It turns out that the most expressive types of these circuits are when there is a single AND gate at
the top, a level of ORs in the middle, and AND as the bottom gates with fan-in 2. Moreover, when you have these two
types of layers of unbounded fan-in, you can even get rid of the bottom gates that are restricted to fan-in 2. So, what
we are left with is simply CNF-SAT.

Theorem 4.1 The class W[2] is the class of problems that are FPT-reducible to Weighted CNF-SAT. In other words,
Weighted CNF-SAT is W[2]-hard.

Note that W[1] deals with problems having “bounded-width” constraints that are more like 3-SAT or 4-SAT, whereas
W[2] deals with problems that have “unbounded-width” constraints. There do not seem to be many/any natural prob-
lems known to be complete for classes higher than W[2]. (If you find such a problem, let us know!) But for W[2], there
is a natural complete problem (besides Weighted CNF-SAT) that does not seem to be in W[1]. In the k-Dominating
Set problem, we are given a graph G and a parameter k, and we want to know if G contains a dominating set of size
at most k. (This is a node set S such that every other node in the graph has an edge coming from S.)

Theorem 4.2 k-Dominating Set is in W[2].

Proof. Given a graph G = (V,E), define the following formula over variables {xu | u ∈ V }:

F =
∧
v∈V

xv ∨ ∨
u:(u,v)∈E

xu

 .

Observe there is a weight-k SAT assignment to F iff there is a k-dominating set in G. �

Theorem 4.3 There is an FPT reduction from Weighted CNF-SAT to k-Dominating Set. In other words, k-Dominating
Set is W[2]-hard.

7

Proof. The proof uses color-coding. Let {x1, . . . , xn} be the variables of the CNF-SAT instance F . Make n nodes,
one for each of the variables, and randomly partition them into sets G1, . . . , Gk. (Imagine assigning each variable a
random color in {1, . . . , k}.) Suppose F has a weight-k SAT assignment A: we know that with probability at least
1/ek, this A is “colorful” in the sense that the k variables in A set to true each appear in distinct sets Gi. (As in
the k-path algorithm which picks random colorings, we can derandomize this randomized coloring step by using an
explicitly computable collection of O?(ck) different hash functions from {1, . . . , n} to {1, . . . , k}, in the following.)

For each i = 1, . . . , k, put edges between all the nodes in Gi (forming cliques within each of the Gi) and add a new
vertex wi that has edges to all nodes in Gi (and no other edges). These edges ensure that every dominating set of size
k must contain exactly one node from each Gi (or possibly a node wi instead).

Next we makem extra nodes, one for each of them clausesC1, . . . , Cm of F . We put an edge from the node associated
with variable xj to a node associated with clause Ci if and only if either xj appears positively in Ci or there is another
variable in the same partition as xj which appears negatively in Ci. (That is, we put an edge from variable xj to clause
Ci if and only if the partial assignment corresponding to “xj := 1 and all other variables with the same color as xj are
set to 0” satisfies Ci.)

Now, every k-dominating set must choose exactly one vertex from each partition, and a weight-k satisfying assignment
to all clauses is obtained by setting the variables associated with nodes in the dominating set to true, and all other
variables to false. Conversely, a “colorful” weight-k satisfying assignment A to F corresponds to a dominating set
where we choose the k variables xi set to true in A as the nodes of our dominating set. �

4.1 k-Dominating Set and SETH

How quickly can k-Dominating Set be solved? The fastest known algorithms only achieve nk+o(1) for sufficiently
large k [EG04]. Note this is a slower algorithm than what is known for the W[1]-complete problem k-Clique, where
we know how to solve it in time about n0.8k. Could k-Dominating Set be solved in a similar way? It turns out that
would refute SETH!

Recall that SETH says: For all δ ∈ (0, 1), there exists k ≥ 3 such that k-SAT requires ≥ 2δn time.

Theorem 4.4 ([PW10]) If for some constant k ≥ 3 and some constant e > 0, k-dominating set is in O(nk−ε) time,
then SETH is false.

We will give a fine-grained reduction from SAT to k-Dominating Set, which will be a bit similar to our reduction of
Weighted CNF-SAT to k-Dominating Set.

Proof. Let F be a CNF formula, and let V be the set of variables. Instead of randomly partitioning V as above,
we simply arbitrarily partition V into k parts V1, . . . , Vk with at most nk + 1 variables each. We create an instance of
k-dominating set. Make a node for every partial assignment to the variables in Vi, so there are 2n/k different nodes for
each Vi, letting Si be the set of all partial assignment nodes for Vi. Add an extra node wi for each part Vi, and make
a clique out of Si ∪ {qi}. As before, these cliques will force us to pick one node from each set for a k-dominating
set (except now, our set of possible assignments is different). As before, we add nodes c1, . . . , cm for each of the
m clauses, which are connected to a node for a partial assignment Ai (on variables from Vi) iff the assignment Ai
satisfies the clause Cj (at least one literal in Cj is set true by some assigned variable in Ai). Call this graph G

Exercise: Prove that, if A is a satisfying assignment to F , then A = {A1 ∪ · · · ∪Ak} (where Ai ∈ Si is the
restriction of A to variables in Vi) is a k-dominating set in G.

Conversely, we claim that if Gh has a k-dominating set, then F is satisfiable. To see this, let D be the k-dominating
set. D must contain a node from Si ∪ {wi} for all i, so D contains either some Ai ∈ Si or wi. If wi ∈ D, then swap
wi with any Ai ∈ Si. Taking the union of all partial assignments Ai, you get a satisfying assignment: each “clause

8

node” cj in the graph must be dominated, meaning that some partial assignment node in D satisfies the clause Cj .
Therefore, if all clause nodes are dominated, then all clauses are satisfied by the partial assignments {Ai}.
Finally, suppose we have an O(nk−ε) algorithm for k-dominating set. Our graph G has m + k2n/k + k nodes.
Therefore CNF-SAT can be solved in (m + k2n/k + k)k−ε ≤ mk−εO(k2n/k)k−ε ≤ 2n(1−ε/k) · poly(m) time, so
SETH is false! �

References

[ALW14] Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Algorithms - ESA
2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume
8737 of Lecture Notes in Computer Science, pages 1–12. Springer, 2014.

[BDH18] Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Ilias Diakonikolas, David Kempe,
and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 151–164. ACM, 2018.

[BHKK17] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for parameterized
paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017.

[CT20] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions: Eliminating ran-
domness at almost no cost. Electron. Colloquium Comput. Complex., 27:148, 2020.

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating
set. Theor. Comput. Sci., 326(1-3):57–67, 2004.

[PW10] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 1065–1075. SIAM, 2010.

[Tsu19] Dekel Tsur. Faster deterministic parameterized algorithm for k-path. Theor. Comput. Sci., 790:96–104,
2019.

[Wil09] Ryan Williams. Finding paths of length k in o?(2k) time. Inf. Process. Lett., 109(6):315–318, 2009.

9

	Final Notes on k-Path
	Parameterized Complexity
	The class XP
	A Lower Bound for XP
	The W-hierarchy
	Reductions

	W[1] and k-Clique
	k-Clique and ETH
	Weighted CNF-SAT?

	W[2] (Optional)
	k-Dominating Set and SETH

