Announcements:

- Don’t forget: ps3 due 11/18
- Project presentations will start 12/2

We will post the schedule soon

How Fine-Grained Algorithms
Can Imply
Circuit Complexity Lower Bounds

Ryan Williams

Circuit Complexity:
A Crash Course

(Ask questions!)

Algorithms Circuits

Can only take in
fixed-length inputs

g:10,1}" - {0,1}

Can take in arbitrarily
long inputs and still
solve the problem

f:10,1}" — {0,1}

Circuit Family = {Ell, &

P/poly={f :{0,1}" — {0, 1} computable by a circuit family {C,}
where for every n, the size of C_ is at most poly(n) }

Each circuit is “small” relative to its number of inputs

Circuit Family = {Fl,- &

P/poly={ f : {0,1}" — {0, 1} computable by a circuit family {C,}
where for every n, the size of C_ is at most poly(n) }

Why study this mode?

Proving limitations on what circuit families can compute
is a step towards a non-asymptotic complexity theory:

Concrete limitations on computing within the known universe

“Any computer solving most instances of this 10%-bit problem
needs at least 102 bits to be described”

Universe stores < 10'2° bits [Bekenstein ‘70s] [Meyer-Stockmeyer ‘70s]

Functions with High Circuit Complexity

“Most” functions require huge circuits!

Theorem [Shannon ’49, Lupanov ‘58]
With high probability,
a randomly chosen function f: {0,1} — {0,1}
does not have circuits of size less than 2"/n
(and: every f has a circuit of size about 2"/n)

Which “natural” functions exhibit this
exponential behavior?

Circuits and Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If thereisaf:{0,1} — {0,1}

computable in 20 time
that does not have circuits of size at most 2n/100

Then Randomized Time = Deterministic Time

Rough intuition:
If f “looks random” to all circuits,
then f can be used to replace true randomness
in any computation!

Algorithms vs Circuit Families

T(n) time
on inputs of length n

1110 "

EXPONENTIAL TIME

(2" steps) [EXEIINE/EONISORCHT] me
Conjecture: NP & P/pol

every C, has = n? size !!

Here endeth the Crash Course

Two Difficult Areas of Research

Fine-Grained Improvements Circuit Complexity
for Solving NP Problems (Non-Uniform Algorithms)

Given: Verifier V(x, y) which Given: Any NP problem II
reads w(|x|) bits of witness y, (or NEXP problem!)

runs in t(]x|) time. Find: Sequence of algorithms

Find: Deterministic or {A_} such that for some k:
Randomized Algorithm which: 1. |A | <nk+k

1. Runsinless than 2. Onallinputs x of length n,
2WxD ¢(| x]) time A (x) correctly solves IT on x
Given any input x, finds a in O(nk) time.
witness y such that V(x,y)

Prove that no such sequences of
accepts (or conclude none)

algorithms exist for I1

One Seems Easier Than The Other...

Fine-Grained Improvements Circuit Complexity
for Solving NP Problems (Non-Uniform Algorithms)

Given: Verifier V(x, y) which Given: Any NP problem II
reads w(|x|) bits of witness y, (or NEXP problem!)

runs in t(]x|) time. Find: Sequence of algorithms

Find: Deterministic or {A_} such that for some k:
Randomized Algorithm which: 1. |A | <nk+k

1. Runsinless than 2. Onallinputs x of length n,
2WxD ¢(| x]) time A (x) correctly solves IT on x
Given any input x, finds a in O(nk) time.
witness y such that V(x,y)

Prove that no such sequences of
accepts (or conclude none)

algorithms exist for I1

One Seems Easier Than The Other...

Fine-Grained Improvements Circuit Complexity
- 3-SAT: 0(1.308") time .
Given: Any NP problem II
- k-SAT: O(2"-"/k) (or NEXP problem!)

- Hamiltonian Path: 0(1.66") Find: Sequence of algorithms

- Vertex Cover: O(1.3") {A_} such that for some k:

on degree-3 graphs: 0(1.09") W 1. |A,| < n*+k
2. Onallinputs x of length n,
A (x) correctly solves Il on x

- 3-Coloring: 0(1.33") in O(nk) time.

- Max-2-SAT: 0(1.8")

- k-Coloring: O(2") Prove that no such sequences of
algorithms exist for I1

One Seems Easier Than The Other...

Fine-Grained Improvements Circuit Complexity
- 3-SAT: 0(1.308") time

- For all these algorithms on the
- k-SAT: O(2"-"/k) LHS, we don’t know how to get

- Hamiltonian Path: O(1.66") non-uniform algorithms

(circuits) that are any better
- Vertex Cover: O(1.3")

- Best lower bound known:
There is a function in NP that
- Max-2-SAT: 0(1.8") requires circuits of size 5n + o(n)

- 3-Coloring: O(1.33")

on degree-3 graphs: O(1.09")

- Cannot yet rule out that
- k-Coloring: O(2") NEXP is in P/poly...

Faster Algorithms = Lower Bounds

Faster “Algorithms for Circuits” No “Circuits for NEXP”
[R.W.’10,/11]
Deterministic algorithms for: Would imply:
 Circuit SAT in O(2"/n'9) time
* NEXP & P/pol
with n inputs and nk gates & P/poly

* Formula SAT in O(2"/n19) * NEXP & Poly-size Formulas

o C-SAT in O(2"/n'9) * NEXP & poly-size C
* Given a circuit of n¥size that’s

either UNSAT, or has > 2"1 SAT

assignments, determine which NEXP ¢ P/poly
in O(2"/n19) time

(Easily solved w/ randomness!)

Even Faster = “Easier” Functions

[Murray-W. "18]
Det. algorithm for some € > 0:
e Circuit SAT in O(2™ ") time
with n inputs and 2™ gates

* Formula SAT in O(2""™™")

e« C-SAT in O(2 ™)

* Given a circuit of 2™ size that’s
either UNSAT, or has > 2"1 SAT
assignments, determine which in

O(2™™%) time
(Easily solved w/ randomness!)

Would imply:
e NTIME[nP°Y!°9] & P/poly

e NTIME[nP?Ylog "] & NC1
e NTIME[nP°Yl0d 1] # C

NTIME[nP°WY!°9] + p/poly

Even Faster = “Easier” Functions

[Murray-W. "18]
Det. algorithm for some € > 0: | Would imply:

. . : (1—€)ny 4
Clrcu.lt SAT in O(Zen) time W . NP ¢ SIZE(nk) for all k
on n inputs and 2" gates

* Formula SAT in O(2(1-9)1) NP ¢ Formula-SIZE(n¥)
o C-SAT in O(2(1-)n) e NP ¢ C-SIZE(n¥) for all k

e Given a circuit of 2¢" size that’s
either UNSAT, or has > 21 SAT

assignments, determine which in NP & SIZE(n*
n*)forall k
O20=9™) time & ()

(Easily solved w/ randomness!)

Why on Earth would it be true?

SAT? YES/NO

r?_‘_, s

Concrete Lower Bounds From Algs!

Thm [R.W.’11]: NEXP ¢ ACC®

Thm [Murray-W’18]: NTIME[nP°W(og)] ¢ ACCO

0(1)

NEXP = NTIME[2™]
ACCP: polynomialsize, constant-depthcircuits with- AND,—-
OR,and-MOD[mjgatesforsomeconstantm-
A simple but Annoying Circuit Class to

prove lower bounds for
(proposed in 1986 by Barrington)

How It Was Proved

Let C be a “typical” circuit class (like ACCP)
Thm A [W’11]:
If for all k, C-SAT on nk-size is in O(2"/nk) time,
then NEXP does not have poly-size C-circuits.
Thm B [W’11]:
3 ¢, ACCO-SAT on 2™ size is in 0(2"‘”8) time.

An inefficiency!
Theorem B gives a much stronger algorithm than is
needed in Theorem A.

This is exactly the starting point of [Murray-W’18]...

More on Theorem A

Let C be some circuit class (like ACC)

Thm A [W’11]:
If for all k, C-SAT on nk-size is in O(2"/nk) time,
then NEXP does not have poly-size C-circuits.

Idea. Show that if we assume both:

(1) NEXP has poly-size C-circuits,
and

(2) a faster C-SAT algorithm
Then we can show NTIME[2"] € NTIME[o(2")]

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we “compute” L on x by:

1. Guessing some witness y of O(2") length.
2. Checking y is a witness for x in O(2") time.

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we will “compute” L on x by:

1. Guessing some witness y of o(2") length.
2. Checking y is a witness for x in o(2") time.

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we will “compute” L on x by:

1. Guessing some witness y of o(2") length.
2. Checking y is a witness for x in o(2") time.

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we will “compute” L on x by:

1. Guessing some witness y of o(2") length.
2. Checking y is a witness for x in o(2") time.

Guessing Short Witnesses

1. Guess a witness y of o(2™) length.

Easy Witness Lemma [IKW’02]:
If NEXP has polynomial-size circuits,
then all NEXP problems have “easy witnesses”

Def. An NEXP problem L has easy witnesses if
Vv Verifiers V for Land Vx € L,
3 poly(|x|)-size circuit D, such that V(x,y) accepts,

where y = Truth Table of circuit D,.

1’. Guess poly(|x|)-size circuit D,

Verifying Short Witnesses

2. Checky is a witness for x in o(2™) time.

Assuming NEXP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.
We choose a V for an NEXP-complete L so that

Checking a witness for x

Solving a C-UNSAT instance with poly(]x|) size
and n = |x| + O(log|x]|) inputs

Then, 2™ /n”* time for C-UNSAT = 0(2|x|) time

Verifying Short Witnesses

2. Checky is a witness for x in o(2™) time.

Assuming NEXP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.
We choose a V for an NEXP-complete L so that

Checking a witness for x

Distinguishing unsatisfiable circuits from
those with many satisfying assignments
(Uses the PCP Theorem!)

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we will “compute” L on x by:

1. Guessing a circuit D, of poly(]|x]|) size

2. Checking D, encodes a witness for x
in o(2™) time

End

