
Announcements:

- Don’t forget: ps3 due 11/18

- Project presentations will start 12/2

We will post the schedule soon

How Fine-Grained Algorithms
Can Imply

Circuit Complexity Lower Bounds

Ryan Williams

Circuit Complexity:
A Crash Course

(Ask questions!)

Circuits

For each 𝑛, have a circuit C𝒏 to be run on all inputs of length 𝑛

P/poly = { 𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏} computable by a circuit family {C𝒏}
where for every 𝑛, the size of C𝒏 is at most poly(𝒏) }

Each circuit is “small” relative to its number of inputs

C1 C10 C1000

Circuit model has “programs with infinite-length descriptions”

Can take in arbitrarily
long inputs and still
solve the problem

Can only take in
fixed-length inputs

… … … … … …
C100

Algorithms

Circuit Family = { , , , , }

𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}
𝒈: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

Concrete limitations on computing within the known universe
“Any computer solving most instances of this 104-bit problem

needs at least 10125 bits to be described”

C1 C10 C1000

… … … … … …
C100

Circuit Family = { , , , , }

P/poly = { 𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏} computable by a circuit family {C𝒏}
where for every 𝑛, the size of C𝒏 is at most poly(𝒏) }

Why study this model?

Proving limitations on what circuit families can compute

is a step towards a non-asymptotic complexity theory:

[Meyer-Stockmeyer ‘70s]Universe stores < 10125 bits [Bekenstein ‘70s]

Conjecture: NP  P/poly

Functions with High Circuit Complexity

“Most” functions require huge circuits!

Theorem [Shannon ’49, Lupanov ‘58]
With high probability,
a randomly chosen function f : {0,1}n! {0,1}

does not have circuits of size less than 2n/n
(and: every f has a circuit of size about 2n/n)

Which “natural” functions exhibit this
exponential behavior?

0 1 0 1 1 0 1 0 0 1

Circuits and Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If there is a f : {0,1}*! {0,1}

computable in 𝟐𝑶 𝒏 time
that does not have circuits of size at most 2n/100

Then Randomized Time ≡ Deterministic Time

Rough intuition:
If f “looks random” to all circuits,

then f can be used to replace true randomness
in any computation!

EXPONENTIAL TIME
(𝟐𝒏 steps)

T(n) time
on inputs of length n

Algorithms vs Circuit Families

C𝒏 has ≈ T(n) size

C1 C2 C3{ , , ,…}
There is a family where every C𝒏 has ≈ size n No algorithm at all!

BPP is in P/poly

Some undecidable problems are in P/poly

C1 C2 C3{ , , ,…}

C1 C2 C3{ , , ,…}

EXP is in P/poly is open!
every C𝒏 has ≈ n2 size !!

Conjecture: NP  P/poly

Here endeth the Crash Course

Two Difficult Areas of Research

Fine-Grained Improvements
for Solving NP Problems

Given: Verifier V(𝒙, 𝒚) which
reads w(|𝑥|) bits of witness 𝑦,
runs in t(|𝑥|) time.

Find: Deterministic or
Randomized Algorithm which:

1. Runs in less than
2w(|𝒙|) t(|𝒙|) time

2. Given any input 𝑥, finds a
witness 𝑦 such that V(𝑥,𝑦)
accepts (or conclude none)

Circuit Complexity
(Non-Uniform Algorithms)

Given: Any NP problem Π
(or NEXP problem!)

Find: Sequence of algorithms
{An} such that for some k:

1. |An| ≤ nk +k
2. On all inputs 𝑥 of length n,

An(𝒙) correctly solves Π on 𝑥
in O(nk) time.

Prove that no such sequences of
algorithms exist for 𝚷

Fine-Grained Improvements
for Solving NP Problems

Given: Verifier V(𝒙, 𝒚) which
reads w(|𝑥|) bits of witness 𝑦,
runs in t(|𝑥|) time.

Find: Deterministic or
Randomized Algorithm which:

1. Runs in less than
2w(|𝒙|) t(|𝒙|) time

2. Given any input 𝑥, finds a
witness 𝑦 such that V(𝑥,𝑦)
accepts (or conclude none)

Circuit Complexity
(Non-Uniform Algorithms)

Given: Any NP problem Π
(or NEXP problem!)

Find: Sequence of algorithms
{An} such that for some k:

1. |An| ≤ nk +k
2. On all inputs 𝑥 of length n,

An(𝒙) correctly solves Π on 𝑥
in O(nk) time.

Prove that no such sequences of
algorithms exist for 𝚷

One Seems Easier Than The Other...

One Seems Easier Than The Other...

Non-Uniform Circuits for NP

- We don’t know how to get
non-uniform algs that are better
than the uniform algs

- Best lower bound known:
There is a function in NP that
requires circuits of size 5n + o(n)

- Could be that even EXPNP has
poly(n) size circuits…

Circuit Complexity

Given: Any NP problem Π
(or NEXP problem!)

Find: Sequence of algorithms
{An} such that for some k:

1. |An| ≤ nk +k
2. On all inputs 𝑥 of length n,

An(𝒙) correctly solves Π on 𝑥
in O(nk) time.

Prove that no such sequences of
algorithms exist for 𝚷

Fine-Grained Improvements

- 3-SAT: O(1.308n) time

- k-SAT: O(2n - n/k)

- Hamiltonian Path: O(1.66n)

- Vertex Cover: O(1.3n)

on degree-3 graphs: O(1.09n)

- Max-2-SAT: O(1.8n)

- 3-Coloring: O(1.33n)

- k-Coloring: O(2n)

One Seems Easier Than The Other...

Fine-Grained Improvements

- 3-SAT: O(1.308n) time

- k-SAT: O(2n - n/k)

- Hamiltonian Path: O(1.66n)

- Vertex Cover: O(1.3n)

on degree-3 graphs: O(1.09n)

- Max-2-SAT: O(1.8n)

- 3-Coloring: O(1.33n)

- k-Coloring: O(2n)

Circuit Complexity

- For all these algorithms on the
LHS, we don’t know how to get
non-uniform algorithms
(circuits) that are any better

- Best lower bound known:
There is a function in NP that
requires circuits of size 5n + o(n)

- Cannot yet rule out that

NEXP is in P/poly…

Faster Algorithms ⟹ Lower Bounds

Faster “Algorithms for Circuits”
[R.W. ’10,’11]

Deterministic algorithms for:
• Circuit SAT in O(2n/n10) time

with n inputs and nk gates

• Formula SAT in O(2n/n10)

• 𝑪-SAT in O(2n/n10)

• Given a circuit of nk size that’s
either UNSAT, or has ≥ 2n-1 SAT
assignments, determine which
in O(2n/n10) time
(Easily solved w/ randomness!)

No “Circuits for NEXP”

Would imply:

• NEXP  P/poly

• NEXP  Poly-size Formulas

• NEXP  poly-size 𝑪

NEXP  P/poly

Even Faster ⟹ “Easier” Functions

Better “Algorithms for Circuits”
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2𝑛−𝑛𝜖
) time

with n inputs and 2𝑛𝜖
gates

• Formula SAT in O(2𝑛−𝑛𝜖
)

• 𝑪-SAT in O(2𝑛−𝑛𝜖
)

• Given a circuit of 2𝑛𝜖
size that’s

either UNSAT, or has ≥ 2n-1 SAT
assignments, determine which in

O(2𝑛−𝑛𝜖
) time

(Easily solved w/ randomness!)

No “Circuits for Quasi-NP”

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  P/poly

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  NC1

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  𝑪

NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  P/poly

Fine-Grained SAT Algorithms
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2(1−𝜖)𝑛) time
on n inputs and 2𝜖𝑛 gates

• Formula SAT in O(2(1−𝜖)𝑛)

• 𝑪-SAT in O(2(1−𝜖)𝑛)

• Given a circuit of 2𝜖𝑛 size that’s
either UNSAT, or has ≥ 2n-1 SAT
assignments, determine which in

O(2(1−𝜖)𝑛) time

(Easily solved w/ randomness!)

No “Circuits for NP”

Would imply:

• NP  SIZE(𝒏𝒌) for all 𝒌

• NP  Formula-SIZE(𝒏𝒌)

• NP  𝑪-SIZE(𝒏𝒌) for all 𝒌

NP  SIZE(𝒏𝒌) for all 𝒌

Even Faster ⟹ “Easier” Functions

Why on Earth would it be true?

∃

∀

“Non-Trivial”
Circuit Analysis

Algorithm Circuit Lower Bounds

SAT? YES/NO ∃”interesting”𝑓

∀

Concrete Lower Bounds From Algs!
Thm [W’11]:

NEXP ⊄ ACC0

NEXP = NTIME[2𝑛𝑂(1)
]

ACC0: polynomial size, constant depth circuits with AND,
OR, and MOD[m] gates for some constant m.

A simple but Annoying Circuit Class to
prove lower bounds for

(proposed in 1986 by Barrington)

Thm [R.W.’11]: NEXP ⊄ ACC0

Thm [Murray-W’18]: NTIME[𝒏𝒑𝒐𝒍𝒚 log 𝒏] ⊄ ACC0

How It Was Proved

Let ℂ be a “typical” circuit class (like ACC0)

Thm A [W’11]:
If for all k, ℂ-SAT on nk-size is in O(2n/nk) time,
then NEXP does not have poly-size ℂ-circuits.

Thm B [W’11]:

∃ ℰ, ACC0-SAT on 𝟐𝒏ℇ
size is in O(𝟐𝒏−𝒏ℇ

) time.

An inefficiency!
Theorem B gives a much stronger algorithm than is

needed in Theorem A.

This is exactly the starting point of [Murray-W’18]…

More on Theorem A

Let ℂ be some circuit class (like ACC0)

Thm A [W’11]:
If for all k, ℂ-SAT on nk-size is in O(2n/nk) time,
then NEXP does not have poly-size ℂ-circuits.

Idea. Show that if we assume both:

(1) NEXP has poly-size ℂ-circuits,
and

(2) a faster ℂ-SAT algorithm

Then we can show NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Proof Sketch of Theorem A

Idea. Assume

(1) NEXP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time.
Given an input 𝑥, we “compute” L on 𝑥 by:

1. Guessing some witness 𝑦 of O(𝟐𝒏) length.

2. Checking 𝑦 is a witness for 𝑥 in O(𝟐𝒏) time.

Proof Sketch of Theorem A

Idea. Assume

(1) NEXP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time.
Given an input 𝑥, we will “compute” L on 𝑥 by:

1. Guessing some witness 𝑦 of o(𝟐𝒏) length.

2. Checking 𝑦 is a witness for 𝑥 in o(𝟐𝒏) time.

Proof Sketch of Theorem A

Idea. Assume

(1) NEXP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time.
Given an input 𝑥, we will “compute” L on 𝑥 by:

1. Guessing some witness 𝑦 of o(𝟐𝒏) length.

2. Checking 𝑦 is a witness for 𝑥 in o(𝟐𝒏) time.

Proof Sketch of Theorem A

Idea. Assume

(1) NEXP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time.
Given an input 𝑥, we will “compute” L on 𝑥 by:

1. Guessing some witness 𝑦 of o(𝟐𝒏) length.

2. Checking 𝑦 is a witness for 𝑥 in o(𝟐𝒏) time.

Guessing Short Witnesses

Easy Witness Lemma [IKW’02]:
If NEXP has polynomial-size circuits,

then all NEXP problems have “easy witnesses”

Def. An NEXP problem L has easy witnesses if
∀ Verifiers V for L and ∀𝑥 ∈ 𝐿,

∃ poly(|𝑥|)-size circuit Dx such that V(x,y) accepts,

where y = Truth Table of circuit Dx.

1. Guess a witness y of o(𝟐𝒏) length.

1’. Guess poly(|𝑥|)-size circuit Dx

1. Guess a witness y of o(𝟐𝒏) length.

Verifying Short Witnesses

Assuming NEXP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.

We choose a V for an NEXP-complete L so that

Checking a witness for 𝑥
≡

Solving a ℂ-UNSAT instance with 𝑝𝑜𝑙𝑦 𝑥 size
and 𝑛 = 𝑥 + 𝑂(log 𝑥) inputs

Then, 2𝑛/𝑛𝑘 time for ℂ-UNSAT ➔ 𝑜 2 𝑥 time

2. Check y is a witness for x in o(𝟐𝒏) time.

Verifying Short Witnesses

Assuming NEXP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.

We choose a V for an NEXP-complete L so that

Checking a witness for x
≡

Distinguishing unsatisfiable circuits from
those with many satisfying assignments

(Uses the PCP Theorem!)

2. Check y is a witness for x in o(𝟐𝒏) time.

Proof Sketch of Theorem A

Idea. Assume

(1) NEXP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Show that NTIME[𝟐𝒏] ⊆ NTIME[o(𝟐𝒏)]

Take any problem L in nondeterministic 𝟐𝒏 time.
Given an input 𝑥, we will “compute” L on 𝑥 by:

1. Guessing a circuit 𝑫𝒙 of poly(|x|) size

2. Checking 𝑫𝒙 encodes a witness for x
in o(𝟐𝒏) time

End

