Announcements:

Don't forget: ps3 due 11/18
Project presentations will start 12/2
We will post the schedule soon

How Fine-Grained Algorithms Can Imply Circuit Complexity Lower Bounds

Ryan Williams

Circuit Complexity: A Crash Course

(Ask questions!)

Algorithms

Can take in **arbitrarily** long inputs and still solve the problem $f: \{0, 1\}^* \to \{0, 1\}$

Circuits

Can only take in fixed-length inputs $g: \{0, 1\}^n \to \{0, 1\}$

Circuit Family = {

For each *n*, have a circuit C_n to be run on all inputs of length *n*

Circuit model has "programs with *infinite-length descriptions*"

P/poly = { $f : \{0, 1\}^* \rightarrow \{0, 1\}$ computable by a circuit family $\{C_n\}$ where for every n, the size of C_n is at most poly(n) }

Each circuit is "small" relative to its number of inputs

Circuit Family = { c, , ... ,

 $\begin{array}{l} \mathsf{P/poly} = \{ \ f : \{0,1\}^* \rightarrow \{0,1\} \ \text{computable by a circuit family} \ \{\mathsf{C}_n\} \\ \text{where for every } n, \text{ the } \textit{size of } \mathsf{C}_n \ \text{is at most poly}(n) \ \end{array} \} \end{array}$

Conjecture: NP $\not\subset$ P/poly

Why study this model?

Proving limitations on what circuit families can compute is a step towards a *non-asymptotic complexity theory:*

Concrete limitations on computing within the known universe "Any computer solving most instances of this 10⁴-bit problem needs at least 10¹²⁵ bits to be described"

Universe stores < 10¹²⁵ bits [Bekenstein '70s] [Meyer-Stockmeyer '70s]

Functions with High Circuit Complexity

"Most" functions require huge circuits!

Theorem [Shannon '49, Lupanov '58] With high probability, a randomly chosen function $f: \{0,1\}^n \rightarrow \{0,1\}$ does not have circuits of size less than $2^n/n$ (and: every f has a circuit of size about $2^n/n$)

Circuits and Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If there is a $f: \{0,1\}^* \rightarrow \{0,1\}$ computable in $2^{O(n)}$ time that does not have circuits of size at most $2^{n/100}$

Then Randomized Time \equiv Deterministic Time

Rough intuition: If f "looks random" to all circuits, then f can be used to replace true randomness in any computation!

Algorithms vs Circuit Families

Here endeth the Crash Course

Two Difficult Areas of Research

Fine-Grained Improvements for Solving NP Problems

Given: Verifier V(x, y) which reads w(|x|) bits of witness y, runs in t(|x|) time.

Find: Deterministic or Randomized Algorithm which:

- Runs in *less than* 2^{w(|x|)} t(|x|) time
- Given any input x, finds a witness y such that V(x,y) accepts (or conclude none)

Circuit Complexity (Non-Uniform Algorithms)

Given: Any **NP** problem Π (or **NEXP** problem!)

Find: Sequence of algorithms
{A_n} such that for some k:

- 1. $|\mathbf{A}_n| \le \mathbf{n}^k + \mathbf{k}$
- On all inputs x of length n,
 A_n(x) correctly solves Π on x in O(n^k) time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

Fine-Grained Improvements for Solving NP Problems

Given: Verifier V(x, y**)** which reads w(|x|) bits of witness y, runs in t(|x|) time.

Find: Deterministic or Randomized Algorithm which:

- Runs in *less than* 2^{w(|x|)} t(|x|) time
- Given any input x, finds a witness y such that V(x,y) accepts (or conclude none)

Circuit Complexity (Non-Uniform Algorithms)

Given: Any **NP** problem Π (or **NEXP** problem!)

Find: Sequence of algorithms
{A_n} such that for some k:

- 1. $|\mathbf{A}_n| \le \mathbf{n}^k + \mathbf{k}$
- On all inputs x of length n,
 A_n(x) correctly solves Π on x in O(n^k) time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

- **Fine-Grained Improvements**
- 3-SAT: O(1.308ⁿ) time
- k-SAT: O(2^{n n/k})
- Hamiltonian Path: O(1.66ⁿ)
- Vertex Cover: O(1.3ⁿ)

on degree-3 graphs: O(1.09ⁿ)

- Max-2-SAT: O(1.8ⁿ)
- 3-Coloring: O(1.33ⁿ)
- k-Coloring: O(2ⁿ)

Circuit Complexity

Given: Any NP problem П (or NEXP problem!)

- Find: Sequence of algorithms {A_n} such that for some k:
- 1. $|A_n| \le n^k + k$
- On all inputs x of length n,
 A_n(x) correctly solves Π on x in O(n^k) time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

- **Fine-Grained Improvements**
- 3-SAT: O(1.308ⁿ) time
- k-SAT: O(2^{n n/k})
- Hamiltonian Path: O(1.66ⁿ)
- Vertex Cover: O(1.3ⁿ)

on degree-3 graphs: O(1.09ⁿ)

- Max-2-SAT: O(1.8ⁿ)
- 3-Coloring: O(1.33ⁿ)
- k-Coloring: O(2ⁿ)

Circuit Complexity

 For all these algorithms on the LHS, we don't know how to get non-uniform algorithms (circuits) that are any better

Best lower bound known:
There is a function in NP that
requires circuits of size 5n + o(n)

- Cannot yet rule out that **NEXP** is in P/poly...

Faster Algorithms ⇒ Lower Bounds

Faster "Algorithms for Circuits" [R.W. '10,'11]

Deterministic algorithms for:

- Circuit SAT in O(2ⁿ/n¹⁰) time with n inputs and n^k gates
- Formula SAT in O(2ⁿ/n¹⁰)
- **C-SAT** in O(2ⁿ/n¹⁰)

• Given a circuit of n^k size that's either UNSAT, or has $\geq 2^{n-1}$ SAT assignments, determine which in O(2ⁿ/n¹⁰) time (Easily solved w/ randomness!) No "Circuits for NEXP"

Would imply:

- NEXP $\not\subset$ P/poly
- NEXP *⊄ poly-size C*

$\mathbf{NEXP} \not \subset \mathbf{P/poly}$

Even Faster \implies "Easier" Functions

Better "Algorithms for Circuits" [Murray-W. '18] Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{n-n^{\epsilon}})$ time with n inputs and $2^{n^{\epsilon}}$ gates
- Formula SAT in $O(2^{n-n^{\epsilon}})$
- **C-SAT** in $O(2^{n-n^{\epsilon}})$

• Given a circuit of $2^{n^{\epsilon}}$ size that's either **UNSAT**, or has $\geq 2^{n-1}$ **SAT** assignments, determine which in $O(2^{n-n^{\epsilon}})$ time (Easily solved w/ randomness!) **No "Circuits for Quasi-NP"**

Would imply:

• NTIME[$n^{polylog n}$] $\not\subset$ P/poly

- NTIME[$n^{polylog n}$] \subset NC1
- NTIME[$n^{polylog n}$] $\not\subset C$

NTIME[$n^{polylog n}$] $\not\subset$ P/poly

Even Faster \Rightarrow "Easier" Functions

Fine-Grained SAT Algorithms [Murray-W. '18]

Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{(1-\epsilon)n})$ time on n inputs and $2^{\epsilon n}$ gates
- Formula SAT in $O(2^{(1-\epsilon)n})$
- **C-SAT** in $O(2^{(1-\epsilon)n})$

• Given a circuit of $2^{\epsilon n}$ size that's either UNSAT, or has $\geq 2^{n-1}$ SAT assignments, determine which in $O(2^{(1-\epsilon)n})$ time (Easily solved w/ randomness!) No "Circuits for NP"

Would imply:

- NP $\not\subset$ SIZE(n^k) for all k
- NP $\not\subset$ Formula-SIZE(n^k)
- NP $\not\subset$ **C**-SIZE(n^k) for all k

 $\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ for all k

Why on Earth would it be true?

Concrete Lower Bounds From Algs!

Thm [R.W.'11]: NEXP $\not\subset$ ACC⁰

Thm [Murray-W'18]: NTIME[$n^{poly(\log n)}$] $\not\subset$ ACC⁰

NEXP = NTIME $[2^{n^{O(1)}}]$

ACC⁰: polynomial size, constant depth circuits with AND, OR, and MOD[m] gates for some constant m.

> A simple but Annoying Circuit Class to prove lower bounds for (proposed in 1986 by Barrington)

How It Was Proved

Let \mathbb{C} be a "typical" circuit class (like ACC⁰) Thm A [W'11]: If for all k, \mathbb{C} -SAT on n^k-size is in O(2ⁿ/n^k) time, then NEXP does not have poly-size \mathbb{C} -circuits. Thm B [W'11]: $\exists \varepsilon$, ACC⁰-SAT on 2^{n^E} size is in O(2^{n-n^E}) time.

An inefficiency!

Theorem B gives a much stronger algorithm than is needed in Theorem A.

This is exactly the starting point of [Murray-W'18]...

More on Theorem A

Let C be some circuit class (like ACC⁰) Thm A [W'11]:

If for all k, C-SAT on n^k-size is in O(2ⁿ/n^k) time, then NEXP does not have poly-size C-circuits.

Idea. Show that if we assume both:

(1) NEXP has poly-size C-circuits, and
(2) a faster C-SAT algorithm

Then we can show NTIME[2ⁿ] ⊆ NTIME[o(2ⁿ)]

Idea. Assume (1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that NTIME[2^n] \subseteq NTIME[o(2^n)]

- 1. Guessing some witness y of $O(2^n)$ length.
- 2. Checking y is a witness for x in $O(2^n)$ time.

Idea. Assume (1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that NTIME[2^n] \subseteq NTIME[o(2^n)]

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Idea. Assume

(1) NEXP has poly-size C-circuits, and
 (2) a faster C-SAT algorithm
 Show that NTIME[2ⁿ] ⊆ NTIME[o(2ⁿ)]

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Idea. Assume (1) NEXP has poly-size C-circuits, and (2) a faster C-SAT algorithm Show that NTIME[2ⁿ] ⊆ NTIME[o(2ⁿ)]

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Guessing Short Witnesses

1. Guess a witness y of $o(2^n)$ length.

Easy Witness Lemma [IKW'02]: If NEXP has polynomial-size circuits, then all NEXP problems have "easy witnesses"

Def. An NEXP problem L has easy witnesses if \forall Verifiers V for L and $\forall x \in L$, \exists poly(|x|)-size circuit D_x such that V(x,y) accepts, where y = Truth Table of circuit D_x.

1'. Guess poly(|x|)-size circuit D_x

Verifying Short Witnesses

2. Check y is a witness for x in $o(2^n)$ time.

Assuming NEXP has polynomial-size circuits, "easy witnesses" exist for *every* verifier V. We choose a V for an NEXP-complete L so that

Checking a witness for x

Solving a C-UNSAT instance with poly(|x|) size and $n = |x| + O(\log|x|)$ inputs Then, $2^n/n^k$ time for C-UNSAT $\rightarrow o(2^{|x|})$ time

Verifying Short Witnesses

2. Check y is a witness for x in $o(2^n)$ time.

Assuming NEXP has polynomial-size circuits, "easy witnesses" exist for *every* verifier V. We choose a V for an NEXP-complete L so that

Checking a witness for x

Distinguishing *unsatisfiable* circuits from those with *many* satisfying assignments (Uses the PCP Theorem!)

ldea. Assume

(1) NEXP has poly-size C-circuits, and
 (2) a faster C-SAT algorithm
 Show that NTIME[2ⁿ] ⊆ NTIME[o(2ⁿ)]

- **1.** Guessing a circuit D_x of poly(|x|) size
- 2. Checking D_x encodes a witness for x in o(2ⁿ) time

End