
6.S078 Fine-Grained Algorithms and Complexity MIT
Lectures 3 and 4: SAT Algorithms September 14 and 16, 2020

Today: In the previous two lectures, we discussed ETH and SETH. Both of these are conjectures about the time
complexity of SAT. Today we will discuss the best known theoretical algorithms and techniques for solving SAT! (In
practice, SAT is often solved very efficiently. But there are instances in practice that make SAT solvers trip up, and
run in exponential time.)

Think about how to do the exercises before lecture!

1 Randomized reduction: a first start

We’ll start with a simple algorithm that beats 2n time in a special case of 3SAT. It will illustrate some useful principles
in some of the algorithms to come. In the following, a 3-clause is a clause with three literals.

Theorem 1.1 3-SAT can be solved inO?((3/2)t) randomized time on formulas with at most t 3-clauses. In particular,
our randomized algorithm always outputs “UNSAT” on unsatisfiable formulas, and outputs “SAT” on satisfiable
formulas with probability greater than 1− 10−9.

Note, some 3-SAT instances could have many 2-clauses and a small number of (say, O(log n)) 3-clauses. The above
theorem shows that these instances could be solved quickly with randomness.

Proof. First we’ll give an algorithm RANDO which takes a formula F with at most t 3-clauses. Then we’ll explain
why RANDO works.

RANDO(F ):
Repeat for 20 · (3/2)t trials:

Let F ′ be the set of 2-CNF and 1-CNF clauses in F .
For every 3-clause C = (`1 ∨ `2 ∨ `3) in F ,

Randomly choose an `i, remove it from C forming new 2-clause C ′. Add C ′ to F ′.
End for
Solve the resulting 2-SAT instance F ′ in polynomial time, getting an assignment A. If A satisfies F , return

“SAT”.
End repeat
Return ”UNSAT”.

Exercise 1.1 Hmm... how do you solve 2-SAT in polynomial time? (There are multiple ways you could prove
this.)

Now for the analysis of RANDO. First of all, if F is unsatisfiable, then is clear that RANDO never reports “SAT” on
such an F , because it always checks whether its found assignment A satisfies F before returning “SAT”.

Second, suppose F is satisfiable, and let A be a satisfying assignment to it.

Claim 1.1 For all clauses C, Pr[A satisfies C ′] ≥ 2/3.
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Proof of Claim: In the worst case, exactly one literal ` in C is satisfied by A. (In fact, if more than one literal in C
is satisfied by A, then A satisfies C ′ with probability 1!1) This literal ` is removed with probability 1/3. And if you
remove any other literal instead, the remaining clause is still satisfied.
QED
Since each literal removed is an independent choice, we have:

Pr[F ′ is SAT by A] ≥ (2/3)t.

In RANDO, we repeat the inner loop for r = 20 · (3/2)t trials. Therefore

Pr[No F ′ is SAT by A over all trials] ≤ (1−(2/3)t)r = (1−(2/3)t)20(3/2)t ≤ exp(−20·(2/3)t·(3/2)t) = exp(−20).

(Here, we applied the useful inequality (1 − x) ≤ exp(−x).) Therefore, when the algorithm reports ”UNSAT”, the
probability it is wrong is less than e−20 < 10−9. �

2 Algorithms which beat 2n time in general

Now we turn to algorithms which really do beat 2n time for k-SAT. First, we give some simple improvements over
exhaustive search. We’ll start with branching (a.k.a. backtracking) algorithms, as they are very natural. In a branching
algorithm, the idea is that you try to cleverly pick variables to assign to true or false. As you assign them, all of their
occurrences in the formula get removed, and their removal simplifies the formula. (If you are clever about how you
pick them, you could simplify the formula considerably.) Then you recurse on the simplified formula.

Among the algorithms we’ll see, the branching paradigm is most like actual real-life SAT solvers. (In the 1990s, local
search was the fastest, but starting around the 2000s folks began engineering fast branching algorithms, and they’ve
been the fastest ever since, with various technical bells and whistles added over the last 20 years.)

Theorem 2.1 k-SAT on n variables is in 2n−n/O(k2k) · poly(n) time.2

Proof. As promised, this will be a backtracking/branching algorithm. The key trick is this: whenever we have a clause
of ` literals, there are only 2` − 1 satisfying assignments to that clause, even though there are 2` total assignments to
the clause. This difference of one assignment is enough to get some running time improvement!

Algorithm A(F ): // F is a k-CNF formula
If F has no clauses, return SAT.
If F contains an empty clause (a clause with no literals), return UNSAT.
Take the shortest clause in F , call it C = (x1 ∨ . . . ∨ x`).
For all 2` − 1 satisfying assignments a ∈ {0, 1}` to C,

Call A(F |x1=a1,...,x`=a` ).
// this notation just means x1, . . . , x` are replaced by the bits in a, so F |x1=a1,...,x`=a` has ` fewer variables;
// also, any already satisfied clauses are removed.

If one of these calls returns SAT, then return SAT. Otherwise return UNSAT.

Analysis: In the worst case, the shortest clause C is always of length k. (It couldn’t be any longer.) In that case, our
running time recurrence is T (n) ≤ (2k−1)T (n−k)+O(poly(n)). This easily solves to T (n) ≤ (2k−1)n/kpoly(n).
Using the inequality 1− x ≤ e−x, we find that

(2k − 1)n/k = 2n(1− 1/2k)n/k ≤ 2ne−n/(k2k),

1Note you could have interpreted ! as factorial, and the statement is still true. You could have even interpreted the footnote symbol as an exponent
of 1, and the statement is still true.

2That is, there are fixed constants c, d > 0 such that for all k, k-SAT on n variables is solvable in 2n−n/ck2k · nd time.
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and we are done. �

Exercise 2.1 Convince yourself that we can already conclude the following:
For all k, there is a δ < 1 such that k-SAT can be solved in O(2δn) time.
(Wait, what happened to the poly(n) factor in the running time? Why can we omit it?)
Note the difference between the above statement, and SETH.

We can improve the dependence on k slightly with a cleverer branching:

Theorem 2.2 k-SAT on n variables is in 2n−n/O(2k) time.

Proof. This is based on the branching/backtracking algorithm of Monien and Speckenmeyer [MS85].

Algorithm A(F ): // F is a k-CNF formula
If F has no clauses, return SAT. If F has an ”empty” clause (clause set false), return UNSAT.
If F is 2-CNF, solve SAT in polytime and return the answer.
If there is a 1-CNF clause (x), call A on F |x=1.
Take shortest clause (x1 ∨ . . . ∨ xL).
Call A on F |x1=1, F |x1=0,x2=1, . . . , F |x1=0,...,xi−1=0,xi=1, . . . , F |x1=0,x2=0,...,xL=1.
If any of the L calls says SAT, then return SAT; else return UNSAT.

Recurrence for the running time: T (n) ≤
∑k
i=1 T (n− i) +O(poly(n)).

Exercise 2.2 Why is this the running time recurrence? Why is this algorithm correct?

How to solve it? We will guess that T (n) = 2αn for some parameter α > 0, and we’ll try to find α < 1 that satisfies
the recurrence. Inductively, we want the following to be true:

T (n) ≤
k∑
i=1

T (n− i) ≤
k∑
i=1

2α(n−i) ≤ 2αn.

In particular, we want
∑k
i=1 2

α(n−i) ≤ 2αn. Dividing both sides by 2αn, this is
∑k
i=1 2

−αi ≤ 1. We need to find an α
that will satisfy this inequality. By the usual expression for the sum of a geometric series, this inequality is equivalent
to

(1− 2−α(k+1))/(1− 2−α)− 1 ≤ 1.

Manipulating this around, we get that the above is equivalent to

(1− 2−α(k+1))/(1− 2−α) ≤ 2 ⇐⇒ 1− 2−α(k+1) ≤ 2− 21−α ⇐⇒ 21−α − 2−α(k+1) ≤ 1.

Being incredible guessers, let’s tryα = 1−log2(e)/(5·2k). Then 21−α−2−α(k+1) = 2log(e)/(10·2k)−2−(k+1)(1−log(e)/(5·2k))

which equals

e1/(5·2k) − 2−(k+1)(1−log(e)/(5·2k)) < 1 + 3/(10 · 2k)− 2−(k+1)(1−log(e)/(5·2k)) < 1,

where we used the inequalities ex < 1 + 3x/2 for all x ∈ (0, 1) and 2(k+1) log(e)/(5·2k)/2k+1 > 3/(10 · 2k) for all
k ≥ 1. �

3



Exercise 2.3 Is there a cleaner derivation of α ≤ 1−O(1/2k)? :)

In general, the following is useful for analyzing backtracking algorithms:

Theorem 2.3 Every recurrence of the form

T (n) ≤ T (n− k1) + T (n− k2) + · · ·+ T (n− ki) +O(poly(n))

has as a solution
T (n) ≤ O(r(k1, . . . , ki)

n · poly(n)),

where r(k1, . . . , ki) is a positive root of the expression P (x) = 1−
∑i
j=1 x

−kj .

For example, consider
T (n) ≤ T (n− 1) + T (n− 2) +O(poly(n)).

By the above theorem, we want to find positive x satisfying 1− 1/x− 1/x2 = 0. (Ideally, we want the smallest such
x too, to optimize the running time bound!) This is equivalent to x2 − x− 1 = 0 which is the same as x(x− 1) = 1.
Solutions for x are x = 1.618 . . . ,−.618 . . ., so T (n) ≤ O(1.618n).

Exercise 2.4 Think about how you might prove the above theorem.

3 Improved Algorithms for k-SAT

In this section, we will give the shortest proof we know that k-SAT has an 2n−n/O(k)-time algorithm.

Theorem 3.1 k-SAT on n variables is in 2n−n/O(k) time.

This is the essentially the best dependence on k in the exponent that we know (to date). Improving on the exponent
of n(1 − 1/O(k)) is a major open problem! For example, is there an algorithm with exponent n(1 − log(k)/O(k))?
In the literature, there is a hypothesis called Super-SETH [VW19] which posits that there is no unbounded function
f : N → N such that k-SAT can be solved in 2n−f(k)n/k time. (Of course, Super-SETH implies SETH.) Ryan
probably gives ≤ 10% likelihood that Super-SETH is true. (For other estimates, see [Wil19].)

Local search and random walks. Schoening [Sch99, Sch02] obtained an improved solution of k-SAT using an
entirely different strategy. It is based on an earlier local search / random walk algorithm for solving 2-SAT, due to
Papadimitriou [Pap91].

Theorem 3.2 ([Pap91]) There is a randomized algorithm for 2-SAT running in poly(n) time.

Here we sketch the proof. The algorithm is as follows:

LS(F ):
Let A be a random assignment to the n variables of F .
Repeat for 100n2 times:
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If F is SAT by A, return “SAT”.
Else pick a clause c that A falsifies

and pick a variable v in c at random.
Flip the value of v in A.

End repeat
Return “UNSAT”.

Let us prove that LS works with good probability. Clearly if LS returns “SAT”, then F is SAT (it finds a satisfying
assignment).

Claim 3.1 Suppose F is SAT. Pr[LS(F ) returns “UNSAT”] < 1/3.

We’ll sketch the proof of this claim. We will associate the behavior of the local search algorithm with a random
walk on a line graph. Let A∗ be a satisfying assignment to F . (In the worst case for us, there is only one satisfying
assignment.) Consider a line graph on n+ 1 nodes labeled by {0, . . . , n}.

Exercise 3.1 Imagine a picture of a line graph on n+ 1 nodes, drawn here

Each node on the line is associated with a subset of the n-variable Boolean assignments. In particular, node i ∈
{0, 1, . . . , n} corresponds to the set of assignments A′ ∈ {0, 1}n such that h(A∗, A′) = i, where

h(x, y) = Hamming distance between x and y = number of bits in which x and y differ.

Therefore:

• Node 0 corresponds to A∗,

• Node 1 corresponds to the n assignments that are like A∗, except one of their bits are flipped, and in general

• Node i corresponds to
(
n
i

)
assignments that have i bits different from A∗.

How will this graph correspond to the algorithm LS? At each step, the algorithm LS is holding an assignment A in
memory, associated with some node i on the line. If A corresponds to node 0, then A = A∗, and LS halts and says
“SAT”. When we are not at node 0, we would like for LS to have a good chance of “moving towards” node 0 by
flipping bits in its current assignment A.

Remember LS picks a clause that isn’t satisfied, randomly picks one of the two variables, and flips its value. Now
since it’s a 2-CNF, each clause has two variables, and at least one of them is satisfied by A∗. So there is a probability
at least 1/2 of moving one bit closer to A∗ when we flip a bit, and probability at most 1/2 of moving one bit away.

Therefore we can think of the LS algorithm as performing a random walk on this line graph: it takes one step towards
node 0 with probability at least 1/2, and one step away with probability at most 1/2. Now we want to know how long
it will take for LS to reach node 0. It turns out that, with high probability, LS will reach node 0 after 100n2 steps.
Here we’ll only give intuition for the proof; we’ll go in more detail for the case of 3-SAT.

Proof Intuition: There are multiple ways you can try to prove this. One way is to use lower bounds on the tail of
the binomial distribution. (Note: Almost all results you learn in school about tails of binomials are upper bounds, not
lower bounds.) Suppose we start at any node of the line graph. View the random walk as flipping a coin that comes
up heads or tails: if it’s heads we decrease the node number, and if it’s tails we increase the node number (if the node
number is already n, it stays the same). The coin comes up heads with probability at least 1/2. We want to know how
many times we need to flip the coin, before we can expect the number of heads to exceed the number of tails by n.
(After that point, we definitely will have reached node 0 during the walk.)
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For i = 1, 2, . . . , define a random variable Xi which is 0 with probability 1 − p and 1 with probability p, where
p ≥ 1/2, and define XM =

∑M
i=1Xi. Standard probability results tell us that E[XM ] = pM and Stddev(XM ) =√

p(1− p)M .

Claim 3.2 For every ε ∈ (0, 1) there is a Cε ≥ 1 such that

Pr[for some M = 1, . . . , Cεn
2, XM ≥ n+ E[XM ]] ≥ 1− ε.

(Note, this claim is lower bounding XM − E[XM ].) This claim implies that the random walk in LS, when repeated
for Cε times, will produce a satisfying assignment with probability at least 1− ε. (When E[XM ] = XM and p = 1/2,
the number of heads equals the number of tails, so in the claim we are looking at the case where the number of heads
exceeds the number of tails by at least n.) The idea is that for T = Cn2 where C is sufficiently large, the standard
deviation of XT is greater than n, and the probability that XM exceeds n+E[XM ] for some M = 1, . . . , T becomes
close to 1 (using properties of binomials). 3

Exercise 3.2 If you’re bored or fascinated at this point, you could try your hand at proving the claim. Or you
could try to analyze the algorithm in another way. But this is optional. Tim Roughgarden walks through a
proof that the random walk process works inO(n2) steps, here: https://www.coursera.org/lecture/
algorithms-npcomplete/random-walks-on-a-line-kRmJe

The next natural question is: Why doesn’t this algorithm work for 3-SAT?
Well, it will “work”, but the random walk probabilities get screwed up! For 3-SAT, we will only have probability
1/3 of flipping the correct variable and moving towards node 0, and probability 2/3 of moving away, so we are much
more likely to drift away from 0 than to move towards 0. That’s not good at all. Nevertheless, Schoening found an
adaptation of the algorithm which leads to a less-than-2n running time for 3-SAT.

3.1 Schoening’s algorithm and its generalization

We will begin with a simplified version of the random walk algorithm that works for k-SAT. As you can see in the
below theorem, it does give the best known asymptotic dependence on k in the exponent.

Theorem 3.3 k-SAT can be solved in 2n−n/O(k) time.

Proof. We will first present the inner loop of the algorithm, which succeeds with some probability at finding a
satisfying assignment. Later, we’ll repeat it for some number of times. In general, suppose we have a procedure that
always says “UNSAT” when F is unsatisfiable, and says “SAT” when F is satisfiable with probability at least P .
Then, if we repeat this procedure for 10/P trials, and say “UNSAT” only if none of the trials returned “SAT”, this new
algorithm will be correct with probability ≥ 1 − exp(−10), as we showed earlier (in our first algorithm). Thus, we
will focus on giving procedures that are fast and are correct with exponentially low probability, but when we run them
an exponential number of times, they become correct with constant probability. Here is such an algorithm for k-SAT:

Schon(F ):
Choose random assignment A.

3Note: You can also analyze the random walk by choosing a different random variable, which is more standard. For i = 1, 2, . . . , define a
random var Xi which is −1 with probability 1− p and 1 with probability p, where p ≥ 1/2, and define XM =

∑M
i=1 Xi. Standard probability

results tell us that E[XM ] = (2p−1)M and Var(XM ) =
∑M

j=1 E[Xi]
2+

∑
i 6=j E[Xi ·Xj ] = M+(M2−M)(p2+(1−p)2−2p(1−p)) =

M2 + (M2 −M)(4p2 − 4p), so that Stddev(XM ) =
√

M2 − 4p(1− p)(M2 −M) ∈ [
√
M,M ]. Then, you want to analyze the probability

that XM exceeds n, instead of n+ E[XM ].
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Repeat for n/k times:
If A satisfies F return “SAT”
If A does not satisfy F , then

Let C be a falsified clause of F .
Pick a random variable in C. Flip its value in A.

End repeat.
Return “UNSAT”.

Analysis of algorithm. Let A∗ be a SAT assignment to F , as before. We will show Schon outputs a satisfying
assignment (when one exists) with probability at least

1

2n · e−n/k+n/k2 · (n+ 1)
.

Claim 3.3 There is a c > 0 such that Pr[A∗ found by Schon(F )] ≥ 1/(2n · e−n/k+n/k2 · (n+ 1)) ≥ 1/2n−n/ck.

So, if we repeat Schon for t = 10 · 2n−n/ck times, we’ll have a high probability of finding a SAT assignment using it.

Proof of Claim: Define event E to be: Randomly chosen assignmentA is within n/k Hamming distance ofA∗. Then

Pr[E] ≥
(
n

n/k

)
/2n.

This is because there are
(
n
n/k

)
different strings A′ such that h(A∗, A′) = n/k. We also have

Pr[Local search for n/k steps finds A∗ | E] ≥
(
1

k

)n/k
,

because for each variable that is randomly chosen in Schon, there’s at least a 1/k chance that we chose a variable that
is flipped to its correct value. And if we started at an assignment that is n/k bits away from A∗, and we flip all n/k
variables correctly in our local search, we will be at assignment A∗. Therefore

Pr[A∗ is found by Schon] = Pr[E] · Pr[Local search for n/k steps finds A∗ | E]

≥

(
n
n/k

)
2n
·
(
1

k

)n/k
.

We now claim that (
n
n/k

)
2n
·
(
1

k

)n/k
≥ 1

2n · e−n/k+n/k2 · (n+ 1)
.

Once we prove that, we’ll have completed the proof of the theorem.

(Note: The rest of this proof is really optional material. But it doesn’t take too long to get through it, and you might
learn some new extremal combinatorics while you’re at it.)

The claimed inequality follows from applying other nice inequalities in the right way, namely:

1. 1− x ≤ e−x,

2.
(
n
αn

)
≥ 2H(α)n/(n+1), where H(a) := a log2(1/a) + (1− a) log2(1/(1− a)) is the binary entropy function.

By inequality 2, noting that 2H(1/k)n = kn/k · (1/(1− 1/k))n−n/k, we have(
n
n/k

)
2n
·
(
1

k

)n/k
≥ kn/k · (1/(1− 1/k))n−n/k

kn/k2n(n+ 1)
.
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Cancelling out kn/k factors, we get

kn/k · (1/(1− 1/k))n−n/k

kn/k2n(n+ 1)
=

1

2n · (1− 1/k)n−n/k(n+ 1)
.

Finally, applying inequality 1, we obtain

1

2n · (1− 1/k)n−n/k(n+ 1)
≥ 1

2n · e−n/k+n/k2 · (n+ 1)
.

�

What is the key to the speedup in the Schon algorithm? Here’s what’s happening: instead of taking O∗(
(
n
n/k

)
) time to

try all possible assignments that are within Hamming distance n/k of a given assignment, the random walk algorithm
takes only O∗(kn/k) time instead, using the k-SAT instance to search over all those assignments. So over the whole
space of 2n assignments, you can think of the algorithm as “dividing out” a factor of

(
n
n/k

)
and multiplying by kn/k.

This gives the 2n/O(k) speedup.

Derandomization. The above uses a lot of randomness. We can actually derandomize the Schon algorithm by using
a deterministic kn/k time algorithm for the local search (branch on all k choices of a literal to flip, for recursion depth
of n/k), and using a subset S ⊆ {0, 1}n of size O∗(2n/

(
n
n/k

)
), with the property that every n-bit string is within n/k

Hamming distance of some string in S (called a covering code); such subsets can be computed in time O∗(2n/
(
n
n/k

)
).

This was first reported in the literature by [DGHS00].

3.2 Schoening’s actual algorithm

In the above algorithm Schon, we required ourselves to do a walk of length n/k, and each of the n/k variables we
flipped must have been flipped correctly. What if we allowed ourselves to do a slightly longer random walk, where
some of the flips are allowed to be incorrect? (We might walk away from a satisfying assignment a little bit, but then
come back towards it.) Schoening’s algorithm accounts for this possibility, giving a sharper running time than the
above.

We present Schoening’s algorithm for 3-SAT. It looks very similar to Schon given above, except that we will walk for
3n steps instead of n/3 steps.

Schon2(F ):
Repeat 10(n+ 1)(4/3)n times:

Choose random assignment A.
Repeat for 3n times:

If A satisfies F return “SAT”
If A does not satisfy F , then

Let C be a falsified clause of F .
Pick a random variable in C. Flip its value in A.
[(1/3) probability of choosing “correct” literal to flip]

End repeat
End repeat
Return “UNSAT”.

Theorem 3.4 Suppose F is SAT. Then, Pr[Schon2(F ) returns “UNSAT”] < exp(−10).

Let A∗ be a satisfying assignment to F .

Claim 3.4 Pr[Inner loop returns A∗, starting from A] ≥ (1/2)h(A,A∗)/(n+ 1).
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Recall that h(x, y) = hamming distance between x and y = number of bits in which x and y differ. Using the argument
from Schon, we could just say that the above probability is at least (1/3)h(A,A∗): imagine that the algorithm chooses
the correct literal each time. It does this with probability at least 1/3, and it only has to do this for h(A,A∗) times.
However, this is too pessimistic: the probability can be much higher, because the algorithm could possibly make some
mistakes in its variable flips, and end up correcting those flips later on. That’s what Claim 3.4 takes advantage of.

Assume for now that Claim 3.4 holds.

Claim 3.5 PrA[h(A,A
∗) = k] =

(
n
k

)
/2n.

Note we already had this claim in our proof of our k-SAT algorithm. Now, assuming Claim 3.4,

Pr[One repetition returns “SAT”] ≥ 1

2n
·
∑

A∈{0,1}n
Pr[Inner loop returns A∗, starting from A].

Sorting the A’s by Hamming distance from A∗, this equals
n∑
k=0

PrA[h(A,A
∗) = k] · Pr[Inner loop returns A∗, starting from A].

Applying Claim 3.4 and Claim 3.5, this quantity is at least
n∑
k=0

(
n

k

)
/2n · (1/2)k/(n+ 1).

By the binomial theorem, this equals
(3/4)n/(n+ 1).

Exercise 3.3 Verify that we applied the binomial theorem correctly.

Therefore, after 10(n+ 1)(4/3)n repetitions, there is probability less than exp(−10) of returning “UNSAT” when F
is satisfiable.

Finally, we turn to the

Proof of Claim 3.4: Let t = h(A,A∗). Consider the following event E:

Over a 3t step walk, we walk for t steps to the “right” on the line graph (make t “bad” choices of which
variable to flip), and 2t steps to the “left” (make 2t “good” choices of which variable to flip).

Note that Pr[E] ≥ (2/3)t(1/3)2t ·
(

3t
t

)
.

Each time we step to the right, it costs probability (2/3), when we step to the left it’s prob 1/3, and there are
(

3t
t

)
possible ways to step t times to the right and 2t times to the left.

By introducing another 2t factor, we can rewrite the above inequality as Pr[E] ≥ 1/2t · (1/3)t(2/3)2t ·
(

3t
t

)
.

LetA = (1/3)t(2/3)2t andB =
(

3t
t

)
. Now it suffices to show thatA·B ≥ 1/(3t+1). This is basically a combinatorial

exercise.

Exercise 3.4 Here’s your cue! You have already seen the inequalities you will need in the proof (you can assume
them).
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4 The Fastest Known 3-SAT Algorithms (Optional)

4.1 Deterministic Algorithm

The fastest known deterministic algorithm for 3-SAT is a “full derandomization” of Schoening’s algorithm. Moser and
Scheder [MS11] replace all of the above random walk apparatus with deterministic choices! Their algorithm runs in
O((4/3 + ε)n) time for all ε > 0.

4.2 Randomized Algorithm

The fastest known randomized algorithm for 3-SAT is due to Hertli [Her14], running in O(1.308n) time. Hertli gave
an alternative analysis of an older algorithm called PPSZ [PPSZ05] (named after its authors: Paturi, Pudlák, Saks, and
Zane). You can think of PPSZ as a randomized branching algorithm: it randomly sets variables to random values, and
aggressively checks if any variables are implied by its assignments. Here we sketch how PPSZ works.

Imagine a polynomial-time algorithm Simplify which given a k-SAT formula F , tries to simplify F as follows:

1. If there is a clause that contains both x and ¬x, remove it, as it is always satisfied.

2. If there is a 1-Clause (`), set the literal ` to be true, remove any satisfied clauses, and remove all occurrences of
¬` from the rest of the clauses. If any clause is empty, return “UNSAT”.

3. Generalizing the above: try all subsets S of F with at most 100 3-clauses, and all satisfying assignments to the
set S. If there is a variable y such that every satisfying assignment to S assigns y to a fixed value v ∈ {0, 1},
then set y := v, and simplify the formula as above.

Then, the PPSZ algorithm looks like the following.

PPSZ(F ):
Repeat until all variables are assigned:

Until no more simplifications are possible, repeat: Simplify(F )
Pick a random unassigned variable x.
Set x to a random value.

End repeat.

The surprising theorem is:

Theorem 4.1 Suppose F is satisfiable. Then Pr[PPSZ returns a SAT assignment to F ] ≥ 1/(1.308)n.

Paturi, Pudlak, Saks and Zane (PPSZ) originally proved the above theorem for formulas F that have a unique satisfying
assignment. Hertli proved it for all F . It was very recently shown by Scheder and Talebanfard that the PPSZ algorithm
(in the above form) actually requires 2n−Ω(n/k)) time on some instances [ST20]. That is, “Super Strong ETH” holds
for the PPSZ algorithm.

5 A Natural Equivalent Version of SETH (Optional)

The following is optional material on SETH that you might find interesting. It shows that SETH is equivalent to the
claim that satisfiability on CNFs with O(n) clauses (of any width) cannot be solved in substantially less than 2n time.
Recall that SETH states that for all ε > 0, there is a k such that k-SAT on n variables cannot be solved in O(2(1−ε)n)
time.

Consider the following More-Believable SETH (MBSETH):
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For all ε > 0, there is a c such that CNF-SAT on n variables and cn clauses cannot be solved inO(2(1−ε)n)
time.

Note, there is no restriction on the width of clauses in MBSETH. MBSETH looks more believable, as the Sparsification
Lemma shows that SETH implies MBSETH (we can always reduce k-SAT to the case of O(n) clauses). We show that
SETH and MBSETH are actually equivalent, a result proved by Calabro, Impagliazzo and Paturi [CIP06]. To show
this, we will prove that MBSETH implies SETH:

Theorem 5.1 Suppose there is a δ < 1 such that for all constant k, k-SAT is in O(2δn) time (SETH is false). Then
there is a γ < 1 such that for every c, CNF-SAT with cn clauses is in O(2γn) time.

The reduction itself is an interesting branching algorithm. We start with a CNF that has cn clauses of any width, and
we want to reduce it to k-SAT. We can do this by taking each clause of length greater than k, and either asserting its
first k literals are all false, or asserting at least one of them is true. In the first branch we get to set k variables in the
formula: a huge reduction. In the second branch, we get to assert a k-clause and remove one of the long clauses from
our CNF. Here are the details:

Proof. Suppose there is a δ < 1 such that for all constant k, k-SAT is in O(2δn) time.

Let F be a CNF formula with n variables and cn clauses. We will show how to use an O(2δn)-time k-SAT algorithm
to also solve SAT for F .

Let k be a parameter to set later, as a function of c.

Our algorithm for satisfiability runs as follows:

If all clauses have length at most k, then solve the instance using the O(2δn)-time k-SAT algorithm.
Else, take a clause more than k literals, e.g., C = (x1 ∨ . . . ∨ xk ∨ . . .).
Recursively call the algorithm on two instances: (1) F with C replaced by (x1 ∨ . . . ∨ xk), and (2) F with x1 :=
0, . . . , xk := 0.
If both are UNSAT then return UNSAT, else return SAT.

There are at most n/k branches where k variables are set, and at most cn branches where a “long” clause is shortened.
Once we reach a k-SAT instance, we run our O(2δn

′
) time k-SAT algorithm on the remaining n′ variables. So the

total running time is at most

n/k∑
i=0

(
cn+ i

i

)
· 2δ(n−ik) ≤ 2δn ·

n/k∑
i=0

(
cn+ i

i

)
2−δik.

Now,
(
cn+i
i

)
is maximized for the largest setting of i, i = n/k, and so the runtime is at most

2δn
(
cn+ n/k

n/k

)
·
n/k∑
i=0

2−δik ≤ O
(
2δn ·

(
cn+ n/k

n/k

))
,

as the infinite geometric series converges. Recalling
(
N
K

)
≤ (eN/K)K , we find that the runtime is big-O of

2δn
(
cn+ n/k

n/k

)n/k
= 2δn(ck + 1)n/k = 2δn2n·log(ck+1)/k.

We want to set k so that log(kc + 1)/k < ε for arbitrarily small ε > 0, so that δ + ε < 1. Then it would suffice if
log(2kc) < kε, and so log(k) + log(2c) < kε and kε− log(k) > log(2c).

If we set k large enough so that kε/2 ≥ log k, then we’d just need kε > 2 log(2c).

So k needs to be≥ max{2 log k/ε, 2 log(2c)/ε}. If we set k = Z ·2 log(2c)/ε for Z ≥ 1, then Z log(2c) = εk/2, and
log(k) = log(2Z/ε) + log log(2c). Since we want kε/2 ≥ log k, we thus want Z log(2c) ≥ log(2Z/ε) + log log(2c)
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and Z log(c) ≥ log(Z) + log(1/ε) + log log(2c). For all Z ≥ 4, Z/2 ≥ log(Z), so if we set Z ≥ 4, we would only
need Z log(c) ≥ 2(log(1/ε) + log log(2c)). Similarly, whenever c is a large enough constant, log(c) > 4 log log(2c),
so we only really need Z log(c) ≥ 4 log(1/ε), so we can set Z = 4 log(1/ε) and the inequality will be true.

Hence if we set k proportional to log(1/ε) log(c)/ε, using our conjectured O(2δn) time algorithm for k-SAT, we
obtain an O(2(δ+ε)n) time algorithm for CNF-SAT with cn clauses, for any small ε > 0. �

Exercise 5.1 Observe that the above implies we can solve CNF-SAT on instances with n variables and cn clauses
in 2n−n/O(log c) time.
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