Lecture 5: Hardness for Sequence Problems under SETH and OVC

Thanks to Piotr Indyk and Arturs Backurs for some slides
Plan
Plan

• Define sequence problems:
 – (Discrete) Frechet Distance
 – Edit Distance and LCS
 – Dynamic Time Warping (DTW)
Plan

• Define sequence problems:
 – (Discrete) *Frechet* Distance
 – *Edit Distance* and *LCS*
 – Dynamic Time Warping (*DTW*)

• Birds eye view on the upper bounds
 – Dynamic programming, quadratic time
Plan

• Define sequence problems:
 – (Discrete) **Frechet** Distance
 – **Edit Distance** and **LCS**
 – Dynamic Time Warping (**DTW**)

• Birds eye view on the upper bounds
 – Dynamic programming, quadratic time

• Show conditional quadratic lower bounds
 – Assuming SETH / OV, example: **LCS**
Walks on sequences

Given two sequences \(\{p_i\}\) and \(\{q_j\}\), a walk on them starts at \(p_1\) and \(q_1\). In each step it is in some position \((p_i, q_j)\) and can next:
Walks on sequences

Given two sequences \(\{p_i\}\) and \(\{q_j\}\), a walk on them starts at \(p_1\) and \(q_1\). In each step it is in some position \((p_i, q_j)\) and can next:
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a walk on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j) \) and can next:

- go right only on \(p \) to \((p_{i+1}, q_j) \)
Walks on sequences

Given two sequences \{p_i\} and \{q_j\}, a walk on them starts at \(p_1\) and \(q_1\). In each step it is in some position \((p_i, q_j)\) and can next:

- go right only on \(p\) to \((p_{i+1}, q_j)\)
Walks on sequences

Given two sequences \{p_i\} and \{q_j\}, a *walk* on them starts at \(p_1\) and \(q_1\). In each step it is in some position \((p_i, q_j)\) and can next:

- go right *only on p* to \((p_{i+1}, q_j)\)
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a \textit{walk} on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j) \) and can next:

- go right \textit{only on p} to \((p_{i+1}, q_j) \)
- go right \textit{only on q} to \((p_i, q_{j+1}) \)
Walks on sequences

Given two sequences \{p_i\} and \{q_j\}, a \textit{walk} on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j)\) and can next:

- go right \textbf{only on} \(p \) to \((p_{i+1}, q_j)\)
- go right \textbf{only on} \(q \) to \((p_i, q_{j+1})\)
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a walk on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j) \) and can next:

- go right only on \(p \) to \((p_{i+1}, q_j) \)
- go right only on \(q \) to \((p_i, q_{j+1}) \)
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a walk on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j)\) and can next:

- go right only on \(p \) to \((p_{i+1}, q_j)\)
- go right only on \(q \) to \((p_i, q_{j+1})\)
- go right on both to \((p_{i+1}, q_{j+1})\)
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a walk on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i, q_j) \) and can next:

- go right only on \(p \) to \((p_{i+1}, q_j) \)
- go right only on \(q \) to \((p_i, q_{j+1}) \)
- go right on both to \((p_{i+1}, q_{j+1}) \)
Walks on sequences

Given two sequences \(\{p_i\} \) and \(\{q_j\} \), a *walk* on them starts at \(p_1 \) and \(q_1 \). In each step it is in some position \((p_i,q_j)\) and can next:

- go right only on \(p \) to \((p_{i+1}, q_j)\)
- go right only on \(q \) to \((p_i, q_{j+1})\)
- go right on both to \((p_{i+1}, q_{j+1})\)

Sequence walk problems optimize, over all such walks, some measure depending on the distances between \(p_i \) and \(q_j \) over all steps \((p_i,q_j)\) of the walk.
(Discrete) Frechet Distance [Alt-Godau’95]

• “Dog walking distance”
 – Smallest length leash that enables dog-walking along two routes
(Discrete) Frechet Distance [Alt-Godau’95]

• “Dog walking distance”
 – Smallest length leash that enables dog-walking along two routes
(Discrete) Frechet Distance [Alt-Godau’95]

- "Dog walking distance"
 - Smallest length leash that enables dog-walking along two routes
(Discrete) Frechet Distance [Alt-Godau’95]

• “Dog walking distance”
 – Smallest length leash that enables dog-walking along two routes

• Definition:
 – Let $F = \text{set of monotone functions } [0,1] \rightarrow [0,1]$
 – For two curves $P, Q: [0,1] \rightarrow \mathbb{R}^2$

 \[D_{Fr}(P,Q) = \min_{f,g \in F} \max_{t \in [0,1]} \| P(f(t)) - Q(g(t)) \| \]
(Discrete) Frechet Distance [Alt-Godau’95]

• “Dog walking distance”
 – Smallest length leash that enables dog-walking along two routes

• Definition:
 – Let \(F = \text{set of monotone functions } [0,1] \rightarrow [0,1] \)
 – For two curves \(P, Q: [0,1] \rightarrow \mathbb{R}^2 \):
 \[
 D_{Fr}(P, Q) = \min_{f, g \in F} \max_{t \in [0,1]} ||P(f(t)) - Q(g(t))||
 \]

• Discrete version:
 – \(F = \{ f: [0,1] \rightarrow \{1...n\} , \text{ nondecreasing}\} \),
 – \(P, Q: \{1...n\} \rightarrow \mathbb{R}^2 \): Curves are sequences of points in the plane
(Discrete) Frechet Distance [Alt-Godau’95]

• “Dog walking distance”
 – Smallest length leash that enables dog-walking along two routes

• Definition:
 – Let \(F = \text{set of monotone functions } [0,1] \rightarrow [0,1] \)
 – For two curves \(P, Q: [0,1] \rightarrow \mathbb{R}^2 \):
 \[
 D_{Fr}(P, Q) = \min_{f, g \in F} \max_{t \in [0,1]} ||P(f(t)) - Q(g(t))||
 \]

• Discrete version:
 – \(F = \{ f: [0,1] \rightarrow \{1\ldots n\}, \text{ nondecreasing} \} \),
 – \(P, Q: \{1\ldots n\} \rightarrow \mathbb{R}^2 \): Curves are sequences of points in the plane

Find a walk along \(P \) and \(Q \) that minimizes the max distance over all steps.
Frechet Distance: Algorithm
Frechet Distance: Algorithm

• Discrete version:
 – Let $F = \{ f: [0,1] \rightarrow \{1...n\}, \text{nondecreasing}\}$, mapping time to position,
 – For two sequences of points, $P, Q: \{1...n\} \rightarrow \mathbb{R}^2$:
 \[D_{Fr}(P, Q) = \min_{f, g \in F} \max_{t \in [0,1]} ||P(f(t)) - Q(g(t))|| \]
Frechet Distance: Algorithm

• **Discrete version:**
 - Let $F = \{ f: [0,1] \to \{1...n\}, \text{nondecreasing} \}$, mapping *time* to *position*,
 - For two sequences of points, P, Q: $\{1...n\} \to \mathbb{R}^2$:
 \[D_{Fr}(P,Q) = \min_{f,g \in F} \max_{t \in [0,1]} | |P(f(t)) - Q(g(t))| | \]

• **Dynamic programming:**
 - $A[i, j] = \text{distance between curves } P(1)...P(i) \text{ and } Q(1)...Q(j)$
 - $A[i, j]=\max[| |P(i)-Q(j)| | , \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$
Frechet Distance: Algorithm

• Discrete version:
 – Let $F = \{ f: [0,1] \rightarrow \{1...n\}, \text{nondecreasing} \}$, mapping time to position,
 – For two sequences of points, $P,Q: \{1...n\} \rightarrow \mathbb{R}^2$:
 \[
 D_{Fr}(P,Q) = \min_{f,g \in F} \max_{t \in [0,1]} \| P(f(t)) - Q(g(t)) \|
 \]

• Dynamic programming:
 – $A[i, j] = \text{distance between curves } P(1)...P(i) \text{ and } Q(1) ...Q(j)$
 – $A[i, j] = \max[\| P(i)-Q(j) \|, \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$

• Time: $O(n^2)$
Frechet Distance: Algorithm

• Discrete version:
 – Let $F = \{ f: [0,1] \to \{1...n\}, \text{nondecreasing } \}$, mapping \textit{time} to \textit{position},
 – For two sequences of points, $P, Q: \{1...n\} \to \mathbb{R}^2$:
 $$D_{Fr}(P, Q) = \min_{f, g \in F} \max_{t \in [0,1]} | |P(f(t)) - Q(g(t))||$$

• Dynamic programming:
 – $A[i, j] = \text{distance between curves } P(1)...P(i) \text{ and } Q(1) ...Q(j)$
 – $A[i, j] = \max[| |P(i)-Q(j)| |, \min(A[i-1, j-1], A[i, j-1], A[i-1, j])]$
 – \text{Time: } O(n^2)$

• Can be improved to $O(n^2 \log \log n / \log n)$ [Agarwal-Avraham-Kaplan-Sharir’12] (also [Buchin-Buchin-Meulemans-Mulzer’14])
Frechet Distance: Algorithm

• Discrete version:
 – Let $F = \{ f: [0,1] \to \{1...n\}, \text{nondecreasing} \}$, mapping time to position,
 – For two sequences of points, $P,Q: \{1...n\} \to \mathbb{R}^2$:
 $$D_{Fr}(P,Q) = \min_{f,g \in F} \max_{t \in [0,1]} \|P(f(t)) - Q(g(t))\|$$

• Dynamic programming:
 – $A[i, j] = \text{distance between curves } P(1)...P(i) \text{ and } Q(1)...Q(j)$
 – $A[i, j] = \max[\|P(i)-Q(j)\|, \min(A[i-1, j-1], A[i, j-1], A[i-1, j])]$

• Time: $O(n^2)$

• Can be improved to $O(n^2 \log \log n / \log n)$ [Agarwal-Avraham-Kaplan-Sharir’12] (also [Buchin-Buchin-Meulemans-Mulzer’14])

• Many algorithms for special cases and variants
Dynamic Time Warping
Dynamic Time Warping

- **Definition:**
 - x, y: two sequences of points of length n
 - A[i, j] = dist(x_i, y_j) + min(A[i-1, j], A[i-1, j-1], A[i, j-1])
 - DTW(x, y) = A[n, n]

Find a walk along x and y that minimizes the sum of distances at each step.
Dynamic Time Warping

• Definition:
 – x, y: two sequences of points of length n
 – $A[i, j]$ = $\text{dist}(x_i, y_j) + \min(A[i-1,j], A[i-1,j-1], A[i,j-1])$
 – $\text{DTW}(x,y) = A[n,n]$

 Find a walk along x and y that minimizes the sum of distances at each step.

• Speech processing and other applications
Dynamic Time Warping

• Definition:
 – x, y: two sequences of points of length n
 – $A[i, j]=\text{dist}(x_i, y_j)+\min(A[i-1,j], A[i-1,j-1], A[i,j-1])$
 – $\text{DTW}(x,y)=A[n,n]$

 Find a walk along x and y that minimizes the sum of distances at each step.

• Speech processing and other applications

• A simple $O(n^2)$ time dynamic programming algorithm
Longest Common Subsequence (LCS)

• Definition:
 – two sequences s and t of letters, length n
 – find a subsequence of both s and t of max length
• Example: LCS(meaning, matching) = maing
Longest Common Subsequence (LCS)

• Definition:
 – two sequences s and t of letters, length n
 – find a subsequence of both s and t of max length

• Example: LCS(meaning, matching) = maing

• Simple $O(n^2)$ time algorithm:
Longest Common Subsequence (LCS)

• Definition:
 – two sequences s and t of letters, length n
 – find a subsequence of both s and t of max length

• Example: LCS(meaning, matching) = maing

• Simple $O(n^2)$ time algorithm:

\[
A[i,j] = \begin{cases}
\max\{A[i-1, j], A[i, j-1], 1+A[i-1, j-1]\} & \text{if } s[i]=t[i] \\
\max\{A[i-1, j], A[i, j-1]\} & \text{otherwise.}
\end{cases}
\]
Longest Common Subsequence (LCS)

• Definition:
 – two sequences s and t of letters, length n
 – find a subsequence of both s and t of max length

• Example: LCS(meaing, matching) = maing

• Simple $O(n^2)$ time algorithm:

$$A[i,j] = \begin{cases} \max\{A[i-1, j], A[i, j-1], 1+A[i-1, j-1]\} & \text{if } s[i]=t[i] \\ \max\{A[i-1, j], A[i, j-1]\} & \text{otherwise.} \end{cases}$$

Best algorithm: $O(n^2/\log n)$ [Masek-Paterson’80]
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y \) – two sequences of symbols of length \(n \)
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y\) – two sequences of symbols of length \(n\)
 – \(\text{edit}(x, y)\) = the minimum number of symbol \textit{insertions}, \textit{deletions} or \textit{substitutions} needed to transform \(x\) into \(y\)
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – x,y – two sequences of symbols of length n
 – $\text{edit}(x,y) =$ the minimum number of symbol insertions, deletions or substitutions needed to transform x into y

• Example: $\text{edit}(\text{meaning},\text{matching}) = 4$
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y \) – two sequences of symbols of length \(n \)
 – \(\text{edit}(x, y) \) – the minimum number of symbol insertions, deletions or substitutions needed to transform \(x \) into \(y \)

• Example: \(\text{edit}(\text{meaning}, \text{matching}) = 4 \)
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – x,y – two sequences of symbols of length n
 – $\text{edit}(x,y)$ = the minimum number of symbol insertions, deletions or substitutions needed to transform x into y

• Example: $\text{edit}(\text{meaning}, \text{matching}) = 4$

meaning $\xrightarrow{\text{insert a}}$ meaning
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y\) – two sequences of symbols of length \(n\)
 – \(\text{edit}(x, y)\) = the minimum number of symbol insertions, deletions or substitutions needed to transform \(x\) into \(y\)

• Example: \(\text{edit}(\text{meaning}, \text{matching}) = 4\)

 \[
 \text{meaning} \quad \xrightarrow{\text{insert a}} \quad \text{maeaning} \quad \xrightarrow{e \rightarrow t} \quad \text{mating}
 \]
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y \) – two sequences of symbols of length \(n \)
 – \(\text{edit}(x, y) \) – the minimum number of symbol insertions, deletions or substitutions needed to transform \(x \) into \(y \)

• Example: \(\text{edit}(\text{meaning}, \text{matching}) = 4 \)

\[\text{meaning} \xrightarrow{\text{insert } a} \text{maeaning} \xrightarrow{e \rightarrow t} \text{mataning} \]
\[\text{mataning} \xrightarrow{a \rightarrow c} \text{matching} \]
Edit distance
(a.k.a. Levenshtein distance)

• Definition:
 – \(x, y\) – two sequences of symbols of length \(n\)
 – \(edit(x, y)\) = the minimum number of symbol insertions, deletions or substitutions needed to transform \(x\) into \(y\)

• Example: \(edit(\text{meaning}, \text{matching}) = 4\)

\[
\begin{align*}
\text{meaning} & \rightarrow \text{maeaning} \rightarrow \text{mataning} \rightarrow \text{matcning} \\
& \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
& \quad a \rightarrow c \quad e \rightarrow t \\
& \quad \quad \quad \quad \downarrow \\
& \quad \quad \quad \quad \text{matcning} \rightarrow \text{matching}
\end{align*}
\]
Computing edit distance
Computing edit distance

• A simple $O(n^2)$ time dynamic programming algorithm [Wagner-Fischer’74]
Computing edit distance

• A simple $O(n^2)$ time dynamic programming algorithm [Wagner-Fischer’74]

• Can be improved to $O(n^2/\log n)$ [Masek-Paterson’80]
Computing edit distance

• A simple $O(n^2)$ time dynamic programming algorithm [Wagner-Fischer’74]

• Can be improved to $O(n^2/\log n)$ [Masek-Paterson’80]

• Better algorithms for special cases: [U83, LV85, M86, GG88, GP89, UW90, CL90, CH98, LMS98, U85, CL92, N99, CPSV00, MS00, CM02, BCF08, AK08, AKO10…]
Computing edit distance

• A simple $O(n^2)$ time dynamic programming algorithm [Wagner-Fischer’74]

• Can be improved to $O(n^2 / \log n)$ [Masek-Paterson’80]

• Better algorithms for special cases: [U83, LV85, M86, GG88, GP89, UW90, CL90, CH98, LMS98, U85, CL92, N99, CPSV00, MS00, CM02, BCF08, AK08, AKO10...]

• Approximation algorithms: $O(1)$ –approx in $O(n^{2-\varepsilon})$ time [Chakraborty-Das-Goldenberg-Koucky-Saks’18],

$O(f(\varepsilon))$ –approx in $O(n^{1+\varepsilon})$ time [Andoni-Nowatzki’20]
What do these problems have in common?
What do these problems have in common?

- Widely used metrics
What do these problems have in common?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially) quadratic running time
What do these problems have in common?

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better
What do these problems have in common?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially) quadratic running time
• We have no idea if/how we can do any better

• Plausible explanation:
 – 3SUM-hard? People tried for years...
What do these problems have in common?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially) quadratic running time
• We have no idea if/how we can do any better

• Plausible explanation:
 – 3SUM-hard? People tried for years...
 – hard under OVH and SETH?
Plan

- Define sequence problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
 - Dynamic programming, quadratic time
- Show conditional quadratic lower bounds
 - Assuming SETH / OVH
 - Basic approach
 - Hardness for LCS
Reminder: Orthogonal Vectors Hypothesis (OVH)
Reminder: Orthogonal Vectors Hypothesis (OVH)

• Orthogonal Vectors Problem (OV). Given a set of vectors $S \subseteq \{0, 1\}^d$, $d = \omega(\log n)$, $|S| = n$, are there $a, b \in S$ s. t. $\sum_{i=1}^{d} a_i b_i = 0$?

 – Can be solved trivially in $O(n^2d)$ time
 – Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where $d = c(n) \cdot \log n$ [Abboud-Williams-Yu’15]
Reminder: Orthogonal Vectors Hypothesis (OVH)

• **Orthogonal Vectors Problem (OV).** Given a set of vectors $S \subseteq \{0, 1\}^d$, $d = \omega(\log n)$, $|S| = n$, are there $a, b \in S$ s. t. $\sum_{i=1}^{d} a_i b_i = 0$?

 – Can be solved trivially in $O(n^2d)$ time

 – Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where $d = c(n) \cdot \log n$ [Abboud-Williams-Yu’15]

• **OV Hypothesis (implied by SETH):**
Reminder: Orthogonal Vectors Hypothesis (OVH)

• **Orthogonal Vectors Problem (OV).** Given a set of vectors $S \subseteq \{0, 1\}^d$, $d = \omega(\log n)$, $|S| = n$, are there $a, b \in S$ s. t. $\sum_{i=1}^{d} a_i b_i = 0$?
 - Can be solved trivially in $O(n^2d)$ time
 - Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where $d = c(n) \cdot \log n$ [Abboud-Williams-Yu’15]

• **OV Hypothesis (implied by SETH):**
 OV can’t be solved in $n^{2-\varepsilon \cdot d^{O(1)}}$ time for any $\varepsilon > 0$.
Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann’14; Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]
Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann’14; Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

• Approach: reduce OV to distance computation:

*See also [Abboud-V. Williams-Weimann’14]
Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann’14; Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

• Approach: reduce OV to distance computation:
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence x, $|x| \leq n \cdot d^{O(1)}$
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence y, $|y| \leq n \cdot d^{O(1)}$

*See also [Abboud-V. Williams-Weimann’14]
Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann’14; Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

• Approach: reduce OV to distance computation:
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence x, $|x| \leq n \cdot d^{O(1)}$
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence y, $|y| \leq n \cdot d^{O(1)}$
 – $\text{distance}(x,y) = \text{small}$ if exists $a, b \in S$ with $\Sigma_i a_i b_i = 0$
 – $\text{distance}(x,y) = \text{large}$, otherwise
 – The construction time is $n \cdot d^{O(1)}$
 – Gadgets for coordinates and vectors

*See also [Abboud-V. Williams-Weimann’14]
Quadratic hardness under OVC

Theorem*: No $n^{2-O(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann’14; Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

• Approach: reduce OV to distance computation:
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence x, $|x| \leq n \cdot d^{O(1)}$
 – $S \subseteq \{0,1\}^d \rightarrow$ sequence y, $|y| \leq n \cdot d^{O(1)}$
 – $\text{distance}(x,y) = \text{small}$ if exists $a, b \in S$ with $\sum_i a_i b_i = 0$
 – $\text{distance}(x,y) = \text{large}$, otherwise
 – The construction time is $n \cdot d^{O(1)}$
 – Gadgets for coordinates and vectors

*See also [Abboud-V. Williams-Weimann’14]
Hardness for LCS

I will present the ideas behind the proof from [Abboud-Backurs-VW’15].

Full construction. NO full proof.

[Bringmann-Kunnemann’15] obtained an independent proof.
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\}, s_i \in \{0,1\}^d \forall i, \) OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).
\]
OV to LCS

Given vectors \(\{s_1, ..., s_n\}, s_i \in \{0,1\}^d \) \(\forall i \), \(\text{OV} \) is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).
\]

Coordinate gadgets \(c, e \) taking bits to short sequences s.t.

\[
LCS(c(x), e(y)) = 0 \text{ if } x = y = 1, \\
LCS(c(x), e(y)) = 1 \text{ if } x \cdot y = 0.
\]
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\}, s_i \in \{0,1\}^d \ \forall i \), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} \left(\neg s_i[k] \lor \neg s_j[k] \right).
\]

Vector gadgets \(f, g \) taking bit vectors to short sequences s.t. for some \(T \)

\[
\text{LCS} \left(f(s_i), g(s_j) \right) = T + 1 \text{ if } s_i \cdot s_j = 0,
\]
\[
\text{LCS} \left(f(s_i), g(s_j) \right) = T \text{ if } s_i \cdot s_j \neq 0.
\]

Coordinate gadgets \(c, e \) taking bits to short sequences s.t.

\[
\text{LCS}(c(x), e(y)) = 0 \text{ if } x = y = 1,
\]
\[
\text{LCS}(c(x), e(y)) = 1 \text{ if } x \cdot y = 0.
\]
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\}, s_i \in \{0,1\}^d \forall i \), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).
\]

Coordinate gadgets \(c, e \) taking bits to short sequences s.t.

\[
LCS(c(x), e(y)) = 0 \text{ if } x = y = 1,
\]

\[
LCS(c(x), e(y)) = 1 \text{ if } x \cdot y = 0.
\]

Outer OR gadgets \(x, y \) taking sets of bit vectors \(\{s_1, \ldots, s_n\} \), to short sequences s.t. for some \(Q \)

\[
LCS(x, y) = Q \text{ if } \forall i, j: s_i \cdot s_j \neq 0,
\]

\[
LCS(x, y) \geq Q + 1 \text{ if } \exists i, j: s_i \cdot s_j = 0.
\]

Vector gadgets \(f, g \) taking bit vectors to short sequences s.t. for some \(T \)

\[
LCS\left(f\left(s_i\right), g\left(s_j\right)\right) = T + 1 \text{ if } s_i \cdot s_j = 0,
\]

\[
LCS\left(f\left(s_i\right), g\left(s_j\right)\right) = T \text{ if } s_i \cdot s_j \neq 0.
\]
\[\bigvee_{i,j \in [n]} \land_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c]) \]

Encoding the outer Boolean OR for OV to LCS
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors from OV instance.

Suppose we have $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

Encoding the outer Boolean OR for OV to LCS:

$$\bigvee_{i,j \in [n]} \bigwedge_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c])$$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors from OV instance.

Suppose we have $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

Encoding the outer Boolean OR for OV to LCS.

$$\bigvee_{i,j \in [n]} \bigwedge_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c])$$

Want to create sequences x and y so that $LCS(x,y)$ is Large if there is an OV pair and $LCS(x,y)$ is Small otherwise.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors from OV instance.

Suppose we have $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Want to create sequences x and y so that $LCS(x, y)$ is Large if there is an OV pair and $LCS(x, y)$ is Small otherwise.
\[\lor_{i,j \in [n]} (\neg s_i[c] \lor \neg s_j[c]) \]

Encoding the outer Boolean OR for OV to LCS

- Let \(S = \{s_1, s_2, \ldots, s_n\} \) be the vectors from OV instance
- Suppose we have \(s_i \rightarrow \text{gadget} \) sequences \(f(s_i) \) and \(g(s_i) \)
 \[\text{LCS}(f(s_i), g(s_j)) = \beta \text{ if } s_i \cdot s_j \neq 0, \text{ LCS}(f(s_i), g(s_j)) = \beta + 1 \text{ otherwise.} \]
- \(s_0 \) – vector of all 1s (no vector orthog. to \(s_0 \))

Attempt 1:
\[x = f(s_1) f(s_2) \ldots f(s_i) \ldots f(s_n) \]
\[y = (g(s_0))^{n-1} g(s_1) g(s_2) \ldots g(s_j) \ldots g(s_n) (g(s_0))^{n-1} \]

Want to create sequences \(x \) and \(y \) so that LCS(\(x, y \)) is Large if there is an OV pair and LCS(\(x, y \)) is Small otherwise.
\[\bigvee_{i,j \in [n]} \land_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c]) \]

- Let \(S = \{s_1, s_2, \ldots, s_n\} \) be the vectors from OV instance.
- Suppose we have \(s_i \rightarrow \text{gadget} \) sequences \(f(s_i) \) and \(g(s_i) \).
 - \(\text{LCS}(f(s_i), g(s_j)) = \beta \) if \(s_i \cdot s_j \neq 0 \), \(\text{LCS}(f(s_i), g(s_j)) = \beta + 1 \) otherwise.
- \(s_0 \) – vector of all 1s (no vector orthog. to \(s_0 \)).

Attempt 1:
\[x = f(s_1) f(s_2) \ldots f(s_i) \ldots f(s_n) \]
\[y = (g(s_0))^{n-1} g(s_1) g(s_2) \ldots g(s_j) \ldots g(s_n) (g(s_0))^{n-1} \]

Idea: Imagine gadgets are letters.
If no OV, LCS length is \(n \beta \); If \(s_i \cdot s_j = 0 \) can align \(f(s_i) \) and \(g(s_j) \) and all other \(f(s_k) \) with \(g(s_0) \) to get LCS length \(\geq (n-1) \beta + (\beta+1) > n \beta \).
Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors from OV instance.

Suppose we have $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 1:

$x = f(s_1) \cdot f(s_2) \cdots f(s_i) \cdots f(s_n)$

$y = (g(s_0))^{n-1} \cdot g(s_1) \cdot g(s_2) \cdots g(s_j) \cdots g(s_n) \cdot (g(s_0))^{n-1}$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

Encoding the outer Boolean OR for OV to LCS

\[\bigwedge_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c]) \\]
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors from OV instance.

Suppose we have $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 1:

$x = f(s_1) f(s_2) \ldots f(s_i) \ldots f(s_n)$

$y = (g(s_0))^{n-1} g(s_1) g(s_2) \ldots g(s_j) \ldots g(s_n) (g(s_0))^{n-1}$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

Problem: Opt LCS might not align entire gadgets!

Encoding the outer Boolean OR for OV to LCS
Let \(S = \{s_1, s_2, \ldots, s_n\} \) be the vectors from OV instance.

Suppose we have \(s_i \rightarrow \text{gadget} \) sequences \(f(s_i) \) and \(g(s_i) \).

\[
\text{LCS}(f(s_i), g(s_j)) = \beta \text{ if } s_i \cdot s_j \neq 0, \text{ LCS}(f(s_i), g(s_j)) = \beta + 1 \text{ otherwise.}
\]

- \(s_0 \) – vector of all 1s (no vector orthog. to \(s_0 \))

Attempt 1:

\[
x = f(s_1) f(s_2) \ldots f(s_i) \ldots f(s_n)
\]

\[
y = (g(s_0))^{n-1} g(s_1) g(s_2) \ldots g(s_j) \ldots g(s_n) (g(s_0))^{n-1}
\]

Idea: Imagine gadgets are letters.

If no OV, LCS length is \(n \beta \); If \(s_i \cdot s_j = 0 \) can align \(f(s_i) \) and \(g(s_j) \) and all other \(f(s_k) \) with \(g(s_0) \) to get LCS length \(\geq (n-1) \beta + (\beta+1) > n \beta \).

Problem: Opt LCS might not align entire gadgets!
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each s_i → gadget sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors.
Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0).

Attempt 2:

$x = Qf(s_1)R \ Qf(s_2)R \ldots \ Qf(s_n) \ R$

$y = (Qg(s_0) \ R)^{n-1} \ Qg(s_1)R \ Qg(s_2)R \ldots \ Qg(s_n)R \ (Qg(s_0) \ R)^{n-1}$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 2:

$x = Q f(s_1) R Q f(s_2) R \ldots Q f(s_n) R$

$y = (Q g(s_0) R)^{n-1} Q g(s_1) R Q g(s_2) R \ldots Q g(s_n) R (Q g(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors.
Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$.
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 2:

$x = Q \ f(s_1) R \ Q \ f(s_2) R \ldots \ Q \ f(s_n) R$

$y = (Qg(s_0) R)^{n-1} \ Qg(s_1) R \ Qg(s_2) R \ldots \ Qg(s_n) R \ (Qg(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 2:

$x = Q f(s_1) R Q f(s_2) R \ldots Q f(s_n) R$

$y = (Q g(s_0) R)^{n-1} Q g(s_1) R Q g(s_2) R \ldots Q g(s_n) R (Q g(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_j)$.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors.

Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_j)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Idea for hardness for LCS

0 and 1 don’t appear in the f and g gadgets

Attempt 2:

$x = Q f(s_1) R Q f(s_2) R \ldots Q f(s_n) R$

$y = (Q g(s_0) R)^{n-1} Q g(s_1) R Q g(s_2) R \ldots Q g(s_n) R (Q g(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_j)$.

$Q = 0^q$, $R = 1^q$
Let \(S = \{s_1, s_2, \ldots, s_n\} \) be the vectors
Each \(s_i \rightarrow \) gadget sequences \(f(s_i) \) and \(g(s_i) \)
\(\text{LCS}(f(s_i), g(s_j)) = \beta \) if \(s_i \cdot s_j \neq 0 \), \(\text{LCS}(f(s_i), g(s_j)) = \beta + 1 \) otherwise.
\(s_0 \) – vector of all 1s (no vector orthog. to \(s_0 \))

Idea for hardness for LCS

0 and 1 don’t appear in the f and g gadgets

Attempt 2:
\[
x = Q \ f(s_1) R \ Q \ f(s_2) R \ldots \ Q \ f(s_n) R
\]
\[
y = (Qg(s_0) R)^{n-1} Qg(s_1) R \ Q \ g(s_2) R \ldots \ Q \ g(s_n) R \ (Qg(s_0) R)^{n-1}
\]

Lemma: If a 0 (or 1) is matched, its entire \(0^q \) (or \(1^q \)) block is matched.

Idea: Pick \(q \) big so all \(Qs \) and \(Rs \) of \(x \) must be matched in an LCS.
Now no \(g(s_k) \) is aligned with two different \(f(s_i) \) and \(f(s_j) \).

Problem: LCS might align \(f(s_i) \) with several \(g(s_k) \).
Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors.

Each $s_i \rightarrow$ gadget sequences $f(s_i)$ and $g(s_i)$

$LCS(f(s_i), g(s_i)) = \beta$ if $s_i \cdot s_j \neq 0$, $LCS(f(s_i), g(s_i)) = \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 2:

$x = Q f(s_1) R Q f(s_2) R ... Q f(s_n) R$

$y = (Qg(s_0) R)^{n-1} Qg(s_1) R Q g(s_2) R ... Q g(s_n) R (Qg(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_j)$.

Problem: LCS might align $f(s_i)$ with **several** $g(s_k)$.

The $g(s_k)$ are partitioned into blocks aligned with at most a single $f(s_i)$.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors. Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$.

$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$x = P|y|Q f(s_1) R Q f(s_2) R Q \ldots R Q f(s_n) R P|y|$

$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P \ Q g(s_2) R P \ldots \ Q g(s_n) R P (Q g(s_0) R P)^{n-1}$

$Q=0^q, R=1^q, P=2^r$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$x = P | y | Q f(s_1) R Q f(s_2) R Q \ldots R Q f(s_n) R P | y |$

$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P \ldots Q g(s_n) R P (Q g(s_0) R P)^{n-1}$

Idea:

$Q=0^q,R=1^q,P=2^r$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors.
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$
otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$x = P^{|y|} Q f(s_1) R Q f(s_2) R Q \ldots R Q f(s_n) R P^{|y|}$

$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P Q g(s_2) R P \ldots Q g(s_n) R P (Q g(s_0) R P)^{n-1}$

Idea:

$P = 2^r$, r big but $r << q$, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors. Each s_i → sequences $f(s_i)$ and $g(s_i)$. LCS($f(s_i), g(s_j)$) = β if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

Attempt 3:

$x = P | y | Q \ f(s_1) R \ Q \ f(s_2) R \ Q \ ... \ R Q \ f(s_n) R \ P | y |$

$y = P \ (Q g(s_0) R P)^{n-1} \ Q g(s_1) R \ P \ Q g(s_2) R \ P \ ... \ Q g(s_n) R \ P \ (Q g(s_0) R P)^{n-1}$

Idea:

$P = 2^r$, r big but $r << q$, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.

$\geq n - 1$ Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Q=0^q, R=1^q, P=2^r
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0

Attempt 3:

$$x = P^{|y|} Q f(s_1) R Q f(s_2) R Q \ldots R Q f(s_n) R P^{|y|}$$

$$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P Q g(s_2) R P \ldots Q g(s_n) R P (Q g(s_0) R P)^{n-1}$$

Idea:

$P = 2^r$, r big but $r \ll q$, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

$\geq n-1$ Ps of y not matched in an LCS due to the matched Qs and Rs of x.
Thus, exactly $n-1$ Ps will be unmatched, and every $f(s_i)$ will be fully aligned with some $g(s_j)$ (possibly $j=0$).
Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$x = P^|y| Q f(s_1) R Q f(s_2) R Q \ldots R Q f(s_n) R P^|y|$

$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P \ldots Q g(s_n) R P (Q g(s_0) R P)^{n-1}$

Idea:

$P = 2^r$, r big but $r \ll q$, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.

$\geq n-1$ Ps of y not matched in an LCS due to the matched Qs and Rs of x. Thus, **exactly** $n-1$ Ps will be unmatched, and every $f(s_i)$ will be fully aligned with some $g(s_j)$ (possibly $j=0$).

The gadgets $f(s_i)$ and $g(s_j)$ act as letters!
LCS hardness idea

Attempt 3:

\[x = p^{\mid y\mid}q f(s_1)R \ Q \ f(s_2)R \ Q \ ... \ RQ \ f(s_n) \ R \ p^{\mid y\mid} \]

\[y = P (Qg(s_0) \ R \ P)^{n-1} Q \ g(s_1) \ R \ P \ Q \ g(s_2) \ R \ P \ ... \ Q \ g(s_n) \ R \ P (Q \ g(s_0) \ R \ P)^{n-1} \]

LCS length:
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.
s_0 \rightarrow$ vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$$x = P^{|y|}Qf(s_1)RQf(s_2)RQ \ldots RQf(s_n)R P^{|y|}$$

$$y = P(Qg(s_0)RP)^{n-1}Qg(s_1)R P Qg(s_2)R P \ldots Qg(s_n)R P(Qg(s_0)RP)^{n-1}$$

LCS length:

$$2n|P| + n(|Q| + |R|) + \sum_{i=1}^{n} LCS(f(s_i), g(s_j)), g(s_j) \text{ aligned with } f(s_i)$$

$Q=0^q, R=1^q, P=2^r$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.

s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Attempt 3:

$x = P^{\mid y \mid} Q f(s_1) R Q f(s_2) R \ldots R Q f(s_n) R P^{\mid y \mid}$

$y = P (Q g(s_0) R P)^{n-1} Q g(s_1) R P Q g(s_2) R P \ldots Q g(s_n) R P (Q g(s_0) R P)^{n-1}$

#Ps in y is $3n-1$, and $n-1$ are not matched, so $2n$ aligned.

LCS length:

$2n|P| + n(|Q| + |R|) + \sum_{i=1}^{n} LCS(f(s_i), g(s_j))$, $g(s_j)$ aligned with $f(s_i)$

$= 2nr + 2qn + n \beta$ if no orthog. pair

$\geq [2nr + 2qn + n \beta] + 1$ if 9 an orthog. pair.
Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$ otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Reduction:

$x = P|y|Q f(s_1)R Q f(s_2)R Q ... RQ f(s_n)R P|y|$

$y = P (Qg(s_0) R P)^{n-1} Q g(s_1) R P Q g(s_2) R P ... Q g(s_n) R P (Q g(s_0) R P)^{n-1}$
Let $S = \{s_1, s_2, \ldots, s_n\}$ be the vectors
Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $\geq \beta + 1$
otherwise.
s_0 – vector of all 1s (no vector orthog. to s_0)

LCS hardness idea

Reduction:

$x = \mathcal{P}^{\mathcal{y}} \mathcal{Q} f(s_1) \mathcal{R} \mathcal{Q} f(s_2) \mathcal{R} \ldots \mathcal{R} Q f(s_n) \mathcal{R} \mathcal{P}^{\mathcal{y}}$

$y = \mathcal{P} (\mathcal{Q} g(s_0) \mathcal{R} \mathcal{P})^{n-1} \mathcal{Q} g(s_1) \mathcal{R} \mathcal{P} Q g(s_2) \mathcal{R} \mathcal{P} \ldots \mathcal{Q} g(s_n) \mathcal{R} \mathcal{P} (\mathcal{Q} g(s_0) \mathcal{R} \mathcal{P})^{n-1}$

Tricky proof in paper shows the following suffice:

$|Q|, |R|, |P|, |f(s_i)|, |g(s_i)| \leq \text{poly}(d)$, so that

$|x|, |y| \leq n \text{ poly}(d)$.
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\} \), \(s_i \in \{0,1\}^d \) \(\forall i \), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).
\]

Outer OR gadgets \(x, y \) taking sets of bit vectors \(\{s_1, \ldots, s_n\} \), to short sequences s.t. for some \(Q \)

- \(LCS(x, y) = Q \) if \(\forall i, j: s_i \cdot s_j \neq 0 \),
- \(LCS(x, y) \geq Q + 1 \) if \(\exists i, j: s_i \cdot s_j = 0 \).

Vector gadgets \(f, g \) taking bit vectors to short sequences s.t. for some \(T \)

- \(LCS(f(s_i), g(s_j)) = T + 1 \) if \(s_i \cdot s_j = 0 \),
- \(LCS(f(s_i), g(s_j)) = T \) if \(s_i \cdot s_j \neq 0 \).

Coordinate gadgets \(c, e \) taking bits to short sequences s.t.

- \(LCS(c(x), e(y)) = 0 \) if \(x = y = 1 \),
- \(LCS(c(x), e(y)) = 1 \) if \(x \cdot y = 0 \).
OV to LCS

Given vectors \{s_1, \ldots, s_n\}, \(s_i \in \{0,1\}^d\) \(\forall i\), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).
\]

Outer OR gadgets \(x, y\) taking sets of bit vectors \{s_1, \ldots, s_n\}, to short sequences s.t. for some \(Q\)

\[
LCS(x, y) = Q \text{ if } \forall i, j: s_i \cdot s_j \neq 0,
\]

\[
LCS(x, y) \geq Q + 1 \text{ if } \exists i, j: s_i \cdot s_j = 0.
\]

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)

\[
LCS(f(s_i), g(s_j)) = T + 1 \text{ if } s_i \cdot s_j = 0,
\]

\[
LCS(f(s_i), g(s_j)) = T \text{ if } s_i \cdot s_j \neq 0.
\]

Coordinate gadgets \(c, e\) taking bits to short sequences s.t.

\[
LCS(c(x), e(y)) = 0 \text{ if } x = y = 1,
\]

\[
LCS(c(x), e(y)) = 1 \text{ if } x \cdot y = 0.
\]

Done!
Given vectors \(\{s_1, \ldots, s_n\} \), \(s_i \in \{0,1\}^d \) \(\forall i \), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} \left(\neg s_i[k] \lor \neg s_j[k] \right).
\]

\textbf{Outer OR gadgets} \(x, y \) taking sets of bit vectors \(\{s_1, \ldots, s_n\} \), to short sequences s.t. for some \(Q \)
\(LCS(x, y) = Q \) if \(\forall i, j: s_i \cdot s_j \neq 0 \),
\(LCS(x, y) \geq Q + 1 \) if \(\exists i, j: s_i \cdot s_j = 0 \).

\textbf{Vector gadgets} \(f, g \) taking bit vectors to short sequences s.t. for some \(T \)
\(LCS(f(s_i), g(s_j)) = T + 1 \) if \(s_i \cdot s_j = 0 \),
\(LCS(f(s_i), g(s_j)) = T \) if \(s_i \cdot s_j \neq 0 \).

\textbf{Coordinate gadgets} \(c, e \) taking bits to short sequences s.t.
\(LCS(c(x), e(y)) = 0 \) if \(x = y = 1 \),
\(LCS(c(x), e(y)) = 1 \) if \(x \cdot y = 0 \).

\(c(0) = 46 \quad e(0) = 64 \)
\(c(1) = 4 \quad e(1) = 6 \)

LCS\((c(1),e(1)) = 0\), and
LCS\((c(x),e(y)) = 1 \)
for \((x,y) \neq (1,1) \).
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\}\), \(s_i \in \{0,1\}^d\) \(\forall i\), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \vee \neg s_j[k]).
\]

Coordinate gadgets \(c, e\) taking bits to short sequences s.t.
\[
\begin{align*}
LCS(c(x), e(y)) &= 0 \text{ if } x = y = 1, \\
LCS(c(x), e(y)) &= 1 \text{ if } x \cdot y = 0.
\end{align*}
\]

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)
\[
\begin{align*}
LCS(f(s_i), g(s_j)) &= T + 1 \text{ if } s_i \cdot s_j = 0, \\
LCS(f(s_i), g(s_j)) &= T \text{ if } s_i \cdot s_j \neq 0.
\end{align*}
\]

Outer OR gadgets \(x, y\) taking sets of bit vectors \(\{s_1, \ldots, s_n\}\), to short sequences s.t. for some \(Q\)
\[
\begin{align*}
LCS(x, y) &= Q \text{ if } \forall i, j: s_i \cdot s_j \neq 0, \\
LCS(x, y) &\geq Q + 1 \text{ if } \exists i, j: s_i \cdot s_j = 0.
\end{align*}
\]

Done!

All that remains!

\[
\begin{align*}
c(0) &= 46 \quad e(0) = 64 \\
c(1) &= 4 \quad e(1) = 6
\end{align*}
\]

\[
\begin{align*}
LCS(c(1), e(1)) &= 0, \text{ and} \\
LCS(c(x), e(y)) &= 1 \text{ for } (x,y) \neq (1,1).
\end{align*}
\]
Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Recall we have *coordinate gadgets*
$x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

\[
\bigvee_{i,j \in [n]} \bigwedge_{c \in [d]} (\neg \nu_i[c] \lor \neg \nu_j[c])
\]
Vector gadgets

Recall we have coordinate gadgets \(x \in \{0, 1\} \rightarrow c(x) \) and \(e(x) \), s.t.
\[
LCS(c(x), e(y)) = 0 \text{ if } x = y = 1 \text{ and } 1 \text{ otherwise}; \text{ also, } |c(x)|, |e(x)| \leq 2.
\]

Want: Each \(s_i \) \(\rightarrow \) sequences \(f(s_i) \) and \(g(s_j) \)
\[
LCS(f(s_i), g(s_j)) = \beta \text{ if } s_i \cdot s_j \neq 0, = \beta + 1 \text{ otherwise}
\]

\[
f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ldots \ 5^u \ c(s_i[d]) \ 5^u
g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ldots \ 5^u \ e(s_j[d]) \ 5^u \ 3^r
\]

where \(r = u(d+1)+d-1 \), \(u > d+1 \).
Want: Each s_i \rightarrow sequences $f(s_i)$ and $g(s_j)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Recall we have coordinate gadgets
$x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2.$

$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u$
$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$

where $r = u(d+1)+d-1$, $u > d+1$.

3,5 brand new symbols
u is large,
r even larger
Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i),g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Recall we have coordinate gadgets
$x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x),e(y)) = 0$ if $x = y =1$ and 1 otherwise; also, $|c(x)|,|e(x)| \leq 2$.

$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u$
$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$

where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

\[
\bigvee_{i,j \in [n]} \bigwedge_{c \in [d]} (\neg v_i[c] \vee \neg v_j[c])
\]
Vector gadgets

Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i),g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Recall we have coordinate gadgets
$x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), \text{ s.t.}$
$LCS(c(x),e(y)) = 0 \text{ if } x = y = 1 \text{ and } 1 \text{ otherwise}$; also, $|c(x)|, |e(x)| \leq 2.$

\[f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ldots \ 5^u \ c(s_i[d]) \ 5^u \]
\[g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ldots \ 5^u \ e(s_j[d]) \ 5^u \ 3^r \]

where $r = u(d+1)+d-1, u > d+1.$

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is $r.$
Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_j)$

$LCS(f(s_i),g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Recall we have **coordinate gadgets**

$x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.

$LCS(c(x),e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

$f(s_i) = 3^r \; 5^u \; c(s_i[1]) \; 5^u \; \ldots \; 5^u \; c(s_i[d]) \; 5^u$

$g(s_j) = 5^u \; e(s_j[1]) \; 5^u \; \ldots \; 5^u \; e(s_j[d]) \; 5^u \; 3^r$

where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5^u blocks are matched.

If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5^u block is not matched, then the subsequence length would be $\leq du + 2d < r$.

\[\bigvee_{i,j \in [n]} \bigwedge_{c \in [d]} (\neg v_i[c] \lor \neg v_j[c]) \]
Recall we have coordinate gadgets $x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t. $LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_j)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

$\forall i, j \in [n] \bigg(\bigwedge_{c \in [d]} (\neg v_i[c] \lor \neg v_j[c]) \bigg)$

$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u$
$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$

Where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5^u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5^u block is not matched, then the subsequence length would be $\leq du + 2d < r$.

3, 5 brand new symbols u is large, r even larger.
Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise

Vector gadgets

\[\bigvee_{i,j \in [n]} \wedge_{c \in [d]} (\neg v_i[c] \lor \neg v_j[c]) \]

Recall we have coordinate gadgets
$x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ldots \ 5^u \ c(s_i[d]) \ 5^u$
$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ldots \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$
where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5^u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5^u block is not matched, then the subsequence length would be $\leq du + 2d < r$.

3,5 brand new symbols
u is large, r even larger
Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_j)$
LCS($f(s_i), g(s_j)$) = β if $s_i \cdot s_j \neq 0$, = $\beta + 1$ otherwise

\[\bigvee_{i,j \in [n]} \land_{c \in [d]} (\neg v_i[c] \lor \neg v_j[c]) \]

Recall we have coordinate gadgets $x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
LCS($c(x), e(y)$) = 0 if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2.$

\[f(s_i) = 3^r \ 5^u c(s_i[1]) \ 5^u \ldots \ 5^u c(s_i[d]) \ 5^u \]
\[g(s_j) = 5^u e(s_j[1]) \ 5^u \ldots \ 5^u e(s_j[d]) \ 5^u 3^r \]

where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5^u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5^u block is not matched, then the subsequence length would be $\leq du + 2d < r$.

3,5 brand new symbols
u is large, r even larger
Vector gadgets

Recall we have *coordinate gadgets* $x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

$$\forall i,j \in [n] \left(\exists c \in [d] \left(\neg \nu_i [c] \lor \neg \nu_j [c] \right) \right)$$

Want: Each $s_i \rightarrow$ sequences $f(s_i)$ and $g(s_i)$
$LCS(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, $= \beta + 1$ otherwise.

$$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ldots \ 5^u \ c(s_i[d]) \ 5^u$$
$$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ldots \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$$

where $r = u(d+1)+d-1$, $u > d+1$.

If two 5s are matched together, their entire 5^u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5^u block is not matched, then the subsequence length would be $\leq du + 2d < r$.

3,5 brand new symbols u is large, r even larger
Recall that we have **coordinate gadgets**

\[x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), \text{ s.t.} \]

\[\text{LCS}(c(x), e(y)) = 0 \text{ if } x = y = 1 \text{ and } 1 \]

otherwise; also, \(|c(x)|, |e(x)| \leq 2.\]

Vector gadgets

\[f(s_i) = 3^r 5^u c(s_i[1]) 5^u \ldots 5^u c(s_i[d]) 5^u \]

\[g(s_j) = 5^u e(s_j[1]) 5^u \ldots 5^u e(s_j[d]) 5^u 3^r \]

where \(r = u(d+1)+d-1, u > d.\]
Recall that we have coordinate gadgets $x \in \{0, 1\} \to c(x)$ and $e(x)$, s.t. $LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

Vector gadgets

$$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u$$

$$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$$

where $r = u(d+1)+d-1$, $u > d$.

Assume no 3 is matched. Then all 5s are matched.
Recall that we have coordinate gadgets \(x \in \{0, 1\} \rightarrow c(x) \) and \(e(x) \), s.t. \(\text{LCS}(c(x), e(y)) = 0 \) if \(x = y = 1 \) and 1 otherwise; also, \(|c(x)|, |e(x)| \leq 2\).

Vector gadgets

\[
\begin{align*}
\text{f}(s_i) &= 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u \\
\text{g}(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r
\end{align*}
\]

where \(r = u(d+1)+d-1 \), \(u > d \).

Assume no 3 is matched. Then all 5s are matched.
Recall that we have coordinate gadgets $x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t. $LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, $c(s_i[t])$ and $e(s_j[t])$ are matched.

$$f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u$$

$$g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r$$

where $r = u(d+1)+d-1$, $u > d$.
Recall that we have coordinate gadgets
\(x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), \text{s.t.} \)
\(\text{LCS}(c(x), e(y)) = 0 \text{ if } x = y = 1 \text{ and } 1 \)
otherwise; also, \(|c(x)|, |e(x)| \leq 2.\)

Vector gadgets

\[f(s_i) = 3^r 5^u c(s_i[1]) 5^u \ldots 5^u c(s_i[d]) 5^u \]
\[g(s_j) = 5^u e(s_j[1]) 5^u \ldots 5^u e(s_j[d]) 5^u 3^r \]
where \(r = u(d+1)+d-1, u > d. \)

Assume no 3 is matched. Then all 5s are matched.
Thus, for all \(t \), \(c(s_i[t]) \) and \(e(s_j[t]) \) are matched.

If \(s_i \cdot s_j \neq 0 \), the alignment of \(c(s_i[t]) \) with \(e(s_j[t]) \) for all \(t \) gives \(< d \), so we get \(\leq (d+1)u+d-1 = r. \) (but then the 3s would be matched, so \(= r \))
Recall that we have coordinate gadgets
\(x \in \{0, 1\} \rightarrow c(x) \) and \(e(x) \), s.t.
\(\text{LCS}(c(x), e(y)) = 0 \) if \(x = y = 1 \) and \(1 \)
otherwise; also, \(|c(x)|, |e(x)| \leq 2 \).

\[
\begin{align*}
f(s_i) &= 3^r 5^u c(s_i[1]) 5^u \ldots 5^u c(s_i[d]) 5^u \\
g(s_j) &= 5^u e(s_j[1]) 5^u \ldots 5^u e(s_j[d]) 5^u 3^r
\end{align*}
\]
where \(r = u(d+1)+d-1, u > d \).

Assume no 3 is matched. Then all 5s are matched.
Thus, for all \(t \), \(c(s_i[t]) \) and \(e(s_j[t]) \) are matched.

If \(s_i \cdot s_j \neq 0 \), the alignment of \(c(s_i[t]) \) with \(e(s_j[t]) \) for all \(t \) gives \(< d \),
so we get \(\leq (d+1)u+d-1 = r \). (but then the 3s would be matched, so \(= r \))

If \(s_i \cdot s_j = 0 \), we get \((d+1)u+d = r+1 \).
Recall that we have *coordinate gadgets* $x \in \{0, 1\} \rightarrow c(x)$ and $e(x)$, s.t.
$LCS(c(x), e(y)) = 0$ if $x = y = 1$ and 1 otherwise; also, $|c(x)|, |e(x)| \leq 2$.

Vector gadgets

\[
f(s_i) = 3^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u
\]
\[
g(s_j) = 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ 3^r
\]
where $r = u(d+1)+d-1$, $u > d$.

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, $c(s_i[t])$ and $e(s_j[t])$ are matched.

If $s_i \cdot s_j \neq 0$, the alignment of $c(s_i[t])$ with $e(s_j[t])$ for all t gives $< d$, so we get $\leq (d+1)u+d-1 = r$. (but then the 3s would be matched, so $= r$)

If $s_i \cdot s_j = 0$, we get $(d+1)u+d = r+1$.

$LCS(f(s_i), g(s_j)) = r$ if $s_i \cdot s_j \neq 0$ and
$LCS(f(s_i), g(s_j)) = r+1$ otherwise.
OV to LCS

Given vectors \(\{s_1, \ldots, s_n\}, s_i \in \{0,1\}^d \ \forall i \), OV is

\[
\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} \left(\neg s_i[k] \lor \neg s_j[k] \right).
\]

Coordinate gadgets \(c, e\) taking bits to short sequences s.t.

\[
LCS(c(x), e(y)) = 0 \text{ if } x = y = 1, \quad LCS(c(x), e(y)) = 1 \text{ if } x \cdot y = 0.
\]

\[
\begin{align*}
\text{c(0)} &= 46 & \text{e(0)} &= 64 \\
\text{c(1)} &= 4 & \text{e(1)} &= 6
\end{align*}
\]

LCS(c(1),e(1)) = 0, and LCS(c(x),e(y)) = 1 for \((x,y) \neq (1,1)\).

Outer OR gadgets \(x, y\) taking sets of bit vectors \(\{s_1, \ldots, s_n\}\), to short sequences s.t.

\[
LCS(x, y) = Q \text{ if } \forall i, j: s_i \cdot s_j \neq 0, \\
LCS(x, y) \geq Q + 1 \text{ if } \exists i, j: s_i \cdot s_j = 0.
\]

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)

\[
\begin{align*}
LCS\left(f(s_i), g(s_j)\right) &= T + 1 \text{ if } s_i \cdot s_j = 0, \\
LCS\left(f(s_i), g(s_j)\right) &= T \text{ if } s_i \cdot s_j \neq 0.
\end{align*}
\]

Done!
Extensions
Extensions

• **Thm:** For any integer $k \geq 2$,

 k-LCS cannot be solved in $O(n^{k-\varepsilon})$ time under SETH.
Extensions

• **Thm:** For any integer $k \geq 2$,
 k-LCS cannot be solved in $O(n^{k-\varepsilon})$ time under SETH.

• [BK’15]: LCS hard even for binary alphabet
Extensions

• **Thm:** For any integer $k \geq 2$, k-LCS cannot be solved in $O(n^{k-\epsilon})$ time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
Extensions

- **Thm**: For any integer $k \geq 2$, k-LCS cannot be solved in $O(n^{k-\varepsilon})$ time under SETH.
- [BK’15]: LCS hard even for binary alphabet

- Hardness based on even more believable assumptions:
 - Reduction works from Max-k-SAT, so base on:
Extensions

• **Thm:** For any integer $k \geq 2$, k-LCS cannot be solved in $O(n^{k-\epsilon})$ time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
 – Reduction works from Max-k-SAT, so base on: MAX-k-SAT cannot be solved in $2^{n(1-\epsilon)} \text{poly}(n)$ time for all k.
Extensions

• **Thm:** For any integer $k \geq 2$,
 k-LCS cannot be solved in $O(n^{k-\varepsilon})$ time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
 – Reduction works from Max-k-SAT, so base on:
 MAX-k-SAT cannot be solved in $2^{n(1-\varepsilon)} \text{poly}(n)$ time for all k.
 (although – maybe this is equivalent to SETH...)
Extensions

- **Thm:** For any integer $k \geq 2$, k-LCS cannot be solved in $O(n^{k-\varepsilon})$ time under SETH.
- [BK’15]: LCS hard even for binary alphabet

- Hardness based on even more believable assumptions:
 - Reduction works from Max-k-SAT, so base on: **MAX-k-SAT** cannot be solved in $2^{n(1-\varepsilon) \text{ poly}(n)}$ time for all k. (although – maybe this is equivalent to SETH...)
 - On much more believable assumptions!
Circuit-Strong-ETH

- SETH is ultimately about SAT of *linear size* CNF-formulas
Circuit-Strong-ETH

- SETH is ultimately about SAT of *linear size* CNF-formulas
 There are more difficult satisfiability problems:
Circuit-Strong-ETH

- SETH is ultimately about SAT of *linear size* CNF-formulas

There are more difficult satisfiability problems:

- CIRCUIT-SAT
- NC-SAT
- NC1-SAT ...
Circuit-Strong-ETH

- SETH is ultimately about SAT of *linear size* CNF-formulas

There are more difficult satisfiability problems:

- CIRCUIT-SAT
- NC-SAT
- NC1-SAT ...

C-SETH: satisfiability of circuits from circuit class C on n variables and size s requires $2^{n-o(n)} \text{poly}(s)$ time.
Circuit-Strong-ETH

- SETH is ultimately about SAT of *linear size* CNF-formulas
- There are more difficult satisfiability problems:
 - CIRCUIT-SAT
 - NC-SAT
 - NC1-SAT ...

C-SETH: satisfiability of circuits from circuit class C on n variables and size s requires $2^{n-o(n)} \text{poly}(s)$ time.

E.g. NC-SETH should be much more believable!
LCS, Edit Distance and Friends are very hard

AHVW’15: reduction from SAT of “Branching Programs”

Many Consequences:
LCS, Edit Distance and Friends are very hard

AHVW’15: reduction from SAT of “Branching Programs”

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.
LCS, Edit Distance and Friends are very hard

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!
LCS, Edit Distance and Friends are very hard

AHVW’15: reduction from SAT of “Branching Programs”

Many Consequences:

1. Edit Distance / LCS / … require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

An $\frac{n^2}{\log^{\omega(1)} n}$ alg. \rightarrow ENP is not in NC1.
LCS, Edit Distance and Friends are very hard

1. Edit Distance / LCS / … require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

OV and APSP have such algs. W'14, AWY'15

An $\frac{n^2}{\log^{\omega(1)} n}$ alg. \rightarrow ENP is not in NC1.
LCS, Edit Distance and Friends are very hard

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

OV and APSP have such algs. W’14,AWY’15

An $\frac{n^2}{\log^{\omega(1)} n}$ alg. \rightarrow E$^\text{NP}$ is not in NC1.

An $\frac{n^2}{\log^{1000} n}$ time alg. \rightarrow E$^\text{NP}$ has no non-uniform Boolean formulas of size n^5.

AHVW’15: reduction from SAT of “Branching Programs”
LCS, Edit Distance and Friends are very hard

1. Edit Distance / LCS / … require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

Many Consequences:

- AHVW'15: reduction from SAT of “Branching Programs”
- OV and APSP have such algs. W'14, AWY'15
- An $\frac{n^2}{\log \omega(1) n}$ alg. \rightarrow E^{NP} is not in NC1.
- An $\frac{n^2}{\log^{1000} n}$ time alg. \rightarrow E^{NP} has no non-uniform Boolean formulas of size n^5.
- Best alg: $\frac{n^2}{\log^2 n}$