Lecture 5: Hardness for Sequence Problems under SETH and OVC

Thanks to Piotr Indyk and Arturs Backurs for some slides

- Define sequence problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping (DTW)

- Define sequence problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
 - Dynamic programming, quadratic time

- Define sequence problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
 - Dynamic programming, quadratic time
- Show conditional quadratic lower bounds
 - Assuming SETH / OV, example: LCS

Given two sequences $\{p_i\}$ and $\{q_j\}$, a *walk* on them starts at p_1 and q_1 . In each step it is in some position (p_i, q_i) and can next:

• go right only on p to (p_{i+1}, q_j)

Given two sequences $\{p_i\}$ and $\{q_j\}$, a *walk* on them starts at p_1 and q_1 . In each step it is in some position (p_i, q_i) and can next:

• go right only on p to (p_{i+1}, q_j)

Given two sequences $\{p_i\}$ and $\{q_j\}$, a *walk* on them starts at p_1 and q_1 . In each step it is in some position (p_i, q_i) and can next:

• go right only on p to (p_{i+1}, q_j)

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{j+1})

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{j+1})

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{j+1})

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{j+1})
- go right on both to (p_{i+1}, q_{j+1})

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{j+1})
- go right on both to (p_{i+1}, q_{j+1})

Given two sequences $\{p_i\}$ and $\{q_j\}$, a *walk* on them starts at p_1 and q_1 . In each step it is in some position (p_i, q_i) and can next:

- go right only on p to (p_{i+1}, q_j)
- go right only on q to (p_i, q_{i+1})
- go right on both to (p_{i+1}, q_{j+1})

Sequence walk problems optimize, over all such walks, some measure depending on the distances between p_i and q_j over all steps (p_i,q_j) of the walk.

- ``Dog walking distance''
 - Smallest length leash that enables dog-walking along two routes

- ``Dog walking distance''
 - Smallest length leash that enables dog-walking along two routes

- ``Dog walking distance''
 - Smallest length leash that enables dog-walking along two routes

- ``Dog walking distance''
 - Smallest length leash that enables dog-walking along two routes

- ``Dog walking distance"
 - Smallest length leash that enables dog-walking along two routes

Definition:

- − Let F = set of monotone functions $[0,1] \rightarrow [0,1]$
- − For two curves P,Q: $[0,1] \rightarrow R^2$:

 $D_{Fr}(P,Q) = \min_{f,g \in F} \max_{t \in [0,1]} ||P(f(t)) - Q(g(t))||$

•Discrete version:

- F = { f: [0,1] → $\{1...n\}$, nondecreasing},
- − P,Q: $\{1...n\}$ → R² : Curves are sequences of points in the plane

- ``Dog walking distance"
 - Smallest length leash that enables dog-walking along two routes

Find a walk along P and Q that minimizes the max distance over all steps.

•Definition:

- Let F = set of monotone functions $[0,1] \rightarrow [0,1]$
- − For two curves P,Q: $[0,1] \rightarrow R^2$:
 - $D_{Fr}(P,Q) = min_{f,g \in F} max_{t \in [0,1]} ||P(f(t)) Q(g(t))||$

•Discrete version:

- F = { f: [0,1] → $\{1...n\}$, nondecreasing},
- P,Q: $\{1...n\} \rightarrow R^2$: Curves are sequences of points in the plane

- Discrete version:
 - Let $F = \{ f: [0,1] \rightarrow \{1...n\}, nondecreasing \}, mapping time to position,$
 - − For two sequences of points, P,Q: $\{1...n\} \rightarrow R^2$:

- Discrete version:
 - − Let $F = \{ f: [0,1] \rightarrow \{1...n\}, nondecreasing \}, mapping time to position,$
 - − For two sequences of points, P,Q: $\{1...n\} \rightarrow R^2$:

- Dynamic programming:
 - A[i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
 - A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]

- Discrete version:
 - − Let $F = \{ f: [0,1] \rightarrow \{1...n\}, nondecreasing \}, mapping time to position,$
 - − For two sequences of points, P,Q: $\{1...n\}$ → R²:

- Dynamic programming:
 - A[i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
 - A[i, j] = max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]
- Time: O(n²)

- Discrete version:
 - − Let $F = \{ f: [0,1] \rightarrow \{1...n\}, nondecreasing \}, mapping time to position,$
 - − For two sequences of points, P,Q: $\{1...n\}$ → R^2 :

- Dynamic programming:
 - A[i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
 - A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]
- Time: O(n²)
- Can be improved to O(n² log log n/log n) [Agarwal-Avraham-Kaplan-Sharir'12] (also [Buchin-Buchin-Meulemans-Mulzer'14])

- Discrete version:
 - Let $F = \{ f: [0,1] \rightarrow \{1...n\}, nondecreasing \}, mapping time to position,$
 - − For two sequences of points, P,Q: $\{1...n\} \rightarrow R^2$:

- Dynamic programming:
 - A[i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
 - A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]
- Time: O(n²)
- Can be improved to O(n² log log n/log n) [Agarwal-Avraham-Kaplan-Sharir'12] (also [Buchin-Buchin-Meulemans-Mulzer'14])
- Many algorithms for special cases and variants

- Definition:
 - x, y: two sequences of points of length n
 - $A[i, j]=dist(x_i, y_j)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])$
 - DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of distances at each step.

- Definition:
 - x, y: two sequences of points of length n
 - $A[i, j]=dist(x_i, y_j)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])$
 - DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of distances at each step.

• Speech processing and other applications

- Definition:
 - x, y: two sequences of points of length n
 - $A[i, j]=dist(x_i, y_j)+min(A[i-1, j], A[i-1, j-1], A[i, j-1])$
 - DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of distances at each step.

- Speech processing and other applications
- A simple O(n²) time dynamic programming algorithm

- Definition:
 - two sequences s and t of letters, length n
 - find a subsequence of both s and t of max length
- Example: LCS(meaning, matching) = maing

- Definition:
 - two sequences s and t of letters, length n
 - find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple O(n²) time algorithm:

- Definition:
 - two sequences s and t of letters, length n
 - find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple O(n²) time algorithm:

```
max {A[i-1, j], A[i, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
A[i,j]=
max {A[i-1, j], A[i, j-1]} otherwise.
```

- Definition:
 - two sequences s and t of letters, length n
 - find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple O(n²) time algorithm:

```
max {A[i-1, j], A[i, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
A[i,j]=
max {A[i-1, j], A[i, j-1]} otherwise.
```

Best algorithm: O(n²/log n) [Masek-Paterson'80]

• Definition:

x,y – two sequences of symbols of length n

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

meaning

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

• A simple O(n²) time dynamic programming algorithm [Wagner-Fischer'74]

- A simple O(n²) time dynamic programming algorithm [Wagner-Fischer'74]
- Can be improved to O(n²/log n) [Masek-Paterson'80]

- A simple O(n²) time dynamic programming algorithm [Wagner-Fischer'74]
- Can be improved to $O(n^2/\log n)$ [Masek-Paterson'80]
- Better algorithms for special cases:[U83,LV85,M86, GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]

- A simple O(n²) time dynamic programming algorithm [Wagner-Fischer'74]
- Can be improved to O(n²/log n) [Masek-Paterson'80]
- Better algorithms for special cases:[U83,LV85,M86, GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]
- Approximation algorithms: O(1) –approx in $O(n^{2-\epsilon})$ time

```
[Chakraborty-Das-Goldenberg-Koucky-Saks'18],
```

 $O(f(\epsilon))$ –approx in $O(n^{1+\epsilon})$ time [Andoni-Nowatzki'20]

• Widely used metrics

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better
- Plausible explanation:
 - 3SUM-hard ? People tried for years...

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better
- Plausible explanation:
 - 3SUM-hard ? People tried for years...
 - hard under OVH and SETH ?

Plan

- Define sequence problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
 - Dynamic programming, quadratic time
- Show conditional quadratic lower bounds
 - Assuming SETH / OVH
 - Basic approach
 - Hardness for LCS

Orthogonal Vectors Problem (OV). Given a set of vectors S ⊆ {0, 1}^d, d = ω(log n), |S|=n, are there a, b ∈ S s. t. Σ_{i=1}^d a_ib_i = 0 ?

- Can be solved trivially in $O(n^2d)$ time

- Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where d=c(n)·log n [Abboud-Williams-Yu'15]

Orthogonal Vectors Problem (OV). Given a set of vectors S ⊆ {0, 1}^d, d = ω(log n), |S|=n, are there a, b ∈ S s. t. Σ_{i=1}^d a_ib_i = 0 ?

- Can be solved trivially in $O(n^2d)$ time

- Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where d=c(n)·log n [Abboud-Williams-Yu'15]
- OV Hypothesis (implied by SETH):

Orthogonal Vectors Problem (OV). Given a set of vectors S ⊆ {0, 1}^d, d = ω(log n), |S|=n, are there a, b ∈ S s. t. Σ_{i=1}^d a_ib_i = 0 ?

- Can be solved trivially in O(n²d) time

- Best known algorithm runs in $n^{2-1/O(\log c(n))}$ time, where d=c(n)·log n [Abboud-Williams-Yu'15]
- OV Hypothesis (implied by SETH):
 OV can't be solved in n^{2-ε}·d^{O(1)} time for any ε > 0.

Theorem^{*}: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

*See also [Abboud-V. Williams-Weimann'14]

Theorem^{*}: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

• Approach: reduce OV to distance computation:

*See also [Abboud-V. Williams-Weimann'14]

Theorem^{*}: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
 - $-S \subseteq \{0,1\}^d \rightarrow \text{sequence } x, |x| \le n \cdot d^{O(1)}$
 - $-S \subseteq \{0,1\}^d \rightarrow sequence y, |y| \le n \cdot d^{O(1)}$

Theorem^{*}: No n^{2-Ω(1)} time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
 - $-S \subseteq \{0,1\}^d \rightarrow \text{sequence } x, |x| \le n \cdot d^{O(1)}$
 - $-S \subseteq \{0,1\}^d \rightarrow \text{sequence } y, |y| \le n \cdot d^{O(1)}$
 - distance(x,y)=small if exists a, $b \in S$ with $\Sigma_i a_i b_i = 0$
 - distance(x,y)=large, otherwise
 - The construction time is $n \cdot d^{O(1)}$
 - Gadgets for coordinates and vectors

*See also [Abboud-V. Williams-Weimann'14]

Theorem^{*}: No n^{2-Ω(1)} time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
 - $-S \subseteq \{0,1\}^d \rightarrow \text{sequence } x, |x| \le n \cdot d^{O(1)}$
 - $-S \subseteq \{0,1\}^d \rightarrow \text{sequence } y, |y| \le n \cdot d^{O(1)}$
 - distance(x,y)=small if exists a, $b \in S$ with $\Sigma_i a_i b_i = 0$
 - distance(x,y)=large, otherwise
 - The construction time is $n \cdot d^{O(1)}$
 - Gadgets for coordinates and vectors

Next: hardness for LCS

Hardness for LCS

I will present the ideas behind the proof from [Abboud-Backurs-VW'15]. Full construction. NO full proof.

[Bringmann-Kunnemann'15] obtained an independent proof.

Given vectors $\{s_1, \dots, s_n\}, s_i \in \{0,1\}^d \forall i, \mathsf{OV}$ is $\bigvee_{i,j \in [n]} \bigwedge_{k \in [d]} (\neg s_i[k] \lor \neg s_j[k]).$

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

 $\bigvee_{i,j\in[n]} \Lambda_{k\in[d]}(\neg s_i[k] \lor \neg s_j[k]).$

Coordinate gadgets *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i, \mathsf{OV}$ is

 $\bigvee_{i,j\in[n]} \Lambda_{k\in[d]}(\neg s_i[k] \lor \neg s_j[k]).$

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i, \mathsf{OV}$ is

 $\bigvee_{i,j\in[n]} \bigwedge_{k\in[d]} (\neg s_i[k] \lor \neg s_j[k]).$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some QLCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

 $\bigvee \land_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

Encoding the outer Boolean OR for OV to LCS

 $\Lambda_{c \in [d]}(\neg s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

Encoding the outer Boolean OR for OV to LCS

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS $(f(s_i),g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, LCS $(f(s_i),g(s_j)) = \beta + 1$ otherwise.

 $\Lambda_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have s_i → gadget sequences f(s_i) and g(s_i) LCS(f(s_i),g(s_j)) = β if s_i·s_j ≠ 0, LCS(f(s_i),g(s_j)) = β + 1 otherwise.

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

 $\Lambda_{c \in [d]} (\neg s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have s_i → gadget sequences f(s_i) and g(s_i) LCS(f(s_i),g(s_j)) = β if s_i·s_j ≠ 0, LCS(f(s_i),g(s_j)) = β + 1 otherwise.
- $s_0 vector of all 1s (no vector orthog. to <math>s_0$)

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

 $\Lambda_{c\in [d]}(\neg \, s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

 $x = f(s_1) f(s_2) \dots f(s_i) \dots f(s_n)$

Attempt 1:

Encoding the outer Boolean OR for OV to LCS

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS($f(s_i),g(s_j)$) = β if $s_i \cdot s_j \neq 0$, LCS($f(s_i),g(s_j)$) = $\beta + 1$ otherwise.
- s_0 vector of all 1s (no vector orthog. to s_0)

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

 $y = (g(s_0))^{n-1} g(s_1) g(s_2) \dots g(s_j) \dots g(s_n) (g(s_0))^{n-1}$

 $\Lambda_{c \in [d]}(\neg s_i[c] \lor \neg s_j[c])$ $i, j \in [n]$

 $x = f(s_1) f(s_2) \dots f(s_i) \dots f(s_n)$

Attempt 1:

Encoding the outer Boolean OR for OV to LCS

- Let S = {s₁, s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS($f(s_i),g(s_j)$) = β if $s_i \cdot s_j \neq 0$, LCS($f(s_i),g(s_j)$) = $\beta + 1$ otherwise.
- s_0 vector of all 1s (no vector orthog. to s_0)

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

$$y = (g(s_0))^{n-1} g(s_1) g(s_2) \dots g(s_j) \dots g(s_n) (g(s_0))^{n-1}$$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

 $\Lambda_{c\in [d]}(\neg s_i[c] \lor \neg s_j[c])$ $i,j\in[n]$

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS($f(s_i),g(s_j)$) = β if $s_i \cdot s_j \neq 0$, LCS($f(s_i),g(s_j)$) = $\beta + 1$ otherwise.
- s_0 vector of all 1s (no vector orthog. to s_0)

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

Attempt 1: $x = f(s_1) f(s_2) \dots f(s_i) \dots f(s_n)$

 $y = (g(s_0))^{n-1} g(s_1) g(s_2) \dots g(s_j) \dots g(s_n) (g(s_0))^{n-1}$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

 $\Lambda_{c \in [d]}(\neg s_i[c] \lor \neg s_j[c])$ $i,j\in[n]$

- Let S = {s₁,s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS($f(s_i),g(s_j)$) = β if $s_i \cdot s_j \neq 0$, LCS($f(s_i),g(s_j)$) = $\beta + 1$ otherwise.
- s_0 vector of all 1s (no vector orthog. to s_0)

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

Attempt 1: x = $f(s_1) f(s_2) ... f(s_i) ... f(s_n)$

 $y = (g(s_0))^{n-1} g(s_1) g(s_2) \dots g(s_j) \dots g(s_n) (g(s_0))^{n-1}$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

Problem: Opt LCS might not align entire gadgets!

 $\Lambda_{c\in [d]}(\neg \, s_i[c] \lor \neg s_j[c])$ $i,j\in[n]$

- Let S = {s₁, s₂,..., s_n} be the vectors from OV instance
- Suppose we have $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS($f(s_i),g(s_j)$) = β if $s_i \cdot s_j \neq 0$, LCS($f(s_i),g(s_j)$) = $\beta + 1$ otherwise.
- s_0 vector of all 1s (no vector orthog. to s_0)

Attempt 1:

 $x = f(s_1) f(s_2) \dots f(s_i) \dots f(s_n)$

Want to create sequences x and y so that LCS(x,y) is Large if there is an OV pair and LCS(x,y) is Small otherwise.

 $y = (g(s_0))^{n-1} g(s_1) g(s_2) \dots g(s_j) \dots g(s_n) (g(s_0))^{n-1}$

Idea: Imagine gadgets are letters.

If no OV, LCS length is $n \beta$; If $s_i \cdot s_j = 0$ can align $f(s_i)$ and $g(s_j)$ and all other $f(s_k)$ with $g(s_0)$ to get LCS length $\geq (n-1) \beta + (\beta+1) > n \beta$.

Problem: Opt LCS might not align entire gadgets!

Idea for hardness for LCS

```
Let S = {s<sub>1</sub>,s<sub>2</sub>,..., s<sub>n</sub>} be the vectors
Each s<sub>i</sub> \rightarrow gadget sequences f(s<sub>i</sub>) and g(s<sub>i</sub>)
LCS(f(s<sub>i</sub>),g(s<sub>j</sub>)) = \beta if s<sub>i</sub>·s<sub>j</sub> \neq 0, LCS(f(s<sub>i</sub>),g(s<sub>j</sub>)) = \beta + 1 otherwise.
s<sub>0</sub> - vector of all 1s (no vector orthog. to s<sub>0</sub>)
```

Idea for hardness for LCS

```
0 and 1 don't
appear in the f
and g gadgets
Q = 0^{q}, R=1^{q}
```

Attempt 2: $x = Q f(s_1)R Q f(s_2)R ... Q f(s_n) R$

 $y = (Qg(s_0) R)^{n-1} Qg(s_1) R Q g(s_2) R... Q g(s_n) R (Qg(s_0) R)^{n-1}$

Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors Each $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS $(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, LCS $(f(s_i), g(s_j)) = \beta + 1$ otherwise. $s_0 - vector of all 1s$ (no vector orthog. to s_0) 0 and 1 don't appear in the f

 $Q = 0^q$, $R = 1^q$

Attempt 2: $x = Q f(s_1)R Q f(s_2)R ... Q f(s_n) R$

 $y = (Qg(s_0) R)^{n-1} Qg(s_1) R Q g(s_2) R... Q g(s_n) R (Qg(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors Each $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS $(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, LCS $(f(s_i), g(s_j)) = \beta + 1$ otherwise. $s_0 - vector of all 1s$ (no vector orthog. to s_0) 0 and 1 don't appear in the f

 $Q = 0^q$, $R = 1^q$

Attempt 2: x = Q f(s₁)R Q f(s₂)R ... Q f(s_n) R

 $y = (Qg(s_0) R)^{n-1} Qg(s_1) R Q g(s_2) R... Q g(s_n) R (Qg(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors Each $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS $(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, LCS $(f(s_i), g(s_j)) = \beta + 1$ otherwise. $s_0 - vector of all 1s$ (no vector orthog. to s_0) O and 1 don't appear in the f

> **Attempt 2:** $x = Q f(s_1) R Q f(s_2) R ... Q f(s_n) R$

 $Q = 0^q$, $R = 1^q$

 $y = (Qg(s_0) R)^{n-1} Qg(s_1) R Q g(s_2) R... Q g(s_n) R (Qg(s_0) R)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS. Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_i)$.

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS. Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_i)$.

Lemma: If a 0 (or 1) is matched, its entire 0^q (or 1^q) block is matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS. Now no $g(s_k)$ is aligned with two different $f(s_i)$ and $f(s_i)$.

Problem: LCS might align $f(s_i)$ with several $g(s_k)$.

Let $S = \{s_1, s_2, ..., s_n\}$ be the vectors Each $s_i \rightarrow gadget$ sequences $f(s_i)$ and $g(s_i)$ LCS $(f(s_i), g(s_j)) = \beta$ if $s_i \cdot s_j \neq 0$, LCS $(f(s_i), g(s_j)) = \beta + 1$ otherwise. $s_0 - vector of all 1s$ (no vector orthog. to s_0) Attempt 2: $x = Q f(s_1)R Q f(s_2)R ... Q f(s_n) R$ $y = (Qg(s_0) R)^{n-1}Qg(s_1)R Q g(s_2) R ... Q g(s_n) R (Qg(s_0) R)^{n-1}$

> Lemma: If a 0 (or 1) is matched, its entire 0^{q} (or 1^{q}) block is matched. *Idea*: Pick q big so all Qs and Rs of x must be matched in an LCS. Now no g(s_k) is aligned with two different f(s_i) and f(s_i).

> *Problem*: LCS might align $f(s_i)$ with **several** $g(s_k)$. The $g(s_k)$ are partitioned into blocks aligned with at most a single $f(s_i)$.

LCS hardness idea

Attempt 3:

 $\mathbf{x} = \mathbf{P}^{|\mathbf{y}|}\mathbf{Q} \mathbf{f}(\mathbf{s}_1)\mathbf{R} \mathbf{Q} \mathbf{f}(\mathbf{s}_2)\mathbf{R} \mathbf{Q} \dots \mathbf{R}\mathbf{Q} \mathbf{f}(\mathbf{s}_n) \mathbf{R} \mathbf{P}^{|\mathbf{y}|}$

Q=0^q,R=1^q,P=2^r

 $y = P (Qg(s_0) RP)^{n-1} Qg(s_1) RP Qg(s_2) RP ... Qg(s_n) RP (Qg(s_0) RP)^{n-1}$

LCS hardness idea

Attempt 3:

 $\mathbf{x} = \mathbf{P}^{|\mathbf{y}|}\mathbf{Q} \mathbf{f}(\mathbf{s}_1)\mathbf{R} \mathbf{Q} \mathbf{f}(\mathbf{s}_2)\mathbf{R} \mathbf{Q} \dots \mathbf{R}\mathbf{Q} \mathbf{f}(\mathbf{s}_n) \mathbf{R} \mathbf{P}^{|\mathbf{y}|}$

Q=0^q,R=1^q,P=2^r

 $y = P (Qg(s_0) RP)^{n-1} Qg(s_1) RP Qg(s_2) RP ... Qg(s_n) RP (Qg(s_0) RP)^{n-1}$

Idea:

LCS hardness idea

Attempt 3: $x = P^{|y|}Q f(s_1)R Q f(s_2)R Q \dots RQ f(s_n) R P^{|y|}$

Q=0^q,R=1^q,P=2^r

 $y = P (Qg(s_0) RP)^{n-1} Qg(s_1) RP Qg(s_2) RP ... Qg(s_n) RP (Qg(s_0) RP)^{n-1}$

Idea:

P = 2^r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.

Idea:

- P = 2^r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.
- \geq n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Idea:

P = 2^r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.

 \geq n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, **exactly** n-1 Ps will be unmatched, and every $f(s_i)$ will be fully aligned with some $g(s_i)$ (possibly j=0).

Idea:

P = 2^r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, and also as many Ps as possible from y are aligned.

 \geq n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, **exactly** n-1 Ps will be unmatched, and every $f(s_i)$ will be fully aligned with some $g(s_i)$ (possibly j=0).

The gadgets f(s_i) and g(s_i) act as letters!

LCS hardness idea

Attempt 3:

Q=0^q,R=1^q,P=2^r

 $x = P^{|y|}Q f(s_1)R Q f(s_2)R Q ... RQ f(s_n) R P^{|y|}$ $y = P (Qg(s_0) RP)^{n-1}Q g(s_1) R P Q g(s_2) R P ... Q g(s_n) R P (Q g(s_0) RP)^{n-1}$

LCS length:

Attempt 3:

LCS hardness idea

Q=0^q,R=1^q,P=2^r

 $x = P^{|y|}Q f(s_1)R Q f(s_2)R Q ... RQ f(s_n) R P^{|y|}$ $y = P (Qg(s_0) RP)^{n-1}Q g(s_1) R P Q g(s_2) R P ... Q g(s_n) R P (Q g(s_0) RP)^{n-1}$

	#Ps in y is 3n-1, and n-1 are not matched, so 2n
LCS length:	aligned.
$2n P + n(Q + R) + \sum_{i=1}^{n} LCS(f(s_i),g(s_i))$, g(s _i) aligned with f(s _i)	

LCS hardness idea

Attempt 3:

Q=0^q,R=1^q,P=2^r

 $x = P^{|y|}Q f(s_1)R Q f(s_2)R Q ... RQ f(s_n) R P^{|y|}$ $y = P (Qg(s_0) RP)^{n-1}Q g(s_1) R P Q g(s_2) R P ... Q g(s_n) R P (Q g(s_0) RP)^{n-1}$

#Ps in y is 3n-1, and n-1 are not matched, so 2n
aligned.LCS length:aligned. $2n|P| + n(|Q|+|R|) + \Sigma^{n}_{i=1} LCS(f(s_i),g(s_i)), g(s_i)$ aligned with $f(s_i)$

- = $2nr + 2qn + n\beta$ if no orthog. pair
- $\geq [2nr + 2qn + n\beta] + 1$ if 9 an orthog. pair.

LCS hardness idea

Reduction:

 $\mathbf{x} = \mathbf{P}^{|\mathbf{y}|}\mathbf{Q} \mathbf{f}(\mathbf{s}_1)\mathbf{R} \mathbf{Q} \mathbf{f}(\mathbf{s}_2)\mathbf{R} \mathbf{Q} \dots \mathbf{R}\mathbf{Q} \mathbf{f}(\mathbf{s}_n) \mathbf{R} \mathbf{P}^{|\mathbf{y}|}$

 $y = P (Qg(s_0) RP)^{n-1} Qg(s_1) RP Qg(s_2) RP ... Qg(s_n) RP (Qg(s_0) RP)^{n-1}$

LCS hardness idea

Reduction:

 $x = P^{|y|}Q f(s_1)R Q f(s_2)R Q ... RQ f(s_n) R P^{|y|}$ $y = P (Qg(s_0) RP)^{n-1}Q g(s_1) R P Q g(s_2) R P ... Q g(s_n) R P (Q g(s_0) RP)^{n-1}$

Tricky proof in paper shows the following suffice: $|Q|, |R|, |P|, |f(s_i)|, |g(s_i)| \le poly(d)$, so that $|x|, |y| \le n poly(d)$.

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

$$/_{i,j\in[n]} \bigwedge_{k\in[d]} (\neg s_i[k] \lor \neg s_j[k]).$$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some Q LCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

$$\bigwedge_{i,j\in[n]}\bigwedge_{k\in[d]}(\neg s_i[k] \lor \neg s_j[k]).$$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some QLCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

Done!

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

$$\bigwedge_{i,j\in[n]}\bigwedge_{k\in[d]}(\neg s_i[k] \lor \neg s_j[k]).$$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some QLCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

$$c(0) = 46$$
 $e(0) = 64$
 $c(1) = 4$ $e(1) = 6$

LCS(c(1),e(1)) = 0, and LCS(c(x),e(y)) = 1 for $(x,y) \neq (1,1)$.

Done!

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

$$/_{i,j\in[n]} \wedge_{k\in[d]} (\neg s_i[k] \lor \neg s_j[k]).$$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some QLCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$. **Coordinate gadgets** *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

Done!

All that remains!

$$c(0) = 46$$
 $e(0) = 64$
 $c(1) = 4$ $e(1) = 6$

LCS(c(1),e(1)) = 0, and LCS(c(x),e(y)) = 1 for $(x,y) \neq (1,1)$.

 $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), \text{ s.t.}$

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

 $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

 $f(s_i) = 3^r 5^u c(s_i[1]) 5^u \dots 5^u c(s_i[d]) 5^u$ $g(s_j) = 5^u e(s_j[1]) 5^u \dots 5^u e(s_j[d]) 5^u 3^r$ where r = u(d+1)+d-1, u > d+1.

- Recall we have coordinate gadgets
- $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), \text{ s.t.}$

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{aligned}$

3,5 brand new symbols u is large, r even larger

 $x \in \{0, 1\} \rightarrow c(x)$ and e(x), s.t.

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

$$\begin{split} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{split}$$

If two 5s are matched together, their entire 5^u blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is r.

Recall we have coordinate gadgets

 $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \, 5^u \, c(s_i[1]) \, 5^u \, \dots \, 5^u \, c(s_i[d]) \, 5^u \\ g(s_j) &= 5^u \, e(s_j[1]) \, 5^u \, \dots \, 5^u \, e(s_j[d]) \, 5^u \, \mathbf{3}^r \\ \text{where } r &= u(d+1) + d-1, \, u > d+1. \end{aligned}$

3,5 brand new symbols u is large, r even larger

If two 5s are matched together, their entire 5^u blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is r.

 $x \in \{0, 1\} \rightarrow c(x)$ and e(x), s.t.

LCS(c(x),e(y)) = 0 if x = y = 1 and 1 otherwise; also, $|c(x)|, |e(x)| \le 2$.

$$\begin{split} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{split}$$

If two 5s are matched together, their entire 5^u blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5^{u} block is not matched, then the subsequence length would be \leq du + 2d < r.

- Recall we have coordinate gadgets
- $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{aligned}$

If two 5s are matched together, their entire 5^u blocks are matched.

If any 3 is matched, no other symbols are, so the LCS length is r.

- Recall we have coordinate gadgets
- $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{aligned}$

If two 5s are matched together, their entire 5^u blocks are matched.

If any 3 is matched, no other symbols are, so the LCS length is r.

- Recall we have coordinate gadgets
- $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

$$f(s_i) = 3^r 5^u c(s_i[1]) 5^u \dots 5^u c(s_i[d]) 5^u$$
$$g(s_j) = 5^u e(s_j[1]) 5^u \dots 5^u e(s_j[d]) 5^u 3^r$$
where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5^u blocks are matched.

If any 3 is matched, no other symbols are, so the LCS length is r.

- Recall we have coordinate gadgets
- $x \in \{0, 1\} \rightarrow c(x) \text{ and } e(x), s.t.$

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d+1. \end{aligned}$

If two 5s are matched together, their entire 5^u blocks are matched.

If any 3 is matched, no other symbols are, so the LCS length is r.

Vector gadgets

$$\begin{split} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{split}$$

 $\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{aligned}$

Assume no 3 is matched. Then all 5s are matched.

$$\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ ... \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ ... \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{aligned}$$

Assume no 3 is matched. Then all 5s are matched.

$$\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u c(s_i[1]) \ 5^u \dots \ 5^u c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u e(s_j[1]) \ 5^u \dots \ 5^u e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{aligned}$$

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, $c(s_i[t])$ and $e(s_i[t])$ are matched.

$$\begin{aligned} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= 5^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{aligned}$$

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, $c(s_i[t])$ and $e(s_j[t])$ are matched. If $s_i \cdot s_j \neq 0$, the alignment of $c(s_i[t])$ with $e(s_j[t])$ for all t gives < d, so we get $\leq (d+1)u+d-1 = r$. (but then the 3s would be matched, so =r)

$$f(s_i) = 3^r 5^u c(s_i[1]) 5^u \dots 5^u c(s_i[d]) 5^u$$
$$g(s_j) = 5^u e(s_j[1]) 5^u \dots 5^u e(s_j[d]) 5^u 3^r$$
where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, c(s_i[t]) and e(s_j[t]) are matched.

If $s_i \cdot s_j \neq 0$, the alignment of $c(s_i[t])$ with $e(s_j[t])$ for all t gives < d, so we get $\leq (d+1)u+d-1 = r$. (but then the 3s would be matched, so =r)

If
$$s_i \cdot s_i = 0$$
, we get $(d+1)u+d = r+1$.

$$\begin{split} f(s_i) &= \mathbf{3}^r \ 5^u \ c(s_i[1]) \ 5^u \ \dots \ 5^u \ c(s_i[d]) \ 5^u \\ g(s_j) &= \mathbf{5}^u \ e(s_j[1]) \ 5^u \ \dots \ 5^u \ e(s_j[d]) \ 5^u \ \mathbf{3}^r \\ where \ r &= u(d+1)+d-1, \ u > d. \end{split}$$

LCS(f(s)_i, g(s_j)) = r if s_i \cdot s_j \neq 0 and LCS(f(s_i), g(s_j)) = r+1 otherwise.

Assume no 3 is matched. Then all 5s are matched. Thus, for all t, c(s_i[t]) and e(s_j[t]) are matched.

If $s_i \cdot s_j \neq 0$, the alignment of $c(s_i[t])$ with $e(s_j[t])$ for all t gives < d, so we get $\leq (d+1)u+d-1 = r$. (but then the 3s would be matched, so =r)

If
$$s_i \cdot s_i = 0$$
, we get $(d+1)u+d = r+1$.

OV to LCS

Given vectors $\{s_1, \dots, s_n\}$, $s_i \in \{0,1\}^d \forall i$, OV is

$$/_{i,j\in[n]} \bigwedge_{k\in[d]} (\neg s_i[k] \lor \neg s_j[k]).$$

Outer OR gadgets x, y taking sets of bit vectors $\{s_1, ..., s_n\}$, to short sequences s.t. for some Q LCS(x, y) = Q if $\forall i, j: s_i \cdot s_j \neq 0$, $LCS(x, y) \ge Q + 1$ if $\exists i, j: s_i \cdot s_j = 0$.

Done!

Vector gadgets f, g taking bit vectors to short sequences s.t. for some T $LCS(f(s_i), g(s_j)) = T + 1$ if $s_i \cdot s_j = 0$, $LCS(f(s_i), g(s_j)) = T$ if $s_i \cdot s_j \neq 0$.

Done!

Coordinate gadgets *c*, *e* taking bits to short sequences s.t. LCS(c(x), e(y)) = 0 if x = y = 1, LCS(c(x), e(y)) = 1 if $x \cdot y = 0$.

c(0) = c(1) =

$$c(0) = 46$$
 $e(0) = 64$
 $c(1) = 4$ $e(1) = 6$

```
LCS(c(1),e(1)) = 0, and
LCS(c(x),e(y)) = 1
for (x,y) \neq (1,1).
```

Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:
 - Reduction works from Max-k-SAT, so base on:

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:

 Reduction works from Max-k-SAT, so base on:
 MAX-k-SAT cannot be solved in 2^{n(1-ε)} poly(n) time for all k.

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:

 Reduction works from Max-k-SAT, so base on:
 MAX-k-SAT cannot be solved in 2^{n(1-ε)} poly(n) time for all k.
 (although maybe this is equivalent to SETH...)

- Thm: For any integer k ≥ 2,
 k-LCS cannot be solved in O(n^{k-ε}) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:

 Reduction works from Max-k-SAT, so base on:
 MAX-k-SAT cannot be solved in 2^{n(1-ε)} poly(n) time for all k.
 (although maybe this is equivalent to SETH...)
 On much more believable assumptions!

• SETH is ultimately about SAT of *linear size* CNF-formulas

• SETH is ultimately about SAT of *linear size* CNF-formulas There are more difficult satisfiability problems:

• SETH is ultimately about SAT of *linear size* CNF-formulas There are more difficult satisfiability problems:

- CIRCUIT-SAT
- NC-SAT
- NC1-SAT ...

• SETH is ultimately about SAT of *linear size* CNF-formulas There are more difficult satisfiability problems:

- CIRCUIT-SAT
 NC-SAT
- NC1-SAT ...

C-SETH: satisfiability of circuits from circuit class C on n variables and size s requires 2^{n-o(n)} poly(s) time.

• SETH is ultimately about SAT of *linear size* CNF-formulas There are more difficult satisfiability problems:

- CIRCUIT-SAT
- NC-SAT
- NC1-SAT ...

C-SETH: satisfiability of circuits from circuit class C on n variables and size s requires 2^{n-o(n)} poly(s) time.

E.g. NC-SETH should be much more believable!

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

An
$$\frac{n^2}{\log^{\omega(1)} n}$$
 alg. \rightarrow
E^{NP} is not in NC1.

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

OV and APSP have such algs. W'14,AWY'15

An
$$\frac{n^2}{\log^{\omega(1)} n}$$
 alg. \rightarrow
E^{NP} is not in NC1.

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

OV and APSP have such algs. W'14,AWY'15

An
$$\frac{n^2}{\log^{\omega(1)} n}$$
 alg. \rightarrow
E^{NP} is not in NC1.

An
$$\frac{n^2}{\log^{1000} n}$$
 time alg. $\rightarrow E^{NP}$
has no non-uniform
Boolean formulas of size **n**⁵.

AHVW'15: reduction from SAT of "Branching Programs"

Many Consequences:

1. Edit Distance / LCS / ... require $n^{2-o(1)}$ time under NC-SETH.

2. Shaving logarithms from n^2 implies novel circuit lower bounds!

OV and APSP have such algs. W'14,AWY'15

An
$$\frac{n^2}{\log^{\omega(1)} n}$$
 alg. \rightarrow
E^{NP} is not in NC1.

An $\frac{n^2}{\log^{1000} n}$ time alg. $\rightarrow E^{NP}$ has no non-uniform Boolean formulas of size n^5 .

