
Lecture 5: Hardness for
Sequence Problems under

SETH and OVC

1

Thanks to Piotr Indyk
and Arturs Backurs for
some slides

Plan

Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time

Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time

• Show conditional quadratic lower bounds
– Assuming SETH / OV, example: LCS

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)
• go right on both to (pi+1, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)
• go right on both to (pi+1, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Walks on sequences

Given two sequences {pi} and {qj}, a walk on them
starts at p1 and q1. In each step it is in some
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)
• go right on both to (pi+1, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Sequence walk problems
optimize, over all such walks,
some measure depending on
the distances between pi and qj
over all steps (pi,qj) of the walk.

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

•Definition:
– Let F = set of monotone functions [0,1]→[0,1]
– For two curves P,Q: [0,1] →R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

•Definition:
– Let F = set of monotone functions [0,1]→[0,1]
– For two curves P,Q: [0,1] →R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||
•Discrete version:

– F = { f: [0,1] →{1…n} , nondecreasing},
– P,Q: {1…n} → R2 : Curves are sequences of points in the plane

(Discrete) Frechet Distance [Alt-Godau’95]

• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

•Definition:
– Let F = set of monotone functions [0,1]→[0,1]
– For two curves P,Q: [0,1] →R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||
•Discrete version:

– F = { f: [0,1] →{1…n} , nondecreasing},
– P,Q: {1…n} → R2 : Curves are sequences of points in the plane

Find a walk along P and Q
that minimizes the max
distance over all steps.

Frechet Distance: Algorithm

Frechet Distance: Algorithm

• Discrete version:
– Let F = { f: [0,1] →{1…n}, nondecreasing }, mapping time to position,
– For two sequences of points, P,Q: {1…n}→R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

Frechet Distance: Algorithm

• Discrete version:
– Let F = { f: [0,1] →{1…n}, nondecreasing }, mapping time to position,
– For two sequences of points, P,Q: {1…n}→R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

• Dynamic programming:
– A[i, j] = distance between curves P(1)…P(i) and Q(1) …Q(j)
– A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]

Frechet Distance: Algorithm

• Discrete version:
– Let F = { f: [0,1] →{1…n}, nondecreasing }, mapping time to position,
– For two sequences of points, P,Q: {1…n}→R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

• Dynamic programming:
– A[i, j] = distance between curves P(1)…P(i) and Q(1) …Q(j)
– A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]

• Time: O(n2)

Frechet Distance: Algorithm

• Discrete version:
– Let F = { f: [0,1] →{1…n}, nondecreasing }, mapping time to position,
– For two sequences of points, P,Q: {1…n}→R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

• Dynamic programming:
– A[i, j] = distance between curves P(1)…P(i) and Q(1) …Q(j)
– A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]

• Time: O(n2)

• Can be improved to O(n2 log log n/log n) [Agarwal-Avraham-Kaplan-Sharir’12] (also
[Buchin-Buchin-Meulemans-Mulzer’14])

Frechet Distance: Algorithm

• Discrete version:
– Let F = { f: [0,1] →{1…n}, nondecreasing }, mapping time to position,
– For two sequences of points, P,Q: {1…n}→R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||

• Dynamic programming:
– A[i, j] = distance between curves P(1)…P(i) and Q(1) …Q(j)
– A[i, j]=max[||P(i)-Q(j)||, min (A[i-1, j-1], A[i, j-1], A[i-1, j])]

• Time: O(n2)

• Can be improved to O(n2 log log n/log n) [Agarwal-Avraham-Kaplan-Sharir’12] (also
[Buchin-Buchin-Meulemans-Mulzer’14])

• Many algorithms for special cases and variants

Dynamic Time Warping

Dynamic Time Warping

• Definition:
– x, y: two sequences of points of length n
– A[i, j]=dist(xi, yj)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
– DTW(x,y)=A[n,n]
Find a walk along x and y that minimizes the sum of

distances at each step.

Dynamic Time Warping

• Definition:
– x, y: two sequences of points of length n
– A[i, j]=dist(xi, yj)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
– DTW(x,y)=A[n,n]
Find a walk along x and y that minimizes the sum of

distances at each step.

• Speech processing and other applications

Dynamic Time Warping

• Definition:
– x, y: two sequences of points of length n
– A[i, j]=dist(xi, yj)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
– DTW(x,y)=A[n,n]
Find a walk along x and y that minimizes the sum of

distances at each step.

• Speech processing and other applications

• A simple O(n2) time dynamic programming algorithm

Longest Common Subsequence (LCS)

• Definition:
– two sequences s and t of letters, length n
– find a subsequence of both s and t of max length

• Example: LCS(meaning , matching) = maing

Longest Common Subsequence (LCS)

• Definition:
– two sequences s and t of letters, length n
– find a subsequence of both s and t of max length

• Example: LCS(meaning , matching) = maing

• Simple O(n2) time algorithm:

Longest Common Subsequence (LCS)

• Definition:
– two sequences s and t of letters, length n
– find a subsequence of both s and t of max length

• Example: LCS(meaning , matching) = maing

• Simple O(n2) time algorithm:

max {A[i-1, j], A[i, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
A[i,j]=

max {A[i-1, j], A[i, j-1]} otherwise.

Longest Common Subsequence (LCS)

• Definition:
– two sequences s and t of letters, length n
– find a subsequence of both s and t of max length

• Example: LCS(meaning , matching) = maing

• Simple O(n2) time algorithm:

max {A[i-1, j], A[i, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
A[i,j]=

max {A[i-1, j], A[i, j-1]} otherwise.

Best algorithm: O(n2/log n) [Masek-Paterson’80]

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning
insert a

maeaning

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning
insert a

mataning
e → t

maeaning

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning
insert a e → t

matcning

a → c

maeaning mataning

Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions,

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning
insert a e → t

a → c

matchingn → h

maeaning mataning

matcning

Computing edit distance

45

Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

46

Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

47

Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

• Better algorithms for special cases:[U83,LV85,M86,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10…]

48

Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

• Better algorithms for special cases:[U83,LV85,M86,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10…]

• Approximation algorithms: O(1) –approx in O(n2-ε) time
[Chakraborty-Das-Goldenberg-Koucky-Saks’18],
O(f(ε)) –approx in O(n1+ε) time [Andoni-Nowatzki’20]

49

What do these problems have in common ?

What do these problems have in common ?

• Widely used metrics

What do these problems have in common ?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially)

quadratic running time

What do these problems have in common ?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially)

quadratic running time
• We have no idea if/how we can do any better

What do these problems have in common ?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially)

quadratic running time
• We have no idea if/how we can do any better

• Plausible explanation:
– 3SUM-hard ? People tried for years…

What do these problems have in common ?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially)

quadratic running time
• We have no idea if/how we can do any better

• Plausible explanation:
– 3SUM-hard ? People tried for years…
– hard under OVH and SETH ?

Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time

• Show conditional quadratic lower bounds
– Assuming SETH / OVH
– Basic approach
– Hardness for LCS

Reminder: Orthogonal Vectors Hypothesis (OVH)

Reminder: Orthogonal Vectors Hypothesis (OVH)

• Orthogonal Vectors Problem (OV). Given a set of
vectors S ⊆ {0, 1}d, d = ω(log n), |S|=n, are
there a, b ∈ S s. t. Σi=1

d aibi = 0 ?

– Can be solved trivially in O(n2d) time
– Best known algorithm runs in n2-1/O(log c(n)) time,

where d=c(n)·log n [Abboud-Williams-Yu’15]

Reminder: Orthogonal Vectors Hypothesis (OVH)

• Orthogonal Vectors Problem (OV). Given a set of
vectors S ⊆ {0, 1}d, d = ω(log n), |S|=n, are
there a, b ∈ S s. t. Σi=1

d aibi = 0 ?

– Can be solved trivially in O(n2d) time
– Best known algorithm runs in n2-1/O(log c(n)) time,

where d=c(n)·log n [Abboud-Williams-Yu’15]

• OV Hypothesis (implied by SETH):

Reminder: Orthogonal Vectors Hypothesis (OVH)

• Orthogonal Vectors Problem (OV). Given a set of
vectors S ⊆ {0, 1}d, d = ω(log n), |S|=n, are
there a, b ∈ S s. t. Σi=1

d aibi = 0 ?

– Can be solved trivially in O(n2d) time
– Best known algorithm runs in n2-1/O(log c(n)) time,

where d=c(n)·log n [Abboud-Williams-Yu’15]

• OV Hypothesis (implied by SETH):
OV can’t be solved in n2-ε·dO(1) time for any ε > 0.

Quadratic hardness under OVC

61

Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Quadratic hardness under OVC

• Approach: reduce OV to distance computation:

62

Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Quadratic hardness under OVC

• Approach: reduce OV to distance computation:
– S⊆{0,1}d → sequence x, |x|≤ n·dO(1)

– S⊆{0,1}d → sequence y, |y|≤ n·dO(1)

63

Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Quadratic hardness under OVC

• Approach: reduce OV to distance computation:
– S⊆{0,1}d → sequence x, |x|≤ n·dO(1)

– S⊆{0,1}d → sequence y, |y|≤ n·dO(1)

– distance(x,y)=small if exists a, b ∈ S with Σiaibi =0
– distance(x,y)=large, otherwise
– The construction time is n·dO(1)

– Gadgets for coordinates and vectors

64

Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Quadratic hardness under OVC

• Approach: reduce OV to distance computation:
– S⊆{0,1}d → sequence x, |x|≤ n·dO(1)

– S⊆{0,1}d → sequence y, |y|≤ n·dO(1)

– distance(x,y)=small if exists a, b ∈ S with Σiaibi =0
– distance(x,y)=large, otherwise
– The construction time is n·dO(1)

– Gadgets for coordinates and vectors

65

Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Next: hardness
for LCS

Hardness for LCS

I will present the ideas behind the proof from
[Abboud-Backurs-VW’15].
Full construction. NO full proof.

[Bringmann-Kunnemann’15] obtained an independent proof.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Attempt 1:
x = f(s1) f(s2) … f(si) … f(sn)

y = (g(s0))n-1 g(s1) g(s2) … g(sj) … g(sn) (g(s0))n-1

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Attempt 1:
x = f(s1) f(s2) … f(si) … f(sn)

y = (g(s0))n-1 g(s1) g(s2) … g(sj) … g(sn) (g(s0))n-1

Idea: Imagine gadgets are letters.
If no OV, LCS length is n β; If si∙sj=0 can align f(si) and g(sj) and all

other f(sk) with g(s0) to get LCS length ≥ (n-1) β + (β+1) > n β.

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Attempt 1:
x = f(s1) f(s2) … f(si) … f(sn)

y = (g(s0))n-1 g(s1) g(s2) … g(sj) … g(sn) (g(s0))n-1

Idea: Imagine gadgets are letters.
If no OV, LCS length is n β; If si∙sj=0 can align f(si) and g(sj) and all

other f(sk) with g(s0) to get LCS length ≥ (n-1) β + (β+1) > n β.

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Attempt 1:
x = f(s1) f(s2) … f(si) … f(sn)

y = (g(s0))n-1 g(s1) g(s2) … g(sj) … g(sn) (g(s0))n-1

Idea: Imagine gadgets are letters.
If no OV, LCS length is n β; If si∙sj=0 can align f(si) and g(sj) and all

other f(sk) with g(s0) to get LCS length ≥ (n-1) β + (β+1) > n β.

Problem: Opt LCS might not align entire gadgets!

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
• s0 – vector of all 1s (no vector orthog. to s0)

Attempt 1:
x = f(s1) f(s2) … f(si) … f(sn)

y = (g(s0))n-1 g(s1) g(s2) … g(sj) … g(sn) (g(s0))n-1

Idea: Imagine gadgets are letters.
If no OV, LCS length is n β; If si∙sj=0 can align f(si) and g(sj) and all

other f(sk) with g(s0) to get LCS length ≥ (n-1) β + (β+1) > n β.

Problem: Opt LCS might not align entire gadgets!

Encoding the outer Boolean OR
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x
and y so that LCS(x,y) is Large

if there is an OV pair and
LCS(x,y) is Small otherwise.

Idea for hardness
for LCS

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is
matched.

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(sk) is aligned with two different f(si) and f(sj).

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(sk) is aligned with two different f(si) and f(sj).

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(sk) is aligned with two different f(si) and f(sj).

Problem: LCS might align f(si) with several g(sk).

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Idea for hardness
for LCS

Attempt 2: Q = 0q, R=1q

x = Q f(s1)R Q f(s2)R … Q f(sn) R

y = (Qg(s0) R)n-1 Qg(s1)R Q g(s2) R… Q g(sn) R (Qg(s0) R)n-1

Lemma: If a 0 (or 1) is matched, its entire 0q (or 1q) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(sk) is aligned with two different f(si) and f(sj).

Problem: LCS might align f(si) with several g(sk).
The g(sk) are partitioned into blocks aligned with at most a single f(si).

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t
appear in the f
and g gadgets

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Idea:

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Idea:
P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,

and also as many Ps as possible from y are aligned.

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Idea:
P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,

and also as many Ps as possible from y are aligned.
≥ n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Idea:
P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,

and also as many Ps as possible from y are aligned.
≥ n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.
Thus, exactly n-1 Ps will be unmatched, and every f(si) will be fully

aligned with some g(sj) (possibly j=0).

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Idea:
P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,

and also as many Ps as possible from y are aligned.
≥ n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.
Thus, exactly n-1 Ps will be unmatched, and every f(si) will be fully

aligned with some g(sj) (possibly j=0).

Q=0q,R=1q,P=2r

The gadgets f(si) and g(sj) act as letters!

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

LCS hardness idea

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-
1

LCS length:

Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Q=0q,R=1q,P=2r

LCS hardness idea

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-
1

LCS length:
2n|P| + n(|Q|+|R|)+ Σn

i=1 LCS(f(si),g(sj)), g(sj) aligned with f(si)

Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Q=0q,R=1q,P=2r

#Ps in y is 3n-1, and n-1 are not matched, so 2n
aligned.

LCS hardness idea

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-
1

LCS length:
2n|P| + n(|Q|+|R|)+ Σn

i=1 LCS(f(si),g(sj)), g(sj) aligned with f(si)

= 2nr + 2qn + n β if no orthog. pair
≥ [2nr + 2qn + n β] + 1 if 9 an orthog. pair.

Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Q=0q,R=1q,P=2r

#Ps in y is 3n-1, and n-1 are not matched, so 2n
aligned.

Reduction:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Reduction:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Tricky proof in paper shows the following suffice:
|Q|, |R|,|P|, |f(si)|,|g(si)| ≤ poly(d), so that
|x|,|y| ≤ n poly(d).

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0, ≥ β + 1
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46 e(0) = 64
c(1) = 4 e(1) = 6

LCS(c(1),e(1)) = 0, and
LCS(c(x),e(y)) = 1

for (x,y) ≠ (1,1).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46 e(0) = 64
c(1) = 4 e(1) = 6

LCS(c(1),e(1)) = 0, and
LCS(c(x),e(y)) = 1

for (x,y) ≠ (1,1).

All that remains!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5u block is not matched,

then the subsequence length would be ≤ du + 2d < r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5u block is not matched,

then the subsequence length would be ≤ du + 2d < r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5u block is not matched,

then the subsequence length would be ≤ du + 2d < r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5u block is not matched,

then the subsequence length would be ≤ du + 2d < r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

Recall we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d+1.

If two 5s are matched together, their entire 5u blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
If no 3 is matched in an LCS, then all 5s must be: if a 5u block is not matched,

then the subsequence length would be ≤ du + 2d < r.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])

3,5 brand
new symbols

u is large,
r even larger

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(si[t]) and e(sj[t]) are matched.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(si[t]) and e(sj[t]) are matched.
If si·sj ≠ 0, the alignment of c(si[t]) with e(sj[t]) for all t gives < d,

so we get ≤(d+1)u+d-1 = r. (but then the 3s would be matched, so =r)

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(si[t]) and e(sj[t]) are matched.
If si·sj ≠ 0, the alignment of c(si[t]) with e(sj[t]) for all t gives < d,

so we get ≤(d+1)u+d-1 = r. (but then the 3s would be matched, so =r)

If si·sj = 0, we get (d+1)u+d = r+1.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

Vector gadgets

f(si) = 3r 5u c(si[1]) 5u … 5u c(si[d]) 5u

g(sj) = 5u e(sj[1]) 5u … 5u e(sj[d]) 5u 3r

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(si[t]) and e(sj[t]) are matched.
If si·sj ≠ 0, the alignment of c(si[t]) with e(sj[t]) for all t gives < d,

so we get ≤(d+1)u+d-1 = r. (but then the 3s would be matched, so =r)

If si·sj = 0, we get (d+1)u+d = r+1.

Recall that we have coordinate gadgets
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1
otherwise; also, |c(x)|,|e(x)|≤ 2.

LCS(f(s)i, g(sj)) = r if si ⋅sj≠ 0
and
LCS(f(si), g(sj)) = r+1

otherwise.

OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46 e(0) = 64
c(1) = 4 e(1) = 6

LCS(c(1),e(1)) = 0, and
LCS(c(x),e(y)) = 1

for (x,y) ≠ (1,1).

Done!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1,
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0,

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.

Extensions

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
– Reduction works from Max-k-SAT, so base on:

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
– Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2n(1-ε) poly(n) time for all k.

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
– Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2n(1-ε) poly(n) time for all k.
(although – maybe this is equivalent to SETH…)

Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
– Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2n(1-ε) poly(n) time for all k.
(although – maybe this is equivalent to SETH…)
– On much more believable assumptions!

Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas

Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:

Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:

– CIRCUIT-SAT
– NC-SAT
– NC1-SAT …

Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:

– CIRCUIT-SAT
– NC-SAT
– NC1-SAT …

C-SETH: satisfiability of circuits from
circuit class C on n variables and size s

requires 2n-o(n) poly(s) time.

Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:

– CIRCUIT-SAT
– NC-SAT
– NC1-SAT …

C-SETH: satisfiability of circuits from
circuit class C on n variables and size s

requires 2n-o(n) poly(s) time.

E.g. NC-SETH should be much more believable!

LCS, Edit Distance and Friends
are very hardAHVW’15:

reduction from SAT of
“Branching Programs”

Many Consequences:

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

2. Shaving logarithms from 𝑛𝑛2 implies novel
circuit lower bounds!

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

2. Shaving logarithms from 𝑛𝑛2 implies novel
circuit lower bounds!

An 𝑛𝑛2

log𝜔𝜔 1 𝑛𝑛
alg. →

ENP is not in NC1.

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

2. Shaving logarithms from 𝑛𝑛2 implies novel
circuit lower bounds!

An 𝑛𝑛2

log𝜔𝜔 1 𝑛𝑛
alg. →

ENP is not in NC1.

OV and APSP
have such algs.
W’14,AWY’15

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

2. Shaving logarithms from 𝑛𝑛2 implies novel
circuit lower bounds!

An 𝒏𝒏𝟐𝟐

log𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
time alg. → ENP

has no non-uniform
Boolean formulas of size n5.

An 𝑛𝑛2

log𝜔𝜔 1 𝑛𝑛
alg. →

ENP is not in NC1.

OV and APSP
have such algs.
W’14,AWY’15

LCS, Edit Distance and Friends
are very hard

1. Edit Distance / LCS / … require 𝑛𝑛2−𝑜𝑜 1 time under NC-SETH.

AHVW’15:
reduction from SAT of
“Branching Programs”

Many Consequences:

2. Shaving logarithms from 𝑛𝑛2 implies novel
circuit lower bounds!

An 𝒏𝒏𝟐𝟐

log𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
time alg. → ENP

has no non-uniform
Boolean formulas of size n5.

An 𝑛𝑛2

log𝜔𝜔 1 𝑛𝑛
alg. →

ENP is not in NC1.

OV and APSP
have such algs.
W’14,AWY’15

Best alg:
𝑛𝑛2

log2 𝑛𝑛

	Lecture 5: Hardness for Sequence Problems under SETH and OVC
	Plan
	Plan
	Plan
	Plan
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Dynamic Time Warping
	Dynamic Time Warping
	Dynamic Time Warping
	Dynamic Time Warping
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Computing edit distance
	Computing edit distance
	Computing edit distance
	Computing edit distance
	Computing edit distance
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	Plan
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Hardness for LCS
	OV to LCS
	OV to LCS
	OV to LCS
	OV to LCS
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	OV to LCS
	OV to LCS
	OV to LCS
	OV to LCS
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	OV to LCS
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard

