Lecture 5: Hardness for Sequence Problems under SETH and OVC

Thanks to Piotr Indyk and Arturs Backurs for some slides

Plan

Plan

- Define sequence problems:
- (Discrete) Frechet Distance
- Edit Distance and LCS
- Dynamic Time Warping (DTW)

Plan

- Define sequence problems:
- (Discrete) Frechet Distance
- Edit Distance and LCS
- Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
- Dynamic programming, quadratic time

Plan

- Define sequence problems:
- (Discrete) Frechet Distance
- Edit Distance and LCS
- Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
- Dynamic programming, quadratic time
- Show conditional quadratic lower bounds
- Assuming SETH / OV, example: LCS

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$
- go right only on q to $\left(p_{i}, q_{j+1}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$
- go right only on q to $\left(p_{i}, q_{j+1}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$
- go right only on q to $\left(p_{i}, q_{j+1}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$
- go right only on q to $\left(p_{i}, q_{j+1}\right)$
- go right on both to $\left(p_{i+1}, q_{j+1}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position ($\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}$) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$
- go right only on q to $\left(p_{i}, q_{j+1}\right)$
- go right on both to $\left(p_{i+1}, q_{j+1}\right)$

Walks on sequences

Given two sequences $\left\{p_{i}\right\}$ and $\left\{q_{j}\right\}$, a walk on them starts at p_{1} and q_{1}. In each step it is in some position (p_{i}, q_{j}) and can next:

- go right only on p to $\left(p_{i+1}, q_{j}\right)$

Sequence walk problems optimize, over all such walks,

- go right only on q to $\left(p_{i}, q_{j+1}\right)$
- go right on both to $\left(p_{i+1}, q_{j+1}\right)$
some measure depending on the distances between p_{i} and q_{j} over all steps (p_{i}, q_{j}) of the walk.

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes
-Definition:

- Let $\mathrm{F}=$ set of monotone functions $[0,1] \rightarrow[0,1]$
- For two curves P,Q: $[0,1] \rightarrow \mathrm{R}^{2}$:

$$
D_{F r}(P, Q)=\min _{f, g \in F} \max _{t \in[0,1]}| | P(f(t))-Q(g(t))| |
$$

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes
-Definition:

- Let $\mathrm{F}=$ set of monotone functions $[0,1] \rightarrow[0,1]$
- For two curves P,Q: $[0,1] \rightarrow R^{2}$:
$D_{F r}(P, Q)=\min _{f, g \in F} \max _{t \in[0,1]}| | P(f(t))-Q(g(t))| |$
-Discrete version:
- $F=\{f:[0,1] \rightarrow\{1 \ldots n\}$, nondecreasing $\}$,
- P,Q: $\{1 \ldots . . n\} \rightarrow R^{2}$: Curves are sequences of points in the plane

(Discrete) Frechet Distance [Alt-Godau'95]

- "Dog walking distance"
- Smallest length leash that enables dog-walking along two routes
-Definition:

Find a walk along P and Q that minimizes the max distance over all steps.

- Let $\mathrm{F}=$ set of monotone functions $[0,1] \rightarrow[0,1]$
- For two curves P,Q: $[0,1] \rightarrow \mathrm{R}^{2}$:
$D_{F r}(P, Q)=\min _{f, g \in F} \max _{t \in[0,1]}| | P(f(t))-Q(g(t))| |$
-Discrete version:
- $F=\{f:[0,1] \rightarrow\{1 \ldots n\}$, nondecreasing $\}$,
- P,Q: $\{1 \ldots . . n\} \rightarrow R^{2}$: Curves are sequences of points in the plane

Frechet Distance: Algorithm

Frechet Distance: Algorithm

- Discrete version:
- Let $\mathrm{F}=\{\mathrm{f}:[0,1] \rightarrow\{1 \ldots \mathrm{n}\}$, nondecreasing $\}$, mapping time to position,
- For two sequences of points, $\mathrm{P}, \mathrm{Q}:\{1 \ldots \mathrm{n}\} \rightarrow \mathrm{R}^{2}$:

$$
D_{\mathrm{Fr}}(\mathrm{P}, \mathrm{Q})=\min _{\mathrm{f}, \mathrm{~g} \in \mathrm{~F}} \max _{\mathrm{t} \in[0,1]}\|P(\mathrm{f}(\mathrm{t}))-\mathrm{Q}(\mathrm{~g}(\mathrm{t}))\|
$$

Frechet Distance: Algorithm

- Discrete version:
- Let $\mathrm{F}=\{\mathrm{f}:[0,1] \rightarrow\{1 \ldots \mathrm{n}\}$, nondecreasing $\}$, mapping time to position,
- For two sequences of points, $\mathrm{P}, \mathrm{Q}:\{1 \ldots \mathrm{n}\} \rightarrow \mathrm{R}^{2}$:

$$
D_{\mathrm{Fr}}(\mathrm{P}, \mathrm{Q})=\min _{\mathrm{f}, \mathrm{~g} \in \mathrm{~F}} \max _{\mathrm{t} \in[0,1]} \| P(f(\mathrm{t}))-\mathrm{Q}(\mathrm{~g}(\mathrm{t}))| |
$$

- Dynamic programming:
- $A[i, j]=$ distance between curves $P(1) \ldots P(i)$ and $Q(1) \ldots Q(j)$
$-A[i, j]=\max [| | P(i)-Q(j)| |, \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$

Frechet Distance: Algorithm

- Discrete version:
- Let $\mathrm{F}=\{\mathrm{f}:[0,1] \rightarrow\{1 \ldots \mathrm{n}\}$, nondecreasing $\}$, mapping time to position,
- For two sequences of points, $\mathrm{P}, \mathrm{Q}:\{1 \ldots \mathrm{n}\} \rightarrow \mathrm{R}^{2}$:

$$
D_{\mathrm{Fr}}(\mathrm{P}, \mathrm{Q})=\min _{\mathrm{f}, \mathrm{~g} \in \mathrm{~F}} \max _{\mathrm{t} \in[0,1]} \| P(f(\mathrm{t}))-\mathrm{Q}(\mathrm{~g}(\mathrm{t}))| |
$$

- Dynamic programming:
- $A[i, j]=$ distance between curves $P(1) \ldots P(i)$ and $Q(1) \ldots Q(j)$
$-A[i, j]=\max [| | P(i)-Q(j)| |, \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$
- Time: $O\left(\mathrm{n}^{2}\right)$

Frechet Distance: Algorithm

- Discrete version:
- Let $\mathrm{F}=\{\mathrm{f}:[0,1] \rightarrow\{1 \ldots \mathrm{n}\}$, nondecreasing $\}$, mapping time to position,
- For two sequences of points, $\mathrm{P}, \mathrm{Q}:\{1 \ldots \mathrm{n}\} \rightarrow \mathrm{R}^{2}$:

$$
D_{\mathrm{Fr}}(\mathrm{P}, \mathrm{Q})=\min _{\mathrm{f}, \mathrm{~g} \in \mathrm{~F}} \max _{\mathrm{t} \in[0,1]} \| P(f(\mathrm{t}))-\mathrm{Q}(\mathrm{~g}(\mathrm{t}))| |
$$

- Dynamic programming:
- $A[i, j]=$ distance between curves $P(1) . . . \mathrm{P}(\mathrm{i})$ and $\mathrm{Q}(1) \ldots \mathrm{I}(\mathrm{j})$
$-A[i, j]=\max [| | P(i)-Q(j)| |, \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$
- Time: $O\left(\mathrm{n}^{2}\right)$
- Can be improved to $O\left(n^{2} \log \log n / \log n\right)$ [Agarwal-Avraham-Kaplan-Sharir'12] (also [Buchin-Buchin-Meulemans-Mulzer'14])

Frechet Distance: Algorithm

- Discrete version:
- Let $\mathrm{F}=\{\mathrm{f}:[0,1] \rightarrow\{1 \ldots \mathrm{n}\}$, nondecreasing $\}$, mapping time to position,
- For two sequences of points, $\mathrm{P}, \mathrm{Q}:\{1 \ldots \mathrm{n}\} \rightarrow \mathrm{R}^{2}$:

$$
D_{\mathrm{Fr}}(\mathrm{P}, \mathrm{Q})=\min _{\mathrm{f}, \mathrm{~g} \in \mathrm{~F}} \max _{\mathrm{t} \in[0,1]} \| P(f(\mathrm{t}))-\mathrm{Q}(\mathrm{~g}(\mathrm{t}))| |
$$

- Dynamic programming:
- $A[i, j]=$ distance between curves $P(1) . . . P(i)$ and $Q(1) \ldots Q(j)$
$-A[i, j]=\max [| | P(i)-Q(j)| |, \min (A[i-1, j-1], A[i, j-1], A[i-1, j])]$
- Time: $O\left(\mathrm{n}^{2}\right)$
- Can be improved to $O\left(n^{2} \log \log n / \log n\right)$ [Agarwal-Avraham-Kaplan-Sharir'12] (also [Buchin-Buchin-Meulemans-Mulzer'14])
- Many algorithms for special cases and variants

Dynamic Time Warping

Dynamic Time Warping

- Definition:
$-x, y$: two sequences of points of length n
$-A[i, j]=\operatorname{dist}\left(x_{i}, y_{j}\right)+\min (A[i-1, j], A[i-1, j-1], A[i, j-1])$
- DTW (x, y) $=\mathrm{A}[\mathrm{n}, \mathrm{n}]$

Find a walk along x and y that minimizes the sum of distances at each step.

Dynamic Time Warping

- Definition:
$-x, y$: two sequences of points of length n
$-A[i, j]=\operatorname{dist}\left(x_{i}, y_{j}\right)+\min (A[i-1, j], A[i-1, j-1], A[i, j-1])$
- DTW (x, y) $=\mathrm{A}[\mathrm{n}, \mathrm{n}]$

Find a walk along x and y that minimizes the sum of distances at each step.

- Speech processing and other applications

Dynamic Time Warping

- Definition:
$-x, y$: two sequences of points of length n
$-A[i, j]=\operatorname{dist}\left(x_{i}, y_{j}\right)+\min (A[i-1, j], A[i-1, j-1], A[i, j-1])$
- DTW (x, y) $=\mathrm{A}[\mathrm{n}, \mathrm{n}]$

Find a walk along x and y that minimizes the sum of distances at each step.

- Speech processing and other applications
- A simple $O\left(\mathrm{n}^{2}\right)$ time dynamic programming algorithm

Longest Common Subsequence (LCS)

- Definition:
- two sequences s and t of letters, length n
- find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing

Longest Common Subsequence (LCS)

- Definition:
- two sequences s and t of letters, length n
- find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple O(n^{2}) time algorithm:

Longest Common Subsequence (LCS)

- Definition:
- two sequences s and t of letters, length n
- find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple $O\left(n^{2}\right)$ time algorithm:

$$
A[i, j]=\left\{\begin{array}{l}
\max \{A[i-1, j], A[i, j-1], 1+A[i-1, j-1]\} \text { if } s[i]=t[i]\} \\
\max \{A[i-1, j], A[i, j-1]\} \text { otherwise. }
\end{array}\right.
$$

Longest Common Subsequence (LCS)

- Definition:
- two sequences s and t of letters, length n
- find a subsequence of both s and t of max length
- Example: LCS(meaning , matching) = maing
- Simple $O\left(n^{2}\right)$ time algorithm:

$$
A[i, j]=\left\{\begin{array}{l}
\max \{A[i-1, j], A[i, j-1], 1+A[i-1, j-1]\} \text { if } s[i]=t[i]\} \\
\max \{A[i-1, j], A[i, j-1]\} \text { otherwise. }
\end{array}\right.
$$

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4
meaning

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

```
meaning \xrightarrow{ insert a maeaning}{l}
```


Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

$$
\text { meaning } \xrightarrow{\text { insert } \mathrm{a}} \text { maeaning } \xrightarrow{\mathrm{e} \rightarrow \mathrm{t}} \text { mataning }
$$

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

Edit distance
 (a.k.a. Levenshtein distance)

- Definition:
$-x, y-$ two sequences of symbols of length n
- edit(x, y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

Computing edit distance

Computing edit distance

- A simple $O\left(n^{2}\right)$ time dynamic programming algorithm [WagnerFischer'74]

Computing edit distance

- A simple $O\left(n^{2}\right)$ time dynamic programming algorithm [WagnerFischer'74]
- Can be improved to $O\left(n^{2} / \log n\right)$ [Masek-Paterson'80]

Computing edit distance

- A simple $O\left(n^{2}\right)$ time dynamic programming algorithm [WagnerFischer'74]
- Can be improved to O($\left.\mathrm{n}^{2} / \log \mathrm{n}\right)$ [Masek-Paterson'80]
- Better algorithms for special cases:[u83,,Lv85,M86, GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10...]

Computing edit distance

- A simple $O\left(n^{2}\right)$ time dynamic programming algorithm [WagnerFischer'74]
- Can be improved to O($\mathrm{n}^{2} / \log n$) [Masek-Paterson'80]
- Better algorithms for special cases:[u83,Lv85,M86, GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10...]
- Approximation algorithms: $O(1)$-approx in $O\left(n^{2-\varepsilon}\right)$ time [Chakraborty-Das-Goldenberg-Koucky-Saks'18], $\mathrm{O}(\mathrm{f}(\varepsilon))$-approx in $\mathrm{O}\left(\mathrm{n}^{1+\varepsilon}\right)$ time [Andoni-Nowatzki'20]

What do these problems have in common ?

What do these problems have in common ?

- Widely used metrics

What do these problems have in common ?

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time

What do these problems have in common ?

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better

What do these problems have in common ?

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better
- Plausible explanation:
- 3SUM-hard ? People tried for years...

What do these problems have in common ?

- Widely used metrics
- Simple dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better
- Plausible explanation:
- 3SUM-hard ? People tried for years...
- hard under OVH and SETH ?

Plan

- Define sequence problems:
- (Discrete) Frechet Distance
- Edit Distance and LCS
- Dynamic Time Warping (DTW)
- Birds eye view on the upper bounds
- Dynamic programming, quadratic time
- Show conditional quadratic lower bounds
- Assuming SETH / OVH
- Basic approach
- Hardness for LCS

Reminder: Orthogonal Vectors Hypothesis (OVH)

Reminder: Orthogonal Vectors Hypothesis (OVH)

- Orthogonal Vectors Problem (OV). Given a set of vectors $S \subseteq\{0,1\}^{d}, d=\omega(\log n),|S|=n$, are there $a, b \in S$ s.t. $\sum_{i=1}^{d} a_{i} b_{i}=0$?
- Can be solved trivially in $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}\right)$ time
- Best known algorithm runs in $\mathrm{n}^{2-1 / O(\log c(n))}$ time, where $d=c(n) \cdot \log n[$ [Abboud-Williams-Yu'15]

Reminder: Orthogonal Vectors Hypothesis (OVH)

- Orthogonal Vectors Problem (OV). Given a set of vectors $S \subseteq\{0,1\}^{d}, d=\omega(\log n),|S|=n$, are there $a, b \in S$ s.t. $\sum_{i=1}^{d} a_{i} b_{i}=0$?
- Can be solved trivially in $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}\right)$ time
- Best known algorithm runs in $\mathrm{n}^{2-1 / O(\log c(n))}$ time, where $d=c(n) \cdot \log n[$ [Abboud-Williams-Yu'15]
- OV Hypothesis (implied by SETH):

Reminder: Orthogonal Vectors Hypothesis (OVH)

- Orthogonal Vectors Problem (OV). Given a set of vectors $S \subseteq\{0,1\}^{d}, d=\omega(\log n),|S|=n$, are there $a, b \in S$ s.t. $\sum_{i=1}^{d} a_{i} b_{i}=0$?
- Can be solved trivially in $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}\right)$ time
- Best known algorithm runs in $\mathrm{n}^{2-1 / O(\log c(n))}$ time, where $d=c(n) \cdot \log n[$ [Abboud-Williams-Yu'15]
- OV Hypothesis (implied by SETH):

OV can't be solved in $n^{2-\varepsilon} \cdot d^{O(1)}$ time for any $\varepsilon>0$.

Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14;
Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]
*See also [Abboud-V. Williams-Weimann'14]

Quadratic hardness under OVC

Theorem*: No $\mathrm{n}^{2-\Omega(1)}$ time algorithm for EDIT, DTW,
Frechet distances or LCS unless OVC fails [Bringmann'14;
Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
*See also [Abboud-V. Williams-Weimann'14]

Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW,
 Frechet distances or LCS unless OVC fails [Bringmann'14;

Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $x,|x| \leq n \cdot d^{0(1)}$
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $y,|y| \leq n \cdot d^{0(1)}$
*See also [Abboud-V. Williams-Weimann'14]

Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14;

Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $x,|x| \leq n \cdot d^{0(1)}$
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $y,|y| \leq n \cdot d^{0(1)}$
- distance $(x, y)=s m a l l$ if exists $a, b \in S$ with $\Sigma_{i} a_{i} b_{i}=0$
- distance(x, y)=large, otherwise
- The construction time is $n \cdot d^{0(1)}$
- Gadgets for coordinates and vectors
*See also [Abboud-V. Williams-Weimann'14]

Quadratic hardness under OVC

Theorem*: No $n^{2-\Omega(1)}$ time algorithm for EDIT, DTW, Frechet distances or LCS unless OVC fails [Bringmann'14;
Backurs-Indyk'15; Abboud-Backurs-VW'15; Bringmann-Kunnemann'15]

- Approach: reduce OV to distance computation:
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $x,|x| \leq n \cdot d^{0(1)}$
$-S \subseteq\{0,1\}^{d} \rightarrow$ sequence $y,|y| \leq n \cdot d^{0(1)}$
- distance $(x, y)=s m a l l$ if exists $a, b \in S$ with $\Sigma_{i} a_{i} b_{i}=0$
- distance(x, y)=large, otherwise
- The construction time is $n \cdot d^{0(1)}$
- Gadgets for coordinates and vectors

Next: hardness for LCS
*See also [Abboud-V. Williams-Weimann'14]

Hardness for LCS

I will present the ideas behind the proof from
[Abboud-Backurs-VW'15].
Full construction. NO full proof.
[Bringmann-Kunnemann'15] obtained an independent proof.

OV to LCS

Given vectors $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}$ is

$$
\vee_{i, j \in[n]} \wedge_{k \in[d]}\left(\neg s_{i}[k] \vee \neg s_{j}[k]\right) .
$$

OV to LCS

Given vectors $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}$ is

$$
\vee_{i, j \in[n]} \wedge_{k \in[d]}\left(\neg s_{i}[k] \vee \neg S_{j}[k]\right)
$$

$$
\begin{aligned}
& \text { Coordinate gadgets } c, e \text { taking bits } \\
& \text { to short sequences s.t. } \\
& \operatorname{LCS}(c(x), e(y))=0 \text { if } x=y=1 \\
& \operatorname{LCS}(c(x), e(y))=1 \text { if } x \cdot y=0
\end{aligned}
$$

OV to LCS

Given vectors $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}$ is

$$
\vee_{i, j \in[n]} \wedge_{k \in[d]}\left(\neg s_{i}[k] \vee \neg s_{j}[k]\right) .
$$

Coordinate gadgets c, e taking bits
to short sequences s.t. $\operatorname{LCS}(c(x), e(y))=0$ if $x=y=1$, $\operatorname{LCS}(c(x), e(y))=1$ if $x \cdot y=0$.

OV to LCS

Given vectors $\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}$ is

$$
\bigvee_{i, j \in[n]} \wedge_{k \in[d]}\left(\neg s_{i}[k] \vee \neg S_{j}[k]\right)
$$

$\left.\bigvee_{i, j \in[n]} \wedge_{c \in[[]]} \neg s_{i}[c] \vee \neg s_{j}[c]\right)$
Encoding the outer Boolean OR for OV to LCS
$\bigvee_{i} \wedge_{c \in[n][d]}\left(\neg s_{i}[c] \vee \neg s_{j}[c]\right)$
$i, j \in[n]$

- Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{\mathrm{i}}\right), g\left(s_{\mathrm{j}}\right)\right)=\beta$ if $\mathrm{s}_{\mathrm{i}} \cdot s_{\mathrm{j}} \neq 0, \operatorname{LCS}\left(f\left(s_{\mathrm{i}}\right), g\left(s_{\mathrm{j}}\right)\right)=\beta+1$ otherwise.

$\wedge_{c \in[d]}\left(\neg s_{i}[c] \vee \neg s_{j}[c]\right)$

$i, j \in[n]$

Encoding the outer Boolean OR for OV to LCS

- Let $S=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{\mathrm{i}}\right), g\left(s_{\mathrm{j}}\right)\right)=\beta$ if $\mathrm{s}_{\mathrm{i}} \cdot s_{\mathrm{j}} \neq 0, \operatorname{LCS}\left(f\left(\mathrm{~s}_{\mathrm{i}}\right), g\left(\mathrm{~s}_{\mathrm{j}}\right)\right)=\beta+1$ otherwise.

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and $\operatorname{LCS}(x, y)$ is Small otherwise.

$\wedge_{c \in[d]}\left(\neg s_{i}[c] \vee \neg s_{j}[c]\right)$
 $i, j \in[n]$

Encoding the outer Boolean OR for OV to LCS

- Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors from $O V$ instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and $\operatorname{LCS}(x, y)$ is Small otherwise.

$\wedge_{c \in[d]}\left(\neg s_{i}[c] \vee \neg s_{j}[c]\right)$

$i, j \in[n]$

Encoding the outer Boolean OR for OV to LCS

- Let $S=\left\{s_{1}, S_{2}, \ldots, S_{n}\right\}$ be the vectors from $O V$ instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Attempt 1:

$x=f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{i}\right) \ldots f\left(s_{n}\right)$
Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and $\operatorname{LCS}(x, y)$ is Small otherwise.

$$
y=\left(g\left(s_{0}\right)\right)^{n-1} g\left(s_{1}\right) g\left(s_{2}\right) \ldots g\left(s_{j}\right) \ldots g\left(s_{n}\right)\left(g\left(s_{0}\right)\right)^{n-1}
$$

$\wedge_{c \in[d]}\left(\neg S_{i}[c] \vee \neg S_{j}[c]\right)$
 $i, j \in[n]$

Encoding the outer Boolean OR for OV to LCS

- Let $S=\left\{s_{1}, S_{2}, \ldots, S_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Attempt 1:

$$
x=f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{i}\right) \ldots f\left(s_{n}\right)
$$

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and

$\operatorname{LCS}(x, y)$ is Small otherwise.

$$
y=\left(g\left(s_{0}\right)\right)^{n-1} g\left(s_{1}\right) g\left(s_{2}\right) \ldots g\left(s_{j}\right) \ldots g\left(s_{n}\right)\left(g\left(s_{0}\right)\right)^{n-1}
$$

Idea: Imagine gadgets are letters.
If no $O V$, $L C S$ length is $n \beta$; If $s_{i} \cdot s_{j}=0$ can align $f\left(s_{i}\right)$ and $g\left(s_{j}\right)$ and all other $f\left(s_{k}\right)$ with $g\left(s_{0}\right)$ to get LCS length $\geq(n-1) \beta+(\beta+1)>n \beta$.

$\wedge_{c \in[d]}\left(\neg S_{i}[c] \vee \neg S_{j}[c]\right)$
 $i, j \in[n]$

Encoding the outer Boolean OR for OV to LCS

- Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Attempt 1:

$$
\begin{aligned}
& x=f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{i}\right) \ldots f\left(s_{n}\right) \\
& y=\left(g\left(s_{0}\right)\right)^{n-1} g\left(s_{1}\right) g\left(s_{2}\right) \ldots g\left(s_{j}\right) \ldots g\left(s_{n}\right)\left(g\left(s_{0}\right)\right)^{n-1}
\end{aligned}
$$

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and $\operatorname{LCS}(x, y)$ is Small otherwise.

Idea: Imagine gadgets are letters.
If no OV, LCS length is $n \beta$; If $s_{i} \cdot s_{j}=0$ can align $f\left(s_{i}\right)$ and $g\left(s_{j}\right)$ and all other $f\left(s_{k}\right)$ with $g\left(s_{0}\right)$ to get LCS length $\geq(n-1) \beta+(\beta+1)>n \beta$.

$\wedge_{c \in[d]}\left(\neg S_{i}[c] \vee \neg S_{j}[c]\right)$
 $i, j \in[n]$

- Let $S=\left\{s_{1}, S_{2}, \ldots, S_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Attempt 1:
$x=f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{i}\right) \ldots f\left(s_{n}\right)$
$y=\left(g\left(s_{0}\right)\right)^{n-1} g\left(s_{1}\right) g\left(s_{2}\right) \ldots g\left(s_{j}\right) \ldots g\left(s_{n}\right)\left(g\left(s_{0}\right)\right)^{n-1}$

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and $\operatorname{LCS}(x, y)$ is Small otherwise.

Idea: Imagine gadgets are letters.
If no $O V$, $L C S$ length is $n \beta$; If $s_{i} \cdot s_{j}=0$ can align $f\left(s_{i}\right)$ and $g\left(s_{j}\right)$ and all other $f\left(s_{k}\right)$ with $g\left(s_{0}\right)$ to get LCS length $\geq(n-1) \beta+(\beta+1)>n \beta$.

Problem: Opt LCS might not align entire gadgets!

$\wedge_{c \in[d]}\left(\neg S_{i}[c] \vee \neg S_{j}[c]\right)$
 $i, j \in[n]$

- Let $S=\left\{s_{1}, S_{2}, \ldots, S_{n}\right\}$ be the vectors from OV instance
- Suppose we have $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise.
- s_{0} - vector of all 1 s (no vector orthog. to s_{0})

Attempt 1:
$x=f\left(s_{1}\right) f\left(s_{2}\right) \ldots f\left(s_{i}\right) \ldots f\left(s_{n}\right)$
$y=\left(g\left(s_{0}\right)\right)^{n-1} g\left(s_{1}\right) g\left(s_{2}\right) \ldots g\left(s_{j}\right) \ldots g\left(s_{n}\right)\left(g\left(s_{0}\right)\right)^{n-1}$

Want to create sequences x and y so that $\operatorname{LCS}(x, y)$ is Large if there is an OV pair and

Idea: Imagine gadgets are letters.
If no $O V$, $L C S$ length is $n \beta$; If $s_{i} \cdot s_{j}=0$ can align $f\left(s_{i}\right)$ and $g\left(s_{j}\right)$ and all other $f\left(s_{k}\right)$ with $g\left(s_{0}\right)$ to get LCS length $\geq(n-1) \beta+(\beta+1)>n \beta$.

Problem: Opt LCS might not align entire gadgets!

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors
Each $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$
$\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Idea for hardness
for LCS

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Idea for hardness for LCS

Attempt 2:

0 and 1 don't appear in the f
and g gadgets
$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $\mathrm{s}_{\mathrm{i}} \rightarrow$ gadget sequences $\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Attempt 2:

Idea for hardness

for LCS
0 and 1 don't appear in the f
$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^{q} (or 1^{q}) block is matched.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $\mathrm{s}_{\mathrm{i}} \rightarrow$ gadget sequences $\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Attempt 2:

Idea for hardness

for LCS
0 and 1 don't appear in the f
$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^{q} (or 1^{9}) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $\mathrm{s}_{\mathrm{i}} \rightarrow$ gadget sequences $\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Attempt 2:

Idea for hardness

for LCS
0 and 1 don't appear in the f
$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^{q} (or 1^{q}) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no $g\left(s_{k}\right)$ is aligned with two different $f\left(s_{i}\right)$ and $f\left(s_{j}\right)$.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $\mathrm{s}_{\mathrm{i}} \rightarrow$ gadget sequences $\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)$ and $\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Idea for hardness
 for LCS

0 and 1 don't
appear in the f
Attempt 2:

$$
\mathrm{Q}=0^{q}, \mathrm{R}=1^{\text {and } g \text { gadgets }}
$$

$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$
Lemma: If a 0 (or 1) is matched, its entire 0^{9} (or 1^{9}) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no $g\left(s_{k}\right)$ is aligned with two different $f\left(s_{i}\right)$ and $f\left(s_{j}\right)$.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Idea for hardness for LCS

0 and 1 don't appear in the f

Attempt 2:

$$
\mathrm{Q}=0^{q}, \mathrm{R}=1^{\text {and } g \text { gadgets }}
$$

$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{0}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$
Lemma: If a 0 (or 1) is matched, its entire 0^{9} (or 1^{9}) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no $g\left(s_{k}\right)$ is aligned with two different $f\left(s_{i}\right)$ and $f\left(s_{j}\right)$.

Problem: LCS might align $f\left(s_{\mathrm{i}}\right)$ with several $g\left(s_{\mathrm{k}}\right)$.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be the vectors Each $s_{i} \rightarrow$ gadget sequences $f\left(s_{i}\right)$ and $g\left(s_{i}\right)$ $\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta$ if $s_{i} \cdot s_{j} \neq 0, \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta+1$ otherwise. $s_{0}-$ vector of all 1 s (no vector orthog. to s_{0})

Idea for hardness

 for LCSAttempt 2:

$$
Q=0^{q}, R=1^{q}
$$

$x=Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R \ldots Q f\left(s_{n}\right) R$
$y=\left(Q g\left(s_{0}\right) R\right)^{n-1} Q g\left(s_{1}\right) R Q g\left(s_{2}\right) R \ldots Q g\left(s_{n}\right) R\left(Q g\left(s_{0}\right) R\right)^{n-1}$

Lemma: If a 0 (or 1) is matched, its entire 0^{q} (or 1^{q}) block is matched. Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no $g\left(s_{k}\right)$ is aligned with two different $f\left(s_{i}\right)$ and $f\left(s_{j}\right)$.

Problem: LCS might align $f\left(s_{i}\right)$ with several $g\left(s_{k}\right)$.
The $g\left(s_{k}\right)$ are partitioned into blocks aligned with at most a single $f\left(s_{i}\right)$.

```
Let S = {s, , sp,\ldots, s}
Each si}->\mathrm{ sequences f(si) and g(s}\mp@subsup{s}{i}{}
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
so - vector of all 1s (no vector orthog. to so)
```

Attempt 3:
$x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P^{|y|}$

$$
y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}
$$

```
Let S = {s, , sp,\ldots, s}
Each si}->\mathrm{ sequences f(si) and g(s}\mp@subsup{s}{i}{}
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
so - vector of all 1s (no vector orthog. to so)
```

Attempt 3:
$x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P^{|y|}$
$y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}$

Idea:

```
Let S ={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},\ldots,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
```

so - vector of all 1s (no vector orthog. to so)

```
```

```
so - vector of all 1s (no vector orthog. to so)
```

```

\section*{LCS hardness idea}

\section*{Attempt 3:}
\(x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P^{|y|}\)
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)

Idea:
\(P=2^{r}, r\) big but \(r \ll q\), so that in an LCS all Qs and Rs of \(x\) are still aligned, and also as many Ps as possible from y are aligned.
```

Let S ={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{LCS hardness idea}

Attempt 3:
\(x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P^{|y|}\)
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)

Idea:
\(P=2^{r}, r\) big but \(r \ll q\), so that in an LCS all Qs and Rs of \(x\) are still aligned, and also as many Ps as possible from \(y\) are aligned.
\(\geq n-1\) Ps of \(y\) not matched in an LCS due to the matched Qs and Rs of \(x\).
```

Let S ={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{LCS hardness idea}

\section*{Attempt 3:}
```

$x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) \underline{R}^{|y|}$

```
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)

Idea:
\(P=2^{r}, r\) big but \(r \ll q\), so that in an LCS all \(Q s\) and Rs of \(x\) are still aligned, and also as many Ps as possible from y are aligned.
\(\geq n-1\) Ps of \(y\) not matched in an LCS due to the matched Qs and Rs of \(x\).
Thus, exactly \(n-1\) Ps will be unmatched, and every \(f\left(s_{i}\right)\) will be fully aligned with some \(g\left(s_{\mathrm{j}}\right)\) (possibly \(\mathrm{j}=0\) ).
```

Let S ={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{s}{i}{
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{LCS hardness idea}

\section*{Attempt 3:}
\[
x=P^{|y|} Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R^{P^{|y|}}
\]
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)

Idea:
\(P=2^{r}, r\) big but \(r \ll q\), so that in an LCS all \(Q s\) and Rs of \(x\) are still aligned, and also as many Ps as possible from y are aligned.
\(\geq n-1\) Ps of \(y\) not matched in an LCS due to the matched Qs and Rs of \(x\).
Thus, exactly \(n-1\) Ps will be unmatched, and every \(f\left(s_{i}\right)\) will be fully aligned with some \(\mathrm{g}\left(\mathrm{s}_{\mathrm{j}}\right)\) (possibly \(\mathrm{j}=0\) ).

\section*{The gadgets \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{j}}\right)\) act as letters!}
```

Let S={\mp@subsup{s}{1}{},\mp@subsup{S}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si
LCS(f(s)
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{Attempt 3:}

\section*{LCS hardness idea}
\[
\begin{aligned}
& x=P|y| Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P|y| \\
& y==_{1} P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-}
\end{aligned}
\]

\section*{LCS length:}
```

Let S={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si}->\mathrm{ sequences f(si) and g(s)
LCS(f(s)
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{Attempt 3:}

\section*{LCS hardness idea}
\[
\begin{aligned}
& x=P|y| Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P|y| \\
& y==_{1} P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-}
\end{aligned}
\]

```

Let S={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,
Each si}->\mathrm{ sequences f(si) and g(s)
LCS(f(s)
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{Attempt 3:}

\section*{LCS hardness idea}
\[
\begin{aligned}
& x=P|y| Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P|y| \\
& y==_{1} P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-}
\end{aligned}
\]

\section*{\#Ps in y is \(3 \mathrm{n}-1\), and \(\mathrm{n}-1\) are not matched, so 2 n}

LCS length: aligned.
\(2 n|P|+n(|Q|+|R|)+\sum_{i=1}^{n} L C S\left(f\left(s_{i}\right), g\left(s_{j}\right)\right), g\left(s_{j}\right)\) aligned with \(f\left(s_{i}\right)\)
\(=2 n r+2 q n+n \beta\) if no orthog. pair
\(\geq[2 n r+2 q n+n \beta]+1\) if 9 an orthog. pair.
```

Let S={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{\prime},···,
Each si}->\mathrm{ sequences f(s) and g(s)
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{\textrm{s}}{\textrm{i}}{}\cdot\mp@subsup{s}{j}{}\not=0,\geq\beta+
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{Reduction:}
\(x=P|y| Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P|y|\)
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)
```

Let S={\mp@subsup{s}{1}{},\mp@subsup{s}{2}{2},···,\mp@subsup{s}{n}{}}\mathrm{ be the vectors}
Each si}->\mathrm{ sequences f(si) and g(s)
LCS(f(s),g(s}\mp@subsup{s}{j}{}))=\beta\mathrm{ if }\mp@subsup{\textrm{s}}{\textrm{i}}{}\cdot\mp@subsup{s}{j}{}\not=0,\geq\beta+
otherwise.
so - vector of all 1s (no vector orthog. to so)

```

\section*{Reduction:}
\(x=P|y| Q f\left(s_{1}\right) R Q f\left(s_{2}\right) R Q \ldots R Q f\left(s_{n}\right) R P|y|\)
\(y=P\left(Q g\left(s_{0}\right) R P\right)^{n-1} Q g\left(s_{1}\right) R P Q g\left(s_{2}\right) R P \ldots Q g\left(s_{n}\right) R P\left(Q g\left(s_{0}\right) R P\right)^{n-1}\)

Tricky proof in paper shows the following suffice:
\(|Q|,|R|,|P|,\left|f\left(s_{i}\right)\right|,\left|g\left(s_{i}\right)\right| \leq \operatorname{poly}(d)\), so that
\(|x|,|y| \leq n \operatorname{poly}(d)\).

\section*{OV to LCS}

Given vectors \(\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}\) is

```

Outer OR gadgets }x,y\mathrm{ taking sets of
bit vectors {s, ,.., s
sequences s.t. for some Q
LCS (x,y)=Q if }\foralli,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}\not=0
LCS}(x,y)\geqQ+1 if \existsi,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}=0

```

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T+1 \text { if } s_{i} \cdot s_{j}=0,
\]
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T \text { if } s_{i} \cdot s_{j} \neq 0
\]

Coordinate gadgets \(c, e\) taking bits
to short sequences s.t.
\[
\begin{gathered}
\operatorname{LCS}(c(x), e(y))=0 \text { if } x=y=1 \\
\operatorname{LCS}(c(x), e(y))=1 \text { if } x \cdot y=0 .
\end{gathered}
\]

\section*{OV to LCS}

Given vectors \(\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}\) is

```

Outer OR gadgets }x,y\mathrm{ taking sets of
bit vectors {s, ,.., s
sequences s.t. for some Q
LCS (x,y)=Q if \foralli,j: si}\mp@subsup{s}{i}{}\mp@subsup{s}{j}{}\not=0
LCS(x,y)\geqQ+1 if }\existsi,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}=0

```

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T+1 \text { if } s_{i} \cdot s_{j}=0,
\]
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T \text { if } s_{i} \cdot s_{j} \neq 0
\]

Coordinate gadgets \(c, e\) taking bits
to short sequences s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\),
\(\operatorname{LCS}(c(x), e(y))=1\) if \(x \cdot y=0\). \(\operatorname{LCS}(c(x), e(y))=1\) if \(x \cdot y=0\).

\section*{Done!}

\section*{OV to LCS}

Given vectors \(\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}\) is

```

Outer OR gadgets }x,y\mathrm{ taking sets of
bit vectors {s, ,.., s
sequences s.t. for some Q
LCS (x,y)=Q if }\foralli,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}\not=0
LCS(x,y)\geqQ+1 if }\existsi,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}=0

```

Outer OR gadgets \(x, y\) taking sets of
bit vectors \(\left\{s_{1}, \ldots, s_{n}\right\}\), to short sequences s.t. for some \(Q\)
\(\operatorname{LCS}(x, y)=Q\) if \(\forall i, j: s_{i} \cdot s_{j} \neq 0\), \(\operatorname{LCS}(x, y) \geq Q+1\) if \(\exists i, j: s_{i} \cdot s_{j}=0\).

Vector gadgets \(f, g\) taking bit vectors to short sequences s.t. for some \(T\)
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T+1 \text { if } s_{i} \cdot s_{j}=0,
\]
\[
\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T \text { if } s_{i} \cdot s_{j} \neq 0
\]

Coordinate gadgets \(c, e\) taking bits
to short sequences s.t.
\[
\begin{gathered}
\operatorname{LCS}(c(x), e(y))=0 \text { if } x=y=1 \\
\operatorname{LCS}(c(x), e(y))=1 \text { if } x \cdot y=0
\end{gathered}
\]
\[
\begin{array}{ll}
c(0)=46 & e(0)=64 \\
c(1)=4 & e(1)=6
\end{array}
\]
\[
\begin{aligned}
& \operatorname{LCS}(c(1), e(1))=0, \text { and } \\
& \operatorname{LCS}(c(x), e(y))=1 \\
& \quad \text { for }(x, y) \neq(1,1)
\end{aligned}
\]

\section*{OV to LCS}

Given vectors \(\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}\) is

```

Outer OR gadgets }x,y\mathrm{ taking sets of
bit vectors {s, ,.., s
sequences s.t. for some Q
LCS (x,y)=Q if }\foralli,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}\not=0
LCS(x,y)\geqQ+1 if }\existsi,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}=0

```

Outer OR gadgets \(x, y\) taking sets of
bit vectors \(\left\{s_{1}, \ldots, s_{n}\right\}\), to short sequences s.t. for some \(Q\)
\(\operatorname{LCS}(x, y)=Q\) if \(\forall i, j: s_{i} \cdot s_{j} \neq 0\), \(\operatorname{LCS}(x, y) \geq Q+1\) if \(\exists i, j: s_{i} \cdot s_{j}=0\).
\[
\begin{aligned}
& \text { Vector gadgets } f, g \text { taking bit vectors } \\
& \text { to short sequences s.t. for some } T \\
& \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T+1 \text { if } s_{i} \cdot s_{j}=0, \\
& \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T \text { if } s_{i} \cdot s_{j} \neq 0
\end{aligned}
\]

Coordinate gadgets \(c, e\) taking bits
to short sequences s.t.
\[
\begin{gathered}
\operatorname{LCS}(c(x), e(y))=0 \text { if } x=y=1 \\
\operatorname{LCS}(c(x), e(y))=1 \text { if } x \cdot y=0
\end{gathered}
\]
\[
\begin{array}{ll}
c(0)=46 & e(0)=64 \\
c(1)=4 & e(1)=6
\end{array}
\]
\[
\begin{aligned}
& \operatorname{LCS}(c(1), e(1))=0, \text { and } \\
& \operatorname{LCS}(c(x), e(y))=1 \\
& \quad \text { for }(x, y) \neq(1,1)
\end{aligned}
\]

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\(f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u}\)
\(g\left(s_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{d}]\right) 5^{u} 3^{r}\)
where \(\mathrm{r}=\mathrm{u}(\mathrm{d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\(f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u}\)
\(g\left(s_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{d}]\right) 5^{u} 3^{r}\)
where \(r=u(d+1)+d-1, u>d+1\).

> 3,5 brand new symbols
> u is large, \(r\) even larger

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

\section*{Recall we have coordinate gadgets} \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& f\left(s_{\mathrm{i}}\right)=3^{r} 5^{u} c\left(s_{\mathrm{i}}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{\mathrm{i}}[d]\right) 5^{u} \\
& \mathrm{~g}\left(\mathrm{~s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d+1 .
\end{aligned}
\]

\section*{3,5 brand new symbols \\ u is large, \(r\) even larger}

If two 5 s are matched together, their entire \(5^{4}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

\section*{Recall we have coordinate gadgets} \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& f\left(s_{\mathrm{i}}\right)=3^{r} 5^{u} c\left(s_{\mathrm{i}}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{\mathrm{i}}[d]\right) 5^{u} \\
& \mathrm{~g}\left(\mathrm{~s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[d]\right) 5^{\mathrm{u}} 3^{r} \\
& \text { wher } \mathrm{r}(\mathrm{~d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1 .
\end{aligned}
\]

\section*{3,5 brand new symbols \\ u is large, \(r\) even larger}

If two 5 s are matched together, their entire \(5^{4}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \wedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& f\left(s_{\mathrm{i}}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{\mathrm{i}}[d]\right) 5^{u} \\
& \mathrm{~g}\left(\mathrm{~s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(s_{\mathrm{j}}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d+1 .
\end{aligned}
\]


If two 5 s are matched together, their entire \(5^{u}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\). If no 3 is matched in an LCS, then all 5 s must be: if a \(5^{u}\) block is not matched, then the subsequence length would be \(\leq \mathrm{du}+2 \mathrm{~d}<\mathrm{r}\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \wedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\(f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u}\)
\(\mathrm{g}\left(\mathrm{s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{d}]\right) 5^{u} 3^{r}\)
where \(\mathrm{r}=\mathrm{u}(\mathrm{d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1\).

If two 5 s are matched together, their entire \(5^{4}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\). If no 3 is matched in an LCS, then all 5 s must be: if a \(5^{4}\) block is not matched, then the subsequence length would \(\mathrm{be} \leq \mathrm{du}+2 \mathrm{~d}<\mathrm{r}\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \wedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\(f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u}\)
\(\mathrm{g}\left(\mathrm{s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{d}]\right) 5^{u} 3^{r}\)
where \(\mathrm{r}=\mathrm{u}(\mathrm{d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1\).

If two 5 s are matched together, their entire \(5^{4}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\). If no 3 is matched in an LCS, then all 5 s must be: if a \(5^{4}\) block is not matched, then the subsequence length would \(\mathrm{be} \leq \mathrm{du}+2 \mathrm{~d}<\mathrm{r}\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \wedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=3^{r} 5^{u} \mathrm{c}\left(\mathrm{~s}_{\mathrm{i}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{c}\left(\mathrm{~s}_{\mathrm{i}}[\mathrm{~d}]\right) 5^{u} \\
& \mathrm{~g}\left(\mathrm{~s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[\mathrm{~d}]\right) 5^{u} 3^{r}=\mathrm{u}(\mathrm{~d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1 . \\
& \text { ren }
\end{aligned}
\]


If two 5 s are matched together, their entire \(5^{4}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\). If no 3 is matched in an LCS, then all 5 s must be: if a \(5^{u}\) block is not matched, then the subsequence length would be \(\leq \mathrm{du}+2 \mathrm{~d}<\mathrm{r}\).

Want: Each \(\mathrm{s}_{\mathrm{i}} \rightarrow\) sequences \(\mathrm{f}\left(\mathrm{s}_{\mathrm{i}}\right)\) and \(\mathrm{g}\left(\mathrm{s}_{\mathrm{i}}\right)\) \(\operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=\beta\) if \(s_{i} \cdot s_{j} \neq 0,=\beta+1\) otherwise

\section*{Vector gadgets}
\[
\bigvee_{i, j \in[n]} \bigwedge_{c \in[d]}\left(\neg v_{i}[c] \vee \neg v_{j}[c]\right)
\]

Recall we have coordinate gadgets
\(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t.
\(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& \mathrm{f}\left(\mathrm{~s}_{\mathrm{i}}\right)=3^{r} 5^{u} \mathrm{c}\left(\mathrm{~s}_{\mathrm{i}}[1]\right) 5^{\mathrm{u}} \ldots 5^{u} \mathrm{c}\left(\mathrm{~s}_{\mathrm{i}}[\mathrm{~d}]\right) 5^{u} \\
& \mathrm{~g}\left(\mathrm{~s}_{\mathrm{j}}\right)=5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[1]\right) 5^{u} \ldots 5^{u} \mathrm{e}\left(\mathrm{~s}_{\mathrm{j}}[\mathrm{~d}]\right) 5^{u} 3^{r} \\
& \text { re } \mathrm{u}(\mathrm{~d}+1)+\mathrm{d}-1, \mathrm{u}>\mathrm{d}+1 .
\end{aligned}
\]

\section*{3,5 brand new symbols \\ u is large, \(r\) even larger}

If two 5 s are matched together, their entire \(5^{u}\) blocks are matched. If any 3 is matched, no other symbols are, so the LCS length is \(r\). If no 3 is matched in an LCS, then all 5 s must be: if a \(5^{u}\) block is not matched, then the subsequence length would be \(\leq \mathrm{du}+2 \mathrm{~d}<\mathrm{r}\).

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched.

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

\section*{Vector gadgets}
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched.

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

\section*{Vector gadgets}
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched. Thus, for all \(\mathrm{t}, \mathrm{c}\left(\mathrm{s}_{\mathrm{i}}[\mathrm{t}]\right)\) and \(\mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{t}]\right)\) are matched.

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

\section*{Vector gadgets}
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched. Thus, for all \(t, c\left(s_{i}[t]\right)\) and \(e\left(s_{j}[t]\right)\) are matched.
If \(s_{i} \cdot s_{j} \neq 0\), the alignment of \(c\left(s_{i}[t]\right)\) with \(e\left(s_{j}[t]\right)\) for all \(t\) gives \(<d\), so we get \(\leq(d+1) u+d-1=r\). (but then the \(3 s\) would be matched, \(s o=r\) )

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

\section*{Vector gadgets}
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched. Thus, for all \(\mathrm{t}, \mathrm{c}\left(\mathrm{s}_{\mathrm{i}}[\mathrm{t}]\right)\) and \(\mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{t}]\right)\) are matched.
If \(s_{i} \cdot s_{j} \neq 0\), the alignment of \(c\left(s_{i}[t]\right)\) with \(e\left(s_{j}[t]\right)\) for all \(t\) gives \(<d\), so we get \(\leq(d+1) u+d-1=r\). (but then the \(3 s\) would be matched, \(s o=r\) )
If \(\mathrm{s}_{\mathrm{i}} \cdot \mathrm{s}_{\mathrm{j}}=0\), we get \((\mathrm{d}+1) \mathrm{u}+\mathrm{d}=\mathrm{r}+1\).

Recall that we have coordinate gadgets \(x \in\{0,1\} \rightarrow c(x)\) and \(e(x)\), s.t. \(\operatorname{LCS}(c(x), e(y))=0\) if \(x=y=1\) and 1 otherwise; also, \(|c(x)|,|e(x)| \leq 2\).

\section*{Vector gadgets}
\[
\begin{aligned}
& f\left(s_{i}\right)=3^{r} 5^{u} c\left(s_{i}[1]\right) 5^{u} \ldots 5^{u} c\left(s_{i}[d]\right) 5^{u} \\
& g\left(s_{j}\right)=5^{u} e\left(s_{j}[1]\right) 5^{u} \ldots 5^{u} e\left(s_{j}[d]\right) 5^{u} 3^{r} \\
& \text { where } r=u(d+1)+d-1, u>d .
\end{aligned}
\]

Assume no 3 is matched. Then all 5 s are matched. Thus, for all \(\mathrm{t}, \mathrm{c}\left(\mathrm{s}_{\mathrm{i}}[\mathrm{t}]\right)\) and \(\mathrm{e}\left(\mathrm{s}_{\mathrm{j}}[\mathrm{t}]\right)\) are matched.
If \(s_{i} \cdot s_{j} \neq 0\), the alignment of \(c\left(s_{i}[t]\right)\) with \(e\left(s_{j}[t]\right)\) for all \(t\) gives \(<d\), so we get \(\leq(d+1) u+d-1=r\). (but then the \(3 s\) would be matched, \(s o=r\) )
If \(s_{i} \cdot s_{j}=0\), we get \((d+1) u+d=r+1\).

\section*{OV to LCS}

Given vectors \(\left\{s_{1}, \ldots, s_{n}\right\}, s_{i} \in\{0,1\}^{d} \forall i, \mathrm{OV}\) is

```

Outer OR gadgets }x,y\mathrm{ taking sets of
bit vectors {\mp@subsup{s}{1}{},···,\mp@subsup{s}{n}{}}\mathrm{ , to short}
sequences s.t. for some Q
LCS}(x,y)=Q if \foralli,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}\not=0
LCS(x,y)\geqQ+1 if }\existsi,j:\mp@subsup{s}{i}{}\cdot\mp@subsup{s}{j}{}=0

```

Done!
\[
\begin{aligned}
& \text { Vector gadgets } f, g \text { taking bit vectors } \\
& \text { to short sequences s.t. for some } T \\
& \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T+1 \text { if } s_{i} \cdot s_{j}=0, \\
& \operatorname{LCS}\left(f\left(s_{i}\right), g\left(s_{j}\right)\right)=T \text { if } s_{i} \cdot s_{j} \neq 0 .
\end{aligned}
\]

Coordinate gadgets \(c, e\) taking bits
to short sequences s.t.
\[
\begin{gathered}
\operatorname{LCS}(c(x), e(y))=0 \text { if } x=y=1 \\
\operatorname{LCS}(c(x), e(y))=1 \text { if } x \cdot y=0
\end{gathered}
\]
\[
\begin{array}{ll}
c(0)=46 & e(0)=64 \\
c(1)=4 & e(1)=6
\end{array}
\]
\[
\begin{aligned}
& \operatorname{LCS}(c(1), e(1))=0, \text { and } \\
& \operatorname{LCS}(c(x), e(y))=1 \\
& \quad \text { for }(x, y) \neq(1,1)
\end{aligned}
\]

\section*{Extensions}

\section*{Extensions}
- Thm: For any integer \(\mathrm{k} \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.

\section*{Extensions}
- Thm: For any integer \(k \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet

\section*{Extensions}
- Thm: For any integer \(\mathrm{k} \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:

\section*{Extensions}
- Thm: For any integer \(\mathrm{k} \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:
- Reduction works from Max-k-SAT, so base on:

\section*{Extensions}
- Thm: For any integer \(\mathrm{k} \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:
- Reduction works from Max-k-SAT, so base on:

MAX-k-SAT cannot be solved in \(2^{n(1-\varepsilon)}\) poly \((\mathrm{n})\) time for all \(k\).

\section*{Extensions}
- Thm: For any integer \(k \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:
- Reduction works from Max-k-SAT, so base on:

MAX-k-SAT cannot be solved in \(2^{n(1-\varepsilon)}\) poly \((\mathrm{n})\) time for all k . (although - maybe this is equivalent to SETH...)

\section*{Extensions}
- Thm: For any integer \(k \geq 2\), k -LCS cannot be solved in \(\mathrm{O}\left(\mathrm{n}^{k-\varepsilon}\right)\) time under SETH.
- [BK'15]: LCS hard even for binary alphabet
- Hardness based on even more believable assumptions:
- Reduction works from Max-k-SAT, so base on:

MAX-k-SAT cannot be solved in \(2^{n(1-\varepsilon)}\) poly( \(n\) ) time for all \(k\). (although - maybe this is equivalent to SETH...)
- On much more believable assumptions!

\section*{Circuit-Strong-ETH}
- SETH is ultimately about SAT of linear size CNF-formulas


\section*{Circuit-Strong-ETH}
- SETH is ultimately about SAT of linear size CNF-formulas There are more difficult satisfiability problems:

\section*{Circuit-Strong-ETH}
- SETH is ultimately about SAT of linear size CNF-formulas There are more difficult satisfiability problems:
- CIRCUIT-SAT
- NC-SAT
- NC1-SAT

\section*{Circuit-Strong-ETH}
- SETH is ultimately about SAT of linear size CNF-formulas There are more difficult satisfiability problems:
- CIRCUIT-SAT
- NC-SAT
- NC1-SAT

C-SETH: satisfiability of circuits from circuit class \(C\) on \(n\) variables and size \(s\) requires \(2^{n-o(n)}\) poly(s) time.

\section*{Circuit-Strong-ETH}
- SETH is ultimately about SAT of linear size CNF-formulas There are more difficult satisfiability problems:
- CIRCUIT-SAT
- NC-SAT
- NC1-SAT

C-SETH: satisfiability of circuits from circuit class \(C\) on \(n\) variables and size \(s\) requires \(2^{n-o(n)}\) poly(s) time.

\section*{E.g. NC-SETH should be much more believable!}

\section*{LCS, Edit Distance and Friends are very hard}
```

 LCS, Edit Distance and Friends
 AHVW'15:
 reduction from SAT of
 "Branching Programs"
 Many Consequences: are very hard

```
1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.

1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.
2. Shaving logarithms from \(n^{2}\) implies novel circuit lower bounds!

\section*{LCS, Edit Distance and Friends are very hard}
reduction from SAT of
1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.
2. Shaving logarithms from \(n^{2}\) implies novel circuit lower bounds!
\[
\begin{aligned}
& \text { An } \frac{n^{2}}{\log ^{\omega(1)} n} \text { alg. } \rightarrow \\
& \mathrm{E}^{\mathrm{NP}} \text { is not in NC1. }
\end{aligned}
\]

\section*{LCS, Edit Distance and Friends are very hard}
reduction from SAT of
1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.

\section*{2. Shaving logarithms from \(n^{2}\) implies novel circuit lower bounds!}

An \(\frac{n^{2}}{\log ^{\omega(1)} n}\) alg. \(\rightarrow\)
\(\mathrm{E}^{\mathrm{NP}}\) is not in NC1.

\section*{LCS, Edit Distance and Friends are very hard}

\section*{AHVW'15:}
reduction from SAT of
"Branching Programs"
Many Consequences:
1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.

\section*{2. Shaving logarithms from \(n^{2}\) implies novel circuit lower bounds!}
have such algs.
W'14,AWY'15

An \(\frac{n^{2}}{\log ^{\omega(1)} n}\) alg. \(\rightarrow\) \(\mathrm{E}^{\mathrm{NP}}\) is not in NC1.
\[
\begin{aligned}
& \text { An } \frac{n^{2}}{\log ^{1000} n} \text { time alg. } \rightarrow \mathrm{E}^{\mathrm{NP}} \\
& \text { has no non-uniform } \\
& \text { Boolean formulas of size } \mathrm{n}^{5} .
\end{aligned}
\]

\section*{LCS, Edit Distance and Friends are very hard}

\section*{AHVW'15:}
reduction from SAT of "Branching Programs"

Many Consequences:
1. Edit Distance / LCS / ... require \(n^{2-o(1)}\) time under NC-SETH.

\section*{2. Shaving logarithms from \(n^{2}\) implies novel circuit lower bounds!}
have such algs.
W'14,AWY'15
\[
\begin{aligned}
& \text { An } \frac{n^{2}}{\log ^{1000} n} \text { time alg. } \rightarrow \mathrm{E}^{\mathrm{NP}} \\
& \text { has no non-uniform } \\
& \text { Boolean formulas of size } n^{5} \text {. }
\end{aligned}
\]

Best alg:
\[
\frac{n^{2}}{\log ^{2} n}
\]```

