
Lecture 5: Hardness for 
Sequence Problems under 

SETH and OVC

1

Thanks to Piotr Indyk
and Arturs Backurs for 
some slides



Plan



Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)



Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time



Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time

• Show conditional quadratic lower bounds
– Assuming SETH / OV, example: LCS
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Walks on sequences

Given two sequences {pi} and {qj}, a walk on them 
starts at p1 and q1. In each step it is in some 
position (pi,qj) and can next:

• go right only on p to (pi+1, qj)
• go right only on q to (pi, qj+1)
• go right on both to (pi+1, qj+1)

p1 p2 p3 p4 p5

q1 q2 q3 q4 q5

Sequence walk problems 
optimize, over all such walks, 
some measure depending on 
the distances between pi and qj
over all steps (pi,qj) of the walk.
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• ``Dog walking distance’’
– Smallest length leash that enables dog-walking along two routes

•Definition: 
– Let F = set of monotone functions [0,1]→[0,1]
– For two curves P,Q: [0,1] →R2 :

DFr(P,Q) = minf,g ∈ F maxt ∈ [0,1] ||P(f(t)) – Q(g(t))||
•Discrete version: 

– F = { f: [0,1] →{1…n} , nondecreasing}, 
– P,Q: {1…n} → R2 : Curves are sequences of points in the plane

Find a walk along P and Q 
that minimizes the max
distance over all  steps.
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– For two sequences of points, P,Q: {1…n}→R2 :
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• Dynamic programming:
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• Time: O(n2)

• Can be improved to O(n2 log log n/log n) [Agarwal-Avraham-Kaplan-Sharir’12] (also 
[Buchin-Buchin-Meulemans-Mulzer’14]) 

• Many algorithms for special cases and variants
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• Definition:
– x, y: two sequences of points of length n
– A[i, j]=dist(xi,  yj)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
– DTW(x,y)=A[n,n]
Find a walk along x and y that minimizes the sum of 

distances at each step.

• Speech processing and other applications

• A simple O(n2) time dynamic programming algorithm
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Longest Common Subsequence (LCS)

• Definition:
– two sequences s and t of letters, length n
– find a subsequence of both s and t of max length

• Example: LCS(meaning , matching) = maing

• Simple O(n2) time algorithm:

max {A[i-1, j], A[i, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
A[i,j]= 

max {A[i-1, j], A[i, j-1]} otherwise.

Best algorithm: O(n2/log n) [Masek-Paterson’80]
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• Definition:
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Edit distance
(a.k.a. Levenshtein distance)

• Definition:
– x,y – two sequences of symbols of length n
– edit(x,y)=the minimum number of symbol insertions, 

deletions or substitutions needed to transform x into y
• Example: edit(meaning,matching)=4

meaning
insert a e → t

a → c

matchingn → h

maeaning mataning

matcning



Computing edit distance

45



Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

46



Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

47



Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

• Better algorithms for special cases:[U83,LV85,M86, 
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10…]
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Computing edit distance

• A simple O(n2) time dynamic programming algorithm [Wagner-
Fischer’74]

• Can be improved to O(n2/log n) [Masek-Paterson’80]

• Better algorithms for special cases:[U83,LV85,M86, 
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AKO10…]

• Approximation algorithms: O(1) –approx in O(n2-ε) time 
[Chakraborty-Das-Goldenberg-Koucky-Saks’18], 
O(f(ε)) –approx in O(n1+ε) time [Andoni-Nowatzki’20]
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What do these problems have in common ?

• Widely used metrics
• Simple dynamic-programming algorithms with (essentially) 

quadratic running time
• We have no idea if/how we can do any better

• Plausible explanation: 
– 3SUM-hard ? People tried for years…
– hard under OVH and SETH ?



Plan

• Define sequence problems:
– (Discrete) Frechet Distance
– Edit Distance and LCS
– Dynamic Time Warping (DTW)

• Birds eye view on the upper bounds
– Dynamic programming, quadratic time

• Show conditional quadratic lower bounds
– Assuming SETH / OVH
– Basic approach
– Hardness for LCS
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• Orthogonal Vectors Problem (OV). Given a set of 
vectors S ⊆ {0, 1}d, d = ω(log n),  |S|=n, are 
there a, b ∈ S s. t. Σi=1

d aibi = 0 ?

– Can be solved trivially in O(n2d) time
– Best known algorithm runs in n2-1/O(log c(n)) time, 

where d=c(n)·log n [Abboud-Williams-Yu’15]

• OV Hypothesis (implied by SETH): 
OV can’t be solved in n2-ε·dO(1) time for any ε > 0.
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Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW, 
Frechet distances or LCS unless OVC fails [Bringmann’14; 
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]
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Theorem*: No n2-Ω(1) time algorithm for EDIT, DTW, 
Frechet distances or LCS unless OVC fails [Bringmann’14; 
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

Next: hardness 
for LCS



Hardness for LCS

I will present the ideas behind the proof from 
[Abboud-Backurs-VW’15]. 
Full construction. NO full proof.

[Bringmann-Kunnemann’15] obtained an independent proof.



OV to LCS
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𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.
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• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1  otherwise.
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Want to create sequences x 
and y so that LCS(x,y) is Large 

if there is an OV pair and 
LCS(x,y) is Small otherwise.
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• s0 – vector of all 1s (no vector orthog. to s0)

Encoding the outer Boolean OR 
for OV to LCS�

𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑐𝑐 ∨ ¬𝑠𝑠𝑗𝑗[𝑐𝑐])

Want to create sequences x 
and y so that LCS(x,y) is Large 

if there is an OV pair and 
LCS(x,y) is Small otherwise.



• Let S = {s1,s2,…, sn} be the vectors from OV instance
• Suppose we have si → gadget sequences f(si) and g(si)

LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1  otherwise.
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Idea for hardness 
for LCS

Let S = {s1,s2,…, sn} be the vectors
Each si → gadget sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)
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for LCS

Attempt 2:                                                                  Q = 0q, R=1q
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LCS(f(si),g(sj)) = β if si·sj ≠ 0, LCS(f(si),g(sj)) = β + 1 otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

0 and 1 don’t 
appear in the f 
and g gadgets
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0 and 1 don’t 
appear in the f 
and g gadgets



Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Q=0q,R=1q,P=2r

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)
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and also as many Ps as possible from y are aligned. 
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P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, 

and also as many Ps as possible from y are aligned. 
≥ n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.
Thus, exactly n-1 Ps will be unmatched, and every f(si) will be fully 

aligned with some g(sj) (possibly j=0).
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P = 2r, r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned, 

and also as many Ps as possible from y are aligned. 
≥ n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.
Thus, exactly n-1 Ps will be unmatched, and every f(si) will be fully 

aligned with some g(sj) (possibly j=0).
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The gadgets f(si) and g(sj) act as letters!

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)



LCS hardness idea

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-
1
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otherwise.
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Q=0q,R=1q,P=2r



LCS hardness idea

Attempt 3:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|
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i=1 LCS(f(si),g(sj)), g(sj) aligned with f(si) 

Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Q=0q,R=1q,P=2r

#Ps in y is 3n-1, and n-1 are not matched, so 2n 
aligned.
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x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-
1

LCS length: 
2n|P| + n(|Q|+|R|)+ Σn

i=1 LCS(f(si),g(sj)), g(sj) aligned with f(si) 

= 2nr + 2qn + n β if no orthog. pair
≥ [2nr + 2qn + n β] + 1 if 9 an orthog. pair.

Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)

Q=0q,R=1q,P=2r

#Ps in y is 3n-1, and n-1 are not matched, so 2n 
aligned.



Reduction:
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y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)



Reduction:
x = P|y|Q f(s1)R Q f(s2)R Q … RQ f(sn) R P|y|

y = P (Qg(s0) RP)n-1 Q g(s1) R P Q g(s2) R P … Q g(sn) R P (Q g(s0) RP)n-1

Tricky proof in paper shows the following suffice:
|Q|, |R|,|P|, |f(si)|,|g(si)| ≤ poly(d), so that
|x|,|y| ≤ n poly(d).

LCS hardness idea
Let S = {s1,s2,…, sn} be the vectors
Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si∙sj ≠ 0,  ≥ β + 1 
otherwise.
s0 – vector of all 1s (no vector orthog. to s0)



OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is 

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits 
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1, 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of 
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short 

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.



OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is 

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits 
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1, 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of 
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short 

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.



OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is 

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46      e(0) = 64
c(1) = 4        e(1) = 6

LCS(c(1),e(1)) = 0, and 
LCS(c(x),e(y)) = 1 

for (x,y) ≠ (1,1).

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits 
to short sequences s.t.
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Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of 
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short 

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.



OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is 

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46      e(0) = 64
c(1) = 4        e(1) = 6

LCS(c(1),e(1)) = 0, and 
LCS(c(x),e(y)) = 1 

for (x,y) ≠ (1,1).

All that remains!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits 
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1, 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of 
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short 

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.



Vector gadgets

Recall we have coordinate gadgets 
x ∈ {0, 1} → c(x) and e(x), s.t.
LCS(c(x),e(y)) = 0 if x = y =1 and 1 otherwise; also, |c(x)|,|e(x)|≤ 2.

Want: Each si → sequences f(si) and g(si)
LCS(f(si),g(sj)) = β if si·sj ≠ 0,  = β + 1 otherwise

�
𝑖𝑖,𝑗𝑗∈[𝑛𝑛]

⋀𝑐𝑐∈[𝑑𝑑](¬ 𝑣𝑣𝑖𝑖 𝑐𝑐 ∨ ¬𝑣𝑣𝑗𝑗[𝑐𝑐])
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OV to LCS

Given vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, 𝑠𝑠𝑖𝑖 ∈ {0,1}𝑑𝑑 ∀𝑖𝑖, OV is 

⋁𝑖𝑖,𝑗𝑗∈[𝑛𝑛]⋀𝑘𝑘∈[𝑑𝑑](¬ 𝑠𝑠𝑖𝑖 𝑘𝑘 ∨ ¬𝑠𝑠𝑗𝑗[𝑘𝑘]).

Done!
c(0) = 46      e(0) = 64
c(1) = 4        e(1) = 6

LCS(c(1),e(1)) = 0, and 
LCS(c(x),e(y)) = 1 

for (x,y) ≠ (1,1).

Done!

Coordinate gadgets 𝑐𝑐, 𝑒𝑒 taking bits 
to short sequences s.t.

𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 0 if 𝑥𝑥 = 𝑦𝑦 = 1, 
𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐 𝑥𝑥 , 𝑒𝑒 𝑦𝑦 = 1 if 𝑥𝑥 ⋅ 𝑦𝑦 = 0.

Vector gadgets 𝑓𝑓,𝑔𝑔 taking bit vectors 
to short sequences s.t. for some 𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 + 1 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑠𝑠𝑖𝑖 ,𝑔𝑔 𝑠𝑠𝑗𝑗 = 𝑇𝑇 if 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0.

Outer OR gadgets 𝑥𝑥,𝑦𝑦 taking sets of 
bit vectors {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}, to short 

sequences s.t. for some 𝑄𝑄
𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 = 𝑄𝑄 if ∀𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 ≠ 0, 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑦𝑦 ≥ 𝑄𝑄 + 1 if ∃𝑖𝑖, 𝑗𝑗: 𝑠𝑠𝑖𝑖 ⋅ 𝑠𝑠𝑗𝑗 = 0.
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Extensions

• Thm: For any integer k ≥ 2,
k-LCS cannot be solved in O(nk-ε) time under SETH.

• [BK’15]: LCS hard even for binary alphabet

• Hardness based on even more believable assumptions:
– Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2n(1-ε) poly(n) time for all k.
(although – maybe this is equivalent to SETH…)
– On much more believable assumptions!
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Circuit-Strong-ETH

• SETH is ultimately about SAT of linear size CNF-formulas
• There are more difficult satisfiability problems:

– CIRCUIT-SAT
– NC-SAT
– NC1-SAT … 

C-SETH: satisfiability of circuits from 
circuit class C on n variables and size s 

requires 2n-o(n) poly(s) time.

E.g. NC-SETH should be much more believable!
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log𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝒏𝒏
time alg. → ENP

has no non-uniform 
Boolean formulas of size n5.

An 𝑛𝑛2
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Best alg: 
𝑛𝑛2

log2 𝑛𝑛
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