
6.S078 Fine-Grained Algorithms and Complexity MIT
Lecture 7: Finish OV, “Polynomial Method” Algorithm for APSP September 28, 2020

1 Last Time

In the previous lecture, we discussed how to solve the Orthogonal Vectors problem via a randomized reduction to a
polynomial evaluation [AWY15]. The general strategy (of recasting the problem you’d like to solve into a problem
about polynomials, then solving the polynomial problem using fast known algorithms) is often called the “polynomial
method”.1

Recall that OVs,d denotes the orthogonal vectors problem on s vectors from {0, 1}d. Last time, the main theorem we
proved was:

Theorem 1.1 (OV Conversion Theorem) For every s and d, there is a distribution D of polynomials over F2, where
each polynomial has sd variables and at most M(s, d) := poly(s) ·

(
2d

O(log s)

)
monomials, such that for all inputs

v1, . . . , vs ∈ {0, 1}d to the OVs,d problem,

Pr
p∼D

[OVs,d(v1, . . . , vs) = p(v1, . . . , vs) mod 2] ≥ 3/4.

Moreover, we can construct a random p from the distribution D in poly(M(s, d)) time.

This distribution D is often called a probabilistic polynomial, and in the above theorem we are constructing a proba-
bilistic polynomial for OVs,d. We used this probabilistic polynomial, along with a self-reduction for OV, to design the
following algorithm (with a parameter s).

(1) Divide the n vectors into at most (n/s) + 1 groups of at most s vectors each.

(2) Draw t = 60 log(n) probabilistic polynomials P1, . . . , Pt for OV2s,d.
For all pairs of groups, evaluate P1, . . . , Pt on the union of the two groups, and output the majority
value of P1, . . . , Pt for each pair.

(3) If any pair of groups has a majority value of 1, return “yes” else return “no”.

If we can implement step (2) in Õ(n2/s2) time, the entire algorithm can be run in Õ(n2/s2) time. Two factors affect
the running time:

1. The running time required to construct the probabilistic polynomials P1, . . . , Pt. Last time we showed that, for
d = c log(n), if we set s ≤ nδ/ log(c) for a sufficiently small δ > 0, then these probabilistic polynomials can be
constructed in subquadratic time.

2. The running time required to evaluate one of the polynomials Pi on all O(n2/s2) pairs of groups. Modulo a
Batch Evaluation Lemma (stated below), we can do this evaluation in Õ(n2/s2) time.

Lemma 1.1 (Batch Evaluation Lemma) Given any prime power q, any A,B ⊆ {0, 1}m with |A| = |B| = N , and
given any Fq-polynomial P with 2m variables and N0.1 monomials, P can be evaluated on all N2 points in A × B
in Õ(N1.1m+N2) time.

1But note there is at least one other “polynomial method” in combinatorics which “solves” different problems.
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Observe that the obvious algorithm for batch-evaluating a polynomial with N0.1 monomials would take at least N2 ·
N0.1 = N2.1 time: on each point (x, y) ∈ (A×B), it takes at least N0.1 time to evaluate P (x, y) (because that’s how
many monomials P has). The above lemma shows that for m ≤ N0.9, we can essentially evaluate P on all N2 points
in A×B in nearly optimal time!

In our particular case, we will set N = n/s, m = sd, q = 2. A and B will be a set of n/s vectors, where each
vector of length sd encodes an entire group of s vectors. (Thus a pair (x, y) ∈ A × B exactly represents a pair of
groups.) In particular, if we set s = nδ/ log(c) for d = c log(n) then the number of monomials in each Pi will be at
most (n/s)0.1 = N0.1, the Batch Evaluation Lemma will apply, and we will be done, getting an Õ(n2−2δ/ log(c)) time
algorithm.

Let’s now turn to proving the Batch Evaluation Lemma. It’s a very versatile trick; we show how to reduce the
polynomial evaluation problem to a matrix multiplication problem where essentially optimal algorithms are known.

Proof. (Of the Batch Evaluation Lemma) Let P have variables x1, . . . , xm, y1, . . . , ym. Let A = {a1, . . . , aN} and
B = {b1, . . . , bN}. We will reduce the evaluation problem to the multiplication of an N ×N0.1 matrix MA with an
N0.1 × N matrix MB . In particular, the rows of MA will be indexed by the ai’s, and the columns of MB will be
indexed by the bi’s.

Let the monomials of P be m1, . . . ,mN0.1 where each mk has the form

mk = ck ·Xk · Yk,

such that

• ck ∈ Fq (the coefficient of the monomial),

• Xk is the product of all xi’s in mk, and equals 1 if no xi variables appear in mk, and

• Yk is the product of all yi’s in mk, and equals 1 if no yi variables appear in mk.

Then for all i, j = 1, . . . , N , and all k = 1, . . . , N0.1, we define

MA[i, k] := ckXk(ai),MB [k, j] := Yk(bj)

(where Xk(ai) and Yk(bj) denote the evaluation of Xk on the assignment ai and the evaluation of Yk on bj , respec-
tively). Note it takes Õ(N1.1 ·m) time to prepare MA and MB : both matrices have N1.1 entries, where each entry is
a product of at most m variables. Observe that

(MA ·MB)[i, j] :=
∑
k

ck ·Xk(ai) · Yk(bj) =
∑
k

mk(ai, bj) = P (ai, bj).

Therefore, computing MA ·MB amounts to evaluating P on all inputs in A × B. Finally, computing MA ·MB can
actually be done in Õ(N2) time(!). The algorithm is due to Coppersmith [Cop82]. �

1.1 Open Problem: Can We Improve This Algorithm? Can We Show a Barrier?

The algorithm for OV has the following very intriguing corollary:

Corollary 1.1 Suppose there is a probabilistic polynomial for OVs,d that has only poly(s, d) monomials. Then OVn,d
can be solved in n2−ε · poly(d) time for some ε > 0, and SETH is false.

Exercise: Convince yourself that the corollary holds!
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Unfortunately, in unpublished work, we have shown that every probabilistic polynomial over Fp for OVs,c logn re-
quires at least nΩ(log c) monomials (for any prime p). So there is at least one sense in which we cannot improve the
OV algorithm. (Let Ryan know if you’d like to read a copy of the paper!)

However, there is a potential loophole in our lower bound: our proof requires that 0 corresponds to “false” and 1
corresponds to “true” (or vice-versa). We do not know such a lower bound for other representations, such as
polynomial representations where −1 represents true and 1 represents false (which actually comes up: this kind of
representation is central to the area of Fourier analysis of Boolean functions).

1.2 More Problems Equivalent to OV

Recall the Orthogonal Vectors Conjecture (or Hypothesis) is:

For every ε > 0 there is a c ≥ 1 such that OVn,c log(n) cannot be solved in n2−ε time.

Besides the Partial Match and Subset Query problems mentioned in the previous lecture, other interesting problems
are known to be equivalent to OV. These are surprising equivalences: some are problems that look obviously harder
than OV, and some involve approximations which seemed easier than OV. For instance, the following statements are
all equivalent to the OV Conjecture [CW19]:

• (Min-IP/Max-IP) For every ε > 0 there is a c ≥ 1 such that finding a red-blue pair of vectors with minimum
(respectively, maximum) inner product, among n red vectors and n blue vectors in {0, 1}c log(n), cannot be
solved in n2−ε time.

• (Exact-IP) For every ε > 0 there is a c ≥ 1 such that finding a red-blue pair of vectors with inner product equal
to a given target integer, among n red vectors and n blue vectors in {0, 1}c log(n), cannot be solved in n2−ε time.

• (Apx-Min-IP/Apx-Max-IP) For every fixed κ > 1 (think of κ as huge, like κ = 1000) and ε > 0, there is a
c ≥ 1 such that finding a red-blue pair of vectors that is a κ-approximation to the minimum (resp. maximum)
inner product (among n red and blue vectors in {0, 1}c log(n)) cannot be solved in n2−ε time.

• (Approximate Bichromatic Closest Pair) For every ω(log n) ≤ d(n) ≤ no(1), and every ε > 0, there is a
δ > 0 such that a (1 + δ)-approximation to the closest red-blue pair (among n red and blue points in Rd(n))
cannot be found in n2−ε time.

• (Approximate Furthest Pair) For every ω(log n) ≤ d(n) ≤ no(1), and every ε > 0, there is a δ > 0 such that
a (1 + δ)-approximation to the furthest pair among n points in Rd(n) cannot be found in n2−ε time.

Note that all of the above problems have trivial n2 · poly(d) time algorithms.

The above equivalence has many implications. For example, faster algorithms for finding constant-factor approxi-
mations to the maximum inner product imply faster algorithms for exact solutions to the maximum inner product, in
the O(log n)-dimensional setting. And both are equivalent to finding faster algorithms for OV! This underscores the
fundamental nature of OV in solving problems on pairs of points.

2 Algorithm for All-Pairs Shortest Paths in Dense Graphs

We now turn to another application of the polynomial method: solving the All-Pairs Shortest Paths problem, from
[Wil14]. Here, we will just give the main ideas, and won’t go into all the details. First, let’s recall the definition.
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All-Pairs Shortest Paths (APSP): Given an n-node edge-weighted (directed) graph with positive real weights,
compute for all pairs of nodes i, j the shortest distance between i and j.

(There are other ways of framing the APSP problem, but the above is the most common one.) On n-node graphs,
the Floyd-Warshall algorithm (from undergrad algorithms) gives an O(n3) time algorithm assuming additions and
comparisons of weights are constant-time operations.2 The problem can also be solved in Õ(mn+ n2) time. A major
open problem is whether APSP has an O(n2.99) time algorithm. Later in the semester, we will see a host of problems
that are surprisingly equivalent to APSP.

2.1 Funny Matrix Multiplication

It has been known for decades that algorithms for APSP are innately related to computing a “funny” matrix multipli-
cation. Formally, the operation is known as min-plus matrix multiplication, or tropical matrix multiplication.3 Given
two matrices A,B ∈ Rn×n, we define another n× n matrix

(A ? B)[i, j] := min
k

(A[i, k] +B[k, j]).

Note, we are substituting min in place of addition, and we are substituting + in place of multiplication. (To say another
buzzword, we are working over the “min-plus semiring” or the “tropical semiring”.)

Theorem 2.1 Let T (n) ≤ O(n3). APSP on n-node graphs is in O(T (n)) time if and only if min-plus matrix multipli-
cation on n× n matrices is in O(T (n)) time.

One direction of the above theorem is pretty straightforward, so we’ll pose it as an exercise:

Exercise: Convince yourself that, if APSP on n-node graphs is in O(T (n)) time, then min-plus matrix multipli-
cation on n × n matrices is in O(T (n)) time. If you need a hint, there are some in the next lecture notes. (The
other direction is harder, and will come up later.)

For the other direction, it is not too hard to show that APSP can be solved in O(T (n) log n) time, given that min-plus
matrix multiplication in O(T (n)) time. The idea that, given the weighted adjacency matrix A of a graph, we can do a
repeated squaring of A to determine the minimum distance between each node. More details in the next lecture!

2.2 Reduce “Funny” to “Normal” Matrix Multiplication

Now we turn to the problem of computing min-plus matrix multiplication faster. A dream theorem for us would be
to show:

Theorem 2.2 (DREAM THEOREM) If matrix multiplication over a field is in O(nc) time (on the Word RAM) then
min-plus matrix multiplication is in O(nc) time (on the Real RAM).

2More formally, we are studying algorithms for APSP in the Real RAM model. This model is an extension of the Word RAM model. In the Word
RAM, information is stored in “word registers” that hold log(n) bits, and you can do all the normal word operations on them (XOR two words into
a third word, AND two words into a third word, etc) in constant time. In the Real RAM, there are also “real-valued registers”, each of which can
hold an arbitrary real number. We are allowed to add two real-registers and put the result in another real register in O(1) time, and one can compare
if a real A is at most a real B, and put the (Boolean) outcome of that comparison into a word register, in O(1) time. (The Real RAM is often also
called the “addition-comparison model”.) We will assume that the input to APSP is given to us in n2 real-valued registers. All this is really not
strictly necessary for understanding what follows, so I put it in a footnote. But if you really care about the details of the algorithm, it’s important!

3There is an entire “tropical mathematics” where all your favorite objects over R are studied but addition is replaced by the minimum operation
and multiplication is replaced by the sum operation.
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This would be amazing, because we know (from decades of work, some of which has been done by one of your
instructors) that matrix multiplication over fields can be computed in O(nc) time for c < 2.373. So the DREAM
THEOREM above would immediately imply that APSP can be solved in O(n2.373) time, as well.

However, the min-plus semiring (the mathematical structure that we’re working over in min-plus matrix multiplication)
is simply not as structured as a field, or even a ring, and the known fast matrix multiplication algorithms (for fields or
for rings) exploit the extra structure: namely, all of them exploit the fact that every element r in a ring has an additive
inverse, an element−r such that r+(−r) = 0. The min-plus semiring has no such property: there is no nice “inverse”
of the minimum operation! For this reason, it seems strictly harder to multiply matrices over the min-plus semiring.

Nevertheless, we can prove the following theorem, which reduces min-plus matrix multiplication to rectangular matrix
multiplication:

Theorem 2.3 (REAL THEOREM) If matrix multiplication of n×n0.1 and n0.1×nmatrices over a field is in Õ(n2)

time (on the Word RAM), then min-plus matrix multiplication is in O(n3/2α
√

logn) time, for some constant α > 0.

The nice part about the REAL THEOREM is that its hypothesis is actually true (as we saw and used earlier, in the
OV algorithm). Unfortunately, the consequence is not quite as nice, because there is some considerable “blow-up”
happening in the translation from min-plus matrix product to field matrix product. The big idea here is to translate
the “min-plus inner product” operation (which is what you compute in each entry of a min-plus matrix multiplication)
into “normal” inner product operations, and we can do that by thinking of the min-plus inner product operation as
a logical expression that we can randomly reduce to a polynomial over F2, just as in the OV algorithm!

In particular, the REAL THEOREM follows from two other theorems:

Theorem 2.4 (From Rectangular Field Multiplication to Rectangular Min-Plus Multiplication) If there is a δ >
0 such that multiplication of an n × nδ matrix and an n0.1 × n matrix over F2 can be computed in Õ(n2) time, then
there is an α > 0 such that min-plus multiplication of an n×2α

√
logn matrix and 2α

√
logn×nmatrix can be computed

in randomized Õ(n2) time with high probability.

Theorem 2.5 (From Rectangular Min-Plus Multiplication to Square Min-Plus Multiplication) For every d, if min-
plus multiplication of an n×dmatrix and a d×nmatrix can be computed in T (n, d) time, then min-plus multiplication
of two n× n matrices can be computed in O(nT (n, d)/d) time.

Exercise: Verify that these two theorems, if true, really do imply that APSP can be solved in O(n3/2α
√

logn)
time for some constant α > 0.

In what remains, we sketch the proofs of these two theorems.

2.3 Proof of Theorem 2.5

We’ll start with the proof of Theorem 2.5 because it’s much easier to prove and is more well-known.

Given n× n matrices A and B, we split A into n/d separate n× d matrices A1, . . . , An/d, so that

A = [A1 · · ·An/d].

Similarly, we split B into n/d matrices which are d× n, so that

B =

 B1

...
Bn/d


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Then for all i, j = 1, . . . , n, observe that

(A ? B)[i, j] = min
`=1,...,n/d

(A` ? B`)[i, j].

So, computing A?B can be done with n/d calls to min-plus multiplication of an n×d matrix A` and an d×n matrix
B`, followed by O(n2 · n/d) additions and comparisons.

2.4 Sketch of Theorem 2.4

Let us sketch the idea of Theorem 2.4. The theorem follows if we can construct a probabilistic polynomial for comput-
ing the min-plus inner product of two vectors of length d with high probability, where each polynomial in the resulting
distribution has at most dO(log d) monomials. In such a case, if we set d = 2α

√
logn for a sufficiently small α > 0, we

will obtain a probabilistic polynomial with at most n0.1 monomials. Given such a polynomial P , we can compute the
min-plus product of an n×2α

√
logn matrix A and 2α

√
logn×n matrix B by evaluating P on all possible pairs of rows

from A and columns from B, in Õ(n2) time (using the Batch Evaluation Lemma).

How can we get a probabilistic polynomial (over F2) for min-plus inner product? Given two vectors x = (x1, . . . , xd)
and y = (y1, . . . , yd) over R, we want to compute

(x ? y) := min
k

(xk + yk).

We actually want to do this using matrix multiplication over the field of two elements, so we have to actually reduce
the problem of computing x ? y (which involves real numbers) to a problem on bit operations.

Our first step is to move to computing a slightly different operation:

(x ◦ y) := argmin
k

(xk + yk).

That is, x ◦ y computes an integer k ∈ {1, . . . , d} such that xk + yk is minimized.4 (Note that (x ? y) can be easily
determined from knowing (x ◦ y).) By definition, (x ◦ y) = k if and only if for every ` = 1, . . . , d, xk+ yk ≤ x`+ y`.
We will use the deep fact that this is true if and only if ` = 1, . . . , d, xk − x` ≤ y` − yk. (This even has a name: it’s
called “Fredman’s trick.”)

To turn this into a Boolean-valued problem (which has only one bit of output), we think of k as a log(d)-bit string
k1 · · · klog(d), pick an index i = 1, . . . , log(d), and consider the logical expression:

MINSUMi =
∨

k′∈[d]:k′i=ki

∧
`∈[d]

[xk′ − x` ≤ y` − yk′ ],

where [C] is 1 if condition C is true and 0 if C is false. Then, the expression MINSUMi outputs the i-th bit of k
such that (x ◦ y) = k.

Finally, we can randomly reduce MINSUMi to vectors of length dO(log d), so that computing an inner product over
F2 of these two vectors yields the value of MINSUMi with high probability. The idea is that we can replace each
xk′ − x` and y` − yk for all `, k = 1, . . . , d with small integers, because we only need to know the relative order
of these quantities to compute the [xk′ − x` ≤ y` − yk′ ] predicate. By sorting all these pairwise differences using
additions and comparisons, we can get rid of the real numbers altogether and replace them with small integers. (Over
the entire matrices A and B, this can be done in Õ(n · d2) time.) From there, MINSUMi is computing a large OR of
at most d ANDs of d such comparisons. Using a similar randomized reduction as with OV (applying the XOR Tricks
from before to the OR and to the ANDs), we can obtain a probabilistic polynomial of dO(log d) monomials. All the
lovely details are in [Wil14].

4It is certainly possible in principle that multiple values of k minimize xk + yk . We will assume that the entries of our matrices are perturbed
so that this does not happen, and so (x ◦ y) is always well-defined.
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3 Derandomization

Both of the OV and APSP algorithms can be made deterministic. I will add notes about how to do that if students are
interested. The paper showing how to do it is [CW16].

References

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial method to algorithm
design. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2015, San Diego, CA, USA, January 4-6, 2015, pages 218–230. SIAM, 2015.

[Cop82] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–471, 1982.

[CW16] Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more: Quickly deran-
domizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 1246–1255. SIAM, 2016.

[CW19] Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 21–40. SIAM, 2019.

[Wil14] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput., 47(5):1965–
1985, 2018. Preliminary version in STOC 2014.

7


	Last Time
	Open Problem: Can We Improve This Algorithm? Can We Show a Barrier?
	More Problems Equivalent to OV

	Algorithm for All-Pairs Shortest Paths in Dense Graphs
	Funny Matrix Multiplication
	Reduce ``Funny'' to ``Normal'' Matrix Multiplication
	Proof of Theorem 2.5
	Sketch of Theorem 2.4

	Derandomization

