
6.S078 Lecture 8 Equivalences with All-Pairs Shortest Paths
Date: Sept. 25, 2020

1 APSP and (min,+)-Product

Last time we considered All Pairs Shortest Paths (APSP) and defined the (min,+) product of two matrices
as follows. Let A and B be n× n integer matrices. Their (min,+)-product C = A ? B is defined as

C[i, j] =
n

min
k=1

A[i, k] +B[k, j],∀i, j ∈ [n].

An exercise from the last lecture was to show that if APSP is in T (n) time on n node graphs, then
(min,+)-product of n × n matrices is in O(T (n)) time. The last lecture also stated the following converse,
which we will now prove.

Theorem 1.1. Suppose that one can compute the (min,+)−Product of two n × n matrices in T (n) time,
then APSP on n node graphs with no negative cycles is in O(T (n) log n) time.

Proof. Let G = (V,E) be an instance of APSP with weights w(·, ·). Define A to be the generalized adjacency
matrix. A[i, j] = w(i, j) when (i, j) ∈ E, w(i, i) = 0, w(i, j) =∞ if i 6= j and (i, j) /∈ E.

Exercise: Convince yourself that the ∞ elements above can be replaced by a large enough finite
integer. How large does this integer have to be?

Let A` be A ? A ? . . . ? A, where ` copies of A are multiplied. A1 = A.

Claim 1. For all i, j, A`[i, j] is the smallest out of all weights of i-j paths on at most ` hops.

We prove the claim by induction. Clearly, the claim holds for ` = 1, by the definition of A.
Suppose that for some `, for all i, j, A`[i, j] is the smallest out of all weights of i-j paths on at most `.

Now consider A`+1[a, b] for some a, b.

A`+1[a, b] =
n

min
k=1

A`[a, k] +A[k, b].

Suppose that P = {a = a0 → a1 → . . .→ at = b} be a shortest a− b path among those on ≤ `+ 1 hops.
If t ≤ `, then A`+1[a, b] ≤ A`[a, b] + A[b, b] = A`[a, b] which is the smallest weight of a path on at most `
hops by induction, and is thus = w(P ). If on the other hand, t = `+ 1, then

A`+1[a, b] =
n

min
k=1

A`[a, k] +A[k, b] ≤ A`[a, a`] +A[a`, b].

Since the portion P ′ of P from a to a` must be a min weight path among those of length ≤ ` (as otherwise
P would not be shortest), A`[a, `] = w(P ′), and so A`+1[a, b] = w(P ′) +w(a`, b) = w(P ). [end of proof of
claim]

Claim 2. If a graph does not have negative weight cycles, then for any pair of vertices u and v s.t. u can
reach v, there is a u to v shortest path that is simple, i.e. it does not have any repeated vertices. (This is
known as “Shortest Paths are, without loss of generality, simple.”)

1



Exercise: Prove the above claim.

Because the shortest paths we care about are simple, they have at most n− 1 hops. This means that to
compute the distances in G, it suffices to compute An−1, or any power Ap with p ≥ n− 1.

We can do this via successive squaring: Assume that we have computed A2j for some j, then we can
compute A2j+1

= A2j ? A2j via a single product. We start from A = A21 and using dlog2(n − 1) products
(successive squarings), we can compute Ap with p 6= n− 1.

Thus, if (min,+)-product is in T (n) time, then APSP is in O(T (n) log n) time. �

In a future problem set, you will prove that with a mild condition on T (n), the log factor can be removed.
This condition holds for most running time functions that we care about, and hence APSP and (min,+)-
product are runtime-equivalent, within constant factors.

2 Negative and Minimum Triangles

Suppose we have an n node graph with edge weights w : E → Z. The Min-Weight Triangle problem is to
find vertices i, j, k minimizing w(i, j) +w(j, k) +w(i, k). There is no known O(n3−ε) time algorithm for this
(when ε > 0). However, we can trivially solve this in O(n3) time by trying all triples of vertices.

A similar problem is the Negative Triangle Problem in which one is given a graph with integer edge
weights, and one needs to decide whether there exist three nodes i, j, k with w(i, j) + w(j, k) + w(i, k) < 0.
Clearly, if one can find a Min-Weight Triangle in T (n) time, then one can check if its weight is negative and
can thus also detect a Negative Triangle.

Proposition 1. We can reduce the Min-Weight Triangle problem on n node graphs, in O(n2) time to the
(min,+) product of n× n matrices.

Exercise: Prove the above Proposition.

This is the best known strategy for the Min-Weight triangle problem! Why? Because the problem is, in
some sense, equivalent to APSP (which is equivalent to (min,+) product). We show below that APSP can
even be reduced to Negative Triangle, thus showing that Negative Triangle, Min-Weight Triangle and APSP
are “subcubically equivalent”: if one of the problems can be solved in O(n3−ε) time for some ε > 0, then all
of them can be solved in O(n3−ε

′
) time for some ε′ > 0. This latter running time is called truly subcubic.

Theorem 2.1. If for some ε > 0, the Negative Triangle Problem can be solved in O(n3−ε) time, then APSP
in n node graphs with edge weights in {−W, . . . ,W} is in Õ(n3−ε/3 log(Wn)) time.

In other words,
Negative Triangle ≡3 APSP

(this notation means that if you have a truly subcubic algorithm for one problem, then you have a truly
subcubic algorithm for the other). Most of this lecture is devoted to proving this.

2.1 Preliminaries

Without loss of generality, we can assume that for a Negative Triangle Instance:

1. For all vertices i, j, we have (i, j) ∈ E. This is because suppose that the edge weights are in
{−M, . . . ,M}, where M ≥ 1 is an integer. Then if (i, j) /∈ E, we can add (i, j) to E with weight
w(i, j) = 6M . This would mean that if the non-edge is part of a triangle, then its weight is greater
than that of any real triangle.

2



2. G is tripartite.

Exercise: Convince yourself of point 2 above. (This should be similar to some of your proofs on the
problem set.)

2.2 Reductions

We define two intermediate problems:

All Pairs Min Triangles: Given a weighted tripartite graph on parts I, J,K, find minvJ∈J w(uI , vJ) +
w(vJ , tK) + w(uI , tK) for all pairs uI ∈ I, tK ∈ K.

It is not hard to see that this problem is equivalent to the (min,+)-product (which is equivalent to APSP).

All Pairs Negative Triangles (APNT): Given a tripartite graph G as before, determine for all uI ∈ I
and tK ∈ K whether there exists a vJ ∈ J such that w(uI , vJ) + w(vJ , tK) + w(uI , tK) < 0.

APNT is easily reducible to All-Pairs Min Triangles (just find the minimum weight for all pairs of vertices,
and test if it’s less than 0), but we would like to reduce All-Pairs Min Triangles (and thus APSP) to APNT.
APNT also easily solves Negative Triangle, but we would like to reduce it to Negative Triangle.

2.3 Reducing All-Pairs Min Triangles (and thus APSP) to APNT

Lemma 2.1. If APNT is in T (n) time, then All Pairs Min Triangles is in O(T (n) logM) time (where the
edge weights of the All Pairs Min Triangles instance are in {−M, . . . ,M}).

Proof. For all uI ∈ I, tK ∈ K, we can use binary search to guess the value Wut = minvJ∈J w(uI , vJ) +
w(vJ , tK). This allows us to guess the value of the minimum weight triangle that uses those vertices.

For each u, t, we guess a value Wut, and replace the edge weight w(uI , tK) in the graph with Wut. Then
we can use the negative triangle algorithm to ask for each u, t, if there exists a vJ such that w(uI , vJ) +
w(vJ , tK) < −Wut. This would tell us if minvJ w(uI , vJ) +w(vJ , tK) < −Wut. Using a simultaneous binary
search (for all u, t) over all possible edge weights, we can find the actual value of the minimum weight triangle.
This takes O(T (n) logM) time. �

2.4 Reducing APNT to Negative Triangle

We first claim that finding can be efficiently reduced to detection:

Claim 3. Suppose we have an algorithm A that detects a negative triangle in T (n) = O(n3−ε) time for
ε > 0. Then we also have an algorithm that can find a negative triangle (if one exists) in O(n3−ε) time.

Exercise: Prove the above claim.

Hint: Split the vertices into roughly equal parts and find a way to recurse.

Now that we have that a negative triangle detection algorithm can be used to find a negative triangle,
we can assume that we are given an O(n3−ε) time for ε > 0 algorithm for finding a negative triangle, if one
exists.

In Algorithm 1, we give an efficient reduction from APNT to Negative Triangle (NT) finding. Combined
with the finding to detection reduction, we obtain a reduction from APNT to Negative Triangle detection.

3



Algorithm 1: All-pairs negative triangles (given the ability to find a negative triangle in a graph)

Begin APNT to NT reduction:
We are given G = (I ∪ J ∪K,E), tripartite weighted graph.
Partition I, J,K into {I1, . . . , In/L}, {J1, . . . , Jn/L}, {K1, . . . ,Kn/L}.
Initialize C to an n× n matrix of all zeros.
(At the end of the algorithm, C[i, j] = 1 iff (i, j) is used in a negative triangle.)
for all triples (i, j, k), where i, j, k range from 1 to n/L do

Consider Gijk, the subgraph of G induced by Ii ∪ Jj ∪Kk.
while Gijk contains a negative triangle (? A call to NT algorithm ?) do

Let aI , bJ , cK be the nodes of the triangle returned by the NT alg.
Set C[aI , cK ] = 1.
Delete (aI , cK) from G (this deletes it from all the induced subgraphs Gijk).

return C
End APNT to NT reduction

Exercise: Convince yourself that the Algorithm is correct, i.e. for every a ∈ I, c ∈ K, C[a, c] = 1 if
and only if there is some b ∈ J such that a, b, c is a negative triangle in G.

2.4.1 Runtime

This algorithm runs in time

T (L)

(
n2 +

(n
L

)3
)
.

The runtime is dominated by the number of times a call to Negative Triangle finding happens (and each
such call takes T (L) time). There are two types of such calls. The first type are those that return a negative
triangle. The total number of such calls is no more than n2 because C only has n2 elements, and on each
iteration we’re setting one of them to 1 (and removing the edge so we can’t set it to 1 again).

The second type of calls to Negative Triangle are those that do not find a negative triangle. The total
number of such calls is exactly one for each triple (i, j, k), making sure that Gijk has no more negative
triangles. Thus the number of such calls is (n/L)3 term.

To minimize the runtime, we set L = n1/3, which gives a runtime of O(n2T (n1/3)). Since T (n) = n3−ε,
the runtime is O(n3−ε/3).

3 Applications to graph Radius

In the graph radius problem, we are given an undirected graph with integer edge weights, and want to find

min
v

max
u

d(u, v).

We may want to find the “center” vertex c such that the maximum distance from c to the rest of the graph
is minimized. The graph radius is used a lot in social network analysis.

The only known algorithm for computing the radius of a graph is to solve APSP. Below we explain this
by showing that the radius problem is subcubically equivalent to APSP.

Theorem 3.1. Graph Radius ≡3 APSP.

Proof. Reduce the negative triangle problem to the radius problem. We can assume that we are given a
tripartite graph G = (V,E) where the three vertex partitions are I, J,K and the edge weights in G are
integers in {−M, . . . ,M} for some integer M .

4



II

J K

L

x

y

5M

2M w(aI , bJ) + 2M w(bJ , cK) + 2M w(cK, a
′
I) + 2M

Edge (aI , q
′
I) iff a 6= q.

aI

bJ cK

a′I

Copy of I

4M

3M

2M

Figure 1: Reduction from Negative Triangle to Graph Radius. The weights w(e) for edges in I×J, J×K,K×L
are 2M + wG(e), where wG(e) is the weight in G of the edge corresponding to e in G.

We will create a graph H which will be an instance of the Radius problem. The vertices of H will consist
of I, J,K (corresponding directly to the vertices in G) and one more set of vertices L which will be a copy
of I. That is, each node u ∈ I has a copy u′ ∈ L. We add two more additional vertices x and y.

We draw edges from I to J , from J to K, and from K to L. The edge sets between I and J and between
J and K are the same as those in G. The edges from K to L are the same as those between K and I in G
(recall L is a copy of I). So far every edge in H is in direct correspondence with an edge in G. The weight
of an edge in H is 2M+ the weight of the corresponding edge in G. In particular this makes all edge weights
in the graph ≥M .

The proof of the claim below is simple:

Claim 4. A node u ∈ I appears in a negative triangle in G if and only if there is a path from u ∈ I to
u′ ∈ L in H of weight < 6M . (Recall that u′ is the copy of u ∈ I in L.)

Now we add edges between the special new vertices x and y and the rest of H. We add edges from x to
all vertices in I (all these edges have weight 5M). Then we add edges from y to all vertices in I (all these
edges have weight 2M). Node y also has edges (of weight 3M) to all vertices in K and edges (of weight 2M)
to all vertices in J . Last but not least, take any node u ∈ I, and any node v′ ∈ L such that v′ 6= u, and add
an edge (u, v′) of weight 4M .

The construction is depicted in Figure 1.
We claim that if R < 6M , then

� The center of this graph is in I.

Exercise: Show that this is the case, i.e. that every node not in I is at distance ≥ 6M from some
other node.

� For all u ∈ I and v ∈ {x, y} ∪ J ∪K, we have d(u, v) ≤ 5M .

� For all u ∈ I and v′ ∈ L such that v 6= u, we have d(u, v′) ≤ 4M .

5



� For all u ∈ I, we have d(u, u′) = min{6M,min weight of a triangle through u}.

Exercise: Verify the last three claim bullets above.

So R < 6M if and only if there exists u ∈ I such that the min weight triangle through u has weight less
than 6M . Thus R < 6M if and only if the original Negative Triangle instance graph contains a negative
triangle. �

6


