
Better Approximation Algorithms for the Graph Diameter

Shiri Chechik∗ Daniel H. Larkin† Liam Roditty‡ Grant Schoenebeck§

Robert E. Tarjan¶ Virginia Vassilevska Williams‖

Abstract

The diameter is a fundamental graph parameter and its
computation is necessary in many applications. The
fastest known way to compute the diameter exactly is
to solve the All-Pairs Shortest Paths (APSP) problem.

In the absence of fast algorithms, attempts were
made to seek fast algorithms that approximate the diam-
eter. In a seminal result Aingworth, Chekuri, Indyk and
Motwani [SODA’96 and SICOMP’99] designed an algo-

rithm that computes in Õ
(
n2 +m

√
n
)

time an estimate

D̃ for the diameter D in directed graphs with nonnega-
tive edge weights, such that b2/3 ·Dc−(M − 1) ≤ D̃ ≤ D,
where M is the maximum edge weight in the graph. In
recent work, Roditty and Vassilevska W. [STOC 13] gave
a Las Vegas algorithm that has the same approxima-
tion guarantee but improves the (expected) runtime to

Õ (m
√
n). Roditty and Vassilevska W. also showed that

unless the Strong Exponential Time Hypothesis fails, no
O
(
n2−ε) time algorithm for sparse unweighted undirected

graphs can achieve an approximation ratio better than
3/2. Thus their algorithm is essentially tight for sparse
unweighted graphs. For weighted graphs however, the
approximation guarantee can be meaningless, as M can
be arbitrarily large.

In this paper we exhibit two algorithms that achieve a
genuine 3/2-approximation for the diameter, one running

in Õ
(
m

3/2
)

time, and one running in Õ
(
mn

2/3
)

time.

Furthermore, our algorithms are deterministic, and thus
we present the first deterministic (2− ε)-approximation
algorithm for the diameter that takes subquadratic time
in sparse graphs.

In addition, we address the question of obtaining an
additive c-approximation for the diameter, i.e. an esti-
mate D̃ such that D − c ≤ D̃ ≤ D. An extremely sim-
ple Õ

(
mn1−ε) time algorithm achieves an additive nε-

approximation; no better results are known. We show
that for any ε > 0, getting an additive nε-approximation
algorithm for the diameter running in O

(
n2−δ) time for

any δ > 2ε would falsify the Strong Exponential Time
Hypothesis. Thus the simple algorithm is probably es-
sentially tight for sparse graphs, and moreover, obtain-
ing a subquadratic time additive c-approximation for any
constant c is unlikely.

Finally, we consider the problem of computing the

eccentricities of all vertices in an undirected graph, i.e.

the largest distance from each vertex. Roditty and
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Vassilevska W. [STOC 13] show that in Õ (m
√
n) time,

one can compute for each v ∈ V in an undirected graph,

an estimate e (v) for the eccentricity ε (v) such that

max {R, 2/3 · ε (v)} ≤ e (v) ≤ min {D, 3/2 · ε (v)} where

R = minv ε (v) is the radius of the graph. Here we improve

the approximation guarantee by showing that a variant

of the same algorithm can achieve estimates ε′ (v) with
3/5 · ε (v) ≤ ε′ (v) ≤ ε (v).

1 Introduction

The diameter, defined as the largest distance in a
graph, is one of the most basic graph parameters. Its
computation is necessary in many applications—in
the analysis of social networks [35, 2], and even in
linguistics where one may wish to find two synonyms
furthest from one another.

Computing the diameter of the graph has been
extensively studied. Fast algorithms are known for
some special families of graphs, e.g. [27, 21, 13, 12,
7, 24, 30, 14, 19, 20, 39] (see also [26, 36] for diameter
approximation in planar graphs). The fastest known
algorithm that computes the diameter exactly in
general graphs computes the distances between every
pair of vertices in the graph, solving the all pairs
shortest paths (APSP) problem. It is a longstanding
open problem whether one can compute the diameter
faster than APSP [15]. This problem is especially
intriguing in the case of sparse graphs. Any algorithm
for APSP must take quadratic time in the number of
vertices, regardless of the graph sparsity, since this
is the size of the output. In contrast, the output of
the diameter problem is a single number, and it is
unclear why one should spend quadratic time on its
computation in sparse graphs.

A seemingly simpler problem is that of approx-
imating the diameter. Indeed, there is a trivial lin-
ear time algorithm that returns a 2-approximation
to the diameter D, i.e. an estimate D̃ such that
1/2 · D ≤ D̃ ≤ D: run breadth first search (BFS)
from and to an arbitrary vertex and return the max-
imum distance found. (The algorithm also works for
weighted graphs by using Dijkstra’s algorithm instead
of BFS with a slight increase in running time.) Thus
when it comes to 2-approximations, diameter compu-



tation in sparse graphs is easier than APSP.
A seminal result of Aingworth et al. [1] showed

that one can beat the approximation factor of 2 for
the diameter with a running time of Õ

(
n2 +m

√
n
)

1

where n and m are the number of vertices and
edges respectively. The algorithm guarantees that
the estimate D̃ satisfies b2/3 ·Dc−(M − 1) ≤ D̃ ≤ D,
where M is the maximum edge weight in the graph,
thus it gives almost a 3/2-approximation.

Unfortunately, for sparse graphs, Aingworth et
al.’s algorithm still runs in Ω(n2) time which suf-
fices to compute APSP even exactly. In recent work,
Roditty and Vassilevska W. [33] gave a Las Vegas
algorithm running in expected Õ (m

√
n) time that

has the same approximation guarantee as Aingworth
et al., thus giving the first O(n2−δ) time (almost)
3/2-approximation algorithm for sparse graphs. They
also showed that obtaining a (3/2− ε)-approximation
algorithm running in O

(
n2−δ

)
time in sparse undi-

rected and unweighted graphs for constant ε, δ > 0
would be difficult, as it would imply a fast algorithm
for CNF Satisfiability, violating the widely believed
Strong Exponential Time Hypothesis of Impagliazzo,
Paturi and Zane [29].

The Roditty and Vassilevska W. result is essen-
tially tight for undirected, unweighted graphs. Nev-
ertheless, the approximation guarantee can be mean-
ingless for arbitrary weighted graphs, as the additive
error of M can be arbitrarily large.

A natural question is, can we remove the additive
error while still keeping the running time (in terms of
n) subquadratic for sparse graphs? As there are many
cubic time algorithms that compute the diameter (an
algorithm for APSP such as Floyd-Warshall would
do), can the algorithm also run in truly subcubic
running time, even for dense graphs?

In this paper we answer the above questions
by exhibiting two algorithms that achieve a genuine
3/2-approximation for the diameter, one running in
Õ(m3/2) time, and one running in Õ(mn2/3) time.
Our algorithms are purely combinatorial, do not
use sophisticated data structures, and are likely to
be practical. Furthermore, unlike the algorithm
of [33], our algorithms are deterministic, and thus we
present the first deterministic (2− ε)-approximation
algorithm for the diameter that takes subquadratic
time in sparse graphs.

Theorem 1.1. There is a deterministic algorithm
that computes an estimate D̃ of the diameter D of a
directed or undirected graph with nonnegative integer
edge weights in time Õ

(
min

{
m3/2,mn2/3

})
, so that

1The Õ notation suppresses polylogarithmic factors.

d2/3 ·De ≤ D̃ ≤ D.

We note that Theorem 1.1 can be strengthened
to hold also for graphs with arbitrary nonnegative
real weights. This extension will appear in the full
version of the paper.

So far we have only discussed multiplicative
approximation guarantees. A stronger guarantee
is to obtain an additive c-approximation, i.e. an
estimate D̃ such that D − c ≤ D̃ ≤ D, where c
is hopefully a small quantity, typically unrelated to
D. Good additive approximation algorithms have
been obtained for APSP. For instance, Aingworth et
al. [1] use the ideas behind their diameter algorithm
to obtain an Õ

(
n5/2

)
time algorithm that computes

additive 2-approximations to all distances in the
graph. This additive approximation for APSP of
course also provides an additive approximation for
the diameter. However, as before, the drawback is
that the algorithm runs in Ω

(
n2

)
time, even for

sparse graphs.
A closely related notion is that of additive span-

ners. An additive spanner is a subgraph H such that
for any pair of nodes s, t, the distance of s and t
in H is at most their distance in G plus some ad-
ditive term. A naive approach to approximate the
diameter within an additive stretch is to first find a
sparse additive spanner of the graph and then com-
pute APSP on the spanner. However, one cannot
beat quadratic time using this approach as APSP is
computed. For related work on additive spanners see
[5, 6, 31, 23, 10, 23, 34, 32, 38, 37, 11, 1, 18].

For sparse graphs, there are no known sub-
quadratic time algorithms that provide constant or
even logarithmic additive approximation guarantees
for the diameter, even when the graphs are un-
weighted and undirected. The best additive approx-
imation guarantee for sparse graphs is obtained by a
simple random sampling argument that shows that
for all ε > 0, there is an Õ

(
mn1−ε

)
time randomized

additive nε-approximation algorithm for the diame-
ter. Boitmanis et al.[9] presented a deterministic al-
gorithm with Õ (m

√
n) running time that computes

the diameter with an additive error of
√
n. A natu-

ral question is, why is it so difficult to obtain good
additive approximations for the diameter?

We give a partial answer to the above question
by showing that for any ε > 0, getting an additive
nε-approximation algorithm for the diameter running
in O

(
n2−δ

)
time for any δ > 2ε would falsify the

Strong Exponential Time Hypothesis (SETH) of Im-
pagliazzo, Paturi and Zane [29]. Before our hardness
result, no lower bounds were known - not even for
the case of computing an additive 2-approximation



for the diameter. Our result is inspired by the hard-
ness result presented in [33].

Theorem 1.2. If for some constants ε > 0 and δ >
2ε there is an O

(
n2−δ

)
time algorithm that achieves

an additive nε approximation to the diameter of an
unweighted, undirected graph, then there is a constant
γ > 0 such that CNF-SAT on N variables can be
solved in O∗

(
(2− γ)N

)
time2.

Corollary 1.1. Either SETH is false, or there are
no O(n2−δ) time additive no(1)-approximations for
the diameter for any δ > 0.

Finally, we consider the problem of computing
the eccentricities of all vertices in an undirected
graph, i.e. the largest distance from each ver-
tex. Roditty and Vassilevska W. [33] show that in
Õ (m

√
n) time, one can compute for each v ∈ V ,

an estimate e (v) for the eccentricity ε (v) such that
max {R, 2/3ε (v)} ≤ e(v) ≤ min {D, 3/2ε (v)} where
R = minv ε (v) is tha radius of the graph. In the last
section of this paper we improve the approximation
guarantee by showing that in Õ

(
m3/2

)
time, one can

achieve estimates ε′ (v) with 3/5 · ε (v) ≤ ε′ (v) ≤ ε (v).
Related work. A related problem to the di-

ameter is computing the radius of the graph, de-
fined as the minimum eccentricity. Berman and Ka-
siviswanathan [8] showed that the approach of Aing-
worth et al. can be used to obtain in Õ(m

√
n + n2)

time an estimate r̂ of the radius r of an undi-
rected graph that satisfies r ≤ r̂ ≤ 3/2r. Roditty
and Vassilevska W. [33] also showed how to obtain
an Õ(m

√
n) expected time, 3/2-approximation algo-

rithm for the radius.
Aingworth et al.’s paper spawned a long line of

research on APSP approximation. Dor, Halperin,
and Zwick [18] presented an additive 2-approximation
for APSP in unweighted undirected graphs with a
running time of Õ(min{n3/2m1/2, n7/3}), thus im-
proving on Aingworth et al.’s APSP approximation
algorithm. Baswana et al. [3] presented an algorithm
for unweighted undirected graphs with an expected
running time of O(m2/3n log n + n2) that computes
an approximation of all distances with a multiplica-
tive error of 2 and an additive error of 1. Elkin [22]
presented an algorithm for unweighted undirected
graphs with a running time of O(mnρ + n2ζ) that
approximates the distances with a multiplicative er-
ror of (1+ε) and an additive error that is a function of
ζ, ρ and ε. Cohen and Zwick [16] extended the results
of [18] to weighted graphs. Baswana and Kavitha [4]

2Here O∗ (f(n)) means O(f(n)poly(n)).

presented an Õ(m
√
n + n2) time multiplicative 2-

approximation algorithm and an Õ(m2/3n+n2) time
7/3-approximation algorithm for APSP in weighted
undirected graphs.

2 Preliminaries

Unless otherwise noted, we consider graphs G =
(V,E) with n = |V | and m = |E|. Each G is
equipped with a nonnegative integer weight function,
w : E → Z+ ∪ {0,∞}. For edge e = (u, v) ∈ E, we
will sometimes denote w (e) by w (u, v). The distance
between two vertices u and v is denoted d (u, v).

We will denote by GR the graph obtained by
reversing the directions of all edges of G; note,
dG (v, w) = dGR (w, v).

Define by ε (v) = maxu∈V d (v, u) be the eccen-
tricity of vertex v. The diameter of a graph is de-
fined as D = maxv∈V ε (v). The radius of a graph is
defined as R = minv∈V ε (v).

Let L be a positive integer parameter which will
vary in our algorithms. The L-nearest set of a vertex
v is denoted NL (v), and consists of the L closest
vertices to v. More precisely, |NL (v)| = L and for all
pairs of vertices x ∈ NL (v) and y 6∈ NL (v), d (v, x) ≤
d (v, y). The reverse nearest set of v, denoted by
NR
L (v) is defined similarly as above but includes the

L vertices that v is closest to:
∣∣NR

L (v)
∣∣ = L and

for all pairs of vertices x ∈ NR
L (v) and y 6∈ NR

L (v),
d (x, v) ≤ d (y, v).

Let S ⊆ V . We denote by d (v, S) the distance
from v to its closest vertex in S, i.e. d (v, S) =
mins∈S d (v, s).

Given a distance r, the ball of radius r around v
is defined as Br (v) = {u : d (v, u) ≤ r}. Such balls
will never be used explicitly by our algorithms, but
will be used in our analysis.

Dijkstra search. For v ∈ V , one can calculate
d (v, u) and d (u, v) for every u ∈ V using Dijkstra’s
algorithm [17] with Fibonacci heaps [25] in G and GR

respectively in O (m+ n log n) time. Without using
sophisticated data structures, Dijkstra’s algorithm
runs in O (m log n) time. We will use the term
Dijkstra search to indicate running the shortest paths
algorithm in both directions.

Nearest set computation. Given v ∈ V , we
compute NL (v) using a modified version of Dijkstra’s
algorithm which runs in O

(
L2

)
time. Assuming

sorted adjacency lists, it is sufficient to relax at most
the first L edges leaving each vertex, and only extract
L vertices from the priority queue.

Hitting set selection. Given n sets of size L
over a universe of size n, a set S of size O (n/L log n)
hitting all n sets in at least one element can be found
deterministically in O (m+ nL) time using a greedy



set cover algorithm (e.g. [1]).
Balls of radius r and working sets. In our

algorithms it may be useful to compute the r-balls
around all nodes, however, even for small r, the r-ball
around v may be very large. Because of this, we do
not compute balls explicitly, but rather concentrate
on working sets.

Given a set S ⊆ V and an integer r, the r-working
set of v with respect to S, denoted by Wr,S (v),
is formed by adding vertices in order of increasing
distance from v until the next vertex to be added
either belongs to S or is at a distance greater than
r from v. When S is clear from the context, we
will just write Wr (v). By construction, we have
Wr (v) ⊆ Br (v). If |S ∩ NL (v) | ≥ 1, then also
Wr (v) ⊂ NL (v). In some cases we will construct
working sets without radius restriction, and use the
notation W (v) = W∞ (v).

Handling extremal diameter values. Since
the edge weights are non-negative numbers or ∞,
D = 0 if and only if when one considers the subgraph
H containing only the edges of weight 0, and H is
strongly connected. The other extremal case is when
D = ∞, and this is if and only if the subgraph
composed only of finite weight edges is not strongly
connected. Since strong connectivity can be tested in
linear time, we can check both these cases in a quick
preprocessing phase. We hence concentrate on the
case when the diameter is finite and positive.

3 Diameter Approximation

Let us first recall the algorithm of Roditty and Vas-
silevska W. [33]. The algorithm first picks a random
sample S of vertices such that |S| = Θ(n/L log n).
With high probability, S hits the L-nearest sets
NL (v) for all v ∈ V . Then, the algorithm does a
Dijkstra search from every s ∈ S, and finds the fur-
thest node w, i.e. the node maximizing d (w, S). It
then does a Dijkstra search from w, and thus ex-
plicitly finds NL (w). Finally, it does a Dijkstra
search from each t ∈ NL (w) and returns the estimate
D̃ = maxv∈V,t∈S∪NL(w) max{d (t, v) , d (v, t)}.

The running time of the algorithm comes from
setting L =

√
n.

The correctness proof proceeds as follows. Let
D = 3q + z with z ∈ {0, 1, 2}, and let a and b be the
endpoints of the diameter path so that d (a, b) = D.
If d (a, S) ≤ q, then D̃ ≥ d (S, b) ≥ 2q + z ≥ 2D/3.
Thus assume that d (a, S) > q. By the choice of w,
then d (w, S) > q. Furthermore, if d (w, b) ≥ 2q + z,
then again D̃ ≥ 2q + z ≥ 2D/3. Thus assume
d (w, b) ≤ 2q + z − 1.

Now, since S hits NL (w) with high probability
and since d (w, S) > q, we have that there is some

node c on the shortest path P from w to b such
that c ∈ NL (w) and d (w, c) ≤ q but the node c′

after c on P has d (w, c′) > q. Thus, d (w, c) ≥
q+1−w (c, c′). But then, d (c, b) = d (w, b)−d (w, c) ≤
q+ z− 2 +w (c, c′), and d (a, c) ≥ 2q+ 2−w (c, c′) ≥
2D/3− w (c, c′).

The estimate of the Roditty and Vassilevska W.
algorithm thus satisfies d2/3 ·De − w (c, c′) ≤ D̃ ≤
D for some edge (c, c′). For unweighted graphs
this already provides a good approximation. For
weighted graphs, however, the approximation can be
arbitrarily bad since the weight of the edge (c, c′)
could be large.

We first provide a simple modification of the
algorithm of Roditty and Vassilevska W. to remove
the additive term in the approximation guarantee
caused by the edge above, providing a genuine 3/2-
approximation.

Suppose every vertex in the graph has constant
out-degree. Then we could just expand NL (w) by
one level, thus also running a Dijkstra search from
all vertices with an inneighbor in NL (w). This
extra computation does not increase the asymptotic
running time since the number of edges incident to
NL (w) is O(|NL (w) |).

Furthermore, this expansion of NL (w) will guar-
antee that we run a Dijkstra search from the ver-
tex c′ in the above argument, and will thus guar-
antee that in the problematic case, D̃ ≥ d (a, c′) ≥
(3q + z)− (2q + z − 1− (q + 1)) = 2q+2 ≥ d2/3 ·De.

On graphs with nonconstant degree however,
the above change in the algorithm can increase the
running time to O(mn) since NL (w) may have edges
to all vertices, and we would run a Dijkstra search
from all vertices. Fortunately, there is a simple
transformation we can apply to the graph first to
transform it into a bounded-degree graph. The
transformation is as follows. Process each vertex one
by one. If a node v has total degree d(v) greater than
3, replace v by a directed cycle on d(v) nodes. All
cycle edges have weight 0. Associate each (in or out)
neighbor u of v with a distinct cycle vertex cu, and
replace each edge (u, v) with (u, cu) and each (v, u)
with (cu, u).

It is not hard to see that any distance calcula-
tion will label every vertex in each expanded cycle
with the same distance, and that all distances are
preserved by the transformation. The graph will have
Θ (m) vertices and Θ (m) edges. This will have the
effect of inflating the running time of our algorithm
from Õ (m

√
n) to Õ

(
m3/2

)
.

An anonymous reviewer suggested a slight mod-
ification to the above approach that still guarantees
an Õ

(
m3/2

)
running time, but keeps the number of



vertices in the instance O (n). Instead of reducing to
the case of bounded degree, one applies the above cy-
cle transformation, but instead of replacing each node
with a cycle on d(v) nodes, one replaces it with a cy-
cle on dd(v)/(m/n)e nodes, balancing the in- and out-
edges so that no new node gets more than O (m/n)
edges. The algorithm is the same as above. The run-
ning time becomes Õ (m · (Lm/n+ n/L)) since the
number of edges incident on NL (w) is O (Lm/n). We
set L = n/

√
m to obtain a running time of Õ

(
m3/2

)
.

3.1 A New Approach In this section we describe

our Õ
(
mn2/3

)
time algorithm. It relies on a new

approach for diameter estimation. In order to give
an informal description, we will begin with a crucial
lemma.

Recall that for integer r and vertex v, the in- and
out- balls of radius r around v, Br (v) and BRr (v), are
just the vertices that v is at distance at most r to or
from. Given r and vertices x and y we define the
gap-distance between x and y as

gr (x, y) = min
(s,t)∈E
s∈Br(x)
t∈BRr (y)

d (x, s) + w (s, t) + d (t, y) .

The lemma below says that the distance and gap-
distance of two vertices are extremely related.

Lemma 3.1. Let x, y ∈ V and let r be a nonnegative
integer. Then d (x, y) ≤ 2r + 1 if and only if
gr (x, y) ≤ 2r + 1.

Proof. Clearly, if gr (x, y) ≤ 2r+ 1, then as d (x, y) ≤
gr (x, y), we also have d (x, y) ≤ 2r + 1.

Now suppose that d (x, y) = ` ≤ 2r + 1. Then
consider the shortest path P between x and y. If y ∈
Br (x), then we already have gr (x, y) ≤ r ≤ 2r + 1.
Hence y /∈ Br (x) and hence ` > r.

Now, since d (x, y) > r but d (x, x) = 0, P has
a middle edge e = (u, v) such that d (x, u) ≤ r but
d (x, v) > r.

As d (x, u) ≤ r, u ∈ Br (x). Similarly, d (x, v) ≥
r + 1, so d (v, y) ≤ r and v ∈ BRr (y). Therefore,

gr (x, y) ≤ d (x, u) + w (u, v) + d (v, y) = ` ≤ 2r + 1.

�

Intuition behind the algorithm. Recall that
D = 3q + z where z ∈ {0, 1, 2} and a and b are
vertices that satisfy d (a, b) = D. Suppose q is given
to us, a possible strategy to detect a pair of vertices
at distance at least 2q + z is as follows.

Let L be a parameter. We first compute NL (v)
and NR

L (v) for all vertices v. We then compute a

hitting set S of size O (n/L log n) as before, guaran-
teeing that all NL (v) and NR

L (v) sets are hit. Now,
since we have q, we compute Wq (v) and WR

q (v) for
all v.

Recall Wq (v) is formed by adding the closest
vertices reachable from v before a node of S or a
node at distance > q is discovered. WR

q (v) is the
same but when the edges are traversed in the opposite
direction.

Now, we can run a Dijkstra search for each node
in S. There are two cases. If any of the vertices of S is
contained in Bq (a) or BRq (b), then we are guaranteed
to find distance of at least 2q + z. Otherwise, by the
construction of the working sets, Bq (a) = Wq (a) and
BRq (b) = WR

q (b). To handle this case, we can take
all pairs of vertices x and y such that Bq (x) ∩ S = ∅
and BRq (y) ∩ S = ∅ and compute gq (x, y). If the
maximum gap-distance found is at least 2q+2, return
2q + 2. (Alternatively, if we take a pair with gap-
distance at least 2q + 2 and run Dijkstra for an
arbitrary vertex from this pair we will get an actual
distance as the desired approximation.)

Suppose that the maximum gap-distance found
is ≤ 2q + 1. Then d (x, y) ≤ 2q + 1 for each of the
pairs considered and in particular d (a, b) ≤ 2q + 1.
However, d (a, b) = 3q + z, and hence q ≤ 1 − z.
Except in the special cases D = 0, 1 and 3 that
can be handled separately, this is impossible. Hence,
except for some special cases, the value returned will
be 2q + 2 ≥ 2q + z.

This idea has two problems. The first is that
we do not know q ahead of time, and guaranteeing
that we could find it exactly in the time we have
allotted would imply a contradiction to the Strong
Exponential Time Hypothesis [33]. To overcome this
problem we will use a binary search technique which,
while not always explicitly identifying q, still always
guarantees a good estimate for the diameter. The
idea behind the binary search is as follows. Suppose
we have some guess r for q and the maximum gap-
distance computed is at least 2r+2, then either 2r+2
is a good estimate already, or we must have q > r,
so we can try to increase our guess. Otherwise, if the
maximum gap-distance is at most 2r+ 1, then either
the Dijkstra searches have already computed a good
estimate, or q < r and we can thus reduce r. A simple
way to implement this is to search over the possible
values of the diameter, the integers between 1 and
M(n−1), however this would result in a logMn factor
in the running time. We instead do a binary search
over a carefully selected set of Õ

(
n1.5

)
integers, and

thus obtain only an O (log n) overhead.
The second problem is that it is not immediately

clear how to compute the gap-distances efficiently,



since we might have to consider many vertex pairs
and then to scan all edges between the working sets
of each pair. To overcome this issue, we carefully pick
more vertices to run a Dijkstra search from until the
number of vertex pairs and edges between working
sets is small.

The algorithm. Our algorithm works as fol-
lows. First, as in the preliminaries, check whether
the diameter is 0, and if so, return 0. From now on,
assume that D ≥ 1.

For a parameter L, for every v ∈ V we compute
the set NL (v) and NR

L (v). We add all the distinct
distances found during this computation to a list
denoted L. Add −1 and Mn to this list as well
and sort it. The list L will represent all the values
over which we will binary search for q, except for
−1 and Mn which we include for technical reasons.
Notice that N = |L| = O (nL) so that creating L and
sorting it is efficient, and the number of search steps
over the binary search is O (log n). Furthermore, if
L = {−1 = r0, r1, . . . , rN = Mn}, we have that
r0 < q < rN .

We pick a set S that hits all NL (v) and NR
L (v)

and run Dijkstra for every v ∈ S.
We then start a binary search over L. An

iteration of the binary search for a value r ∈ L is
composed of the following steps. First, for each vertex
v ∈ V we compute Wr (v) and WR

r (v). For every
vertex v either Wr (v) ⊂ Br (v), or Br (v) = Wr (v).
In the former case S ∩ Br (v) 6= ∅ and in the latter
case we add v to a set U . U contains all nodes
that we have not processed by running Dijkstra on
some nearby node. Similarly, we create a set UR.
On the fly we also compute for every vertex u a list
` (u) (respectively `R (u)) of all vertices v such that
u ∈ Wr (v) and v ∈ U (respectively u ∈ WR

r (v) and
v ∈ UR).

Next, our goal is to find all pairs of vertices u and
v such that u ∈ U and v ∈ UR and gr (u, v) ≤ 2r+ 1.
A straightforward way to do it is by scanning the
graph edges and for each edge (x, y) and for each
pair of vertices u ∈ ` (x) and v ∈ `R (y), to compute
d (u, x) + w (x, y) + d (y, v). If it happens that for
all edges (x, y) we have |` (x) | ≤ t and |`R (y) | ≤ t
for some small t, then one can find all pairs of
u ∈ U, v ∈ UR with small gap-distance in O

(
mt2

)
time. However, apriori, the lists ` (x) and `R (y) can
have Ω(n) vertices.

To overcome this problem we have an additional
pruning step in which we run a Dijkstra search from
each vertex v such that |` (v)| ≥ t or

∣∣`R (v)
∣∣ ≥ t. We

go through each v for which |` (v)| ≥ t. We remove
from U , v and each vertex u such that u ∈ ` (v). We
remove u from ` (w) if w ∈Wr (u). This changes the

sizes of some sets ` (·). We continue to the next vertex
with large ` (·). The same is done for the reverse sets
for which

∣∣`R (v)
∣∣ ≥ t.

The transformation above can run at most
O (n/t) Dijkstra searches since each Dijkstra search
is associated with at least t vertices being removed
from U or UR. The removal of vertices from ` (w)
can be amortized to their insertion, and hence the
entire pruning step costs Õ (mn/t) operations.

After the transformation is completed, we are
guaranteed that every edge connects at most t2

working sets. Now we can compute gap-distances by
scanning the edges in O

(
mt2

)
time overall. For a

vertex u ∈ U we store all vertices from UR at gap-
distance at most 2r + 1 in a set C(u). Notice that
this way we can quickly detect whether there are
some u ∈ U , v ∈ UR with gr (u, v) ≥ 2r + 2, just
by checking whether |C(u)| < |UR| for some u ∈ U .

Finally, we are ready to make the decision of
how to proceed with the binary search. We increase
the value of r if we detect a pair of vertices at gap-
distance at least 2r + 2 and decrease it otherwise.
In the final stage of the algorithm, we need to do a
little bit more work to ensure a good approximation,
due to the fact that our binary search is not over all
possible values for r. The steps of the algorithm are
summarized below.

Algorithm 1

1. Check whether the graph on only the finite edges
is strongly connected. If not, return D̃ = ∞,
together with two vertices in different strongly
connected components.

2. Check whether the graph on only the 0 edges is
strongly connected. If so, return D̃ = 0, together
with two arbitrary vertices.

3. Otherwise, initialize D̃ to equal the minimum
positive edge weight. (Hence D̃ ≥ 1.) Let ã and

b̃ be arbitrary vertices with w
(
ã, b̃

)
= D̃.

4. Compute NL (v) and NR
L (v) for each v. Create

a list L of all distinct distances found during the
nearest set computations, together with −1 and
Mn. Sort L in increasing order: L = {−1 =
r0, r1, . . . , rN = Mn}.

5. Pick S hitting all NL (v) and NR
L (v).

6. Run a Dijkstra search from each vertex v ∈ S.
Update D̃ to be the largest distance found in
any of the searches so far, and let ã and b̃ be the

corresponding vertices such that D̃ = d
(
ã, b̃

)
.

7. Initialize i = 0, k = N , and j =
⌈
i+k
2

⌉
.

8. Repeat while k > i+ 1:



(a) Set r = rj .

(b) Initialize sets U = UR = ∅. For each v ∈ V ,
initialize lists ` (v) and `R (v) to be empty.

(c) For each vertex v ∈ V , build Wr (v) and
WR
r (v). IfBr (v) = Wr (v), add v to U , and

for each u ∈Wr (v) add v to ` (u). Similarly
if BRr (v) = WR

r (v), add v to UR and for
each u ∈WR

r (v) add v to `R (u).

(d) For each vertex v ∈ U , if |` (v)| > t, do the
following:

i. Run a Dijkstra search from v. Update(
D̃, ã, b̃

)
appropriately.

ii. For each u ∈ ` (v), if u ∈ U , remove u
from U . For every w ∈ Wr (u) remove
u from ` (w).

(e) For each vertex v ∈ UR, if
∣∣`R (v)

∣∣ > t, do
the following:

i. Run a Dijkstra search from v. Update(
D̃, ã, b̃

)
appropriately.

ii. For each u ∈ `R (v), if u ∈ UR, remove
u from UR. For every w ∈ Wr (u)
remove u from `R (w).

(f) For each v ∈ U , initialize a dictionary C (v)
to contain v if v ∈ UR and to be empty
otherwise.

(g) For each (x, y) ∈ E do the following. For
each u ∈ ` (x) and v ∈ `R (y), compute
d (u, x) + w (x, y) + d (y, v). If it is at most
2r + 1 and v /∈ C (u) add v to C (u).

(h) If there exists a vertex v ∈ U such that
UR \ C (v) 6= ∅ (i.e. if |C(v)| < |UR| for
some v), set i = j, run a Dijkstra search

from v, and update
(
D̃, ã, b̃

)
appropriately.

Otherwise set k = j.

(i) Set j =
⌈
i+k
2

⌉
.

9. Run steps 8b through 8g for r = rk − 1. If
there exists a vertex u ∈ U such that UR \
C (u) 6= ∅, then run a Dijkstra search from

u and update
(
D̃, ã, b̃

)
. Otherwise, let g′ =

maxx∈U,y∈UR grk−1 (x, y) and let u be the node
such that for some u, gr (u, v) = g′. Set r′ =
bg′/2c − 1 and if 2r′ + 2 > D̃ run a Dijkstra

search from u and update
(
D̃, ã, b̃

)
.

10. Return
(
D̃, ã, b̃

)
.

Before proving the correctness, let us briefly dis-
cuss the running time. Since we do not want to use

sophisticated data structures, we will assume that
each Dijkstra search takes O (m log n) time. (Using
Fibonacci heaps in Dijkstra’s algorithm one can im-
prove the asymptotic running time by a logarithmic
factor.)

Computing nearest sets takes O
(
nL2

)
time.

Computing the Dijkstra searches for the hitting set S
takes O

(
mn/L log2 n

)
time. The additional Dijkstra

searches and gap-distance computation over all it-
erations of the loop take O

(
mn/t log2 n+mt2 log n

)
time: as argued earlier, each of the O (log n) iterations
calls at most O (n/t) searches, and the remaining gap-
distance computation takes O

(
mt2

)
time. Setting

L = m1/3 log2/3 n and t = (n log n)1/3 we get a run-

time of O
(
mn2/3 log5/3 n

)
.

Theorem 3.1. Algorithm 1 returns an estimate D̃
to the diameter such that d2/3 ·De ≤ D̃ ≤ D.

Proof. In the special case when D = 3, notice that
the algorithm runs at least one Dijkstra search from
a node v. The longest distance found from or to v
must be at least dD/2e = 2 as otherwise the diameter
would be 2.

The algorithm checks whether the special case
D = 0 happens, and if it doesn’t, it always returns a
positive integer estimate, via step 3. Thus, the special
case D = 1 is covered as well. From now on we can
assume that q > (1− z), hence 2q + 2 ≤ 3q + z = D,
and in particular D ≥ 2.

Let a and b be the endpoints of a diameter path
such that d (a, b) = D.

We consider an iteration of the binary search and
analyze the behavior of the algorithm for the different
values of r = rj .

1. r ≤ q.

(a) Suppose for all pairs of vertices x and y
such that d (x, y) ≥ 2r + 2, either x 6∈ U
or y 6∈ UR. In particular, we have done
a Dijkstra search from either u ∈ Br (a)
or v ∈ BRr (b), and will set D̃ to a value
≥ 2q + z. Notice that in this case we set
k = j.

(b) There exists some pair of vertices x and y
such that d (x, y) ≥ 2r + 2 and both x ∈ U
and y ∈ UR. Thus we set i = j and
search for a larger value of r. We also run
a Dijkstra search from an arbitrary vertex
that belongs to some pair. Notice that if
we happen to have r = q we will set D̃ to a
value ≥ 2q + 2 ≥ 2q + z.

2. q < r.



(a) Suppose for all pairs of vertices x and y
such that d (x, y) ≥ 2r + 2, either x 6∈ U
or y 6∈ UR. Thus we set k = j and search
for a smaller value of r.

(b) There exists some pair of vertices x and y
such that d (x, y) ≥ 2r + 2 and both x ∈ U
and y ∈ UR. Thus we run a Dijkstra search
from such a vertex x and obtain an estimate
D̃ ≥ 2r + 2 ≥ 2q + z. Furthermore we
update i = j.

Now consider the value of ri as the algorithm
progresses. From the manner in which we construct
L, it is clear that either the algorithm returns early,
or r0 = −1 < q and rN = Mn > q. When it is
initialized, ri = −1 < q and ri never decreases and
increases at least once since the distance 0 is in L

and q ≥ 0 and D ≥ 2q + 2. Whenever ri increases, it
is to the value currently held by r = rj . Similarly
whenever rk decreases, it is to the value held by
r = rj . Upon termination of the loop, j = k = i+ 1.

First, suppose that at some point in the execution
of the algorithm ri ≥ q. Then, at some previous point
rj was ≥ q and after that iteration, i was set to j. But
this means, that either Case 2b occurred and hence
the estimate is at least 2ri + 2 ≥ 2q + 2 ≥ 2q + z, or
Case 1b occurred and rj = q which also means the
returned estimate is at least 2q + z.

Thus, let’s assume that the algorithm terminates
with ri < q. Then, either some iteration falls into
Case 1a and we are guaranteed a good estimate,
or every iteration satisfying Case 1 fell into Case
1b. Suppose the latter is true and consider the final
iteration of the loop. First, it is possible that rj =
rk = q and again we are guaranteed a good estimate
by Case 1b. Alternatively, it could be that rk < q.
Then during a previous iteration, k was updated
to have the value of j in that iteration satisfying
rj < q, which implies that Case 1a was satisfied in
that iteration, a contradiction to our assumption that
this case was never satisfied. The remaining option
is that rk > q.

Consider the end of the loop where k = i+ 1 and
ri < q < rk = ri+1. First notice that i > 0 since if
i = 0, then k = 1, and hence rk = r1 = 0 (as 0 is
in L), giving a contradiction to rk > q ≥ 0. Since
i > 0, we must have had an iteration where rj had
the value ri. For that iteration there are some x, y
with gri (x, y) ≥ 2ri + 2 since i was set at Case 1b.

Let r̂ be any integer that satisfies ri ≤ r̂ < ri+1.
Then Wr̂ (x) = Wri (x) for every x ∈ V since for
all edges (u, v) with u ∈ Wri (x) , v /∈ Wri (x), it
holds that d (x, u) + w (u, v) ≥ ri+1 as otherwise
there was another value in L between ri and ri+1.

Thus, for every x, y ∈ V and ri ≤ r̂ < ri+1 we have
gri (x, y) = gr̂ (x, y).

Recall that a and b are endpoints of the diameter.
Notice that either we have a Dijkstra search from a
vertex s such that d (a, s) ≤ q or d (s, b) ≤ q, or we
have that d (a, s) , d (s, b) > q for all nodes s that we
have run Dijkstra through. By our assumption that
Case 1a was never satisfied, this means that in every
iteration with rj ≤ q we have a ∈ U and b ∈ UR and
since i > 0 we have at least one such iteration.

Consider the iteration with r = rk − 1 initiated
at step 9 and the last iteration with r = ri. As
Wri (u) = Wrk−1 (u) for every u ∈ V , it follows that
the sets U and UR of both iterations are the same
(they start the same and we can also prune them in
the same order). Thus, we have a ∈ U and b ∈ UR in
the iteration r = rk − 1. Now consider the outcome
of this iteration. There are two possible cases. The
first case is that there exists a vertex u ∈ U such that
UR \C (u) 6= ∅. Let v ∈ UR \C (u). By the way C(u)
is defined it follows that grk−1 (u, v) ≥ 2(rk − 1) + 2.
By Lemma 3.1 it follows that d (u, v) ≥ 2(rk− 1) + 2.
As rk − 1 ≥ q we get that grk−1 (u, v) ≥ 2q + 2, thus
d (u, v) ≥ 2q+ 2 and since we run Dijkstra from u we
get the required estimate.

We now turn to the second case which is a bit
more subtle to analyze. In this case there is no
vertex u ∈ U such that UR \ C (u) 6= ∅, thus,
grk−1 (u, v) ≤ 2(rk − 1) + 1 for every u ∈ U and
v ∈ UR. Let g′ = maxx∈U,y∈UR grk−1 (x, y) and let
r′ = bg′/2c − 1. So 2r′ + 2 ≤ g′ ≤ 2r′ + 3.

Consider a pair u, v such that grk−1 (u, v) = g′ ≥
2r′+2. By Lemma 3.1 it follows that d (u, v) ≥ 2r′+2
so if r′ ≥ rk − 1 ≥ q then we have the required
estimate as we run Dijkstra from u. So we can assume
that r′ < rk − 1. Now recall that for every x, y ∈ V
and ri ≤ r̂ < ri+1 we have gri (x, y) = gr̂ (x, y). In
particular, since grk−1 (x, y) = gri (x, y) and since
in the iteration for r = ri, ri was set as a lower
bound, we must have that gri (x, y) ≥ 2ri + 2 for
some x, y and hence g′ ≥ 2ri + 2. This implies that
r′ ≥ ri and since r′ < rk − 1 we can conclude that
grk−1 (x, y) = gr′ (x, y) = gr′+1 (x, y) for every x ∈ U
and y ∈ UR.

Consider now a and b. As a ∈ U and b ∈ UR, we
have gr′+1 (a, b) ≤ 2r′+3 = 2(r′+1)+1. This follows
from the fact that gr′+1 (a, b) = gr′ (a, b) ≤ g′ ≤
2r′+3. Using Lemma 3.1 we get that d (a, b) ≤ 2r′+3.
Combining this with the fact that d (u, v) ≥ 2r′ + 2
we get that d (u, v) ≥ D − 1. We also know that
r′ ≥ ri ≥ 0, thus, d (u, v) ≥ 2. So for D = 2 we have
the exact diameter and for D > 2 we have the desired
estimate.

Thus we have proven that the algorithm returns



an estimate D̃ ≥ 2q + z ≥ d2/3 ·De as well as two

vertices ã and b̃ such that D̃ = d
(
ã, b̃

)
. �

4 Additive Diameter Approximation

In this section we consider additive approximations to
the diameter. We show that a simple approximation
algorithm is essentially tight, assuming a well-known
hypothesis about the complexity of CNF Satisfiabil-
ity.

Consider a graph G on n vertices and m edges.
Given an arbitrary constant ε > 0, consider the fol-
lowing almost trivial algorithm: sample c · n1−ε log n
nodes S uniformly at random. Run Dijkstra’s algo-
rithm from and to each vertex from S. Return the
maximum distance found.

Proposition 4.1. The above algorithm runs in
Õ(mn1−ε) time and returns an estimate D̃ such that
with high probability, D − nε ≤ D̃ ≤ D.

Proof. The running time is clear. Let us discuss the
approximation guarantee.

Let D̃ = maxs∈S,v∈V max{d(s, v), d(v, s)} be the
estimate that the algorithm returns. Let a and b be
the end points of the diameter path.

Consider first the case when the diameter D is at
most 2nε. Then, consider an arbitrary vertex s ∈ S.
D ≤ d(a, s)+d(s, b) ≤ 2D̃, and hence D/2 ≤ D̃ ≤ D.
However, D/2 = D − D/2 ≥ D − nε, and hence
D − nε ≤ D̃ ≤ D.

Now suppose that D > 2nε. Then with high
probability there is a node s ∈ S such that d(a, s) ≤
nε. Thus, d(s, b) ≥ D − d(a, s) ≥ D − nε, and hence
again D − nε ≤ D̃ ≤ D.

A popular conjecture, the Strong Exponential
Time Hypothesis (SETH) [28, 29] states that for
every γ > 0 there exists an integer k such that no
algorithm running in time 2(1−γ)n solves k-SAT in
the worst case when n is the number of variables. We
now show that the above simple algorithm is almost
tight for sparse graphs, assuming the SETH.

Theorem 4.1. Assuming the SETH, approximating
the diameter of a graph with N edges to within an
additive error of Nδ requires time Ω(N2−ε) for all
ε > 2δ.

The reduction is similar in spirit to the reduction
of Roditty and Vassilevska W. [33] but requires a
nontrivial change in order to be able to handle
additive errors.

Our construction proceeds in two phases. In the
first, we create a graph Gϕ for which the diameter is 3
if ϕ is unsatisfiable and 4 if it is satisfiable. Then, for

any integer `, we construct a graphGϕ` by subdividing
the edges of Gϕ. Gϕ` has the property that if ϕ is
unsatisfiable, then Gϕ` has diameter 3(`+ 1) and if ϕ
is satisfiable, then Gϕ` has diameter 4(`+ 1).

Notice that if we were only after a lower bound
for multiplicative approximation as in [33], we would
only prove a lower bound for (4/3−ε)-approximations
which is weaker than the Roditty-Vassilevska W.
result. However, this seemingly weaker construction
shows that no additive `-approximation is doable
in truly subquadratic time, assuming the SETH. In
the additive regime, the previous construction only
applied to additive 1-approximations.

Construction of Gϕ Given k-SAT formula ϕ
with m clauses C and n variables D we partition
the variables into two sets D1 and D2, each of size
n/2. Let X1 be the 2n/2 partial assignments on
the variables in D1 and let X2 be the 2n/2 partial
assignments on the variables in D2.

We construct the bipartite graph Gϕ = (V ∪U,E)
on partitions U and V as follows:

V = C ∪ {a1} ∪ {a2}, i.e. the clauses plus two
additional vertices.

U = X1 ∪X2 ∪ {x∗}, i.e. the partial assignments
plus an additional variable.

E contains the following edges:

• (c, x): for all c ∈ C, and x ∈ X1 ∪X2 where the
partial assignment x is consistent with the clause
c being violated. (That is, x does not satisfy any
of the literals in c).

• (ai, x); for all i ∈ {1, 2} and x ∈ Xi.

• (v, x∗): for all v ∈ V .

Lemma 4.1. For all v, v′ ∈ V , v and v′ share a
common neighbor. ϕ is unsatisfiable if and only if
for all u, u′ ∈ U , u and u′ share a common neighbor.

Proof. Let v, v′ ∈ V . Then they share the neighbor
x∗.

Consider u, u′ ∈ U . Suppose that u ∈ Xi ∪ {x∗}.
If u′ ∈ Xi∪{x∗} as well, then ai is a common neighbor
of u and u′. Hence assume that u ∈ Xi and v ∈ Xj

for j 6= i. Then we’ll show that u and u′ have a
common neighbor if and only if u, u′ corresponds to
an unsatisfying assignment: If u and u′ do not satisfy
ϕ then there exists a clause c ∈ C that neither u nor
u′ satisfy. This clause will be a common neighbor.
If u and u′ satisfy ϕ, then they satisfy every clause.
Thus for every clause c ∈ C either u or u′ set a literal
in the clause to true and so is not connected to this
clause c in the graph. However, the only possible
common neighbors correspond to clauses in C, and
thus u and u′ have no common neighbor.



Construction of Gϕ` We define a `-subdivision
of an arbitrary graph as follows.

Definition 1. (`-subdivision G` of G) Given a
graph G = (V,E), its `-subdivision G`(V`, E`) is
defined as follows:

V` = V ∪ (E × {1, . . . , `})
Assume that each e ∈ E has some arbi-

trarily chosen “direction” (i, j). Then E` =
{(i, e1), (e1, e2), . . . , (e`−1, e`), (e`, j) : e = (i, j) ∈
E}.

We say that a vertex v ∈ G` is an original vertex
if it is also a vertex in G.

Lemma 4.2. If ϕ is unsatisfiable, then Gϕ` has diam-
eter at most 3(`+ 1), and if ϕ is satisfiable, then Gϕ`
has diameter at least 4(`+ 1).

Proof. Assume that ϕ is unsatisfiable. Let v, v′ be
two arbitrary vertices in Gϕ` . Consider how far v and
v′ are away from vertices from the original graph Gϕ.
Without loss of generality assume that v is closer and
is distance r ≤ `+1

2 away from some original vertex
v̄. (If v is an original vertex, then v̄ = v and r = 0.)
Now v′ is on an edge e′ from Gϕ (if v′ is also an
original vertex and is on several edges, choose one
arbitrarily). Let v̄′ be the end point of e′ that is in
the same partition as v̄, i.e. either both v̄ and v̄′ are
in U , or both are in V .

Now d(v̄′, v′) ≤ (` + 1) − r because otherwise v′

would be closer to an original vertex than v. Also
d(v̄, v̄′) ≤ 2(`+ 1) because v̄ and v̄′ share a common
neighbor in Gϕ by Lemma 4.1. Thus there is a path
from v to v′ of length at most d(v, v̄) + d(v̄, v̄′) +
d(v̄′, v′) ≤ r + 2(`+ 1) + (`+ 1)− r = 3(`+ 1).

Assume that ϕ is satisfiable. Every simple path
connecting original vertices in Gϕ` induces a path in
Gϕ. Let u ∈ X1, u

′ ∈ X2 be two vertices correspond-
ing to a satisfying assignment. By Lemma 4.1, u and
u′ are on the same side of the partition in Gϕ but have
no common neighbor. Thus the distance between u
and u′ in Gϕ is at least 4, and so any path connecting
them in Gϕ` has distance at least 4(`+ 1).

Proof. [Proof of Theorem 4.1] For the sake of con-
tradiction, let ε > 2δ such that there exists an N2−ε

time algorithm which approximates the diameter of
a graph with N edges to within additive error Nδ.

Let

γ =
2− (1 + δ

1−δ )(2− ε)
5

.

Note that γ > 0 because (1 + δ
1−δ )(2 − ε) < (1 +

δ
1−δ )(2 − 2δ) = 2. Now by SETH, there exists a k

such that solving k-SAT requires time 2(1−γ)n. We

will use our reduction and the assumed algorithm to
violate this.

Given a k-SAT instance ϕ on m clauses and

n variables, let ` = (4m2n/2)
δ

1−δ , and create the
graph Gϕ` . The number of edges N is at most
2`m2n/2 + 2 + 2nn/2 < 4`m2n/2. Thus the error our
algorithm makes is at most

Nδ < (4m`2n/2)δ = (4m(4m2n/2)
δ

1−δ 2n/2)δ

= (4m2n/2)
δ

1−δ = `.

Thus computing the diameter within an additive
error of Nδ will solve the k-SAT instance ϕ.

The time it will take to solve the instance is
N2−ε as creating the graph Gϕ` takes only O (N) time.
However,

N2−ε = (4`m2n/2)2−ε = (4m(4m2n/2)
δ

1−δ )2n/2)2−ε

= (4m2n/2)(1+
δ

1−δ )(2−ε) ≤ (4m2n/2)2−5γ .

Now we know that m ≤ (2n)k (otherwise we can
remove the duplicate clauses before the reduction)
and so for large enough n, we have that (4m)2 <
2γn. Thus, (4m2

n
2 )2−5γ < 2(1−2γ)n giving us our

contradiction.

5 Approximating the Eccentricities

In this section we give a 5/3-approximation to the
eccentricities of all vertices in a given undirected
weighted graph. The algorithm runs in Õ

(
m3/2

)
time. It is presented below.

Algorithm 2

1. Transform the graph to have bounded degree (as
in Section 3). G = (V,E) is the new graph.

2. Sort the adjacency lists in ascending order of
weight.

3. Let L =
√
m logm. For all v ∈ V , compute

NL (v).

4. Pick a set S ⊂ V of size O((m/L) logm) hitting
NL (v) for all v ∈ V .

5. Run a Dijkstra search from every s ∈ S.

6. Determine the farthest vertex from S, and call
it w.

7. Run a Dijkstra search from w.

8. T := {w} ∪ {x ∈ V | ∃y ∈ NL (w) ∧ (y, x) ∈ E}.
Notice that NL (w) ⊆ T .

9. Run a Dijkstra search from each vertex in T .



10. Set ε′ (v) := ε (v) for each v ∈ T ∪ S.

11. For each v /∈ T ∪ S, set ε′ (v) =
maxu∈T∪S {max (d (u, v) , ε (u)− d (u, v))}.

12. Return the list of ε′ (v) values.

Theorem 5.1. Algorithm 2 returns an estimate
ε′ (v) to the eccentricity ε (v) for each vertex v such
that 3ε(v)/5 ≤ ε′ (v) ≤ ε (v).

Proof. First, note that in an undirected graph, for
any x, y ∈ V we have that ε (x) ≥ ε (y) − d (x, y).
Indeed, let ε (x) = d (x, tx) and ε (y) = d (y, ty). Then
d (x, tx) ≥ d (x, ty) + d (x, y) − d (x, y) ≥ d (y, ty) −
d (x, y).

Because of this, for any v ∈ V , the estimate ε′ (v)
returned is always at most ε (v): either it is a real
distance to v, or it is ε (u)− d (u, v) for some u.

It remains to show that for any v ∈ V , ε′ (v) ≥
3ε(v)/5. Consider any u ∈ T ∪ S. From the argument
above, we have that ε (u) ≥ ε (v) − d (u, v), and so
ε′ (v) ≥ ε (u) − d (u, v) ≥ ε (v) − 2d (u, v). We will
show that either for some u ∈ T ∪S, d (u, v) ≥ 3ε(v)/5,
or for some u ∈ T ∪ S, d (u, v) < ε(v)/5 so that
ε (v) − 2d (u, v) ≥ 3ε(v)/5, and thus the estimate is
always good.

First, if d (w, v) ≥ 3ε(v)/5, then the estimate is
already good, so assume that d (w, v) < 3ε(v)/5.

Let t be the farthest vertex from v. If we run a
Dijkstra search from a vertex in B2ε(v)/5 (t), then we
are guaranteed a good estimate, so assume otherwise.
This means that d (w, S) ≥ d (t, S) > 2ε(v)/5 since w
is the farthest vertex from S. Since S hits NL (w), we
also have that NL (w) contains all vertices of distance
≤ 2ε(v)/5 from w.

Consider the shortest path P from w to v. Let x
be the last vertex of NL (w) on P , and let w′ be the
vertex after x on P . Since v /∈ NL (w), w′ must exist.
Since NL (w) contains all vertices of distance at most
2ε(v)/5 from w, we must have d (w,w′) > 2ε(v)/5, and
since d (w, v) < 3ε(v)/5, we must have d (w′, v) < ε(v)/5.
Since w′ ∈ T , we have run a Dijkstra search from w′

and ε′ (v) ≥ ε (v)−2d (w′, v) ≥ 3ε(v)/5, completing the
proof. �

Theorem 5.2. Algorithm 2 runs in time

O
(

(m log n)
3/2

)
.

Proof. Because we make the graph have con-
stant degree, computing NL (v) for all v ∈ V
takes O(mL) time. The Dijkstra searches take

O (((m/L) logm+ L)m logm) = O
(

(m logm)
3/2

)
time.
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