
Better Distance Preservers and Additive Spanners∗

Greg Bodwin and Virginia Vassilevska Williams

{gbodwin, virgi}@cs.stanford.edu

Computer Science Department, Stanford University

Abstract

We make improvements to the upper bounds on several
popular types of distance preserving graph sketches.
The first part of our paper concerns pairwise distance
preservers, which are sparse subgraphs that exactly
preserve the pairwise distances for a set of given pairs
of vertices. Our main result here is that all unweighted,
undirected n-node graphs G and all pair sets P have
distance preservers on |H| = O(n2/3|P |2/3 + n|P |1/3)
edges. This improves the known bounds whenever
|P | = ω(n3/4).

We then develop a new graph clustering technique,
based on distance preservers, and we apply this tech-
nique to show new upper bounds for additive (standard)
spanners, in which all pairwise distances must be pre-
served up to an additive error function, and for subset
spanners, in which only distances within a given node
subset must be preserved up to an error function. For
both of these objects, we obtain the new best trade-
off between spanner sparsity and error allowance in the
regime where the error is polynomial in the graph size.

We leave open a conjecture that O(n2/3|P |2/3 + n)
pairwise distance preservers are possible for undirected
unweighted graphs. Resolving this conjecture in the af-
firmative would improve and simplify our upper bounds
for all the graph sketches mentioned above.

∗This work was supported by NSF Grants CCF-1417238, CCF-
1528078 and CCF-1514339, and BSF Grant BSF:2012338.

1 Introduction

How much can all graphs be compressed while keeping
their distance information roughly intact? This ques-
tion falls within the scope of both metric embeddings
and graph theory and is fundamental to our under-
standing of the metric properties of graphs. When the
compressed version of the graph must be a subgraph,
it is called a spanner. Spanners have a multitude of
applications, essentially everywhere shortest path infor-
mation needs to be compressed while still allowing for
graph algorithms to be run. The quality of a spanner
is measured by the tradeoff between its sparsity and its
accuracy in preserving the distances. There are many
different versions of spanners, which we discuss below.

1.1 Pairwise Distance Preservers

One possible formalization of the spanner problem is
that distances must be preserved exactly. Naturally,
if all distances must be preserved exactly, then one
cannot sparsify the graph at all (e.g. consider the
complete graph). Hence, the most studied version in the
exact distance setting is that only some of the pairwise
distances are considered.

Definition 1. Given a graph G and a pair set P ⊂
V × V , we say that a subgraph H ⊂ G is a pairwise
distance preserver of G,P if δH(u, v) = δG(u, v) for all
(u, v) ∈ P .

This definition was first posed by Bollobás, Copper-
smith, and Elkin [BCE03], who described the pair set
implicitly as {(u, v) | δG(u, v) ≥ D} for some parame-
ter D (such an object is simply called a D-preserver of
G). The same authors showed that |E(H)| = Θ(n2/D)
edges are sufficient and sometimes necessary to con-
struct a D-preserver. Coppersmith & Elkin [CE06]
later generalized the definition to the above form.
They constructions of pairwise distance preservers with
O(n|P |1/2) edges (which apply to possibly directed and
weighted graphs) and O(n + n1/2|P |) edges (which ap-
ply only to undirected, but possibly weighted graphs).

They also proved a host of lower bounds; most notably
that a superlinear (ω(n+ |P |)) number of edges are nec-
essary for any distance preserver unless |P | = O(n1/2)
or |P | = Ω(n2). This lower bound holds even for undi-
rected and unweighted graphs. This implies that for dis-
tance preservers for |P | = Θ(

√
n) pairs of nodes, Θ(n)

edges is both an upper and lower bound.
Distance preservers are fundamental combinatorial

objects with many applications. For example, they
are commonly used as a tool in creating other types
of graph spanners [CE06, BCE03, BW15] (we will
discuss some of these shortly). Additionally, they were
recently applied by Elkin & Pettie [EP15] to construct
low-stretch path reporting distance oracles. Although
they have been successfully applied to several other
important problems, no progress on upper or lower
bounds for distance preservers themselves has been
reported since Coppersmith & Elkin’s initial work ten
years ago. This paper provides the first such progress.

Theorem 3. All undirected unweighted graphs G and
pair sets P have a distance preserver H with |E(H)| =
O(n2/3|P |2/3 + n|P |1/3).

Following this result, the best upper bounds for
undirected unweighted graphs are:

1. O(n2/3|P |2/3) when |P | = Ω(n) (this paper)

2. O(n|P |1/3) when Ω(n3/4) = |P | = O(n) (this
paper)

3. O(n+ n1/2|P |) when |P | = O(n3/4) ([CE06])

We consider it fairly unlikely that this piecewise
behavior reflects the true upper bound for undirected
unweighted pairwise distance preservers. Note that
the upper bound O(n + n2/3|P |2/3) is proven for both
|P | = Ω(n) and for |P | = O(n1/2). We take this as
compelling evidence that this bound is attainable in
general.

Conjecture 1. Every unweighted, undirected graph G
and pair set P admits a pairwise distance preserver on
O(n+ n2/3|P |2/3) edges.

1.2 Graph Clustering

In many applications it is useful to cover the graph
with clusters of small radius and small overlap. To
this end, a rich body of work has developed a variety
of graph clustering techniques following the following
principles: each cluster consists of a central “core”
plus a surrounding shell of non-core nodes, every node
belongs to the core of at least one cluster, and the

n
2

n
7
/
4

n
3
/
2

n
5
/
4

n

n2n3/2nn1/21

|P |

|E
(H

)|
Figure 1: The state of the art after this paper
for pairwise distance preservers on undirected un-
weighted graphs. Old upper bounds (due to Cop-
persmith & Elkin [CE06]) are in blue, new upper
bounds in this paper are in solid green, and our con-
jectured upper bound is shown by the dotted green
line. The dashed red lines are an infinite family of
lower bounds due to Coppersmith & Elkin [CE06];
any tradeoff southeast of any of these lines is not
possible in general.

average node belongs to very few clusters, and, typically,
each cluster has approximately the same radius. Just
a few of the clustering algorithms with this sort of
behavior can be found in [AP92, Coh93, PR10].

What these algorithms commonly lack is a non-
trivial bound on the size of each cluster. This makes
them difficult to use for certain applications, partic-
ularly those related to spanners with additive error
(called additive spanners).

Our contribution is a new clustering algorithm
based on distance preservers, that allows us to have a
handle of the number of clusters, and can be applied
to constructing additive spanners. Our approach is
roughly as follows. We threshold the size of each
cluster. Clusters that are smaller than the threshold are
called “small,” and we use arguments based on distance
preserver upper bounds to show that very few edges
participate in shortest paths passing through the core
of a small cluster. Clusters bigger than the threshold
are called “large,” and we can limit the total number of

large clusters due to the lower bound on the number of
nodes each one contains.

Although our underlying clustering technique is
similar to prior clustering techniques, our applications
to additive spanners require additional properties that
do not seem to hold in any prior clustering algorithm.
In particular, we need that the “core” of each cluster
is contained in a ball of radius r around a center node,
and that the “fringe” (non-core nodes) of the cluster
contains the ball of radius 2r around this center node.
We devise a new algorithm with these properties.

1.3 Additive Spanners

The most popular definition of a spanner is that all
pairwise distances must be preserved up to an error
function which can be additive, multiplicative, or mixed.

Definition 2. [Spanner] A subgraph H is an (α, β)-
spanner of a graph G if

δH(u, v) ≤ α · δG(u, v) + β

for all u, v ∈ V .

Spanners are well-studied combinatorial objects.
Some of their many applications include protocol syn-
chronization in unsynchronized networks [PU89a], and
the design of low-stretch routing algorithms which fol-
low particularly compact routing tables [Cow01, CW04,
PU89b, RTZ08, TZ01]. They have also been used to
create low space distance oracles [TZ05, BS07, BK06,
RTZ08] and almost-shortest path algorithms [EZ06,
Elk05, Elk07, DHZ96]. Mild variations on graph span-
ners have appeared in broadcasting [FPZW04], solving
diagonally dominant linear systems [ST04], and more.

Spanners were introduced by Peleg and Shäffer
[PS89] in the multiplicative error setting (β = 0), and
many results followed (e.g.[ADD+93, RZ04, RTZ05,
BS07]). The more general mixed setting is studied for
instance by [EP04]. In this paper we will focus on the
case when the error is additive, i.e. when α = 1.

Definition 3. [Additive spanner] A subgraph H is a
+β spanner of a graph G if

δH(u, v) ≤ δG(u, v) + β

for all u, v ∈ V .

Additive spanners were first considered by Liestman
and Shermer [LS91, LS93]. There are three known
constructions of constant error additive spanners:

1. +2 spanners on O(n3/2) edges [ACIM99]

2. +4 spanners on Õ(n7/5) edges [Che13]

3. +6 spanners on O(n4/3) edges [BKMP05]

Followup work has made various minor improvements
to these base constructions, such as shaving log factors,
improving the construction time, derandomizing, sim-
plifying, etc. See [DHZ96, EP04, RTZ05, TZ06] for work
on the +2 spanner or [Woo10, Knu14] for work on the
+6 spanner.

Progress has mysteriously halted at this n4/3

threshold: it is currently open whether or not there ex-
ist spanners on O(n4/3−δ) edges, even if the additive
error function can be as large as +no(1). Breaking this
n4/3 barrier is considered to be a major open question
[DHZ96, BKMP05, BKMP10, Woo10, BW15, Knu14,
Che13].

Meanwhile, current lower bounds for additive span-
ners allow plenty of room for improvement. Erdös’ Girth
Conjecture [Erd64] implies that +(2k − 1) spanners re-
quire Ω(n1+1/k) edges for any constant k; Woodruff
[Woo06] has shown that this same lower bound holds
independent of the Girth Conjecture. This implies that
the +2 spanner is tight, but that the other spanners
might be improvable; in particular, it is conceivable that
there is a +βε spanner on O(n1+ε) edges for all ε > 0.

Given the apparent robustness of the n4/3 bar-
rier to progress, researchers have sought spanners on
n4/3−δ edges with small polynomial amounts of er-
ror. This is where our work lies. The follow-
ing sparsity bounds have been obtained for +O(nd)
spanners, presented in chronological order: the first
[BCE03] had O(n3/2−d/2) edges, then +O(n4/3−d/3)
edges in [BKMP05], then O(n9/14−8d/7) edges [Pet09],
then Õ(n1/3−2d/3) edges with the restriction d ≤ 4/17
[Che13], then Õ(n1−2d) edges [BW15], and finally
Õ(n2/5−3d/5) [BW15]. Jointly, these last three span-
ners form the current state of the art beneath the n4/3

threshold. If the O(n1/3−2d/3) spanner construction
[Che13] worked for all d, it would beat all other known
constructions. Obtaining this tradeoff for all d is con-
sidered an important open problem [Che13, BW15].

Our work subsumes this open problem, showing
that the tradeoff O(n1/3−2d/3) edges with +O(nd) error
is not optimal for any d. Using our new graph clustering
technique, we show:

Theorem 5. Let a, b be constants such that all
graphs and pair sets have a distance preserver on
O(n + na|P |b) edges. Then for any constant
d > 0, all graphs have +O(nd) spanners on
n1+o(1)+(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1)) edges.

To understand how different known distance pre-
servers translate into spanners, consider Table 1.

Using the preserver bound The spanner has size

O(n1/2|P |+ n) (Coppersmith & Elkin [CE06]) Õ(n10/7−d)

O(n|P |1/3) if |P | = O(n) (Theorem 3) Õ(n5/4−5d/12) if d ≥ 3/13

O(n2/3|P |2/3) if |P | = Ω(n) (Theorem 3) Õ(n4/3−7d/9) if d ≤ 3/13

O(n2/3|P |2/3 + n) (Conjecture 1) Õ(n4/3−7d/9)

Table 1: Our new tradeoffs for standard spanners.

Our spanners are the sparsest known for all d > 0.
In particular, our tradeoff is better than the hypotheti-
cal n1/3−2d/3 tradeoff for all d > 0.

n
3
/
2

n
1
1
/
8

n
5
/
4

n
9
/
8

n

n1/2n3/8n1/4n1/81

β

|H
|

Figure 2: State of the art for +β (polynomial error)
additive spanners beneath the n4/3 threshold. Old
state-of-the-art upper bounds are in solid blue, and
the (previously open) n1/3−2d/3 bound discussed
above is shown by the dotted blue line. Our
new unconditional upper bounds are in solid green,
and the upper bound obtained under our distance
preserver conjecture is shown by the dotted green
line.

1.4 Subset Spanners

A recent research trend has been to merge the previous
two formalizations of the distance sparsification prob-
lem: only some pairwise distances must be preserved
up to an error function.

Definition 4. Let G = (V,E) be an undirected un-
weighted graph, and let P ⊂ V × V . We say that a

subgraph H = (V,E′) is a +β pairwise spanner of G,P
if

δH(u, v) = δG(u, v)

for all (u, v) ∈ P .

A slight restriction of this concept is:

Definition 5. A subgraph H is a +β subset spanner
of a graph G and a node subset S if

δH(u, v) ≤ δG(u, v) + β

for all u, v ∈ S.

There are three known constructions for pairwise
spanners in their most general form. These are: a +2
pairwise spanner on Õ(n|P |1/3) edges due to Kavitha
& Varma [KV13], a +4 pairwise spanner on Õ(n|P |2/7)
edges due to Kavitha [Kav15], and a +6 pairwise span-
ner on O(n|P |1/4) edges also due to Kavitha [Kav15].
There is also a +2 subset spanner on O(n|S|1/2) edges,
originally due to Elkin (unpublished). Obtaining a
constant error subset spanner on O(n|S|1/2−δ) edges
(or, by extension, a constant error pairwise spanner on
O(n|P |1/4−δ) edges) would be enough to break the n4/3

threshold for standard spanners discussed above. As
such, this task seems very difficult.

Like standard spanners, then, it seems important
to achieve a good polynomial sparsity/error tradeoff
below this bound. However, no progress on this task
has yet been reported. The best construction we know
is to naively ignore the given pair set and construct a
sparse (standard) spanner with polynomial error. It is
an important open question [CGK13, KV13, BW15] to
construct a subset/pairwise spanner that benefits in a
natural way from a polynomial error allowance.

That is exactly what we accomplish, for subset
spanners. We prove:

Theorem 4. For any constant d > 0, all graphs G
and node subsets S have a +O(nd) subset spanner on
|E(H)| = Õ(n) + |S|(2b+a−1)/2n1−d(1−a)+o(1) edges.

Using the preserver bound The sub. spanner has size

O(n1/2|P |+ n) (Coppersmith & Elkin [CE06]) |S|3/4n1−d/2+o(1)

O(n|P |1/3) if |P | = O(n) (Theorem 3) |S|1/3n1+o(1) if |S| = O(n2d)

O(n2/3|P |2/3) if |P | = Ω(n) (Theorem 3) |S|1/2n1−d/3+o(1) if |S| = Ω(n2d)

O(n2/3|P |2/3 + n) (Conjecture 1) |S|1/2n1−d/3+o(1)

Table 2: Our new tradeoffs for subset spanners.

2 Conventions

All graphs in this paper are undirected and unweighted.
The variable n is reserved for the number of nodes in
the graph G currently being discussed. If G = (V,E) be
a graph, then we say P is a pair set on G if P ⊂ V ×V .
We use the notation δG(u, v) to refer to the shortest
path distance between u and v in the graph G. For a
node u in G, we denote by B≤(u, r) the set of nodes
at distance r or less from u. Similarly, B<(u, r) is the
set of nodes at distance strictly less than r from u, and
B=(u, r) is the set of nodes at distance exactly r from
u.

3 Pairwise Distance Preservers

Recall the following definition from the introduction:

Definition 1. Given a graph G and a pair set P ⊂
V × V , we say that a subgraph H ⊂ G is a pairwise
distance preserver of G,P if δH(u, v) = δG(u, v) for all
(u, v) ∈ P .

Prior work has considered distance preservers on
possibly directed or weighted G, but we will restrict our
attention to the undirected and unweighted case.

One can imagine a pair set in which each pair
(u, v) ∈ P has a unique shortest path in G. In this
case, there is no room for algorithmic cleverness in the
construction of the preserver H; it is necessary that
H is exactly the union of these shortest paths. The
entire algorithmic component of the problem lies in path
tiebreaking: if there is a pair (u, v) such that G contains
several equally short paths between u and v, then we
need to choose which one of these to include in our
preserver. We formalize this as follows:

Definition 6. A path tiebreaking scheme on a graph
G is a function ρG that maps node pairs (u, v) to a
shortest path in G from u to v.

Given a graph G and a pair set P , one can construct
a distance preserver by simply choosing a tiebreaking
scheme ρG, and then setting H =

⋃
p∈P ρG(p). No

generality is lost in this approach.

A major theme of this section is the difference in
power between various tiebreaking schemes.

3.1 Old Tiebreaking Schemes

Coppersmith & Elkin’s upper bound of O(n
√
|P |) is re-

alized regardless of the tiebreaking scheme used. Their
other upper bound of O(n+

√
n|P |) is realized only by

tiebreaking schemes with the following property:

Definition 7. A tiebreaking scheme ρG is consistent
if, whenever w, x ∈ ρG(u, v), we have ρG(w, x) ⊂
ρG(u, v).

They also use a slight variant on the following
definition:

Definition 8. Let H be a directed graph. A branching
event b is a pair of distinct edges that enter the same
node.

The metaphor at work here is that we imagine
starting with an edgeless graph, and then build a
distance preserver by adding directed paths to it one
by one. Each branching event captures one instance of
two paths intersecting (although “free” intersections, in
which the intersecting edge was already in the preserver
due to another path, are not counted).

The following lemma (also due to Coppersmith &
Elkin) explains why this is a useful quantity to consider:

Lemma 1. [CE06] A graph H with b branching events
contains O(n+ (nb)1/2) edges.

Proof. By a convexity argument, we have

b =
∑
v∈V

(
degin v

2

)
≥
∑
v∈V

(
d|H|/ne

2

)
Assuming d|H|/ne ≥ 2 (and so |H| > n), we have∑

v∈V

(
d|H|/ne

2

)
= Θ(n(|H|/n)2) = Θ(|H|2/n)

Therefore, if |H| > n, we have
√
bn = Ω(|H|). So

|H| = O(n+
√
bn). �

The proof of the O(n + n1/2|P |) upper bound is now
straightforward. Let H =

⋃
p∈P ρG(p) be your distance

preserver of G,P . If ρG is a consistent tiebreaking
scheme, it is not too hard to see that any pair of
paths ρG(p1) and ρG(p2) can contribute at most two
branching events to H, and therefore H has only
O(|P |2) branching events. The O(n + n1/2|P |) upper
bound then follows from Lemma 1.

We now know that any consistent tiebreaking
scheme implements the Coppersmith & Elkin upper
bounds of O(min{n + n1/2|P |, n|P |1/2}). Looking for-
ward, how can these upper bounds be improved? There
are two possible directions of research. Perhaps (1)
there are stronger upper bounds that apply to arbitrary
consistent tiebreaking schemes, and we just need to re-
fine our proofs. Or maybe (2) we have exhausted the
potential of the consistency definition, and in order to
move forward, we will need to invent some new tiebreak-
ing schemes that have other properties besides consis-
tency. Our first result is that the answer is (2): the
Coppersmith & Elkin bounds are tight for consistent
tiebreaking schemes.

Theorem 1. For infinitely many n and any parameter
1
2 ≤ c ≤ 1, there is an unweighted, undirected graph G
on n nodes, a pair set P of size nc, and a consistent
tiebreaking scheme ρG such that∣∣∣∣∣∣

⋃
p∈P

ρG(p)

∣∣∣∣∣∣ = n1/2|P |

Proof. Let q = n1/2 be a prime. Let G be the complete
graph on q layers; that is, it consists of q layers of q
nodes, with edges placed such that a node in layer L
is adjacent to exactly the set of nodes in layer L − 1
(if L 6= 1) and L + 1 (if L 6= q). Let P be any set of
pairs (u, v) such that u is in layer 1 and v is in layer
q. Number the nodes in each layer from 0 to q − 1.
Define ρG by the following rule: if u is the ith node in
the first layer, and v is the jth node in the last layer,
then ρG(u, v) is the path that repeatedly travels from
the kth node in the Lth layer to the (k+ (i− j) mod q)
node in the (L+ 1)th layer.

We claim that no two paths ρG(p1), ρG(p2) intersect
on more than a single node. To see this: suppose that
ρG(w, x), ρG(u, v) share the ath node in layer L and also
the bth node in layer L′ > L. Then

a+ (w − x)(L′ − L) ≡ b ≡ a+ (u− v)(L′ − L) mod q

(where integers a, b, u, v, w, x stands in for the num-
bering of the nodes a, b, u, v, w, x in their respective

L 1 L 2 L 3 L 4 L 5 L 6 L 7

Figure 3: The graph described in Theorem 1, with
n1/2 = 7 (not pictured: all possible edges between
any two adjacent layers). We use P = L1× L7 (or
any subset of this, if c < 1). The first four paths
ρG(p) that start at the first node in L1 have been
drawn on the graph. Note that each pair intersects
on only one node.

layer). Since q is prime we can reduce this equation
to w − x ≡ u− v. We then have:

w + (w − x)L ≡ a ≡ u+ (w − x)L mod q

and so w = u. This implies that (w, x) = (u, v), and so
in fact these paths are identical.

Since each pair of paths intersects on only 1 or 0
nodes, it is clear that ρG is consistent. Additionally,
this condition implies that no two paths share an edge.
Since δG(p) = n1/2 for all p ∈ P , each path adds exactly
n1/2 edges to the preserver, and the claim follows. �

Theorem 2. or infinitely many n and any parameter
1 ≤ c ≤ 2, there is an unweighted, undirected graph G
on n nodes, a pair set P of size nc, and a consistent
tiebreaking scheme ρG such that∣∣∣∣∣∣

⋃
p∈P

ρG(p)

∣∣∣∣∣∣ = n|P |1/2

Proof. Let q = nc/2 be a prime. Construct the complete
graph on n/q layers of q nodes each, and choose your
pair set to be any appropriately-sized set of nodes such
that each pair has one node in the first layer and the
other node in the last layer. The proof is now identical
to that of Theorem 1. �

3.2 New Tiebreaking Schemes

We will next prove a new upper bound of O(n2/3|P |2/3+
n|P |1/3). By the theorems above, this improvement

will require a new tiebreaking scheme. This scheme is
contained in the following lemma:

Lemma 2. Let G be an unweighted undirected graph,
and let S be a subset of nodes such that every pair of
nodes in S is distance d or less apart. Let P be a pair
set such that every pair in P has a shortest path incident
on S. Then there is a tiebreaking scheme ρG such that∣∣∣∣∣∣

⋃
p∈P

ρG(p)

∣∣∣∣∣∣ = O(n+ (n|P ||S|d)1/2)

Proof. By Lemma 1, it suffices to prove that H has
O(|P ||S|d) branching events. We will do exactly that.
Let H = (V, ∅) be a distance preserver that we will build
iteratively. Assign each pair p ∈ P to a node u ∈ S such
that p has a shortest path through u. Expand the pair
set as follows: if (a, b) is in the pair set and is owned by
node u, replace it with two pairs (u, a) and (u, b). We
will add a shortest path to our preserver for each pair
in this expanded pair set, and for purposes of counting
branching events, we will direct each edge from the node
closer to u to the node closer to a/b.

Fix an ordering of the nodes in S, and add all paths
that belong to an earlier node before adding any paths
that belong to a later node. For each node u ∈ S in
order, start adding its paths to H according to any
consistent tiebreaking scheme. We will maintain the
following invariant: for each previously added path p
belonging to a node v that precedes u in the ordering,
at most 2d + 1 paths belonging to u branch with p. If
we ever add a path belonging to u that violates this
invariant, we will pause the algorithm and reroute one
or more of these 2d+ 2 paths to restore the invariant.

Suppose that there are 2d + 2 paths belonging
to s that have each added a distinct edge entering
some previously added path p, owned by node v. Let
v1, . . . , v2d+2 be distinct nodes in p on which a path
owned by u adds an edge, ordered by distance from v
(so δG(v, v1) < δG(v, v2) and so on). By the triangle
inequality, we have for all 1 ≤ j ≤ 2d+ 2:

δG(u, v) ≥ δG(u, vj)− δG(v, vj) ≥ −δG(u, v)

We also know δG(u, v) ≤ d, so we can write

d ≥ δG(u, vj)− δG(v, vj) ≥ −d

By the pigeonhole principle, there exist values 1 ≤ j <
k ≤ 2d+ 2 with

δG(u, vj)− δG(v, vj) = δG(u, vk)− δG(v, vk)

And so

δG(u, vj) + δG(v, vk)− δG(v, vj) = δG(u, vk)

u

v

p

d

v1 v2

. . .

. . .
v2d+1 v2d+2

(a) Suppose that u, v ∈ S, with v preceding u in the
ordering, and let p be a path owned by v. If paths
owned by u enter p at 2d+ 2 or more different points ...

u

v

p

d

v1 v2

. . .

. . .
v2d+1 v2d+2

(b) ... then we can reroute one of these paths, without
stretching its length, so that it coincides with another
path up until it reaches p (in this picture, we have
rerouted green into orange).

Figure 4: A graphical depiction of the “rerouting”
technique from Lemma 2.

δG(u, vj) + δG(vj , vk) = δG(u, vk)

We may therefore replace the prefix ρG(u, vk) of all
paths that first intersect p at the node vk with the new
prefix ρG(u, vj) ∪ ρG(vj , vk), and this replacement will
not stretch any of these paths. In doing so, we now
have that no paths owned by u intersect p at the node
vk, and so the invariant is restored.

Note that when we perform this rerouting, we can-
not introduce any new edges to the preserver; therefore,
when we repair the invariant on the path p, we will not
destroy the invariant on any other path. �

With this lemma in hand, we can now prove our
new upper bound.

Theorem 3. All undirected unweighted graphs G and
pair sets P have a distance preserver H with |E(H)| =
O(n2/3|P |2/3 + n|P |1/3).

Proof. Let ε be a parameter. Start adding paths from P
to the (initially empty) preserver in any order, according
to any tiebreaking scheme. Suppose that at some
point during this process, a node u gains the following
property: there exists a set of at most nε nodes within
distance 1 of u such that n2ε distinct paths pass through

these nodes. We then remove exactly n2ε of these paths
from the preserver and create an auxiliary preserver that
handles only these paths. We can now apply Lemma
2 to these paths with d = 2, |S| ≤ nε, |P | = n2ε.
Therefore, the auxiliary preserver has O(n+ n1/2+3ε/2)
edges.

At the end of this process, we have some number
of auxiliary preservers, plus a “leftover” preserver full
of paths that were never removed by the above process.
We will next argue that the leftover preserver has only
O(n1+ε) edges. The leftover preserver has the property
that, for all nodes v, there is no set of nε nodes within
distance 1 of v such that at least n2ε distinct paths pass
through one of these nodes. Unmark all nodes and all
edges. Repeat the following process until you can do so
no longer:

1. Choose an unmarked node v.

2. If v has fewer than nε unmarked neighbors, then
mark v and all its incident edges.

3. If v has more than nε unmarked neighbors, then
choose nε of its neighbors, and mark all of these
nodes and their incident edges.

Once we have marked all nodes, it is clear that we have
also marked all edges. Each time we mark a single node,
we mark at most nε edges along with it. Each time we
mark a set of nε nodes, we mark at most 4n2ε edges
along with it (the edges belonging to n2ε paths incident
on this set). Therefore the graph has O(nε) times as
many edges as it has nodes. So the leftover preserver
has size O(n1+ε) edges.

We will next bound the size of the auxiliary pre-
servers. First suppose that ε ≤ 1

3 , and so the size of each

auxiliary preserver is O(n). We then set nε = |P |1/3.
The size of the leftover preserver is then O(n|P |1/3).
Additionally, each auxiliary preserver handles |P |2/3
paths, and so at most |P |1/3 of them exist, so (by a
union bound) the total size of the auxiliary preservers
is O(n|P |1/3). The total size of the leftover plus auxil-
iary preservers is then O(n|P |1/3).

Finally, suppose that ε ≥ 1
3 , and so the size of

each auxiliary preserver is O(n1/2+3ε/2). We then set
nε = |P |2/3/n1/3. The size of the leftover preserver
is then O(n2/3|P |2/3). Additionally, each auxiliary
preserver handles |P |4/3/n2/3 paths, and so we can have
at most n2/3/|P |1/3 auxiliary preservers. Each one costs
O(|P |) edges, and so (by a union bound) the total
size of the auxiliary preservers is O(n2/3|P |2/3). The
total size of the leftover plus auxiliary preservers is then
O(n2/3|P |2/3).

Regardless of the value of ε, then, the total
size of the distance preserver can be expressed as

O(n2/3|P |2/3 + n|P |1/3). �

The best known upper bounds are now O(n1/2|P |)
when Ω(n1/2) = |P | = O(n3/4), then O(n|P |1/3) when
Ω(n3/4) = |P | = O(n), then O(n2/3|P |2/3) when
Ω(n) = |P | = O(n2). We consider it fairly unlikely
that this piecewise behavior reflects the “true” distance
preserver upper bound.

Conjecture 1. Every unweighted, undirected graph G
and pair set P admits a pairwise distance preserver on
O(n+ n2/3|P |2/3) edges.

See Figure 1 in the introduction for a visualization
of these bounds.

Throughout the rest of this paper, we will reserve a
and b for the following purpose:

Definition 9. We define a, b to be constants such that
one can always construct distance preservers on O(n+
na|P |b) edges.

This allows us to prove general results in terms of a
and b, and then substitute in any preserver upper bound
at the end.

4 Graph Clustering with Preservers

4.1 Graph Clustering

We begin with the following clustering algorithm:

Lemma 3. Let G = (V,E) be an undirected unweighted
graph, and let r be a parameter. In polynomial time,
one can find a set of nodes v1, . . . , vk (called “cluster
centers”) and a set of integers r1, . . . , rk, with r ≤ ri ≤
r · no(1), such that the following properties hold:

1. For each node v ∈ V , there is an i such that
v ∈ B≤(vi, ri)

2.
k∑
i=1

|B≤(vi, 2ri)| = Õ(n)

The set B≤(vi, 2ri) is called the “cluster” centered
at vi (also denoted Xi), and the set B≤(vi, ri) is called
the “core” of the cluster Xi (also denoted Ci).

This lemma is very similar to many previously
known region-growing algorithms (see [AP92, Coh93,
PR10] for example). The additional structure we need,
which forces us to devise a new algorithm rather than
recycling an old one, is that the core of each cluster
is padded by non-core nodes for at least ri distance in
every direction.

Proof. First, for every node v ∈ V , we will compute
a value rv. Initialize rv ← r. Check to see if

|B≤(v, rv)| log n ≥ |B≤(v, 4rv)|. If so, fix rv at its
current value and move on to the next node v ∈ V .
If not, set rv ← 4rv and repeat. In each iteration
of the process, we multiply rv by 4 while we multiply
|B≤(v, rv)| by at least log n. Since |B≤(v, rv)| ≤ n at

all times, we iterate at most logn
log logn times, and so the

final value of rv is at most r ·4(logn)/(log logn) = r ·no(1).
Sort all nodes v ∈ V descendingly by the value of

rv. Now, repeat the following process until you can do
so no longer:

1. Remove the first remaining node v from the list,
and add it to the set of cluster centers, calling
it vi and incrementing i (i starts at 1). Set its
corresponding ri value to be 2rv.

2. For each node u with B≤(u, ru) ∩ B≤(v, rv) 6= ∅,
delete u from the list.

We claim that we have generated a set of cluster centers
with all desired properties. We have already shown that
r ≤ ri ≤ r · no(1) for all i. Next, we will show that for
all v ∈ V , there is an i such that v ∈ B≤(vi, ri). If v is a
cluster center, then the claim is trivial. Otherwise, there
must be some cluster center vi that preceded v in the
list with the property that B≤(vi, rvi) ∩ B≤(v, rv) 6= ∅.
By the triangle inequality, this implies that δG(vi, v) ≤
rvi + rv ≤ 2rvi = ri, which implies the claim.

Finally, we must show that
k∑
i=1

|B≤(vi, 2ri)| = Õ(n).

Note that the sets B≤(vi, ri/2) (where vi is a cluster
center) are disjoint. We then have

k∑
i=1

|B≤(vi, 2ri)| ≤ log n ·
k∑
i=1

|B≤(vi, ri/2)| ≤ n log n

implying the claim. �

We will add some machinery to this clustering
algorithm to make it useful for spanner creation. We
will make the following distinction in cluster size:

Definition 10. A cluster X is large with respect to a
parameter E if |X| ≥ r2b/(2b+a−1)E1/(2b+a−1), or small
otherwise.

Our choice of exponents is designed to push through
the following lemma:

Lemma 4. For each small cluster Xi with center vi,
there is an integer ri < r̄i ≤ 2ri with

|B≤(vi, r̄i)|a(|(B=(vi, r̄i)|2)b = O(|B<(vi, r̄i)|E)

Proof. Suppose otherwise, towards a contradiction.
Then we have

|B=(vi, r̄i)| ≥ c|B<(vi, r̄i)|(1−a)/(2b)E1/(2b)

for all ri < r̄i ≤ 2ri and constants c. We can interpret
this expression as a recurrence relation on the size of
B<(vI , r̄i) as r̄i grows from ri + 1 to 2ri (denoted Sr̄i).

Sri+1 ≥ 1 and Sk+1 ≥ Sk + cS
(1−a)/(2b)
k E1/(2b)

And so
∆k ≥ cS(1−a)/(2b)

k E1/(2b)

where ∆k = Sk+1−Sk. This is a discrete approximation
of the differential equation

dSk
d k
≥ cE1/(2b)S

(1−a)/(2b)
k

which has the standard form y′(x) = αy(x)β (in this
case, α = cE1/(2b), and β = (1 − a)/(2b)), and so
our discrete version enjoys the same asymptotics. The
general solution to this differential equation is y =
c1(αx)1/(1−β). Accordingly, for our discrete version, we
gain:

Sri+k ≥ c′(E1/(2b)k)1/(1−(1−a)/(2b))

where c′ is some new constant dependent on the old
value of c. Algebraic manipulation now yields

Sri+k ≥ c′(E1/(2b)k)2b/(2b+a−1)

Sri+k ≥ c′E1/(2b+a−1)k2b/(2b+a−1)

S2ri ≥ c′E1/(2b+a−1)r
2b/(2b+a−1)
i

S2ri ≥ c′E1/(2b+a−1)r2b/(2b+a−1)

If we choose c such that c′ is sufficiently large, this
contradicts the assumption that Xi is small. �

This lemma is the heart of our reduction from spanners
to distance preservers, and it is the entire reason we have
gone through the trouble to build our own clustering
algorithm. The idea is that, for each cluster, one of the
following two cases must happen: (1) each subsequent
layer of nodes around the core represents a significant
growth in the cluster size, or (2) one of these layers L
is unusually small, and therefore it is “cheap” to make
a distance preserver on the pair set L× L.

Lemma 5. Let X be a large cluster. Let Q be
a set of node pairs contained in X. If |Q| =
O(r2(1−a)/(2b+a−1)E2/(2b+a−1)), then there is a tiebreak-
ing scheme ρX such that∣∣∣∣∣∣

⋃
q∈Q

ρX(q)

∣∣∣∣∣∣ = O(|X|E)

Using the distance preserver bound A large cluster has size

O(n+ n1/2|P |) (Coppersmith & Elkin [CE06]) Ω(r4/3E2/3)

O(n|P |1/3) if |P | = O(n) (Theorem 3) Ω(rE3/2) if r = Ω(E3/2)

O(n2/3|P |2/3) if |P | = Ω(n) (Theorem 3) Ω(r4/3E) if r = O(E3/2)

O(n+ n2/3|P |2/3) (Conjecture 1) Ω(r4/3E)

Table 3: The threshold for a cluster being defined as “large,” relative to the distance preserver upper bound being
used.

Proof. Observe that

|Q| = (r2b/(2b+a−1)E1/(2b+a−1))(1−a)/bE1/b

Since X is large, we have |X| ≥ r2b/(2b+a−1)E1/(2b+a−1).
Therefore

|Q| = O(|X|(1−a)/bE1/b)

By definition of a and b, we can create a distance
preserver for this pair set in the subgraph X paths on
O(|X|a|Q|b) edges. We then have

O(|X|a|Q|b) = O(|X|E)

as claimed. �

4.2 Path Decomposition

Before we proceed to our spanner algorithms, we will
discuss a useful method for dividing paths into easy-to-
analyze subpaths.

Lemma 6. Let G be a graph and p be a shortest path
in G. Let {xi, vi} be a clustering of G as in Lemma 3.
One can partition p into subpaths {p1, . . . , pk} such that
every subpath pi can be classified into one of two cases:

1. A small subpath, for which every edge in pi is
incident on some small cluster core Ci.

2. A large subpath, in which every node is in a large
cluster Xi.

Additionally, one can assign large clusters X to large
subpaths pi with pi ⊂ X such that no two subpaths
correspond to the same large cluster.

Proof. Choose an i such that the first node of p is in
Ci. If Xi is small, then let w be the first node in p that
is not also in Ci. Otherwise, if Xi is large, then let w
be the last node in Xi such that ρG(x,w) ⊂ Xi. In
either case, add ρG(u,w) to your list of subpaths, and
then repeat the analysis on ρG(w, v) (if this subpath is
nonempty). Note that w 6= u (because in either case

w ∈ Ci but u /∈ Ci, and so this process will eventually
terminate.

The only nontrivial detail to prove is that this
process will never select the same large cluster Xi twice.
Suppose towards a contradiction that a large cluster Xi

is selected twice; then pmust include a node c ∈ Ci, then
a node v /∈ Xi, then another node c′ ∈ Ci in that order.
We know δG(c, v) > ri and δG(c′, v) > ri, because
c, c′ ∈ B(vi, ri) but v /∈ B(vi, 2ri). This implies that
δG(c, c′) ≥ 2ri + 2. However, we also have δG(c, vi) ≤ ri
and δG(c′, vi) ≤ ri, which implies that δG(c, c′) ≤ 2ri.
These statements are contradictory, so instead it must
be the case that no large cluster is ever selected twice.
�

We use this decomposition to classify the edges of
each path as follows.

Definition 11. Let ρG(u, v) be a path that has been
decomposed into subpaths {p1, . . . , pk} as in Lemma 6.
Then we classify the subpaths as follows:

1. An extreme subpath is a subpath that belongs to a
cluster X such that u ∈ X or v ∈ X.

2. A small subpath is a non-extreme subpath that
belongs to a small cluster X.

3. A large subpath is a non-extreme subpath that
belongs to a large cluster X.

5 Applications to Additive Spanners

5.1 Subset Spanners

Recall the following definitions from the introduction:

Definition 5. A subgraph H is a +β subset spanner
of a graph G and a node subset S if

δH(u, v) ≤ δG(u, v) + β

for all u, v ∈ S.

Algorithm 1: subspan(G,S, d > 0)

1 Initialize H to be a · log n multiplicative
spanner of G;

2 for each pair s1, s2 ∈ S (in some fixed order) do
3 if δH(s1, s2) > δG(s1, s2) + nd then
4 Add all edges in ρG(s1, s2) to H;
5 end

6 end
7 return H;

We will use Algorithm 1 to generate our subset
spanners. It is trivially true that the output of this
algorithm is a +nd subset spanner of G,S; we omit
this proof. We will now prove an upper bound on
the number of edges in the graph H returned by this
algorithm.

Overview of the Edge Bound. Take the set
S × {Xi}, where Xi are clusters in some clustering of
G. Think of each element of this set as “unmarked.”
Whenever we add a shortest path to H with endpoint
s ∈ S that intersects a certain cluster X, we then
“mark” the pair (s,X). Whenever we add a path
ρG(s1, s2) to H, each cluster that intersects ρG(s1, s2)
will be marked along with either s1 or s2, because
otherwise we have already accurately spanned the pair
(s1, s2).

We then argue that (1) not very many of the edges
in H are added by extreme subpaths, (2) the total cost
of the small subpaths can be bounded by our distance
preserver reduction (see Lemma 4 or Figure 5), and (3)
we only add |S| large subpaths per large cluster, and so
the total cost of the large subpaths can be bounded by
Lemma 5.

We will now proceed with the proof.

Lemma 7. Let {vi, ri} be a clustering of G as in
Lemma 3, with parameter r chosen such that max

i
ri ≤

nd/(8 log n) (so r = nd−o(1)). For each cluster Xi, Algo-
rithm 1 will add at most |S| paths to H that are incident
on Xi.

Proof. Consider each pair s1, s2 ∈ S in turn. Let p
be any shortest path between s1 and s2 in G, and let
{p1, . . . , pk} be a decomposition of p as in Lemma 6.
First, suppose that for some cluster Xi, we have already
added shortest paths to H with endpoints s1 and s2 that
intersect Xi. In this case, we claim that we already have
δH(s1, s2) ≤ δG(s1, s2) + nd, and therefore, we will skip
adding ρG(s1, s2) to H in the algorithm. To see this, let
x1, x2 ∈ Xi such that there is a shortest path between
the pairs s1, x1 and s2, x2 already in H. By the triangle

inequality, we have:

δH(s1, s2) ≤ δH(s1, x1) + δH(x1, x2) + δH(x2, s2)

δH(s1, s2) ≤ δG(s1, x1) + (nd/2) + δG(x2, s2)

Let x3 be any node in Xi intersected by p. Then

δH(s1, s2) ≤(δG(s1, x3) + nd/(8 log n)) + nd/2

+ (δG(x3, s2) + nd/(48 log n))

δH(s1, s2) ≤δG(s1, s2) + nd

Therefore, each time we add a path ρG(s1, s2) to H,
for each cluster Xi intersected by ρG(s1, s2), we know
that ρG(s1, s2) is either (1) the first path with endpoint
s1 that intersects Xi added to H. The lemma follows.
�

s1 s2

Xi

r

(a) Let Xi be a
cluster intersected
by ρG(s1, s2). If
there are already
two shortest paths
through Xi with
endpoints at s1 and
s2...

s1 s2

Xi

r

(b) ...then there
is already a path
between s1 and
s2 in H with only
+nd stretch, so
Algorithm 1 will
not choose to add
ρG(s1, s2) to H.

Figure 7: A graphical depiction of the proof of
Lemma 7.

Theorem 4. For any constant d > 0, all graphs G
and node subsets S have a +O(nd) subset spanner on
|E(H)| = Õ(n) + |S|(2b+a−1)/2n1−d(1−a)+o(1) edges.

Proof. It is well known that all n-node graphs have an
· log n multiplicative spanner with Õ(n) edges.

The remaining edges in H are all the result of
adding paths ρG(u, v). One again let {vi, ri} be a
clustering of G with parameter r chosen such that
max
i
ri ≤ nd/(8 log n) (so r = nd−o(1)). Each of our

paths can be decomposed over this clustering. We will
say that an edge e ∈ H is extreme, small, or large
depending on whether the decomposed subpath pi that

first added e to H is classified as extreme, small, or large
as in Definition 11.

We will now count the three types of edges sepa-
rately.

Extreme Edges. Since there is a · log n multi-
plicative spanner already in H, and every path p added
to H is not spanned up to +nd accuracy at the time it is
added, we know that p is missing at least nd/ log n edges
in total. Each cluster has radius at most nd/(8 log n),
so jointly, the two clusters in which p begins and ends
contribute at most nd/(2 log n) of these missing edges.
So at most half of the total edges in H fall into this
category. It therefore suffices to prove the edge bound
for the other two types of edges.

Small Edges. For each small edge e, we know that
e was a part of a subpath pi owned by a small cluster
Xi, and that pi was a part of a larger path ρG(u, v)
that did not start or end in Xi. Choose r̄i as in Lemma
4; then there are nodes x 6= x′ ∈ B=(vi, r̄i) ∩ p such
that x, x′ ∈ ρG(u, v) and e is between x and x′ in
ρG(u, v). Therefore, e ⊂ ρXi

(x, x′). We can then cover
all small edges belonging to Xi using a single distance
preserver on B=(vi, r̄i) within the subgraph B≤(vi, r̄i).
By Lemma 4, with the proper tiebreaking scheme, this
requires O(|B≤(vi, r̄i)|E) edges. So the total number of
small edges in the entire graph is∑

i |Xi is small

O(|B≤(vi, r̄i)|E) =E
∑

Xi is small

O(|Xi|)

=Õ(nE)

where again the last equality follows from Lemma 3.
Large Edges. For each path ρG(s1, s2) added to

H by Algorithm 1, when we decompose these paths as
in Lemma 6, we know from Lemma 7 that a total of |S|
or fewer subpaths will be assigned to each large cluster.
By Lemma 5, with the proper tiebreaking scheme, the
total number of distinct edges contained in the paths
belonging to a single large cluster Xi is only O(|Xi|E),
so long as

|S| = O(r2(1−a)/(2b+a−1)E2/(2b+a−1))

Some algebraic manipulation gives:

|S|(2b+a−1)/2 = O(r1−aE)

|S|(2b+a−1)/2nra−1 = O(nE)

Recall that r = nd−o(1), so

|S|(2b+a−1)/2n1+o(1)−d(1−a) = O(nE)

So if this condition holds, then the total number of large
edges in H is:∑

Xi is large

O(|Xi|E) = E
∑

Xi is large

O(|Xi|)

= O(
∑
i

|Xi|)

= Õ(nE)

where the last equality follows from Lemma 3.
Total. The total number of edges in H is then

2 · (Õ(nE) + Õ(nE)) = Õ(nE), assuming from the first
case that

|S|(2b+a−1)/2n1+o(1)−d(1−a) = O(nE)

We conclude that the total number of edges in H is
|S|(2b+a−1)/2n1+o(1)−d(1−a). �

5.2 Standard Spanners

Recall the following definition from the introduction:

Definition 3. [Additive spanner] A subgraph H is a
+β spanner of a graph G if

δH(u, v) ≤ δG(u, v) + β

for all u, v ∈ V .

In other words, an additive spanner is a subset
spanner with S = V .

We generate our spanners using Algorithm 2.

Lemma 8. The output of Algorithm 2 is a +O(nd)
spanner of G.

Proof. Consider each pair u, v ∈ V . If we decided not
to add paths ρG(u, xu) and ρG(v, xv), then it must be
the case that δH(u, v) ≤ δG(u, v) + nd. If we did add
paths ρG(u, xu) and ρG(v, xv), then let su be the node
in S within distance nd of xu, and let sv be the same
for xv. From the triangle inequality, we have:

δH(u, v) ≤δH(u, xu) + δH(xu, su) + δH(su, sv)

+ δH(sv, xv) + δH(xv, v)

We know that δG(xu, su) ≤ nd/ log n. We have a
· log n multiplicative spanner of G in H, so that gives
δH(xu, su) ≤ nd. The same argument holds for
δH(xv, sv). Additionally, due to our subset spanner, we
have δH(su, sv) ≤ δG(su, sv) + nd. We then have:

δH(u, v) ≤ δG(u, xu) + nd + δG(su, sv) + nd + δG(xv, v)

By the triangle inequality, we have δG(su, sv) ≤
δG(xu, xv) +O(nd). Therefore,

δH(u, v) ≤ δG(u, xu) + δG(xu, xv) + δG(xv, v) +O(nd)

Algorithm 2: span(G, d)

1 Initialize H to be a · log n multiplicative
spanner of G;

2 Let

E = n(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1));
3 Let S be a random sample of Θ(log n ·

n1−d(2b−a+1)/(2b+a−1)/E(3−2b−a)/(2b+a−1))
nodes in G // The size of the constant

in the Θ determines the probability

of the algorithm being correct

4 Add a +nd subset spanner of G,S to H;
5 for each pair u, v ∈ V such that

δH(u, v) > δG(u, v) + 8nd do
6 Let xu be the first node in ρG(u, v) with the

property that there exists s ∈ S with
δG(s, xu) ≤ nd/ log n and let xv be the last
such node;

7 Add ρG(u, xu) and ρG(v, xv) to H;

8 end
9 return H;

Since xu, xv lie on δG(u, v), this implies

δH(u, v) ≤ δG(u, v) +O(nd)

�

We now need to prove the edge bound.
Overview of the Edge Bound. For each of the

paths ρG(u, xu) that we add to H, we can bound the
cost of its extreme subpaths and its small subpaths
exactly like we did in our subset spanner. The only
challenging part of this proof is the bound on the cost
of the large subpaths. Think about a specific large
cluster X. If it contains only a few large subpaths,
then we can upper bound its density using Lemma 5.
If it contains many large subpaths, then we can argue
that the average cost of one of these large subpaths
is fairly small. We then make another distinction: a
heavy subpath is one that contributes a lot of edges to
X, and a light subpath is one that is fairly cheap to
add to X. Heavy subpaths are rare, and so they don’t
contribute very many edges in total. Light subpaths
mean that the path has lots of nodes in its neighborhood
(all of X) for a relatively small number of missing edges;
therefore, by the time the path is missing Θ(nd) edges,
its neighborhood is very large. That makes it likely that
there is a node s ∈ S in this neighborhood.

We will now start to prove the bound more formally.
First, we make the following refinement of Definition 11:

Definition 12. Let H ⊂ G. We say that a large
subpath p, owned by large cluster X, is a heavy subpath
if the number of edges in p but not H is at least

|X|(b+a−1)/bE(b−1)/b

Otherwise, p is a light subpath.

The purpose of this definition is:

Lemma 9. There exists a tiebreaking scheme ρG such
that the following statement is true:

Let H ⊂ G. Let Q be a sequence of node pairs that
are all contained in the same large cluster X. Suppose
we add ρX(q) to H in some order for all q ∈ Q. Then
only O(|X|E) edges will be added to H by a heavy path.

Proof. When you consider a certain pair q ∈ Q, if there
exists a light shortest path between its endpoints, then
add that particular path to H; this pair q then does not
contribute any edges to the heavy path edge count.

We are left to bound the edges only of those pairs
whose path is heavy; suppose there are h such pairs in
total. We will next prove that h = O(|X|(1−a)/bE1/b.
Suppose otherwise, towards a contradiction (so h =
ω(|X|(1−a)/bE1/b)). Choose ρX to implement a distance
preserver on O(|X|ahb) edges on these pairs. The
average number of edges contributed by each pair is
O(|X|a/h1−b), which is

O(|X|a/ω((|X|(1−a)/bE1/b)1−b))

o(|X|a/(|X|(1−b)(1−a)/bE(1−b/b)))

o(|X|(b+a−1)/bE(b−1)/b

Note that this is smaller than the threshold for a path
to be heavy. This implies that one of our “heavy”
pairs is in fact light – a contradiction. Therefore,
h = O(|X|(1−a)/bE1/b).

Now, the cost of a distance preserver on this number
of pairs is

O(|X|a(|X|(1−a)/bE1/b)b) = O(|X|E)

edges, which proves the lemma. �

We need one more technical lemma:

Lemma 10. In Algorithm 2, whenever we add ρG(u, xu)
and ρG(v, xv) to H for some pair u, v ∈ V , there are
at least n2/ log n edges missing from H in ρG(u, xu) ∪
ρG(v, xv).

Proof. Suppose towards a contradiction that ρG(u, xu)∪
ρG(v, xv) are missing at most nd/ log n edges in H. By
the triangle inequality, we have:

δH(u, v) ≤δH(u, xu) + δH(xu, su) + δH(su, sv)

+ δH(sv, xv) + δH(xv, v)

Since H contains a · log n spanner of G, our hypoth-
esis implies that δH(u, xu) + δH(v, xv) ≤ δG(u, xu) +
δG(v, xv) + nd. Similarly, δH(xu, su) ≤ δG(xu, su) +
nd, since the distance between xu and su is at most
nd/ log n (and similar for δH(xv, sv). Finally, we have
δH(su, sv) ≤ δG(su, sv), because H contains a +nd sub-
set spanner of S. We now have

δH(u, v) ≤(δG(u, xu) + δG(v, xv) + nd) + (δG(xu, su) + nd)

+ (δG(su, sv) + nd) + (δG(sv, xv) + nd)

δH(u, v) ≤δG(u, xu) + δG(xu, su) + δG(su, sv) + δG(sv, xv)

+ δG(xv, v) + 4nd

Another application of the triangle inequality gives
that δG(xu, su) + δG(su, sv) + δG(sv, xv) ≤ δG(xu, xv) +
nd. We then have

δH(u, v) ≤δG(u, xu) + δG(xu, su) + δG(su, sv)

+ δG(sv, xv) + δG(xv, v) + 5nd

δH(u, v) ≤δG(u, v) + 5nd

and so the pair u, v has already been spanned accurately
enough, and so we will not add ρG(u, xu) or ρG(v, xv)
to H. This is a contradiction, and so it must be the case
that ρG(u, xu)∪ρG(v, xv) is missing more than nd/ log n
edges in H. �

We can now prove:

Lemma 11. For all G, there is a tiebreaking scheme
ρG such that Algorithm 2 returns a graph on
n1+o(1)+(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1)) edges.

Proof. Recall that

E = n(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1))

and so it suffices to prove that there are n1+o(1)E edges
in the graph returned by Algorithm 2.

Once again, the · log n multiplicative spanner costs
only Õ(n) edges. The total cost of the subset spanner,
implemented with Theorem 4, is

n1−d/3(Ω(log n · n1−d(2b−a+1)/(2b+a−1)/

E(3−2b−a)/(2b+a−1)))1/2

Ω̃(n1−d/3(n1/2−d(2b−a+1)/(2(2b+a−1))/

E(3−2b−a)/(2(2b+a−1))))

One can verify that

nE =n1−d/3·
(n1/2−d(2b−a+1)/(2(2b+a−1))/E(3−2b−a)/(2(2b+a−1)))

as follows:

E1+(3−2b−a)/(2(2b+a−1)) =

n−d/3(n1/2−d(2b−a+1)/(2(2b+a−1)))

E(1+2b+a)/(2(2b+a−1)) =

n1/2−d(1/3+(2b−a+1)/(2(2b+a−1)))

E(1+2b+a) =n(2b+a−1)−d(2(2b+a−1)/3+(2b−a+1))

E(1+2b+a) =n(2b+a−1)−d·(10b−a+1)/3

Substituting in

E = n(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1))

we get

n(a+2b−1)−d(10b−a+1)/3 = n(2b+a−1)−d·(10b−a+1)/3

which is true, and so the subset spanner fits within our
edge budget. We now need to bound the edges added
by paths ρG(u, xu) and ρG(v, xv). We will imagine a
clustering {xi, vi} of G with r chosen such that max

i
ri ≤

nd/(32 log n). Once again, we will say that an edge is
Extreme/Small/Large (and that a large edge is heavy
or light) based on the classification of the subpath of
ρG(u, xu) that first added this edge to H. We will again
count each edge type separately.

Extreme Edges. There are at most n2/(2 log n)
extreme edges in ρG(u, xu) ∪ ρG(v, xv) (they belong to
four clusters - at the beginning and end of ρG(u, xu) and
ρG(v, xv) - and each cluster has diameter nd/(8 log n)).
Further, from Lemma 10, we know that ρG(u, xu) ∪
ρG(v, xv) is missing at least n2/ log n edges.

We conclude that only a constant fraction of the
total edges in H are extreme, and so it suffices to prove
our edge bound for the remaining cases.

Small Edges. This case is identical to the Small
Edges case in Theorem 4.

Large Edges. Large edges can be either heavy
or light. By Lemma 9, each large cluster owns only
O(|Xi|E) heavy edges, and so the total number of heavy
edges is∑

Xi is large

O(|Xi|E) = E
∑

Xi is large

|Xi| = Õ(nE)

To bound the number of light edges, we will argue
that there are more heavy edges than there are light
edges and so the same bound applies. To see this,
assume towards a contradiction that there are more light
edges than heavy edges. We know that at least nd/ log n
edges are missing in ρG(u, xu) ∪ ρG(v, xv). Suppose at
least half these edges are light, and let L be the set of
large clusters that own a light subpath of ρG(u, xu) or

ρG(v, xv). Suppose that all the clusters in L have the
minimum possible size for a large cluster; that is, for all
L ∈ L we have |L| = r2b/(2b+a−1)E1/(2b+a−1) (we will
later show that this is a worst-case assumption). Then
we have:

|L| ≥ nd

2 log n
/(r2b/(2b+a−1)E1/(2b+a−1))(b+a−1)/bE(b−1)/b)

|L| ≥ nd

2 log n
/(r2(b+a−1)/(2b+a−1)E(b+a−1)/(b(2b+a−1)))

E(b−1)/b)

|L| ≥ nd

2 log n
/(r2(b+a−1)/(2b+a−1)E(2b+a−2)/(2b+a−1))

And so∑
L∈L
|L| ≥ nd

2 log n
/(r2(b+a−1)/(2b+a−1)E(2b+a−2)/(2b+a−1))·

r2b/(2b+a−1)E1/(2b+a−1)

∑
L∈L
|L| ≥ nd

2 log n
· r2(1−a)/(2b+a−1)E(3−2b−a)/(2b+a−1)

We have r = nd−o(1), so∑
L∈L
|L| ≥ nd(2b−a+1)/(2b+a−1)−o(1)E(3−2b−a)/(2b+a−1)

Note that if our assumption fails – i.e. we have
|L| ≥ r2b/(2b+a−1)E1/(2b+a−1) – then by convexity, our
lower bound on

∑
L∈L
|L| can only become stronger and

so this inequality will still hold.
Note, however, that the size of our random sample

of S is

Ω(n log n/(nd(2b−a+1)/(2b+a−1)−o(1)E(3−2b−a)/(2b+a−1)))

and therefore, with high probability, there is a node
s ∈ S in some cluster L ∈ L. This implies that there is
a node s ∈ S within distance < nd/ log n of some node
w ∈ ρG(u, xu) ∪ ρG(v, xv) – a contradiction. We then
have that the number of light edges is strictly less than
the number of heavy edges.

Total. This shows that the total number of edges
in H is n1+o(1)E . By the previous discussion, we have
set E such that this bound suffices to prove the lemma.
�

Jointly, Lemmas 8 and 11 imply:

Theorem 5. Let a, b be constants such that all
graphs and pair sets have a distance preserver on
O(n + na|P |b) edges. Then for any constant
d > 0, all graphs have +O(nd) spanners on
n1+o(1)+(a+2b−1)/(a+2b+1)−d(10b−a+1)/(3(a+2b+1)) edges.

References

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Mot-
wani. Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J. Comput.,
28:1167–1181, 1999.

[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and
J. Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9:81–100, 1993.

[AP92] B. Awerbuch and D. Peleg. Routing with polyno-
mial communication-space trade-off. SIAM Journal of
Discrete Math, pages 5(2): 151–162, 1992.

[BCE03] B. Bollobás, D. Coppersmith, and M. Elkin.
Sparse distance preservers and additive spanners.
Proc. 14th SODA, pages 414–423, 2003.

[BK06] S. Baswana and T. Kavitha. Faster algorithms for
approximate distance oracles and all-pairs small stretch
paths. Proc. 47th FOCS, pages 591–602, 2006.

[BKMP05] S. Baswana, T. Kavitha, K. Mehlhorn, and
S. Pettie. New constructions of (α, β)-spanners and
purely additive spanners. Proc. 16th SODA, pages
672–681, 2005.

[BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt
Mehlhorn, and Seth Pettie. Additive spanners and
(α, β)-spanners. ACM Transactions on Algorithms,
7(1):5, 2010.

[BS07] S. Baswana and S. Sen. A simple and linear time
randomized algorithm for computing sparse spanners
in weighted graphs. Journal of Random Structures and
Algorithms 30, pages 4, 532–563, 2007.

[BW15] G. Bodwin and V. Vassilevska Williams. Very
sparse additive spanners and emulators. Innovations
in Theoretical Computer Science (ITCS), 2015.

[CE06] D. Coppersmith and M. Elkin. Sparse sourcewise
and pairwise distance preservers. SIAM Journal on
Discrete Mathematics, pages 463–501, 2006.

[CGK13] M. Cygan, F. Grandoni, and T. Kavitha. On
pairwise spanners. Symposium on Theoretical Aspects
of Computer Science (STACS), 2013.

[Che13] Shiri Chechik. New additive spanners. SODA,
pages 498–512, 2013.

[Coh93] E. Cohen. Fast algorithms for constructing t-
spanners and paths with stretch t. Proc. 34th FOCS,
1993.

[Cow01] L. J. Cowen. Compact routing with minimum
stretch. Journal of Algorithms, pages 28, 170–183,
2001.

[CW04] L. J. Cowen and C. G. Wagner. Compact roundtrip
routing in directed networks. Journal of Algorithms,
pages 50, 1, 79–95, 2004.

[DHZ96] Dorit Dor, Shay Halperin, and Uri Zwick. All pairs
almost shortest paths. Proc. 37th FOCS, pages 452–
461, 1996.

[Elk05] M. Elkin. Computing almost shortest paths. ACM
Trans. Algorithms, pages 1(2):283–323, 2005.

[Elk07] M. Elkin. A near-optimal distributed fully dynamic
algorithm for maintaining sparse spanners. Proc. 26th
PODC, pages 185–194, 2007.

[EP04] M. Elkin and D. Peleg. (1 + ε, β)-spanner con-

structions for general graphs. SIAM J. Comput.,
33(3):608–631, 2004.

[EP15] M. Elkin and S. Pettie. A linear size logarith-
mic stretch path-reporting distance oracle for general
graphs. Proc. SODA, 2015.

[Erd64] P. Erdös. Extremal problems in graph theory.
Theory of graphs and its applications, pages 29–36,
1964.

[EZ06] M. Elkin and J. Zhang. Efficient algorithms for
constructing (1 + ε, β)-spanners in the distributed and
streaming models. Distributed Compting 18, pages 5,
375–385, 2006.

[FPZW04] A. M. Farley, A. Proskurowski, D. Zappala,
and K. Windisch. Spanners and message distribution
in networks. Discrete Applied Mathematics, pages
137(2):159–171, 2004.

[Kav15] T. Kavitha. New pairwise spanners. Proc. 42nd
ICALP, 2015.

[Knu14] Mathias Bæk Tejs Knudsen. Additive spanners:
A simple construction. Symposium and Workshop on
Algorithm Theory (SWAT), pages 277–281, 2014.

[KV13] T. Kavitha and N. Varma. Small stretch pairwise
spanners. Proc. 40th ICALP, 2013.

[LS91] Arthur L Liestman and Thomas C Shermer. Addi-
tive spanners for hypercubes. Parallel Processing Let-
ters, 1(01):35–42, 1991.

[LS93] Arthur L Liestman and Thomas C Shermer. Addi-
tive graph spanners. Networks, 23(4):343–363, 1993.

[Pet09] Seth Pettie. Low distortion spanners. ACM Trans-
actions on Algorithms, 6(1), 2009.

[PR10] M. Pătraşcu and L. Roditty. Distance oracles
beyond the thorup-zwick bound. Proc. 51st FOCS,
2010.

[PS89] D. Peleg and A. Schaffer. Graph spanners. Journal
of Graph Theory, pages 13:99–116, 1989.

[PU89a] D. Peleg and J. D. Ullman. An optimal synchro-
nizer for the hypercube. SIAM Journal of Computing,
pages 18, 740–747, 1989.

[PU89b] D. Peleg and E. Upfal. A trade-off between space
and efficiency for routing tables. Journal of the ACM,
pages 36(3):510–530, 1989.

[RTZ05] L. Roditty, M. Thorup, and U. Zwick. Determin-
istic constructions of approximate distance oracles and
spanners. Proc. 32nd ICALP, pages 261–272, 2005.

[RTZ08] L. Roditty, M. Thorup, and U. Zwick. Roundtrip
spanners and roundtrip routing in directed graphs.
ACM Trans. Algorithms, page 3(4): Article 29, 2008.

[RZ04] L. Roditty and U. Zwick. On dynamic shortest paths
problems. Proc. 12th ESA, pages 580–591, 2004.

[ST04] D. A. Spielman and S. H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. STOC, 2004.

[TZ01] M. Thorup and U. Zwick. Compact routing schemes.
Proc. 13th SPAA, pages 1–10, 2001.

[TZ05] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM 52, pages 1, 1–24, 2005.

[TZ06] M. Thorup and U. Zwick. Spanners and emulators
with sublinear distance errors. Proc. 17th SODA, pages

802–809, 2006.
[Woo06] D. P. Woodruff. Lower bounds for additive span-

ners, emulators, and more. Proc. 47th FOCS, pages
389–398, 2006.

[Woo10] D. P. Woodruff. Additive spanners in nearly
quadratic time. Proc. 37th ICALP, pages 463–474,
2010.

vi

ri

2ri

Ci

Xi

BIG

BIG

BIG

(a) Perhaps each subsequent ring around the
core contains a lot of nodes. In this case, the
size of the entire cluster must be fairly big,
and so the cluster is classified as “large.”

vi

Ci

Xi

BIG

SMALL

BIG

(b) Alternately, perhaps there exists a specific
ring around the core that doesn’t contain very
many nodes. In this case ...

Xi

SMALL

(c) ...we restrict attention to the subgraph of
nodes contained in this small ring. Because
the ring is small, it is not very expensive to
add a distance preserver on all pairs of nodes
in this ring.

Xi

SMALL

(d) Now, every time a shortest path
enters and leaves the cluster, we have
already handled all the edges of this
path inside the small ring.

Figure 5: A graphical depiction of the reduction between distance preservers and graph clustering.

u v

ρG(u, v)

Ci

Xi

(a) Look at the first node of your shortest path p. Find a cluster Xi that contains the first node of p in its core.

u v

ρG(u, v)

Ci

Xi (small)

w
p1

(b) First, suppose Xi is small. Then we partition p at the first node w /∈ Ci, and repeat the analysis on ρG(w, v).

u v

ρG(u, v)

Ci

Xi (large)

wp1

(c) Otherwise, suppose that Xi is large. In this case, we let w be the last node such that ρG(u,w) ⊂ Xi, partition
p over w, and repeat the analysis on ρG(w, v). In this case a triangle inequality argument implies that ρG(w, v)
and Ci are disjoint, so we will never again choose the cluster Xi.

Figure 6: How to decompose a shortest path ρG(u, v) over a graph clustering (Lemma 6).

	Introduction
	Pairwise Distance Preservers
	Graph Clustering
	Additive Spanners
	Subset Spanners

	Conventions
	Pairwise Distance Preservers
	Old Tiebreaking Schemes
	New Tiebreaking Schemes

	Graph Clustering with Preservers
	Graph Clustering
	Path Decomposition

	Applications to Additive Spanners
	Subset Spanners
	Standard Spanners

