
Towards Tight Approximation Bounds for Graph Diameter and

Eccentricities

Arturs Backurs ∗

MIT
Liam Roditty †

Bar Ilan University
Gilad Segal‡

Bar Ilan University

Virginia Vassilevska Williams §

MIT
Nicole Wein ¶

MIT

Abstract

Among the most important graph parameters is the Diameter, the largest distance between
any two vertices. There are no known very efficient algorithms for computing the Diameter
exactly. Thus, much research has been devoted to how fast this parameter can be approximated.
Chechik et al. [SODA 2014] showed that the diameter can be approximated within a multiplica-
tive factor of 3/2 in Õ(m3/2) time. Furthermore, Roditty and Vassilevska W. [STOC 13] showed
that unless the Strong Exponential Time Hypothesis (SETH) fails, no O(n2−ε) time algorithm
can achieve an approximation factor better than 3/2 in sparse graphs. Thus the above algo-
rithm is essentially optimal for sparse graphs for approximation factors less than 3/2. It was,
however, completely plausible that a 3/2-approximation is possible in linear time. In this work
we conditionally rule out such a possibility by showing that unless SETH fails no O(m3/2−ε)
time algorithm can achieve an approximation factor better than 5/3.

Another fundamental set of graph parameters are the Eccentricities. The Eccentricity of
a vertex v is the distance between v and the farthest vertex from v. Chechik et al. [SODA
2014] showed that the Eccentricities of all vertices can be approximated within a factor of
5/3 in Õ(m3/2) time and Abboud et al. [SODA 2016] showed that no O(n2−ε) algorithm can
achieve better than 5/3 approximation in sparse graphs. We show that the runtime of the 5/3
approximation algorithm is also optimal by proving that under SETH, there is no O(m3/2−ε)
algorithm that achieves a better than 9/5 approximation. We also show that no near-linear
time algorithm can achieve a better than 2 approximation for the Eccentricities. This is the
first lower bound in fine-grained complexity that addresses near-linear time computation.

We show that our lower bound for near-linear time algorithms is essentially tight by giving
an algorithm that approximates Eccentricities within a 2 + δ factor in Õ(m/δ) time for any
0 < δ < 1. This beats all Eccentricity algorithms in Cairo et al. [SODA 2016] and is the first
constant factor approximation for Eccentricities in directed graphs.

To establish the above lower bounds we study the S-T Diameter problem: Given a graph
and two subsets S and T of vertices, output the largest distance between a vertex in S and a
vertex in T . We give new algorithms and show tight lower bounds that serve as a starting point
for all other hardness results.

∗backurs@mit.edu, Supported by an IBM PhD Fellowship, the NSF and the Simons Foundation
†liam.roditty@biu.ac.il
‡giladsegal123@gmail.com
§virgi@mit.edu, Supported by an NSF CAREER Award, NSF Grants CCF-1417238, CCF-1528078 and CCF-

1514339, a BSF Grant BSF:2012338 and a Sloan Research Fellowship.
¶nwein@mit.edu, Supported by an NSF Graduate Fellowship and NSF Grant CCF-1514339

Our lower bounds apply only to sparse graphs. We show that for dense graphs, there are
near-linear time algorithms for S-T Diameter, Diameter and Eccentricities, with almost the
same approximation guarantees as their Õ(m3/2) counterparts, improving upon the best known
algorithms for dense graphs.

2

1 Introduction

Among the most important graph parameters are the graph’s Diameter and the Eccentricities of
its vertices. The Eccentricity of a vertex v is the (shortest path) distance to the furthest vertex
from v, and the Diameter is the largest Eccentricity over all vertices in the graph.

The Eccentricities and Diameter measure how fast information can spread in networks. Efficient
algorithms for their computation are highly desired (see e.g. [PRT12b, BCH+15, LWCW16]). Un-
fortunately, the fastest known algorithms for these parameters are very slow on large graphs. For un-
weighted graphs on n vertices andm edges, the fastest Diameter algorithm runs in Õ(min{mn, nω}) 1

time [CGS15] where ω < 2.373 is the exponent of square matrix multiplication [Wil12, Le 14, Sto10].
For weighted graphs, the fastest Eccentricity and Diameter algorithms actually compute all dis-
tances in the graph, i.e. they solve the All-Pairs Shortest Paths (APSP) problem. The fastest known
algorithms for APSP in weighted graphs run in min{Õ(mn), n3/ exp(

√
log n)} [Wil14, Pet04, PR05].

Whether one can solve Diameter faster than APSP is a well-known open problem (e.g. see Prob-
lem 6.1 in [Chu87] and [ACIM99, Cha12]). Whether one can solve Eccentricities faster than APSP
was addressed by [VW10] (for dense graphs) and by [LWW18] (for sparse graphs). Vassilevska W.
and Williams [VW10] showed that Eccentricities and APSP are equivalent under subcubic reduc-
tions, so that either both of them admit O(n3−ε) time algorithms for ε > 0, or neither of them do.
Lincoln et al. [LWW18] proved that under a popular conjecture about the complexity of weighted
Clique, the O(mn) runtime for Eccentricities cannot be beaten by any polynomial factor for any
sparsity of the form m = Θ(n1+1/k) for integer k.

Due to the hardness of exact computation, efficient approximation algorithms are sought. A
folklore Õ(m + n) time algorithm achieves a 2-approximation for Diameter in directed weighted
graphs and a 3-approximation for Eccentricities in undirected weighted graphs. Aingworth et
al. [ACIM99] presented an almost-3/2 approximation 2 algorithm for Diameter running in Õ(n2 +
m
√
n) time. Roditty and Vassilevska W. [RV13] improved the result of [ACIM99] with an Õ(m

√
n)

expected time almost-3/2 approximation algorithm. Chechik et al. [CLR+14] obtained a (genuine)
3/2 approximation algorithm for Diameter (in directed graphs) and a (genuine) 5/3-approximation
algorithm for Eccentricities (in undirected graphs), running in Õ(min{m3/2,mn2/3}) time. These
are the only known non-trivial approximation algorithms for Diameter in directed graphs. So far,
there are no known faster than mn algorithms for approximating Eccentrities in directed graphs
within any constant factor.

Cairo et al. [CGR16] generalized the above results for undirected graphs and obtained a time-
approximation tradeoff: for every k ≥ 1 they obtained an Õ(mn1/(k+1)) time algorithm that achieves
an almost-2 − 1/2k approximation for Diameter and an almost 3 − 4/(2k + 1)-approximation for
Eccentricities.

1.1 Our contributions.

We address the following natural question:

Main Question: Are the known approximation algorithms for Diameter and Eccentricities
optimal?

1Õ notation hides polylogarithmic factors
2An almost-c approximation of X is an estimate X ′ so that X ≤ X ′ ≤ cX + O(1).

1

A partial answer is known. Under the Strong Exponential Time Hypothesis (SETH), every
3/2 − ε approximation algorithm (for ε > 0) for Diameter in undirected unweighted graphs with
O(n) nodes and edges must use n2−o(1) time [RV13]. Similarly, every 5/3 − ε approximation
algorithm for the Eccentricities of undirected unweighted graphs with O(n) nodes and edges must
use use n2−o(1) time [AVW16]. This however does not answer the question of whether the runtimes
of the known 3/2 and 5/3 approximation algorithms can be improved. It is completely plausible
that there is a 3/2-approximation algorithm for Diameter or a 5/3-approximation for Eccentricities
running in linear time.

We address our Main Question for both sparse and dense graphs. Our results are shown in
Table 1.

Runtime Approximation Comments

Diameter Upper Bounds

Õ(n2) expected nearly 3/2 undirected unweighted

O(n2.05) nearly 3/2 undirected unweighted

O(m2/n) < 2 for constant even Diameter directed unweighted

Diameter Lower Bounds (under SETH)

Ω(n3/2−o(1)) 8/5− ε undirected unweighted, implies [RV13, CLR+14] alg is tight

Ω(n3/2−o(1)) 5/3− ε undirected weighted

Ω(n1+1/(k−1)−o(1)) (5k − 7)/(3k − 4)− ε directed unweighted, any k ≥ 3

Eccentricities Upper Bounds

Õ(m
√
n) 2 directed weighted, approximation factor is tight

Õ(m/δ) 2 + δ directed weighted, essentially tight

Õ(n2) nearly 5/3 undirected unweighted

O(n2.05) nearly 5/3 undirected unweighted

Eccentricities Lower Bounds (under SETH)

Ω(n1+1/(k−1)−o(1)) 2− 1/(2k − 1)− ε undirected unweighted, any k ≥ 2, tight for extremal k

Ω(n2−o(1)) 2− ε directed unweighted, essentially tight

S-T Diameter Upper Bounds

O(m) 3 tight

Õ(m
√
n) nearly 2 essentially tight

Õ(n2) nearly 2

O(n2.05) nearly 2

S-T Diameter Lower Bounds (under SETH)

Ω(n1+1/(k−1)−o(1)) 3− 2/k − ε any k ≥ 2, tight for extremal k

Table 1: Our results. All of the lower bounds hold even for sparse graphs. S-T Diameter is a
variant of Diameter introduced later in this section.

Sparse graphs. Our first result (restated as Theorem 18) regards approximating Diameter in
undirected unweighted sparse graphs.

2

Theorem 1 (3/2-Diameter Approx. is Tight). Under SETH, no O(n3/2−δ) time algorithm for
δ > 0 can output a 8/5− ε approximation for ε > 0 for the Diameter of an undirected unweighted
sparse graph.

In particular, any 3/2-approximation algorithm in sparse graphs must take n3/2−o(1) time.
Hence the Õ(m3/2) time 3/2-approximation algorithm of [RV13, CLR+14] is optimal in two ways:
improving the approximation ratio to 3/2 − ε causes a runtime blow-up to n2−o(1) ([RV13]) and
improving the runtime to O(m3/2−δ) causes an approximation ratio blow-up to 8/5.

Our lower bound instance says that in O(m3/2−δ) time one cannot return 6 when the Diameter is
8. One may be tempted to extend the above lower bound, by showing that, say, in O(m4/3−δ) time
one cannot even return 5 when the Diameter is 8. This approach, however fails: in Theorem 27 we
give an O(m2/n) time algorithm that does return 5 in this case, and in general when the Diameter
is 2h, it returns at least h + 1. Notice that when the Diameter is 2h, the folklore linear time
algorithm returns an estimate of only h. Hence for sparse graphs, our algorithm runs in linear time
and outperforms the folklore algorithm. Also, for constant even Diameter, it gives a better than 2
approximation.

We obtain stronger Diameter hardness results for weighted graphs and for directed unweighted
graphs. In particular, assuming SETH:

1. For weighted sparse graphs, no O(n3/2−δ) time algorithm for δ > 0 can output a 5/3 − ε
Diameter approximation (for ε > 0) (Theorem 19).

2. For directed unweighted sparse graphs, using a general time-accuracy tradeoff lower bound
(Theorem 21), we show that no near-linear time algorithm can achieve an approximation
factor better than 5/3.

We summarize our Diameter lower bounds and compare them to the known upper bounds in
Figure 1.

We address our Main Question for Eccentricities as well. Our main result for Eccentricities is
Theorem 15. Its first consequence is as follows:

Theorem 2 (5/3-Eccentricities Alg. is Tight). Under SETH, no O(n3/2−δ) time algorithm for
δ > 0 can output a 9/5−ε approximation for ε > 0 for the Eccentricities of an undirected unweighted
sparse graph.

In other words, the Õ(m3/2) time 5/3-approximation algorithm of [RV13, CLR+14] is tight
in two ways. Improving the approximation ratio to 5/3 − ε causes a runtime blow-up to n2−o(1)

([AVW16]) and improving the runtime to O(m3/2−δ) causes an approximation ratio blow-up to 9/5.
More generally, we prove (in Theorem 15): for every k ≥ 2, under SETH, distinguishing between

Eccentricities 2k − 1 and 4k − 3 in unweighted undirected sparse graphs requires n1+1/(k−1)−o(1)

time. Thus, no near-linear time algorithm can achieve a 2− ε-approximation for Eccentricities for
ε > 0.

The best (folklore) near-linear time approximation algorithm for Eccentricities currently only
achieves a 3-approximation, and only in undirected graphs. There is no known constant factor
approximation algorithm for directed graphs! Is our limitation result for linear time Eccentricity
algorithms far from the truth?

We show that our lower bound result is essentially tight, for both directed and undirected graphs
by producing the first non-trivial near-linear time approximation algorithm for the Eccentricities
in weighted directed graphs (Theorem 23).

3

2

1
1 3/2

3/2

8/5 27/4

4/3

5/4

15/8 31/16

6/5

Runtime

Exponent

Approx.
Factor

(a) Undirected unweighted Diame-
ter

2

1
1 3/2

3/2

25/3 7/4 15/8 31/16

4/3

5/4
6/5

Runtime
Exponent

Approx.
Factor

(b) Undirected weighted Diameter

2

1
1 3/2

3/2

8/5
13/8 2

4/3

5/4
6/5
7/6

5/3

Runtime

Exponent

Approx.
Factor

(c) Directed unweighted Diameter

Figure 1: Our hardness results for Diameter. The x-axis is the approximation factor and the y-axis is the
runtime exponent. Black lines represent lower bounds. Black dots represent existing algorithms. Blue dots
represent existing algorithms whose approximation is potentially off by an additive term (the algorithms
of [CGR16]). Transparent dots represent algorithms that might exist and would be tight with our lower
bounds.

Theorem 3 (2-Approx. for Eccentricities in near-linear time.). Under SETH, no n1+o(1) time
algorithm can output a 2 − ε approximation for ε > 0 for the Eccentricities of an undirected
unweighted sparse graph.

For every δ > 0, there is an Õ(m/δ) time algorithm that produces a (2 + δ)-approximation for
the Eccentricities of any directed weighted graph.

The approximation hardness result is the first result within fine-grained complexity that gives
tight hardness for near linear time algorithms.

The 2 + δ approximation ratio that our algorithm produces beats all approximation ratios for
Eccentricities given by Cairo et al. [CGR16]. It also constitutes the first known constant factor
approximation algorithm for Eccentricities in directed graphs.

Our approximation algorithm also implies as a corollary an approximation algorithm for the

4

2

1
1

3/2

25/3 9/5

4/3

13/7

5/4

Runtime

Exponent

Approx.
Factor

(a) Undirected Eccentricities

2

1
1

3/2

2

Runtime

Exponent

Approx.
Factor

(b) Directed Eccentricities

Figure 2: Our algorithms and hardness results for Eccentricities. The lower bounds are for unweighted
graphs and the upper bounds are for weighted graphs. The x-axis is the approximation factor and the
y-axis is the runtime exponent. Black lines represent lower bounds. Black dots represent existing algorithms
(including our algorithm at (2, 3/2) in figure b). Blue dots represent existing algorithms whose position may
not be exactly as it appears in the figure. Here, the blue dots represent our (2 + δ)-approximation algorithm
running in Õ(m/δ) time. Transparent dots represent algorithms that might exist and would be tight with
our lower bounds.

Source Radius problem3 studied in [AVW16] with the same runtime and approximation factor
(2 + δ). Abboud et al. [AVW16] showed that, under the Hitting Set Conjecture, any (2 − ε)-
approximation algorithm (for ε > 0) for Source Radius requires n2−o(1) time, and hence our Source
Radius algorithm is also essentially tight.

Our lower bound in Theorem 3 holds already for undirected unweighted graphs, and the upper
bound works even for directed weighted graphs. The algorithm produces a (2 + δ)-approximation,
which while close, is not quite a 2-approximation. We design (in Theorem 22) a genuine 2-
approximation algorithm running in Õ(m

√
n) time that also works for directed weighted graphs.

We then complement it (in Theorem 16) with a tight lower bound under SETH: in sparse directed
graphs, if you go below factor 2 in the accuracy, the runtime blows up to quadratic.

Theorem 4 (Tight 2-Approx. for Eccentricities). Under SETH, no n2−δ time algorithm for δ > 0
can output a 2− ε approximation for the Eccentricities of a directed unweighted sparse graph.

There is an Õ(m
√
n) time algorithm that produces a 2-approximation for the Eccentricities of

any directed weighted graph.

We thus give an essentially complete answer to our Main Question for Eccentricities. Our results
are summarized in Figures 2a and 2b.

Our conditional lower bounds for both Diameter and Eccentricities are all based on a common
construction: a conditional lower bound for a problem called S-T Diameter. In S-T Diameter, the
input is a graph G = (V,E) and two subsets S, T ⊆ V , not necessarily disjoint, and the output is
DS,T := maxs∈S,t∈T d(s, t).

S-T Diameter is a problem of independent interest. It is related to the bichromatic furthest
pair problem studied in geometry (e.g. as in [KI92]), but for graphs (if we set T = V \ S).

3The Source Radius problem is a natural extension of the undirected Radius definition. The goal is to return
minx maxv d(x, v).

5

It is easy to see that if one can compute the S-T Diameter, then one can also compute the
Diameter in the same time: just set S = T = V . We show that actually, when it comes to exact
computation, the S-T Diameter and Diameter in weighted graphs are computationally equivalent
(Theorem 14).

We show that S-T Diameter also has similar approximation algorithms to Diameter. We give a
3-approximation running in linear time (Claim 24 based on the folklore Diameter 2-approximation
algorithm), and a 2-approximation running in Õ(m3/2) time (Theorem 25 based on the 3/2-
approximation algorithm of [RV13, CLR+14]).

We prove the following lower bound for S-T Diameter (restated as Theorem 7), the proof of
which is the starting point for all of our conditional lower bounds.

Theorem 5. Under SETH, for every k ≥ 2, every algorithm that can distinguish between S-T
Diameter k and 3k − 2 in undirected unweighted graphs requires n1+1/(k−1)−o(1) time.

Theorem 5 implies that under SETH, our aforementioned 2 and 3-approximation algorithms
are optimal.

For all of our lower bounds, we also address the question of whether they can be extended to
higher values of Diameter and Eccentricities. 4

Dense graphs. Can we address our Main Question for dense graphs as well? In particular, can
we extend our runtime lower bounds of the form n1+1/`−o(1) to mn1/`−o(1), thus matching the known
algorithms for larger values of m? We show that the answer is “no”. For undirected unweighted
graphs, we obtain Õ(n2) time algorithms for Diameter achieving an almost 3/2-approximation
(Theorem 31), and for all Eccentricities achieving an almost 5/3-approximation algorithm (Theo-
rem 35). These algorithms run in near-linear time in dense graphs, improving the previous best
runtime of Õ(m

√
n) by Roditty and Vassilevska W. [RV13], and subsuming (for dense unweighted

graphs) the results of Cairo et al. [CGR16].

Theorem 6. There is an expected O(n2 log n) time algorithm that for any undirected unweighted
graph with Diameter D = 3h+ z for h ≥ 0, z ∈ {0, 1, 2}, returns an extimate D′ such that 2h− 1 ≤
D′ ≤ D if z = 0, 1 and 2h ≤ D′ ≤ D if z = 2.

There is an expected O(n2 log n) time algorithm that for any undirected unweighted graph returns
estimates ε′(v) of the Eccentricities ε(v) of all vertices such that 3ε(v)/5− 1 ≤ ε′(v) ≤ ε(v) for all
v.

We also show (in Theorem 41) that one can improve the estimates slightly with an O(n2.05)
time algorithm.

4All of our lower bounds, with the exception of directed Eccentricities, are of the form “any algorithm that can
distinguish between Diameter (or Eccentricity) a and b requires a certain amount of time” for small values of a and b.
This doesn’t exclude the possibility of an algorithm that distinguishes between higher Diameters (or Eccentricities)
of the same ratio i.e. between a` and b` for some `.

For weighted Diameter, our lower bound easily extends to higher values of Diameter by simply scaling up the
edge weights. For S − T Diameter and undirected Eccentricities, our lower bounds easily extend to higher values of
Diameter and Eccentricities by simply subdividing the edges. For unweighted directed Diameter, our lower bound
extends to higher values of Diameter with a slight loss in approximation factor by subdividing some of the edges. For
unweighted undirected Diameter, our lower bound does not seem to easily extend to higher values of Diameter.

6

1.2 Related work

The fastest known algorithm for APSP in dense weighted graphs is by R. Williams [Wil14] and
runs in O(n3/2Θ(

√
logn)) time. For sparse undirected graphs, the fastest known APSP algorithm

is by Pettie [Pet04] running in O(mn + n2 log log n) time. The fastest APSP algorithm for sparse
undirected weighted graphs is by Pettie and Ramachandran [PR05] and runs in O(mn logα(m,n))
time. For APSP on undirected unweighted graphs with m > n log logn, Chan [Cha12] presented
an O(mn log log n/ log n) time algorithm. In graphs with small integer edge weights bounded in
absolute value by M , APSP can be computed in Õ(Mnω) time (by Shoshan and Zwick [SZ99]
building upon Seidel [Sei95] and Alon, Galil and Margalit [AGM97]) in undirected graphs and in
Õ(M0.681n2.5302) time (by Zwick [Zwi02]) in directed graphs. Zwick [Zwi02] also showed that APSP
in directed weighted graphs admits an (1 + ε)-approximation algorithm for any ε > 0, running in
time Õ(nω/ε log(M/ε)). For Diameter in graphs with integer edge weights bounded by M , Cygan
et al. [CGS15] obtained an algorithm running in time Õ(Mnω).

The pioneering work of Aingworth et al. [ACIM99] on Diameter and shortest paths approxi-
mation was the root to many subsequent works. Building upon Aingworth et al. [ACIM99], Dor,
Halperin and Zwick [DHZ00] presented additive approximation algorithms for APSP in undirected
unweighted graphs, achieving among other things, an additive 2-approximation in Õ(n7/3) time
(notably, the best known bound on ω is > 7/3). They also presented an Õ(n2) time additive
O(log n)-approximation algorithm. These algorithms were generalized by Cohen and Zwick [CZ01]
who showed that in undirected weighted graphs APSP has a (multiplicative) 3-approximation
in Õ(n2) time, a 7/3-approximation in Õ(n7/3) time, and a 2-approximation in Õ(n

√
mn) time.

Baswana and Kavitha [BK10] presented an Õ(m
√
n+ n2) time multiplicative 2-approximation al-

gorithm and an Õ(m2/3n+n2) time 7/3-approximation algorithm for APSP in weighted undirected
graphs.

Spanners are closely related to shortest paths approximation. A subgraph H is an (α, β)-spanner
of G = (V,E) if for every u, v ∈ V , dH(u, v) ≤ α · dG(u, v) + β, where dG′(u, v) is the distance
between u and v in G′. Any weighted undirected graph has a (2k − 1, 0)-spanner with O(n1+1/k)
edges [ADD+93]. Baswana and Sen [BS07] presented a randomized linear time algorithm for
constructing a (2k−1, 0)-spanner with O(kn1+1/k) edges. Dor, Halperin and Zwick [DHZ00] showed
that a (1, 2)-spanner with O(n1.5) edges can be constructed in Õ(n2) time. Elkin and Peleg [EP04]
showed that for every integer k ≥ 1 and ε > 0 there is a (1 + ε, β)-spanner with O(βn1+1/k) edges,
where β depends on k and ε but is independent of n. Baswana et. al [BKMP10] presented a (1, 6)-
spanner with O(n4/3) edges. Woodruff [Woo06] presented an Õ(n2) time algorithm that computes a
(1, 6)-spanner with O(n4/3) edges. Chechik [Che13] presented a (1, 4)-spanner with O(n7/5) edges.
Recently, Abboud and Bodwin[AB16] showed that there is no additive spanner with constant error
and O(n4/3−ε) edges.

Thorup and Zwick [TZ05] introduced the notion of distance oracles, a data structure that
stores approximate distances for a weighted undirected graph. Thorup and Zwick designed a
distance oracle that for any k takes O(mn1/k) time to construct and, is of size is O(kn1+1/k),
and given a pair of vertices u, v ∈ V it returns in O(k) time a (2k − 1)-approximation for d(u, v).
Baswana and Sen [BS06] improved the construction time to O(n2) for unweighted graphs. Baswana
and Kavitha [BK10] extended the O(n2) construction time to weighted graphs. Subsequently,
Baswana, Gaur, Sen, and Upadhyay [BGSU08] obtained subquadratic construction time in un-
weighted graphs, at the price of having additive constant error in addition to the 2k−1 multiplica-
tive error.

7

Chechik [Che15] gave an oracle with space O(n1+1/k) and O(1) query time, which like previ-
ous work, returns a (2k − 1)-approximation. Pǎtraşcu and Roditty [PR10] obtained a distance
oracle that uses Õ(n5/3) space, has O(1) query time, and returns a (2k + 1)-approximation. Som-
mer [Som16] presented an Õ(n2) time algorithm that constructs such a distance oracle. The con-
struction time was recently improved to O(n2) by Knudsen [Knu17]. Pǎtraşcu et. al [PRT12a]
presented infinity many distance oracles with fractional approximation factors that for graphs with
m = Õ(n) converge exactly to the integral stretch factors and the corresponding space bound
of Thorup and Zwick. Thorup and Zwick [TZ01] also extended their techniques from [TZ05] to
compact routing schemes.

The lower bounds presented in this paper were inspired by a lower bound by Pǎtraşcu and
Roditty [PR10] who showed conditional hardness based on a conjecture on the hardness of a set in-
tersection problem for the space usage of any distance oracle that can distinguish between distances
3 and 7.

1.3 Organization

In Section 3 we prove our lower bounds for S-T Diameter which serve as a basis for the rest of our
lower bounds. We also show equivalence between Diameter and S-T Diameter. In Section 4 we
prove our lower bounds for Eccentricities: one for directed graphs and one for undirected graphs.
In Section 5 we prove our lower bounds for Diameter. This section is divided into four subsections,
one for each of the results in Table 1. In Section 6 we describe our algorithms for sparse graphs:
our 2-approximation and (2 + δ)-approximation for Eccentricities, our 2-approximation and 3-
approximation for S-T Diameter, and our less than 2-approximation for Diameter. In Section 7
we describe our algorithms for dense graphs: our nearly 3/2-approximations for Diameter and our
nearly 5/3-approximations for Eccentricities.

2 Preliminaries

Let G = (V,E) be a graph, where |V | = n and |E| = m. For every u, v ∈ V let dG(u, v) be the
length of the shortest path from u to v. When the graph G is clear from the context we omit the
subscript G.

The eccentricity ε(v) of a vertex v is defined as maxu∈V d(v, u). The diameter D of a graph is
maxv∈V ε(v). In a directed graph we have εout(v) = maxu∈V d(v, u) (resp., εin(v) = maxu∈V d(u, v)).

Let deg(v) be the degree of v and let Ns(u) be the set of the s closest vertices of v, where
ties are broken by taking the vertex with the smaller ID. In a directed graph let degout(v) (resp.,
degin(v)) be the outgoing (incoming) degree of v. Let Nout

s (v) (resp., N in
s (v)) be the set of the

s closest outgoing (incoming) vertices of v, where ties are broken by taking the vertex with the
smaller ID. For a subset S ⊆ V of vertices and a vertex v ∈ V we write d(S, v) := mins∈S d(s, v) to
denote the distance from the set S to the vertex v.

Let k ≥ 2. The k-Orthogonal Vectors Problem (k-OV) is as follows: given k sets S1, . . . , Sk,
where each Si contains n vectors in {0, 1}d, determine whether there exist v1 ∈ S1, . . . , vk ∈ Sk so
that their generalized inner product is 0, i.e.

∑d
i=1

∏k
j=1 vj [i] = 0.

R. Williams [Wil05] (see also [Vas15]) showed that if for some ε > 0 there is an nk−εpoly (d)
time algorithm for k-OV, then CNF-SAT on formulas with N variables and m clauses can be
solved in 2N(1−ε/k)poly (m) time. In particular, such an algorithm would contradict the Strong

8

Exponential Time Hypothesis (SETH) of Impagliazzo, Paturi and Zane [IPZ01] which states that
for every ε > 0 there is a K such that K-SAT on N variables cannot be solved in 2(1−ε)Npoly N
time (say, on a word-RAM with O(logN) bit words).

This also motivates the following k-OV Conjectures (implied by SETH) for all constants k ≥ 2:
k-OV requires nk−o(1) time on a word-RAM with O(log n) bit words. Most of our conditional lower
bounds are based on the k-OV Conjecture for a particular constant k, and thus they also hold
under SETH.

A main motivation behind SETH is that despite decades of research, the best upper bounds for
K-SAT on N variables and M clauses remain of the form 2N(1−c/K)poly (M) for constant c (see
e.g. [Hir98, PPSZ05, Sch99]). The best algorithms for the k-OV problem for any constant k ≥ 2
on n vectors and dimension c log n run in time n2−1/O(log c) (Abboud, Williams and Yu [AWY15]
and Chan and Williams [CW16]).

3 S-T Diameter hardness

In the following we will prove that under SETH, our S-T Diameter algorithms are essentially
optimal. We prove the following theorem:

Theorem 7. Let k ≥ 2 be an integer. There is an O(knk−1dk−1) time reduction that transforms
any instance of k-OV on sets of n d-dimensional vectors into a graph on O(nk−1 + knk−2dk−1)
nodes and O(knk−1dk−1) edges and two disjoint sets S and T on nk−1 nodes each, so that if the
k-OV instance has a solution, then DS,T ≥ 3k − 2, and if it does not, DS,T ≤ k.

From Theorem 7 we get that if there is some k ≥ 2, ε > 0 and δ > 0 so that there is an
O(M1+1/(k−1)−ε) time (3− 2/k− δ)-approximation algorithm for S-T Diameter in M -edge graphs,
then k-OV has an nk−γpoly (d)-time algorithm for some γ > 0 and SETH is false.

We obtain an immediate corollary.

Corollary 8. For S-T Diameter, under SETH, there is

• no (2− ε)-approximation algorithm running in O(m2−δ) time for any ε > 0, δ > 0,

• no O(m3/2−δ) time 7/3− ε-approximation algorithm for any ε > 0, δ > 0,

• no (m+ n)1+o(1) time, 3− ε-approximation algorithm for any ε > 0.

We will prove the following more detailed theorem, which will be useful for our Diameter lower
bounds.

Theorem 9. Let k ≥ 2. Given a k-OV instance consisting of sets W0,W1, . . . ,Wk−1 ⊆ {0, 1}d,
each of size n, we can in O(knk−1dk−1) time construct an unweighted, undirected graph with
O(nk−1 + knk−2dk−1) vertices and O(knk−1dk−1) edges that satisfies the following properties.

1. The graph consists of k + 1 layers of vertices S = L0, L1, L2, . . . , Lk = T . The number of
nodes in the sets is |S| = |T | = nk−1 and |L1|, |L2|, . . . , |Lk−1| ≤ nk−2dk−1.

2. S consists of all tuples (a0, a1, . . . , ak−2) where for each i, ai ∈ Wi. Similarly, T consists of
all tuples (b1, b2, . . . , bk−1) where for each i, bi ∈Wi.

3. If the k-OV instance has no solution, then d(u, v) = k for all u ∈ S and v ∈ T .

9

4. If the k-OV instance has a solution a0, a1, . . . , ak−1 where for each i, ai ∈ Wi then if α =
(a0, . . . ak−2) ∈ S and β = (a1, . . . , ak−1) ∈ T , then d(α, β) ≥ 3k − 2.

5. Suppose the k-OV instance has a solution a0, a1, . . . , ak−1 where for each i, ai ∈ Wi. Let
t = k − 2. Let s be such that 0 ≤ s ≤ t.
Let bt−s+j ∈ Wt−s+j for all j ∈ [1, . . . , s] be some other vectors, potentially different from
at−s+j. Consider α = (a0, a1, . . . , at−s, bt−s+1, . . . , bt) ∈ L0 and β = (a1, . . . , at+1) ∈ Lt+2.
Then the distance between α and β is at least 3t− 2s+ 4.

Symmetrically, let cj ∈ Wj for all j ∈ [1, . . . , s] be some other vectors, potentially different
from aj. Consider α = (a0, a1, . . . , at) ∈ L0 and β = (c1, . . . , cs, as+1, . . . , at+1) ∈ Lt+2. Then
the distance between α and β is at least 3t− 2s+ 4.

6. For all i from 1 to k−1, for all v ∈ Li there exists a vertex in Li−1 adjacent to v and a vertex
in Li+1 adjacent to v.

Proof of Theorem 9 We will prove the theorem for k = t+ 2 for any t ≥ 0.
We will create a layered graph G on t+ 3 layers, L0, . . . , Lt+2, where the edges go only between

adjacent layers Li, Li+1. We will set S = L0 and T = Lt+2 for the S-T Diameter instance. In
particular, DS,T ≥ t+ 2 because of the layering.

Let us describe the vertices of G.
L0 consists of nt+1 vertices, each corresponding to a t + 1-tuple (a0, a1, . . . , at) where for each

i, ai ∈Wi.
Similarly, Lt+2 consists of nt+1 vertices, each corresponding to a t + 1-tuple (b1, b2, . . . , bt+1)

where for each i, bi ∈Wi.
Layer L1 consists of ntdt+1 vertices, each corresponding to a tuple (a0, . . . , at−1, x̄) where for

each i, ai ∈Wi and x̄ = (x0, . . . , xt) is a (t+ 1)-tuple of coordinates in [d]. Similarly, Lt+1 consists
of ntdt+1 vertices, each corresponding to a tuple (b2, . . . , bt+1, x̄) where for each i, bi ∈Wi and x̄ is
a (t+ 1)-tuple of coordinates.

For every j ∈ {2, . . . , t}, Lj consists of ntdt+1 vertices (a0, . . . , at−j , bt+3−j , . . . , bt+1, x̄), where
for each i, ai ∈ Wi, bi ∈ Wi and x̄ = (x0, . . . , xt) is a (t + 1)-tuple of coordinates in [d]. In other
words, there is a vector from Wi for every i /∈ {t− j + 1, t− j + 2}.

Now let us define the edges.
Consider a node (a0, . . . , at) ∈ L0. For every x̄ = (x0, . . . , xt), connect (a0, . . . , at) to

(a0, . . . , at−1, x̄) ∈ L1 if and only if for every j ∈ {0, . . . , t}, aj is 1 in coordinates x0, . . . , xt−j .
For any i ∈ {1, . . . , t} let’s define the edges between Li and Li+1. For

(a0, . . . , at−i, bt+3−i, . . . , bt+1, x̄) ∈ Li 5 and for any ct+2−i ∈Wt+2−i, add an edge to
(a0, . . . , at−i−1, ct+2−i, bt+3−i, . . . , bt+1, x̄) ∈ Li+1. Here we “forget” vector at−i and replace it with
ct+2−i, leaving everything else the same.

Finally, the edges between Lt+1 and Lt+2 are as follows. Consider some (b1, . . . , bt+1) ∈ Lt+2.
For every x̄ = (x0, . . . , xt), connect (b1, . . . , bt+1) to (b2, . . . , bt+1, x̄) ∈ Lt+1 if and only if for every
j ∈ {1, . . . , t+ 1}, bj is 1 in coordinates xt+1−j , . . . , xt.

Figure 3 shows the construction of the graph for t = 2.
An important claim is as follows:

Claim 10. For every x̄, each (a0, . . . , at−1, x̄) ∈ L1 is at distance t to every (b2, . . . , bt, x̄) ∈ Lt+1.

5Here if i = 1, there are no b’s in the tuple.

10

L0 L1 L2 L3 L4

a0a1a2 a0a1x0x1x2

a0b3x
′
0x

′
1x

′
2

a0a3x0x1x2 a2a3x0x1x2

b2b3x
′′
0x

′′
1x

′′
2 b1b2b3

a1a2a3

a0[xi] = 1, ∀i
a1[x0] = a1[x1] = 1
a2[x0] = 1

b3[x
′′
i] = 1, ∀i

b2[x
′′
1] = b2[x

′′
2] = 1

b1[x
′′
2] = 1

a3[xi] = 1, ∀i
a2[x1] = a2[x2] = 1
a1[x2] = 1

xi = x′
i, ∀i

x′′
i = x′

i, ∀i

Figure 3: The reduction graph from (t+ 2)-OV for t = 2. The figure depicts when a path of length
t + 2 exists between arbitrary a0a1a2 ∈ L0 and b1b2b3 ∈ Lt+2. It also shows that when there is a
path of length t+ 2 between a0a1a2 ∈ L0 and a1a2a3 ∈ Lt+2, a0, a1, a2, a3 cannot be an orthogonal
4-tuple.

Proof. Consider the path starting from (a0, . . . , at−1, x̄), and then for each i ≥ 1 following the edges
(a0, . . . , at−i, bt+3−i, . . . , bt+1, x̄) ∈ Li to (a0, . . . , at−1−i, bt+2−i, . . . , bt+1, x̄) ∈ Li+1, until we reach
(b2, . . . , bt+1, x̄) ∈ Lt+1. This path exists by construction and has length t. �

Now we proceed to prove the bounds on the S-T Diameter.

Lemma 11 (Property 3 of Theorem 9). If the (t+2)-OV instance has no solution, then DS,T = t+2.

Proof. If the (t+2)-OV instance has no solution, then for every c0 ∈W0, c1 ∈W1, . . . , ct+1 ∈Wt+1,
there is some coordinate x such that c0[x] = c1[x] = . . . = ct+1[x] = 1.

Now consider the graph and any (a0, . . . , at) ∈ L0, (b1, . . . , bt+1) ∈ Lt+2. For every j ∈
{0, . . . , t}, let xj be a coordinate so that a0, . . . , at−j , bt−j+1, . . . , bt+1 are all 1 in xj . Let x̄ =
(x0, . . . , xt).

By construction, (a0, . . . , at) has an edge to (a0, . . . , at−1, x̄) and (b2, . . . , bt+1, x̄) has an edge to
(b1, . . . , bt+1). Also, by Claim 10, (a0, . . . , at−1, x̄) has a path of length t to (b2, . . . , bt+1, x̄).

This shows that DS,T ≤ t+ 2; equality follows because the graph is layered. �

Now we prove the guarantee for the case when an orthogonal tuple exists.

Lemma 12 (Property 4 of Theorem 9). If there exist a0 ∈W0, . . . , at+1 ∈Wt+1 that are orthogonal,
then DS,T ≥ 3t+ 4.

To prove the lemma, we will actually prove a more general claim: Property 5 of Theorem 9.

Claim 13 (Property 5 of Theorem 9). Suppose that a0 ∈W0, . . . , at+1 ∈Wt+1 are orthogonal. Let
s be such that 0 ≤ s ≤ t.

Let bt−s+j ∈ Wt−s+j for all j ∈ [1, . . . , s] be some other vectors, potentially different from
at−s+j. Consider α = (a0, a1, . . . , at−s, bt−s+1, . . . , bt) ∈ L0 and β = (a1, . . . , at+1) ∈ Lt+2. Then
the distance between α and β is at least 3t− 2s+ 4.

11

Symmetrically, let cj ∈ Wj for all j ∈ [1, . . . , s] be some other vectors, potentially different
from aj. Consider α = (a0, a1, . . . , at) ∈ L0 and β = (c1, . . . , cs, as+1, . . . , at+1) ∈ Lt+2. Then the
distance between α and β is at least 3t− 2s+ 4.

If the claim is true, then using s = 0 we get that the Diameter is at least 3t+ 4 so Lemma 12
is true. The claim for s > 0 is useful for the rest of our constructions.

Proof. We will show that the distance between α = (a0, a1, . . . , at−s, bt−s+1, . . . , bt) ∈ L0 and β =
(a1, . . . , at+1) ∈ Lt+2 is strictly more than 3t + 2 − 2s. Because the graph is layered and hence
bipartite and t+ 2 ≡ 3t+ 2 mod 2, the distance must be at least 3t− 2s+ 4.

Let’s assume for contradiction that the shortest path P between α and β is of length ≤ 3t+2−2s.
First let’s look at any subpath P ′ of P strictly within M = L1 ∪ . . . ∪ Lt+1. All nodes on P ′ must
share the same x̄.

Furthermore, if P ′ starts with a node of L1 and ends with a node of Lt+1, as P ′ needs to be a
shortest path and by Claim 10, P ′ must be of length exactly t.

Next, notice that P cannot go from L0 to Lt+2 and then back to L0. This is because it needs
to end up in Lt+2 and any time it crosses over M , it would need to pay a distance of t + 2, so P
would have to have length at least 3t+ 6 > 3t+ 2− 2s.

Hence, P must be of the following form: a path from α through L0 ∪M back to L0 (possibly
containing only α), followed by a path crossing M to reach Lt+2, followed by a path through
Lt+2 ∪M to Lt+2 (possibly empty).

We will show that if P has length ≤ 3t+ 2− 2s then P must contain a length t+ 2 subpath Q
between a node (a0, . . . , aq, wq+1, . . . , wt) ∈ L0, for some choices of the w’s and some q ≤ t− s, and
a node (v1, . . . , vq, aq+1, . . . , at+1) ∈ Lt+2, for some choices of v’s.

That is, this path traverses M without weaving, by following (a0, . . . , aq, wq+1, . . . , wt−1, x̄) ∈
L1, (a0, . . . , aq, wq+1, . . . , wt−2, at+1, x̄) ∈ L2, . . ., (v2, . . . , vq, aq+1, . . . , at−s, . . . , at+1, x̄) ∈ Lt+1.

Suppose we show that such a subpath exists. Then by the construction of our graph we have
that for every i ∈ {0, . . . , q}, ai[xj] = 1 for all j ∈ {0, . . . , t−i}, and that for all i ∈ {q+1, . . . , t+1},
ai[xj] = 1 for all j ∈ {t + 1 − i, . . . , t}. That is, for all i, ai[xt−q] = 1, and we get a contradiction
since the ai were supposed to be orthogonal.

Now let α∗ be the last node from L0 on P and let β∗ be the first node of Lt+1 of P . Let a∗ ∈ L1

be the node right after α∗ and let b∗ ∈ Lt+1 be the node right before β∗. Since the subpath of P
between a∗ and b∗ is within M , it must share the same x̄, and it must have length exactly t by
Claim 10.

We will show that the subpath Q that we are looking for is the subpath of P between α∗ and
β∗. Its length is exactly what we want: t+ 2. It remains to show that for some q ≤ t− s and some
choices of w’s and v’s, α∗ = (a0, . . . , aq, wq+1, . . . , wt) and β∗ = (v1, . . . , vq, aq+1, . . . , at+1).

Consider the path P1 between α = (a0, a1, . . . , at−s, bt−s+1, . . . , bt) and α∗ and the path P2

between β = (a1, . . . , at+1) and β∗. Let Li be the layer in M with largest i that P1 touches and let
Lj be the layer in M with smallest j that P2 touches.

For convenience, let us define j′ = t+ 2− j. The length of P1 is then at least 2i and the length
of P2 is at least 2j′. The length |P | of P equals t+2+ |P1|+ |P2| ≥ t+2+2i+2j′ = t+2+2(i+j′).
Since we have assumed that |P | ≤ 3t+ 2− 2s, we must have that t+ 2 + 2(i+ j′) ≤ 3t+ 2− 2s and
hence i+ j′ ≤ t− s.

Now, since P1 goes at most to Li, then from getting from α to α∗, at most the last i elements
of (a0, a1, . . . , at−s, bt−s+1, . . . , bt) can have been “forgotten”.

12

α

α∗

a∗ b∗
β∗

β

L0 L1 Li Lj Lt+1 Lt+2

Figure 4: Here P contains at least 2 nodes in L0 and at least 2 in Lt+2, and s = 0.

Hence, α∗ = (a0, . . . , at−max{s,i}, bt−max{s,i}+1, . . . , bt−i, wt−i+1, . . . , wt) for some w’s. (If i ≥ s,
the b’s do not appear.)

Similarly, between β and β∗, at most the first j′ elements of β can have been forgotten. Thus,
we have that β∗ = (v1, . . . , vj′ , aj′+1, . . . , at+1) for some v’s.

Now, since i+ j′ ≤ t− s, we must have that j′ ≤ t− s− i ≤ t−max{s, i}, and hence the path
between α∗ and β∗ is the path Q we are searching for.

See Figure 4 for an illustration of Li, Lj etc. in the case when s = 0.
�

3.1 Equivalence between Diameter and S-T Diameter

Here we will prove that when it comes to exact computation, S-T -Diameter and Diameter in
weighted graphs are equivalent. The proof for directed graphs is much simpler, so we focus on the
equivalence for undirected graphs. Also, it is clear that if one can solve S-T Diameter, one can also
solve Diameter in the same running time since one can simply set S = T = V . We prove:

Theorem 14. Suppose that there is a T (n,m) time algorithm that can compute the Diameter of
an n node, m edge graph with nonnegative integer edge weights. Then, the S-T Diameter of any n
node m edge graph with nonnegative integer edge weights can be computed in T (O(n), O(m)) time.

Proof. Let G = (V,E), S, T be the S-T Diameter instance; let w : E → {0, . . . ,M} be the edge
weights. First, we can always assume that M is even: if it is not, multiply all edge weights by 2;
all distances (and hence also the S-T Diameter) double.

Let S = {s1, . . . , sk} and T = {t1, . . . , t`}.
Now, let W = Mn. First add |S| = k new nodes S′ = {v1, . . . , vk}. For each i ∈ {1, . . . , k} add

a new edge (vi, si) of weight W . Let GS be this new graph. Let’s consider the Diameter of GS .
For every pair of nodes u, v /∈ S′, the distance is the same as in G. For vi ∈ S′ and x /∈ S′, the
distance is W + dG(si, x) ≤ W + M(n − 1) < 2W . For vi, vj ∈ S′, the distance is 2W + d(si, sj).
Hence the Diameter of GS is 2W + maxsi,sj∈S d(si, sj). Hence by computing the Diameter of GS ,
we can compute DS = maxsi,sj∈S d(si, sj).

We can create a similar graphGT whose Diameter will allow us to computeDT = maxti,tj∈S d(ti, tj).

13

s1

s2
s3 = t3

t2

t1

a

b

x y

S T

G

v1

v2

v3S’
no edges within

u2

u1

u3

T’

no edges within

W

W

W

W

W

W

2W

DS/2

DS/2

DS/2
DS/2DS/2

DS/2

Figure 5: A depiction of the construction of G′.

After this, let’s create a graph GS,T as follows. Add new nodes S′ = {v1, . . . , vk} and T ′ =
{u1, . . . , u`}. For each i ∈ {1, . . . , k} add a new edge (vi, si) of weight W . For each j ∈ {1, . . . , `}
add a new edge (uj , tj) of weight W . With a similar argument as above, the Diameter D′ of GS,T
is D′ = 2W + maxu,v∈S∪T dG(u, v).

Let’s assume without loss of generality that DS ≥ DT . If D′ > DS , then D′ = 2W +
maxu∈S,v∈T dG(u, v), and we can compute the S-T Diameter of G by subtracting 2W .

Now suppose that we get D′ ≤ DS ; we must have then actually gotten D′ = DS . The S-T
Diameter of G might be strictly smaller than DS . We add two new nodes x and y to GS,T . We add
an edge (x, y) of weight 2W , edges (x, vi) for every vi ∈ S′ of weight DS/2 and (symmetrically)
edges (y, uj) for every uj ∈ T ′ of weight DS/2.

The construction of G′ is depicted in Figure 5.
Let us consider the distances in this new graph G′.

1. For every a, b /∈ S′ ∪ T ′ ∪ {x, y}, d(a, b) = dG(a, b) < W as any path not in G would have to
use an edge of weight W > d(a, b).

2. For every b /∈ S′∪T ′∪{x, y}, d(x, b) = W +DS/2+mina∈S dG(a, b) ≤ 2W +DS/2. Similarly,
d(y, b) = W +DS/2 + mina∈T dG(a, b) ≤ 2W +DS/2.

3. For every vi ∈ S′, d(x, vi) = DS/2, and d(y, vi) = 2W +DS/2. For every ui ∈ T ′, d(y, ui) =
DS/2, and d(x, ui) = 2W +DS/2.

4. For every vi, vj ∈ S′, d(vi, vj) = DS . For every ui, uj ∈ T ′, d(ui, uj) = DS .

5. For every vi ∈ S′ and b /∈ S′ ∪T ′ ∪{x, y}, d(vi, b) ≤W + d(si, b) ≤ 2W. For every ui ∈ T ′ and
b /∈ S′ ∪ T ′ ∪ {x, y}, d(ui, b) ≤W + d(ti, b) ≤ 2W.

6. For every vi ∈ S′ and uj ∈ T ′, d(vi, uj) is the minimum ofDS+2W,DS+2W+mins∈S dG(s, tj), DS+
2W + mint∈t dG(t, si) and 2W + dG(si, tj). The middle two terms are ≥ DS + 2W , and hence
d(vi, uj) = 2W + min{DS , dG(si, tj)}.

Consider si ∈ S, tj ∈ T that are the end points of the S-T DiameterD inG. ThenD = dG(si, tj).
Now, we have from before that D ≤ DS , as otherwise we have computed D already. Hence in G′,
the distance d(ui, vj) equals 2W + min{DS , D} = 2W +D

14

S-T Diameter instance from k-OV

S T

y

s10

s20

s30

s40

s11

s21

s31

s41

s12s13

s22s23

s32s33

s42s43

t1

t2

t3

t4

t11

t21

t31

t41

t12 t13 t14
S-T Diameter k vs 3k − 2

t22 t23 t24

t32 t33 t34

t42 t43 t44
Here k = 5

Undirected eccentricities from nodes in S: either ≤ 2k − 1 or ≥ 4k − 3.

Figure 6: The undirected Eccentricities lower bound for k = 5.

We note that for any si, sj ∈ S, and any t ∈ T , dG(si, sj) ≤ dG(si, t)+dG(t, sj) ≤ 2 maxs∈S,t∈T dG(s, t) =
2D. Thus, D ≥ DS/2. The distances in cases (1) to (5) are all ≤ 2W + DS/2 ≤ 2W + D. Hence
the Diameter of G′ is actually exactly 2W +D. �

4 Lower bounds for Eccentricities

4.1 Undirected graphs

Theorem 15. Let k ≥ 2. Under the k-OV conjecture, every algorithm that can distinguish between
eccentricity at most 2k − 1 and eccentricity at least 4k − 3 for every vertex in an O(n) edge and
node undirected graph, requires at least n1+1/(k−1)−o(1) time on a O(log n)-bit word-RAM.

Proof. Let’s start with the S-T -diameter construction for k obtained from a given k-OV instance.
We remove any internal nodes if they don’t have edges to one of their adjacent layers - they don’t
hurt the instance. We have a graph on O(nk−1dk−2) vertices and edges with the following properties:

(1) Suppose that the k-OV instance has no k-OV solution. Then for every s ∈ S, t ∈ T ,
d(s, t) = k. Also, for every s ∈ S and u /∈ S ∪ T , d(s, u) ≤ (k− 1) + k = 2k− 1 since we can take a
≤ (k − 1) length path from u to some node t ∈ T and since d(s, t) = k.

(2) If there is a k-OV solution, there are two nodes s ∈ S, t ∈ T with d(s, t) ≥ 3k − 2.
We modify the construction as follows. For every s ∈ S, we create an undirected path on

k − 2 new vertices s1 → s2 → . . . → sk−2 and add an edge (s, s1); let’s call s by s0. Now, the
distance between s0 and si is i. Add a new node y and create edges (sk−2, y) for every s ∈ S. Now,
d(y, s0) = k − 1 for every s ∈ S, and also for every s, s′ ∈ S and all i, j ∈ {0, . . . , k − 2}, we have
that d(si, s

′
j) ≤ 2k − 2.

For every s ∈ S, t ∈ T , there is now potentially a new path between them, from s to y in
k − 1 steps, then to some other s′ in k − 1 steps and then to t using ≥ k steps. The length is
≥ 2(k − 1) + k = 3k − 2, so when there is a k-OV solution, there is still a pair s, t at distance at
least 3k − 2.

Now, we also attach paths to the nodes in T . In particular, for each t, add an undirected path
t→ t1 → . . .→ tk−1. The distance between any s ∈ S and any ti is i+ d(s, t). Hence when there is
no k-OV solution, the Eccentricities of all s0 for s ∈ S are ≤ k + (k − 1) = 2k − 1, and when there
is a k-OV solution, there is s ∈ S, t ∈ T so that d(s0, tk−1) ≥ (3k − 2) + (k − 1) = 4k − 3. �

15

x1 x2 x3

v10 x11 v12 v13

v20 v21 v22 v23

v30 v31 v32 v33

u1

u2

u3

1

2

u1 = (1, 1), u2 = (1, 0), u3 = (0, 1)

v1 = (1, 0), v2 = (1, 1), u3 = (0, 1)

ε(u1) = 5, ε(u2) = ε(u3) = 9

Figure 7: The directed Eccentricities lower bound.

4.2 Directed graphs

Theorem 16. Under the 2-OV conjecture, for any δ > 0, any (2 − δ)-approximation algorithm
for all Eccentricities in an n node, O(n)-edge directed unweighted graph, requires n2−o(1) time on
a O(log n)-bit word-RAM.

Proof. Suppose we are given an instance of 2-OV: two sets of vectors U, V over {0, 1}d and we want
to know whether there are u ∈ U, v ∈ V with u · v = 0.

Let L ≥ 1 be any integer. Let us create a directed unweighted graph G; an illustration can be
found in Figure 7. G will have a vertex u for every u ∈ U and a vertex c for every c ∈ [d]. Every
v ∈ V will be represented by a directed path v0 → v1 → . . .→ vL.

In addition, there is a directed path Px on L extra nodes, x1 → . . . → xL so that every u ∈ U
has directed edges (u, x1) and (xL, u).

For every u ∈ U and every c for which u[c] = 1, we add a directed edge (u, c). For every v and
every c for which v[c] = 1, we add a directed edge (c, v0). Remove any c that does not have at least
one edge coming from U .

Let us consider the eccentricity of any node u ∈ U . First, for all u′ ∈ U , d(u, u′) ≤ L+ 1 since
one can go through the path Px. For every c ∈ [d], there is at least one edge coming from some
u′ ∈ U , and so one can reach c from u by first taking Px to u′ and then using the edge (u′, c).
Hence, d(u, c) ≤ L+ 2 for all c ∈ [d].

For any v ∈ V and i ∈ {1, . . . , L}, the distance d(u, vi) = i+d(u, v0), and so we consider d(u, v0).
If there is a c for which u[c] = v[c] = 1, then d(u, v0) = 2, and hence for all i, d(u, vi) ≤ L + 2. If
no such c exists and so if u and v are orthogonal, the only way to reach v0 is potentially via Px to
some other u′ ∈ U which is at distance 2 to v0. Hence if u and v are orthogonal, d(u, v0) = L+ 3,
and hence d(u, vL) = 2L+ 3.

In other words, the eccentricity of u is L + 2 if it is not orthogonal to any vectors in V and it
is ≥ 2L+ 3 if there is some v that is orthogonal to u.

The number of vertices in the graph is O(nL+ d) and the number of edges is O(nL+ nd).
Suppose that there is a (2 − ε)-approximation algorithm for all Eccentricities in graphs with

O(m) nodes and edges running in O(m2−δ) time for some ε, δ > 0. Then, we construct the above
instance for L = d1/εe and run the algorithm on it. The approximation returned is at least as good
as a (2 − 1/L)-approximation. Hence if the diameter is at least 2L + 3, the algorithm will return

16

an estimate that is at least L(2L + 3)/(2L − 1) > L + 2. Thus the algorithm can solve 2-OV in
time O((nL+ nd)2−δ) = O(n2−δd2−δ), contradicting the 2-OV conjecture. �

5 Diameter lower bounds

For all of our constructions we begin with the S-T diameter lower bound construction from The-
orem 9. Here, if the k-OV instance has no solution, DS,T ≤ k and if the instance has a solution
DS,T ≥ 3k− 2. To adapt this construction to Diameter, we need to ensure that if the OV instance
has no solution then all pairs of vertices have small enough distance. We begin by augmenting the
S-T Diameter construction by adding a matching between S and a new set S′ as well as a matching
between T and a new set T ′. Without any further modifications, pairs of vertices u, v ∈ S ∪ S′ (or
u, v ∈ T ∪T ′) could be far from one another. The challenge is to add extra gadgetry to make these
pairs close for “no” instances while maintaining that in “yes” instances the distance between the
diameter endpoints s′ ∈ S′, t′ ∈ T ′ is large. That is, for “yes” instances, we want a shortest path
between the diameter endpoints s′ and t′ to contain the vertex s ∈ S matched to s′ and the vertex
t ∈ T matched to t′ so that we can use use the fact that d(s, t) ≥ 3k − 2. In other words, we do
not want there to be a shortcut from s′ to some vertex in S that allows us to use a path of length
k from S to T . For example, we cannot simply create a vertex x and connect it to all vertices in
S ∪ S′ because this would introduce shortcuts from S′ to S.

We will describe some intuition for the augmentations to the graph regarding 3-OV for simplicity.
Recall that s′ ∈ S′, t′ ∈ T ′ are the endpoints of the diameter and let t be the vertex matched to t′.
To solve the problem outlined in the above paragraph, we observe that in the “yes” case there are
three types of vertices s ∈ S. (1) close: d(s, t) = 3, (2) far: d(s, t) ≥ 7 (property 4 of Theorem 9),
and (3) intermediate: d(s, t) ≥ 5 (property 5 of Theorem 9). For close s, we need d(s′, s) to be large
so that there is no shortcut from s′ to t′ through s. For far s, it is ok if d(s′, s) is small because d(s, t)
is large enough to ensure that paths from s′ to t′ through s are still long enough. For intermediate
s, d(s′, s) cannot be small, but it also need not be large. To fulfill these specifications, we add a
small clique (the graph is still sparse) and connect each of its vertices to only some of the vertices in
S and/or S′ according to the implications of property 5 of Theorem 9. When s is close, we ensure
that d(s′, s) is large by requiring that a shortest path from s′ to s goes from s′ to the clique, uses
an edge inside of the clique, and then goes from the clique to s. When s is intermediate, we ensure
that d(s′, s) is not too small by requiring that a shortest path from s′ to s goes from s′ to the clique
and then from the clique to s (without using an edge inside of the clique). These intermediate s
are important as they allow every vertex in the clique to have an edge to some vertex in S and thus
be close enough to the T side of the graph in the “no” case.

5.1 5 vs 8 unweighted undirected construction

In this section we show that under the 3-OV Hypothesis, any algorithm that can distinguish between
diameter 5 and 8 in sparse undirected unweighted graphs, requires Ω(n3/2−o(1)) time.

Theorem 9 gives us the following theorem.

Theorem 17. Given a 3-OV instance consisting of three sets A,B,C ⊆ {0, 1}d, |A| = |B| = |C| =
n, we can in O(n2d2) time construct an unweighted, undirected graph with O(n2 + nd2) vertices
and O(n2d2) edges that satisfies the following properties.

17

1. The graph consists of 4 layers of vertices S,L1, L2, T . The number of nodes in the sets is
|S| = |T | = n2 and |L1|, |L2| ≤ nd2.

2. S consists of all tuples (a, b) of vertices a ∈ A and b ∈ B. Similarly, T consists of all tuples
(b, c) of vertices b ∈ B and c ∈ C.

3. If the 3-OV instance has no solution, then d(u, v) = 3 for all u ∈ S and v ∈ T .

4. If the 3-OV instance has a solution a ∈ A, b ∈ B, c ∈ C with a, b, c orthogonal, then d((a, b) ∈
S, (b, c) ∈ T) ≥ 7.

5. Setting k = 3, s = 1 in Property 5 of Theorem 9: for any b′ ∈ B we have d((a, b) ∈ S, (b′, c) ∈
T) ≥ 5 and d((a, b′) ∈ S, (b, c) ∈ T) ≥ 5.

6. For any vertex u ∈ L1 there exists a vertex s ∈ S that is adjacent to u. Similarly, for any
vertex v ∈ L2 there exists a vertex t ∈ T that is adjacent to v. We can assume that this
property holds because we can remove all vertices that do not satisfy this property from the
graph and the resulting graph will still satisfy the other properties.

In the rest of the section we use Theorem 17 to prove the following result.

Theorem 18. Given a 3-OV instance, we can in O(n2d2) time construct an unweighted, undirected
graph with O(n2 + nd2) vertices and O(n2d2) edges that satisfies the following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices u and v we have d(u, v) ≤ 5.

2. If the 3-OV instance has a solution, then there exists a pair of vertices u and v such that
d(u, v) ≥ 8.

Construction of the graph We construct a graph with the required properties by starting
with the graph from Thereom 17 and adding more vertices and edges. Figure 8 illustrates the
construction of the graph. We start by adding a set S′ of n2 vertices. S′ consists of all tuples (a, b)
of vertices a ∈ A and b ∈ B. We connect every (a, b) ∈ S′ to its counterpart (a, b) ∈ S. Thus, there
is a matching between the sets of vertices S and S′. We also add another set S′′ of n vertices. S′′

contains one vertex a for every a ∈ A. For every pair of vertices from S′′ we add an edge between
the vertices. Thus, the n vertices form a clique. Furthermore, for every vertex a ∈ S′′ we add an
edge to (a, b) ∈ S for all b ∈ B. In total we added n2 + n = O(n2) vertices and

(
n
2

)
+ 2n2 = O(n2)

edges. We do a similar construction for the set T of vertices. We add a set T ′ of n2 vertices - one
vertex for every tuple (b, c) of vertices b ∈ B and c ∈ C. We connect every (b, c) ∈ T ′ to (b, c) ∈ T .
Finally, we add a set T ′′ of n vertices. T ′′ contains one vertex for every vector c ∈ C. For every pair
of vertices from T ′′ we add an edge between the vertices. We connect every c ∈ T ′′ to (b, c) ∈ T for
all b ∈ B. This finishes the construction of the graph. In the rest of the section we show that the
construction satisfies the promised two properties.

Correctness of the construction We need to consider two cases.

Case 1: the 3-OV instance has no solution In this case we want to show that for all pairs
of vertices u and v we have d(u, v) ≤ 5. We consider three subcases.

18

S ′ S L1 L2 T T ′

abab

S ′′ a

same a

clique

bcbc

T ′′ c

same c

clique

matching matching

Figure 8: The illustration for the 5 vs 8 construction. The edges between sets S,L1, L2 and T are
not depicted. The edges between vertices in S′ and S (T and T ′) form a matching. Vertices in S′′

(T ′′) form a clique.

Case 1.1: u ∈ S ∪ S′ ∪ S′′ ∪ L1 and v ∈ T ∪ T ′ ∪ T ′′ ∪ L2 We observe that there exists s ∈ S
that has d(u, s) ≤ 1. Indeed, if u ∈ S, then s = u works. If u ∈ S′ ∪ S′′, then we are done by
the construction. On the other hand, if u ∈ L1, then there exists such an s ∈ S by property 6
from Theorem 17. Similarly we can show that there exists t ∈ T such that d(v, t) ≤ 1. Finally, by
property 3 we have that d(s, t) = 3. Thus, we can upper bound the distance between u and v by
d(u, v) ≤ d(u, s) + d(s, t) + d(t, v) ≤ 1 + 3 + 1 = 5 as required.

Case 1.2: u, v ∈ S ∪ S′ ∪ S′′ ∪ L1 From the previous case we know that there are two vertices
s1, s2 ∈ S such that d(u, s1) ≤ 1 and d(s2, v) ≤ 1. To show that d(u, v) ≤ 5 it is sufficient to show
that d(s1, s2) ≤ 3. This is indeed true since both vertices s1 and s2 are connected to some two
vertices in S′′ and every two vertices in S′′ are at distance at most 1 from each other.

Case 1.3: u, v ∈ T ∪ T ′ ∪ T ′′ ∪ L2 The case is analogous to the previous case.

Case 2: the 3-OV instance has a solution In this case we want to show that there is a pair
of vertices u, v with d(u, v) ≥ 8. Let a ∈ A, b ∈ B, c ∈ C be a solution to the 3-OV instance. We
claim that d((a, b) ∈ S′, (b, c) ∈ T ′) ≥ 8. Let P be an optimal path between u = ((a, b) ∈ S′) and
v = ((b, c) ∈ T ′) that achieves the smallest distance. We want to show that P uses at least 8 edges.
Let t ∈ T be the first vertex from the set T that is on path P . Let s ∈ S be the last vertex on
path P that belongs to S and precedes t in P . We can easily check that, if s 6= ((a, b) ∈ S), then
d(u, s) ≥ 3 and, similarly, if t 6= ((b, c) ∈ T), then d(t, v) ≥ 3. We consider three subcases.

19

Case 2.1: s 6= ((a, b) ∈ S) and t 6= ((b, c) ∈ T) Since s and t are separated by two layers of
vertices, we must have d(s, t) ≥ 3. Thus we get lower bound d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) ≥
3 + 3 + 3 = 9 > 8 as required.

Case 2.2: s = ((a, b) ∈ S) and t = ((b, c) ∈ T) In this case we use property 4 and conclude
d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) = 1 + d((a, b) ∈ S, (b, c) ∈ T) + 1 ≥ 1 + 7 + 1 = 9 > 8 as required.

Case 2.3: either s = ((a, b) ∈ S) or t = ((b, c) ∈ T) holds but not both W.l.o.g. s 6=
((a, b) ∈ S) and t = ((b, c) ∈ T). If the path uses an edge in the clique on S′′ before arriving
at s, then d(u, s) ≥ 4 and we get that d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) ≥ 4 + 3 + 1 = 8.
On the other hand, if the path does not use any edge of the clique, then s = ((a, b′) ∈ S) for
some b′ ∈ B. By property 5 we have d(s, t) = d((a, b′) ∈ S, (b, c) ∈ T) ≥ 5. We conclude that
d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) ≥ 3 + 5 + 1 = 9 > 8 as required.

5.2 6 vs 10 weighted undirected construction

In this section we change the construction from Theorem 18 to show that under the 3-OV Hypoth-
esis, any algorithm that can distinguish between diameter 6 and 10 in sparse undirected weighted
graphs requires Ω(n3/2−o(1)) time.

We get the following theorem.

Theorem 19. Given a 3-OV instance, we can in O(n2d2) time construct an weighted, undirected
graph with O(n2 + nd2) vertices and O(n2d2) edges that satisfies the following two properties.

1. If the 3-OV instance has no solution, then for all pairs of vertices u and v we have d(u, v) ≤ 6.

2. If the 3-OV instance has a solution, then there exists a pair of vertices u and v such that
d(u, v) ≥ 10.

Each edge of the graph has weight either 1 or 2.

Construction of the graph The construction of the graph is the same as in Theorem 19 except
all edges connecting vertices between sets L1 and L2 have weight 2 and all edges inside the cliques
on nodes S′′ and T ′′ have weight 2. All the remaining edges have weight 1.

Correctness of the construction The correctness proof is essentially the same as for Theo-
rem 18. As before we consider two cases.

Case 1: the 3-OV instance has no solution In this case we want to show that for all pairs
of vertices u and v we have d(u, v) ≤ 6. In the analysis of Case 1 in Theorem 18 we show a path
between u and v such that the path involves at most one edge from the cliques or between sets L1

and L2. Since we added weight 2 to the latter edges, the length of the path increased by at most
1 as a result. So we have upper bound d(u, v) ≤ 6 for all pairs u and v of vertices.

20

Case 2: the 3-OV instance has a solution In this case we want to show that there is a pair
of vertices u, v with d(u, v) ≥ 10. Similarly to Theorem 18 we will show that d((a, b) ∈ S′, (b, c) ∈
T ′) ≥ 10, where a ∈ A, b ∈ B, c ∈ C is a solution to the 3-OV instance. The analysis of the subcases
is essentially the same as in Theorem 18. For cases 2.1 and 2.2 in the proof of Theorem 18 we had
d((a, b) ∈ S′, (b, c) ∈ T ′) ≥ 9. Since we increased edge weights between L1 and L2 to 2 and every
path from (a, b) ∈ S′ to (b, c) ∈ T ′ must cross the layer between L1 and L2, we also increased the
lower bound of the length of the path from 9 to 10 for cases 2.1 and 2.2. It remains to consider
Case 2.3. As in the proof of Theorem 18, w.l.o.g. s 6= ((a, b) ∈ S) and t = ((b, c) ∈ T). If the path
uses an edge in the clique on S′′ before arriving at s, then d(u, s) ≥ 5 and we get lower bound
d(u, v) ≥ d(u, s)+d(s, t)+d(t, v) ≥ 5+4 +1 = 10. On the other hand, if the path does not use any
edge of the clique, then s = ((a, b′) ∈ S) for some b′ ∈ B. By property 5 and because we increased
edge weights between L1 and L2 to 2, we have d(s, t) = d((a, b′) ∈ S, (b, c) ∈ T) ≥ 6. We conclude
that d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) ≥ 3 + 6 + 1 = 10 as required.

5.3 3k − 4 vs 5k − 7 unweighted directed construction

In this section, we show that under SETH, for every k ≥ 3, every algorithm that can distinguish
between Diameter 3k−4 and 5k−7 in directed unweighted graphs requires Ω(n1+1/(k−1)−o(1)) time.

Theorem 9 gives us the following theorem.

Theorem 20. Given a k-OV instance consisting of k ≥ 2 sets W0,W1, . . . ,Wk−1 ⊆ {0, 1}d, each
of size n, we can in O(knk−1dk−1) time construct an unweighted, undirected graph with O(nk−1 +
knk−2dk−1) vertices and O(knk−1dk−1) edges that satisfies the following properties.

1. The graph consists of k + 1 layers of vertices S = L0, L1, L2, . . . , Lk = T . The number of
nodes in the sets is |S| = |T | = nk−1 and |L1|, |L2|, . . . , |Lk−1| ≤ nk−2dk−1.

2. S consists of all tuples (a0, a1, . . . , ak−2) where for each i, ai ∈ Wi. Similarly, T consists of
all tuples (b1, b2, . . . , bk−1) where for each i, bi ∈Wi.

3. If the k-OV instance has no solution, then d(u, v) = k for all u ∈ S and v ∈ T .

4. If the k-OV instance has a solution a0, a1, . . . , ak−1 where for each i, ai ∈ Wi then if α =
(a0, . . . ak−2) ∈ S and β = (a1, . . . , ak−1) ∈ T , then d(α, β) ≥ 3k − 2.

5. Setting s = k−2 in Property 5 of Theorem 9: If the k-OV instance has a solution a0, a1, . . . , ak−1

where for each i, ai ∈ Wi then for any tuple (b1, . . . , bk−2), if α = (a0, b1, . . . , bk−2) ∈ S and
β = (a1, . . . , ak−1) ∈ T , then d(α, β) ≥ k + 2. Symmetrically, if α = (a0, a1, . . . , ak−2) ∈ S
and β = (b1, . . . , bk−2, ak−1) ∈ T , then d(α, β) ≥ k + 2.

6. For all i from 1 to k − 1, for all v ∈ Li there exists a vertex in Li−1 adjacent to v and a
vertex in Li+1 adjacent to v. We can assume that this property holds because we can remove
all vertices that do not satisfy this property from the graph and the resulting graph will still
satisfy the previous three properties.

In the rest of the section we use Theorem 20 to prove the following result.

Theorem 21. Given a k-OV instance, we can in O(knk−1dk−1) time construct an unweighted, di-
rected graph with O(knk−1+knk−2dk−1) vertices and O(knk−1dk−1) edges that satisfies the following
two properties.

21

1. If the k-OV instance has no solution, then for all pairs of vertices u and v we have d(u, v) ≤
3k − 4.

2. If the k-OV instance has a solution, then there exists a pair of vertices u and v such that
d(u, v) ≥ 5k − 7.

Construction of the graph We construct a graph with the required properties by starting
with the graph from Thereom 20 and adding more vertices and edges. First we will construct a
weighted graph and then we will make it unweighted. Figure 9 illustrates the construction of the
graph for the special case k = 4. We start by adding a set S′ of nk−1 vertices. S′ consists of all

S ′ S L1 L3 T T ′

a0a1a2a0a1a2

S ′′ a0

same a0

clique

a1a2a3a1a2a3

T ′′ a3

same a3

clique

matching matching

L2

same a0
same a3

Figure 9: The 3k − 4 vs 5k − 7 construction for the special case k = 4. The edges between sets
S,L1, L2, L3 and T are not depicted. The matching between sets S and S′ consists of unweighted
paths of length k− 2 = 2. The edges between sets S and S′′ consists of unweighted paths of length
k − 2 = 2. Similarly for the right side.

tuples (a0, a1, . . . , ak−2) where for each i, ai ∈ Wi. We connect every (a0, a1, . . . , ak−2) ∈ S′ to its
counterpart (a0, a1, . . . , ak−2) ∈ S with an undirected edge of weight k− 2 to form a matching. We
also add another set S′′ of n vertices. S′′ contains one vertex a0 for every a0 ∈W0. For every pair
of vertices in S′′ we add an undirected edge of weight 1 between the vertices. Thus, the n vertices
form a clique. Furthermore, for every vertex a0 ∈ S′′ we add an undirected edge of weight k− 2 to
(a0, b1, . . . , bk−2) ∈ S for all b1, . . . , bk−2. Finally for every vertex a0 ∈ S′′ we add a directed edge of
weight 1 towards (a0, b1, . . . , bk−2) ∈ S for all b1, . . . , bk−2. Some of the edges that we added have
weight k − 2. We make those unweighted by subdividing them into edges of weight 1. Let S′′′ be
the set of newly added vertices. In total we added O(knk−1) vertices and O(knk−1) edges.

We do a similar construction for the set T of vertices. We add a set T ′ of nk−1 vertices — one
vertex for every tuple (a1, . . . , ak−1) where for each i, ai ∈Wi. We connect every (a1, . . . , ak−1) ∈ T ′
to (a1, . . . , ak−1) ∈ T by an undirected edge of weight k− 2. Finally, we add a set T ′′ of n vertices.

22

T ′′ contains one vertex for every vector ak−1 ∈ Wk−1. We connect every pair of vertices in T ′′ by
an undirected edge of weight 1. We connect every vertex ak−1 ∈ T ′′ to (b1, . . . , bk−2, ak−1) ∈ T
by an undirected edge of weight k − 2 for all b1, . . . , bk−2. Also, for every vertex ak−1 ∈ T ′′ we
add a directed edge of weight 1 from (b1, . . . , bk−2, ak−1) ∈ T ′ to ak−1 for all b1, . . . , bk−2. Some of
the edges that we just added have weight k − 2. We make those unweighted by subdividing them
into edges of weight 1. Let T ′′′ be the set of newly added vertices. This finishes the construction
of the graph. In the rest of the section we show that the construction satisfies the promised two
properties stated in Theorem 21.

Correctness of the construction We need to consider two cases.

Case 1: the k-OV instance has no solution In this case we want to show that for all pairs
of vertices u and v we have d(u, v) ≤ 3k − 4. We consider subcases.

Case 1.1: u ∈ S ∪ S′ ∪ S′′ ∪ S′′′ ∪ Li for 1 ≤ i ≤ k − 2 and v ∈ T ∪ T ′ ∪ T ′′ ∪ T ′′′ ∪ Lj for
2 ≤ j ≤ k − 1 We observe that there exists s ∈ S that has d(u, s) ≤ k − 2. Similarly, there exists
t ∈ T with d(t, v) ≤ k− 2. By property 3 from Theorem 20 we have that d(s, t) ≤ k. This gives us
upper bound d(u, v) ≤ d(u, s) + d(s, t) + d(t, v) ≤ (k − 2) + k + (k − 2) = 3k − 4 as required. The
proof when the sets for u and v are swapped is identical since we only use paths on unweighted
edges.

Case 1.2: u, v ∈ S ∪ S′ ∪ S′′ ∪ S′′′ ∪ L1 We note that there is some vertex s ∈ S′′ with d(u, s) ≤
2(k − 2) (via undirected edges). Also, there is some vertex s′ ∈ S′′ with d(s′, v) ≤ k − 1 (possibly
using directed edges). S′′ is a clique so d(s, s′) ≤ 1. Thus, d(u, v) ≤ d(u, s) + d(s, s′) + d(s′, v) ≤
2(k − 2) + 1 + (k − 1) = 3k − 4.

Case 1.3: u, v ∈ T ∪ T ′ ∪ T ′′ ∪ T ′′′ ∪ Lk−1 This case is similar to the previous case. We note
that there is some vertex t ∈ T ′′ with d(t, v) ≤ 2(k− 2) (via undirected edges). Also, there is some
vertex t′ ∈ T ′′ with d(u, t′) ≤ k − 1 (possibly using directed edges). S′′ is a clique so d(t′, t) ≤ 1.
Thus, d(u, v) ≤ d(u, t′) + d(t′, t) + d(t, v) ≤ (k − 1) + 1 + 2(k − 2) = 3k − 4.

Case 2: the k-OV instance has a solution In this case we want to show that there is a pair
of vertices u, v with d(u, v) ≥ 5k − 7. Let (a0, a1, . . . , ak−1) be a solution to the k-OV instance
where for each i, ai ∈ Wi. We claim that d((a0, . . . , ak−2) ∈ S′, (a1, . . . , ak−1) ∈ T ′) ≥ 5k − 7. Let
P be an shortest path between u = ((a0, . . . , ak−2) ∈ S′) and v = ((a1, . . . , ak−1) ∈ T ′). We want
to show that P uses at least 5k − 7 edges. Let s ∈ S be the first vertex on path P that belongs
to S and let t ∈ T be the last vertex from the set T that is on path P . We observe that due to
the directionality of the edges, s and t must be the counterparts of u and v respectively; that is,
s = ((a0, . . . , ak−2) ∈ S) and t = ((a1, . . . , ak−1) ∈ T). Note that these definitions of s and t differ
from the definitions of s and t in previous proofs. We consider three subcases.

Case 2.1: A vertex in S′ ∪ S′′ ∪ S′′′ appears after s on the path P We observe that if
s1, s2 ∈ S is a pair of vertices on the path P such that no vertex in S appears between them on P ,
then the portion of P between s1 and s2 either contains only vertices in S′ ∪ S′′ ∪ S′′′ or contains
no vertices in S′ ∪ S′′ ∪ S′′′. Let s1, s2 ∈ S be such that the portion of P between them contains

23

only vertices in S′ ∪ S′′ ∪ S′′′. Such s1, s2 exist by the specification of this case. If s1 = s2 then P
is not a shortest path. Otherwise, the portion of P between s1 and s2 must include a vertex in S′′.
Thus, d(s1, s2) ≥ 2(k − 2). We consider three subcases.

• s1 6= s. The distance between any pair of vertices in S is at least 2 so d(s, s1) ≥ 2. Then,
d(u, v) ≥ d(u, s)+d(s, s1)+d(s1, s2)+d(s2, t)+d(t, v) ≥ (k−2)+2+2(k−2)+k+(k−2) = 5k−6.

• s1 = s and s2 = ((a0, b1, . . . , bk−2) ∈ S) for some b1, . . . , bk−2. In this case, by property 5 we
have d(s2, t) ≥ k+ 2. Thus, d(u, v) ≥ d(u, s1) + d(s1, s2) + d(s2, t) + d(t, v) ≥ (k− 2) + 2(k−
2) + (k + 2) + (k − 2) = 5k − 6.

• s1 = s and s2 = ((b0, . . . , bk−2 ∈ S) for some with b0 6= a0. In this case, the path from s1

to s2 must include an edge in the clique S′′ since these are the only edges among vertices in
S′ ∪ S′′ ∪ S′′′ for which adjacent tuples can differ with respect to their first element. Thus,
d(s1, s2) ≥ 2(k− 2) + 1 ≥ 2k− 3. Therefore, d(u, v) ≥ d(u, s1) + d(s1, s2) + d(s2, t) + d(t, v) ≥
(k − 2) + (2k − 3) + k + (k − 2) = 5k − 7.

Case 2.2: A vertex in T ′ ∪T ′′ ∪T ′′′ appears before t on the path P This case is analogous
to the previous case.

Case 2.3: The portion of the path P between s and t contains no vertices in S′ ∪ S′′ ∪
S′′′ ∪ T ′ ∪ T ′′ ∪ T ′′′ By property 4, d(s, t) ≥ 3k − 2. Thus, d(u, v) ≥ d(u, s) + d(s, t) + d(t, v) ≥
(k − 2) + (3k − 2) + (k − 2) = 5k − 6.

We note that a slight modification of this construction gives a lower bound for higher values of
Diameter. For any L, we can get an L(3k − 4) vs L(5k − 8) + 1 construction by subdividing all of
the edges in the construction (into paths of length L) except for the directed edges and the edges
within the cliques.

6 Algorithms for sparse graphs

6.1 2-Approximation for Eccentricities in Õ(m
√
n) time

Theorem 22. Given a weighted, directed m edge n node graph, in Õ(m
√
n) time we can output

quantities ε′(v) such that for all v ∈ V we have ε(v)/2 ≤ ε′(v) ≤ ε(v).

Proof. The algorithm is inspired by the 2-approximation algorithm for directed radius of Abboud,
Vassilevska W., and Wang [AVW16]. We claim that the following algorithm achieves the above
guarantees.

1. Sample a random subset S ⊂ V of size |S| = Θ(
√
n log n). With high probability for every

u ∈ V we have N in√
n
(u) ∩ S 6= ∅.

2. Let w be a vertex that maximizes d(S,w), which we find using Dijkstra’s algorithm. Let
S′ := N in√

n
(w).

3. For every vertex v ∈ S′ we output ε′(v) = ε(v) by running Dijkstra’s algorithm and following
the outgoing edges.

24

4. For every vertex v 6∈ S′ we output the estimate ε′(v) = maxs∈S∪{w} d(v, s). We can determine
all these quantities by running Dijkstra’s algorithm out of all vertices in S∪{w} and following
the incoming edges.

Correctness Consider an arbitrary vertex v 6∈ S′ (if v ∈ S′, then we are done by the third step).
If there exists s ∈ S such that d(v, s) ≥ ε(v)/2, then we are done since ε′(v) ≥ d(v, s) ≥ ε(v)/2.
Otherwise, we have d(v, s) < ε(v)/2 for all s ∈ S. Let v′ be a vertex that achieves d(v, v′) = ε(v).
By the triangle inequality we have d(s, v′) > ε(v)/2 for all s ∈ S. Equivalently, d(S, v′) > ε(v)/2.
This implies that d(S,w) > ε(v)/2 by our choice of w. Since d(S,w) > ε(v)/2 and S′ = N in√

n
(w)

intersects S, we must have that S′ contains all vertices u with d(u,w) ≤ ε(v)/2. Since v 6∈ S′, we
must have d(v, w) > ε(v)/2 and we are done since ε′(v) ≥ d(v, w) > ε(v)/2. �

6.2 Almost 2-Approximation for Eccentricities in almost linear time

In contrast to our Õ(m
√
n) time algorithm from the previous section, our near-linear time (2 + δ)-

approximation algorithm is very different from all previously known algorithms. Our algorithm
proceeds in iterations and maintains a set S of nodes for which we still do not have a good eccen-
tricity estimate. In each iteration either we get a good estimate for many new vertices and hence
remove them from S, or we remove all vertices from S that have large eccentricities, and for the
remaining nodes in S we have a better upper bound on their eccentricities. After a small number
of iterations we have a good estimate for all vertices of the graph.

Theorem 23. Suppose that we are given a weighted, directed m edge n node graph. The weights
of all edge are non-negative integers bounded by nO(1). For any 1 > τ > 0 we can in Õ(m/τ) time
output quantities ε′(v) such that for all v ∈ V we have 1−τ

2 ε(v) ≤ ε′(v) ≤ ε(v).

Proof. We maintain a subset S ⊆ V of vertices v for which we still do not have an estimate ε′(v).
Initially S = V and we will end with |S| ≤ O(1). When |S| ≤ O(1) we can evaluate ε(v) for
all v ∈ S in the total time of O(m). Also we maintain a value D that upper bounds the largest
eccentricity of a vertex in S. That is, ε(v) ≤ D for all v ∈ S. Initially we set D = nC for some large
enough constant C > 0 (we assume that the input graph is strongly connected). The algorithm
proceeds in phases. Each phase takes Õ(m) time and either |S| decreases by a factor of at least
2 or D decreases by a factor of at least 1/(1 − τ). After O(log(n)/τ) phases either |S| ≤ O(1) or
D < 1.

For a subset S ⊆ V of vertices and a vertex x ∈ V we define a set Sx ⊆ S to contain those
|Sx| = |S|/2 vertices from S that are closest to x (according to distance d(·, x)). The ties are broken
by taking the vertex with the smaller id. Given a subset S ⊆ V of vertices and a threshold D, a
phase proceeds as follows.

• We sample a set A ⊆ S of O(log n) random vertices from the set S. With high probability
for all x ∈ V we have A ∩ Sx 6= ∅.
• Let w ∈ V be a vertex that maximizes d(A,w). We can find it using Dijkstra’s algorithm.

• We consider two cases.

Case d(S \Sw, w) ≥ 1−τ
2 D. For all x ∈ S \Sw we have 1−τ

2 D ≤ ε(x) ≤ D and we assign the
estimate ε′(x) = 1−τ

2 D. This gives us that 1−τ
2 ε(x) ≤ 1−τ

2 D = ε′(x) ≤ ε(x) for all x ∈ S \Sw.
We update S to be Sw. This decreases the size of S by a factor of 2 as required.

25

Case d(S\Sw, w) < 1−τ
2 D. Set S′ = S. For every vertex v ∈ S evaluate rv := maxx∈A d(v, x).

We can evaluate these quantities by running Dijkstra’s algorithm from every vertex in A and
following the incoming edges. If rv ≥ 1−τ

2 D, then assign the estimate ε′(v) = 1−τ
2 D and

remove v from S′. Similarly as in the previous case we have 1−τ
2 ε(v) ≤ ε′(v) ≤ ε(v) for all

v ∈ S \ S′. Below we will show that for every v ∈ S′ we have ε(v) ≤ (1− τ)D. Thus we can
update S = S′ and decrease the threshold D to (1− τ)D as required.

Correctness We have to show that, if there exists v ∈ S′ such that ε(v) > (1 − τ)D, then we
will end up in the first case (this is the contrapositive of the claim in the second case). Since v ∈ S′
we must have that d(v, x) ≤ 1−τ

2 D for all x ∈ A. Since ε(v) > (1− τ)D, we must have that there
exists v′ such that d(v, v′) > (1− τ)D. By the triangle inequality we get that d(x, v′) > 1−τ

2 D for
every x ∈ A. Let w ∈ V be any vertex that maximizes d(A,w). We must have d(A,w) > 1−τ

2 D.
Since A ∩ Sw 6= ∅, we have d(S \ Sw, w) ≥ 1−τ

2 D and we will end up in the first case.
The guarantee on the approximation factor follows from the description. �

As a corollary, we get an algorithm for Source Radius with the same runtime and approximation
ratio as Theorem 23. First, run the Eccentricities algorithm and let v be the vertex with the
smallest estimated eccentricity ε′(v). Then run Dijkstra’s algorithm from v and report ε(v) as
the Radius estimate R′. Let R be the true radius of the graph and let x be the vertex with
minimum Eccentricity i.e. ε(x) = R. If α is the approximation ratio for the Eccentricities algorithm
then ε(v) ≤ αε′(v) ≤ αε(v) and ε(x) ≤ αε′(x) ≤ αε(x). By choice of v, ε′(v) ≤ ε′(x). Thus,
αR = αε(x) ≥ αε′(x) ≥ αε′(v) ≥ ε(v) = R′. Clearly R′ ≥ R, so R ≤ R′ ≤ αR.

6.3 S-T Diameter algorithms

Recall that the S-T diameter problem is as follows: Given an undirected graph G = (V,E) and
two sets S ⊆ V, T ⊆ V , determine DS,T = maxs∈S,t∈T d(s, t). Here we will outline two algorithms
for the problem.

Let us first consider a fast 3-approximation algorithm.

Claim 24. There is an O(m+n) time algorithm that for any n node m edge graph G = (V,E) and
S ⊆ V, T ⊆ V , computes an estimate D′ such that DS,T /3 ≤ D′ ≤ DS,T and two nodes s ∈ S, t ∈ T
such that d(s, t) = D′. In graphs with nonnegative weights, the same estimate can be achieved in
O(m+ n log n) time.

Proof. The algorithm is extremely simple: pick arbitrary nodes s ∈ S and t ∈ T , compute BFS(s)
and BFS(t) and return max{maxt′∈T d(s, t′),maxs′∈S d(s′, t)} (also returning the two nodes achiev-
ing the maximum). For weighted graphs, run Dijkstra’s algorithm instead of BFS.

Let’s see why this algorithm provides the promised guarantee. Suppose that for every t′ ∈ T ,
d(s, t′) < DS,T /3 (otherwise we are done). Then for every t′, t′′ ∈ T , d(t′, t′′) ≤ d(t′, s) + d(s, t′′) <
2DS,T /3. In particular, for all t′ ∈ T , d(t, t′) < 2DS,T /3. If we also had that for every s′ ∈ S,
d(t, s′) < DS,T /3, then we’d get that for all s′ ∈ S, t′ ∈ T , d(s′, t′) ≤ d(s′, t) + d(t, t′) < DS,T ,
contradicting the definition of DS,T . Thus, max{maxt′∈T d(s, t′),maxs′∈S d(s′, t)} ≥ DS,T /3. �

We will now show an analogue to the Õ(m
√
n) time almost-3/2-approximation diameter algo-

rithm of Roditty and Vassilevska W. [RV13] for S-T Diameter giving a 2-approximation. Using a

26

Algorithm 1 2-Approximation for S-T Diameter

1: procedure 2-Approx
2: X - random sample of nodes, |X| = Θ(

√
n log n)

3: D1 := 0
4: for every x ∈ X do
5: Run BFS(x)
6: Let tx be the closest node to x in T
7: Run BFS(tx)
8: D1 = max{D1,maxs∈S d(s, tx)}
9: Let t̄ be the furthest node of T from X (computed above)

10: Run BFS(t̄)
11: D2 = maxs∈S d(s, t̄).
12: Let Y be the closest

√
n nodes to t̄.

13: for every y ∈ Y do
14: Run BFS(y)
15: Let sy be the closest node to y in S
16: Run BFS(sy)
17: D2 = max{D2,maxt∈T d(sy, t)}

return max{D1, D2}

trick from Chechik et al. [CLR+14] we also obtain a true 2 approximation algorithm running in
Õ(m3/2).

We use Algorithm 2-Approx to prove:

Theorem 25. In Õ(m
√
n) time one can obtain an estimate D′ to the S-T diameter D of an m

edge n node unweighted undirected graph such that 2bD/4c ≤ D′ ≤ D.
In Õ(m3/2) time one can obtain an estimate D′′ such that D/2 ≤ D′′ ≤ D.

Proof. First we analyze Algorithm 2-Approx. Let s∗ ∈ S and t∗ ∈ T be the end points of the S-T
Diameter path so that d(s∗, t∗) = D. Let d = bD/4c.

Suppose first that for some x ∈ X, d(x, t∗) ≤ d. Then, d(x, tx) ≤ d(x, t∗) ≤ d and hence
d(tx, t

∗) ≤ d(tx, x) + d(x, t∗) ≤ 2d. However, then d(tx, s
∗) ≥ d(t∗, s∗)− d(t∗, tx) ≥ D − 2d ≥ D/2.

Thus, if D1 < D/2, it must be that for every x ∈ X, d(x, t∗) ≥ d+ 1. Hence, for every x ∈ X,
d(x, t̄) ≥ d(x, t∗) ≥ d+ 1 by the definition of t̄. If d(t̄, s∗) ≥ D/2, then D2 ≥ D/2 and we are done,
so let us assume that d(t̄, s∗) ≤ D/2.

Now, as X is random of size c
√
n log n for large enough c, with high probability, X hits the√

n-neighborhoods of all nodes. In particular, X ∩ Y 6= ∅. However, since d(x, t̄) ≥ d+ 1 for every
x ∈ X, it must be that Y contains all nodes at distance d from t̄ as it contains all nodes closer to
t̄ than x ∈ Y ∩X.

If s∗ ∈ Y , then we would have run BFS from s∗ and returned D. Hence d(t̄, s∗) > d. Let a
be the node on the shortest path between t̄ and s∗ with d(t̄, a) = d. We thus have that a ∈ Y .
Also, since d(t̄, s∗) ≤ D/2, d(a, s∗) ≤ D/2 − d and hence d(a, sa) ≤ D/2 − d, so that d(sa, t

∗) ≥
D − 2(D/2 − d) ≥ 2d. This finishes the argument that 2-Approx returns an estimate D′ with
2bD/4c ≤ D′ ≤ D.

It is not too hard to see that the only time that we might get an estimate that is less than
D/2 is in the last part of the argument and only if the diameter is of the form 4d + 3. (We will

27

prove the algorithm guarantees formally soon.) The analysis fails to work in that case because Y
is guaranteed to contain only the nodes at distance d from t̄.

In particular, if Y contains all nodes at distance d+ 1 from t̄ instead of just those at distance at
most d, we could consider a to be the node on the shortest path between t̄ and s∗ with d(t̄, a) = d+1,
and a ∈ Y . Now since d(t̄, s∗) ≤ 2d + 1 (as otherwise we’d be done), d(a, sa) ≤ d(a, s∗) ≤
2d+ 1− d− 1 = d, so that d(sa, t

∗) ≥ 2d+ 3. Hence everything would work out.
We handle this issue with a trick from Chechik et al. [CLR+14]. First, we make graph have

constant degree by blowing up the number of nodes and adding 0 weight edges as follows. Let v be
an original node and suppose it has degree d(v). Replace v with a d(v)-cycle of 0 weight edges so
that each of the cycle nodes is connected to a one of the neighbors of v, where each neighbor has
a cycle node corresponding to it. This makes every node have degree 3 and increases the number
of vertices to O(m).

Now, we run algorithm 2-Approx with two changes. The first is that instead of BFS we use
Dijkstra’s algorithm because the edges now have weights. The second change is that we redefine Y
as follows. Let Z be the closest

√
m nodes Z to t̄. Define Y to be Z, together with all nodes that

have an edge of weight 1 to some node of Z.
Now, consider the shortest path P between t̄ and s∗. Consider the last node a of P (in the

direction from t̄ to s∗) that has distance ≤ d from t̄. The node a′ after a on P must be connected to
a by an edge (a, a′) of weight 1, as otherwise a′ would be at distance at most d from t̄. Since a ∈ Z,
we must have a′ ∈ Y and we know also that d(t̄, a′) = d+ 1. In the last case when d(t̄, s∗) ≤ 2d+ 1,
we get that Y contains a node a′ of distance ≤ (2d+1)−(d+1) = d from s∗ and hence d(a′, sa′) ≤ d
and hence d(sa′ , t

∗) ≥ 2d+ 3.
Since every node has degree 3, the number of nodes in Y is ≤ 4|Z| ≤ O(

√
m) and hence we can

afford to run Dijkstra from each of them and complete the algorithm in Õ(m3/2) time.
Let us now formally analyze the guarantees of the algorithm. Suppose that D = 4d+ z where

z ∈ {0, 1, 2, 3}; we will show that the estimate that the algorithm gives is always at least dD/2e =
2d+ dz/2e. If some node x ∈ X has d(x, t∗) ≤ d, we get that d(tx, s

∗) ≥ D− 2d = 2d+ z ≥ dD/2e.
If we are not done, all nodes of X have d(x, t̄) ≥ d(x, t∗) ≥ d + 1 and Z contains all nodes at

distance ≤ d from t̄. If s∗ ∈ Z, we are done so we must have d(s∗, t̄) ≥ d + 1. Consider the last
node a′ on the t̄ to s∗ shortest path (in the direction towards s∗) for which d(t̄, a′) ≤ d. We have
that a′ ∈ Z. Also, the node a after a′ on the t̄ to s∗ shortest path must be in Y since by the choice
of a′, d(t̄, a) = t+ 1 and (a, a′) is an edge of weight 1.

If d(t̄, s∗) ≥ 2d + dz/2e, we are done, so we get that d(a, s∗) ≤ 2d + dz/2e − 1 − (d + 1) =
d+ dz/2e − 2. Hence, d(sa, t

∗) ≥ D − 2(d+ dz/2e − 2) = 2d+ (z + 4− 2dz/2e) ≥ 2d+ z. �

It is not hard to extend the S-T Diameter algorithms to work for weighted undirected graphs
as well. The basic idea is to use Dijkstra’s algorithm instead of BFS in Algorithm 1. This gives
an almost 2-approximation. In particular, let a′ be the last node on the t̄ to s∗ shortest path that
is at distance ≤ d from t̄ and let a be the node after a′. The weighted version of Algorithm 1
achieves a guarantee D′ of the S-T Diameter, such that D/2− 2w(a, a′) ≤ D′ ≤ D. We can obtain
an Õ(m3/2) true 2-approximation algorithm similar to the proof above. Let Z be the closest

√
m

nodes to t̄ and extend Z to Y by adding all nodes that have a non-zero edge to a node of Z. With
this modification, the node a is guaranteed to be in Y and hence the estimate for the diameter is
at least D/2.

Corollary 26. In Õ(m
√
n) time one can obtain an estimate D′ to the S-T diameter D of an m

28

edge n node undirected graph with nonnegative edge weights such that D/2 − 2w(a, a′) ≤ D′ ≤ D
for some edge (a, a′).

In Õ(m3/2) time one can obtain an estimate D′′ such that D/2 ≤ D′′ ≤ D.

6.4 Linear time less than 2-approximation for Diameter

It is an easy exercise to see that when D = 2h+1 then the value max{εin(v), εout(v)} of an arbitrary
vertex v ∈ V is an estimation to the diameter which is at least h+ 1 and at most D. In this section
we present a deterministic algorithm that gets a directed unweighted graph G with D = 2h and
computes in O(m2/n) time an estimation D̂ such that h+ 1 ≤ D̂ ≤ D.

The algorithm works as follows. A variable D̂ is set to zero. The algorithm searches for a
vertex v that its sum of in and out degree is minimal. Then the algorithm computes the in and out
eccentricity of v and every vertex that has an edge with v (incoming or outgoing). The algorithm
outputs the maximum of all the in and out eccentricities that were computed.

Theorem 27. Let G = (V,E) an unweighted directed graph and let D = 2h. Algorithm 2 returns
in O(m2/n) time an estimate D̂ such that h+ 1 ≤ D̂ ≤ D.

Proof. We start with the running time analysis. Consider the graph G and ignore the edge direc-
tions. For every v ∈ V let deg(v) = degin(v) + degout(v). Since m = 1

2

∑
v∈V deg(v) a vertex v of

minimal degree satisfies deg(v) ≤ 2m/n. Therefore, the cost of computing in and out eccentricities
for all vertices in the set N(v) ∪ {v} is O(mn ×m).

We now turn to bound D̂. Let a, b ∈ V and let d(a, b) = 2h. Let P (a, b) be a shortest path
from a to b and let v ∈ P (a, b). If d(a, v) ≤ h− 1 then εout(v) ≥ h+ 1. Similarly, if d(v, b) ≤ h− 1
then εin(v) ≥ h + 1. Consider now the case that d(a, v) = h and d(v, b) = h. Let u ∈ P (a, b) be
the vertex that precedes v on the shortest path from a to b. Since u has an incoming edge to v
it follows that u ∈ N(v) and εout(u) and εin(u) are computed. Since d(a, v) = h it follows that
d(a, u) = h− 1, εout(u) ≥ h+ 1 and D̂ is at least h+ 1.

�

Algorithm 2 Fast approximation of the diameter

1: procedure Diam-Approx(G)
2: D̂ = 0
3: v = arg minx∈V deg

in(x) + degout(x)
4: for every w ∈ Nin(v) ∪Nout(v) ∪ {v} do
5: compute εin(w) and εout(w)
6: D̂ = max{D̂, εin(w), εout(w)}
7: return D̂

7 Algorithms for dense graphs

7.1 Algorithm overview

The almost-3/2 Diameter approximation algorithm of Aingworth et al. [ACIM99] runs in Õ(n2 +
m
√
n) time. Roditty and Vassilevska W. [RV13] removed the Õ(n2) term to obtain an Õ(m

√
n)

29

expected time almost-3/2 approximation algorithm. For every graph with Ω(n1.5) edges the running
time of the latter algorithm is not better than the running time of the former algorithm. Therefore,
it is interesting to consider the opposite question to the one considered by [RV13]. Can the Õ(m

√
n)

term be removed?
We show that this can be done for undirected unweighted graphs and present an O(n2 log n)

expected time algorithm. For a graph of Diameter D = 3h + z, where z ∈ [0, 1, 2] our algorithm
returns an estimation D̂ such that 2h− 1 ≤ D̂ ≤ D, when z ∈ [0, 1] and 2h ≤ D̂ ≤ D, when z = 2.

Interestingly, our algorithm is obtained by using ideas developed originally for distance oracles
and compact routing schemes. As we are allowed to use quadratic time, we try to estimate the
distance between every pair of vertices. To enable this approach we can no longer sample A naively.
Instead, we adapt a recursive sampling algorithm to compute A, that was introduced by Thorup
and Zwick [TZ01] in the context of compact routing schemes. The expected running time of their
algorithm is Õ(mn/|A|). We provide a new implementation of their algorithm that runs in expected
Õ(n(n/|A|)2) time.

The set A has the following important property, for every vertex w ∈ V , its cluster (see [TZ05])
{u | d(u,w) < d(u,A)} is of size O(n/|A|). Consider now a pair of vertices u and v that are in
the cluster of w. For any such pair we can efficiently compute their exact distance. Moreover,
we show that for all pairs u, v that are not in the same cluster of any vertex, we can bound
d(u, v) from below with d(u,A) + d(v,A) − 1. This, combined with some other ideas, gives our
approximation guarantees. We extend our approach to also provide an almost 5/3-approximation
for all Eccentricities. The idea of using the bounded clusters of Thorup and Zwick [TZ01] has
been used in prior work to obtain improved distance oracles [PR10, AG13], approximate shortest
paths [BK10] and compact routing schemes [AG11].

7.2 A simple approach with additive error

Let’s first consider a simple approach obtaining an Õ(n2) time approximation algorithm for Diam-
eter, Eccentricities or S-T Diameter.

Suppose that we have an algorithm ALG that can compute in Õ(m
√
n) time, for any graph

G′, an estimate D′ of its Diameter D such that p · D − q ≤ D′ ≤ D, estimates e(v) of ε(v) for
all v so that rε(v) − s ≤ e(v) ≤ ε(v), and an estimate D′′ of the S-T Diameter DS,T so that
t ·DS,T − u ≤ D′′ ≤ DS,T .

Now, Dor, Halperin and Zwick [DHZ00] showed that in Õ(n2) time one can compute for any n
node G, an additive 2 spanner H on Õ(n1.5) edges. In fact Knudsen [Knu17] recently showed that
in O(n2) time one can get H on O(n1.5) edges (i.e. he removed all logs!).

Let’s compute H for our given graph and run ALG on H. The runtime is Õ(n1.5 ·√n) ≤ Õ(n2)
since H has ≤ O(n1.5) edges.

Let D′H , eH(·), D′′H be the estimates that we obtain respectively for the Diameter DH of H, the
Eccentricities εH(·) of H and the S, T Diameter DH

S,T . Let’s return D′H − 2, eH(·) − 2, D′′H − 2 for
our estimates for the Diameter, Eccentricities and S-T Diameter of G.

Notice that pD − q ≤ p ·DH − q ≤ D′H ≤ DH ≤ D + 2 and so pD − 2− q ≤ D′H − 2 ≤ D.
Similarly since rε(v) − s ≤ rεH(v) − s ≤ eH(v) ≤ εH(v) ≤ ε(v) + 2, we get rε(v) − s − 2 ≤

eH(v)− 2 ≤ ε(v).
Finally since t ·DS,T − u ≤ t ·DH

S,T − u ≤ D′′H ≤ DH
S,T ≤ DS,T + 2, we get t ·DS,T − u − 2 ≤

D′′H − 2 ≤ DS,T .

30

Thus, in Õ(n2) time we get almost the same guarantees as in the Õ(m
√
n) time algorithms,

except for an extra additive loss of 2 in the quality.
Below we show how to make the additive loss in quality smaller for Diameter and Eccentricities.

This is especially important when these parameters are constant, which is the hard case of the
problems anyway.

7.3 Near linear almost 3/2-approximation for Diameter

Thorup and Zwick [TZ05] introduced distance oracles, a succinct data structure for answering
approximate distance queries efficiently. Among the tools they use are clusters and bunches. Let
A ⊆ V , let pA(u) be the closest vertex to u from A, where ties are broken in favor of the vertex
with a smaller identifier and let d(u,A) = d(u, pA(u)). For every v ∈ V , let BA(u) = {v ∈ V |
d(u, v) < d(u,A} be the bunch of u. For every w ∈ V \ A, let CA(w) = {v | w ∈ BA(v)} be the
cluster of w.

Thorup and Zwick [TZ05] showed that if a set A is formed by adding every vertex of V to A
with probability p then the expected size of BA(v) is O(1/p), for every v ∈ V . They also showed,
in the context of compact routing schemes [TZ01], that if the set A is constructed by a recursive
sampling algorithm then it is possible to bound the maximum size of a cluster as well. They also
showed, in the context of compact routing schemes [TZ01], that if the set A is constructed by a
recursive sampling algorithm then it is possible to bound the maximum size of a cluster as well.
Their algorithm works as follows. It sets A to the empty set and W to V . Next, as long as the set
W is not empty the algorithm samples from W vertices with probability p and adds the sampled
vertices to A. The algorithm computes CA(w) for every w ∈W and removes from W all the vertices
whose cluster has at most 4/p vertices with respect to the updated A. The pseudo-code is given in
Algorithm 3.

Algorithm 3 Thorup and Zwick center algorithm

1: procedure center(G, p)
2: A = ∅
3: W = V
4: while W 6= ∅ do
5: X - random sample of nodes from W , |X| = |W |p
6: A = A ∪X
7: W = {w ∈ V | |CA(w)| > 4/p}
8: return A

Thorup and Zwick proved the following Theorem:

Theorem 28 (Theorem 3.1 from [TZ01]). The expected size of the set A returned by Algorithm 3
is at most 2np log n. For every w ∈ V we then have |CA(w)| ≤ 4/p.

Thorup and Zwick claimed that the expected running time of Algorithm 3 is O(mnp log n).
They did not provide the details and refer the reader to [TZ05]. However, an educated guess is
that they compute clusters for the vertices currently in W in each iteration of the while loop, which
results in the claimed running time.

The starting point of the Diameter and Eccentricities algorithms presented in this section is an
O(n/p2 log n) expected time implementation of Algorithm 3.

31

The first idea behind our implementation is that, as opposed to what Thorup and Zwick did,
we will compute the bunches and use them to compute the clusters and the set W . This can be
done as follows. Once we have computed BA(v) for every v ∈ V , we can scan BA(v), and for every
w ∈ BA(v) we can add v to CA(w). The cost of this process is O(| ∪v∈V BA(v)|) and since the
clusters are by definition the inverse of the bunches, at the end of this process we have CA(w) and
|CA(w)|, for every w ∈ V and we can compute W (as needed in Algorithm 3).

However, in the current implementation only the expected size of a bunch is bounded, and
since the Thorup-Zwick bound on the number of iterations is O(log n) in expectation as well, we
cannot apply this idea directly to deduce a good expected running time. To this end, more ideas
are needed.

The following simple observation helps us to achieve our goal.

Observation 29. Let Ai be the set A after updating it in the beginning of the i-th iteration of the
while loop in Algorithm 3. Let A∗ be a set such that A∗ ⊆ Ai, for every i ≥ 1. For every v ∈ V it
holds that BAi(v) ⊆ BA∗(v).

It follows from this observation that we only need to pick the first set A1 such that |BA1(v)| ≤
O(1/p) for every v ∈ V .

It is folklore that the s closest verticesNs(v) to a vertex v can be computed inO(s2) time [DHZ00].
This implies that we can compute N1/p(v) for every v ∈ V in O(n/p2) time. It is not hard to see
that, given the sets N1/p(v) of all v ∈ V , one can (deterministically) compute a “hitting” set A of
size O(np log n) in O(n+ n/p) worst case time, so that N1/p(v) ∩A 6= ∅ for every v ∈ V (a greedy
algorithm works; e.g. see [TZ05]).

The second idea behind our implementation is that we first compute the sets N1/p(v) for every
v ∈ V and the hitting set A, as described above. Then, using these sets, we initialize Algorithm 3
with a set A such that |BA(v)| = O(1/p), for every v ∈ V .

In more detail, our algorithm works as follows. For every v ∈ V it computes the set N1/p(v)
in O(n/p2) time. Then it finds a set A such that N1/p(v) ∩ A 6= ∅ for every v ∈ V . Given the
hitting set A, it computes d(v,A) and pA(v) for every v ∈ V . Using d(v, pA(v)) and N1/p(v) it
computes for every v ∈ V the bunch BA(v). Finally, it computes the clusters and W using the
bunches as we described above. The rest of the algorithm is almost identical to Algorithm 3. The
only difference is that we compute the bunches and use them to compute the clusters and the set
W . The pseudo-code is given in Algorithm 4.

We show:

Lemma 30. Algorithm 4 computes in O(n/p2 log n) expected time a set A of expected size O((n/p)·
log n) that guarantees for every vertex w ∈ V \A that |CA(w)| = O(1/p), and for every v ∈ V that
|BA(v)| = O(1/p).

Proof. The cost of computing N1/p(v) for every v ∈ V is O(n(1/p)2) [DHZ00]. The cost of com-
puting A is O(n/p) time [TZ05]. Computing d(v,A) and pA(v) for every v ∈ V in O(m) time
is straightforward by running shortest paths tree computation from a dummy vertex that is con-
nected to the set A. To compute BA(v) using N1/p(v) we only scan N1/p(v), thus, the total cost is
O(n(1/p)). As we explained earlier the cost of computing clusters using bunches is O(|∪v∈V BA(v)|).
Since for every v ∈ V we have BA(v) ⊆ N1/p(v) the total cost is O(n(1/p)).

This completes the analysis of the part that precedes the while loop. Next, we analyze the cost
of the while loop.

32

Algorithm 4 New implementation of Thorup and Zwick center algorithm

1: procedure center(G, p)
2: compute N1/p(v) for every v ∈ V .
3: A = hitting set of the sets N1/p(v), where v ∈ V .
4: compute d(v,A) and pA(v) for every v ∈ V .
5: compute BA(v) using N1/p(v) and d(v, pA(v)).
6: for every u ∈ V do
7: compute CA(u) using BA(·)
8: W = {w ∈ V | |CA(w)| > 4/p}
9: while W 6= ∅ do

10: X - random sample of nodes from W , |X| = np
11: A = A ∪X
12: for every v ∈ V do
13: compute BA(v)

14: for every u ∈ V do
15: compute CA(u) using BA(·)
16: W = {w ∈ V | |CA(w)| > 4/p}
17: return A

Let A∗ be the set A that was computed before the while loop and let Ai be the set A after
updating it in the beginning of the i-th iteration of the while loop. From Observation 29 it follows
that BAi(v) ⊆ BA∗(v) and therefore in every iteration the cost of computing bunches from scratch
is at most O(n(1/p)2) as |BA∗(v)| = O(1/p), for every v ∈ V . One can also compute BAi+1(v) from
BAi(v) by first computing d(v,Ai+1) and if d(v,Ai+1) < d(v,Ai) to prune BAi+1(v) accordingly at
a smaller cost of O(n(1/p) +m), however this does not affect the overall complexity.

Thorup and Zwick [TZ01] proved that the expected number of iterations is O(log n). The fact
that the set A from which we start is different does not affect their proof6, therefore there are only
O(log n) iterations in expectation. This implies that a set A of expected size (np log n) is returned
in O(n/p2 log n) expected time. The algorithm stops only when there are no large clusters, thus
the bound on the cluster size follows. As we mentioned above the algorithm starts with bunches
that satisfy the required bound and their size can only decrease afterwards, thus the bound on the
bunches follows.

�

We can now turn to describe the new Diameter algorithm. The algorithm works as follows. All
entries of an n × n matrix M are set to n. A set A of centers is computed using the algorithm of
Thorup and Zwick [TZ01]. For every vertex w ∈ V and every pair 〈u, v〉 ∈ CA(w) × CA(w) the
algorithm sets M(u, v) to min(M(u, v), d(u,w) + d(v, w)) (Step 1). Next, the algorithm searches
the matrix M for entries whose value is still n. Given a pair 〈u, v〉 ∈ V × V for which M(u, v) = n
the algorithm sets M(u, v) to d(u,A) + d(v,A) − 1 (Step 2). Finally, the algorithm computes an
additive 2 spanner H of the input graph G and for every u ∈ A it computes εH(u), the Eccentricity

6They prove that in each iteration with probability 1/2 the size of W decreases by a factor of 2. For this argument
they only require that the set A in each iteration will be chosen from W uniformly at random with probability p as
we do.

33

Algorithm 5 almost 3/2-Approximation for Diameter

1: procedure 3/2-Approx-Diam(G)
2: M - n× n matrix whose entries are set to n
3: A = CENTER(G, 1/

√
n)

4: for every w ∈ V do . Step 1
5: for every 〈u, v〉 ∈ CA(w)× CA(w), s.t. u 6= v do
6: M(u, v) = min(M(u, v), d(u,w) + d(v, w))

7: for every 〈u, v〉 ∈ V × V , s.t. M(u, v) = n do . Step 2
8: M(u, v) = d(u,A) + d(v,A)− 1

9: H - an additive 2 spanner of G . Step 3
10: for every u ∈ A do
11: compute shortest paths tree for u in H and set εH(u), the Eccentricity of u in H

12: D1 = max〈u,v〉∈V×V M(u, v)
13: D2 = maxu∈A εH(u)
14: D̂ = max(D1, D2 − 2)
15: return D̂

of u in H (Step 3). The algorithm outputs the maximum between D1 and D2 − 2, where D1 is
max〈u,v〉∈V×V M(u, v) and D2 is maxu∈A εH(u).

Next, we bound the value returned by Algorithm 5.

Theorem 31. Let D = 3h+ z, where z ∈ [0, 1, 2]. The value D̂ returned by Algorithm 5 satisfies:

2h− 1 if z ∈ [0, 1]
2h if z = 2

≤ D̂ ≤ D

Proof. We start with the following Lemma:

Lemma 32. Let u, v ∈ V and let P (u, v) be a shortest path between u and v. If BA(u)∩BA(v) 6= ∅
then (BA(u) ∩BA(v)) ∩ P (u, v) 6= ∅.

Proof. If v ∈ BA(u) then the claim trivially holds so we can assume that v /∈ BA(u). Let w be the
vertex farthest from u that is in BA(u)∩P (u, v). From the definition of w it follows that d(u,w) =
d(u,A) − 1. Assume, towards a contradiction, that (BA(u) ∩ BA(v)) ∩ P (u, v) = ∅. This implies
that w /∈ BA(v) and d(v,A) − 1 < d(v, w) = d(u, v) − d(u,w). However, since BA(u) ∩ BA(v) 6= ∅
there is a vertex w′ such that d(u,w′) ≤ d(u,w) and d(v, w′) ≤ d(v,A)−1 < d(u, v)−d(u,w). This
implies that d(u,w′) + d(v, w′) < d(u, v), a contradiction to the triangle inequality. �

Lemma 33. Let u, v ∈ V . If BA(u) ∩BA(v) = ∅ then d(u,A) + d(v,A)− 1 ≤ d(u, v).

Proof. Notice first that BA(u) (resp., BA(v)) contains all the vertices at distance d(u,A)−1 (resp.,
d(v,A)− 1). Let P (u, v) be a shortest path between u and v. Let w be the vertex farthest from u
on P (u, v) that is also in BA(u). Similarly, let w′ be the vertex farthest from v on P (u, v) that is
also in BA(v). Since BA(u) ∩BA(v) = ∅ it holds that w 6= w′. Therefore:

d(u, v) = d(u,A)− 1 + d(v,A)− 1 + d(w,w′) ≥ d(u,A) + d(v,A)− 1.

�

34

Let a and b be the Diameter endpoints, that is d(a, b) = D = 3h + z, where z ∈ [0, 1, 2]. Let
P (a, b) be a shortest path between a and b.

Assume first that BA(a)∩BA(b) 6= ∅. It follows from Lemma 32 that there is a vertex w ∈ P (a, b)
such that 〈a, b〉 ∈ C(w)×C(w). Therefore, M(a, b) = D after Step 1. After the update in Step 2 it
follows from Lemma 33 that M(u, v) ≤ d(u, v) for every u, v ∈ V . Therefore, the maximum value
in the matrix is d(a, b) and D1 = D. Let x = arg maxy∈A εH(y). Since H is an additive 2 spanner
it holds that εH(x) ≤ D + 2, hence, we have D2 ≤ D and the algorithm returns the exact value of
the Diameter.

Assume now that BA(a) ∩ BA(b) = ∅. From the discussion of the previous case it follows
that in this case D̂ ≤ D as well. Thus, it is only left to prove the lower bound. Assume that
z ∈ [0, 1]. Consider first the case that d(a,A) ≥ h and d(b, A) ≥ h then from Lemma 33 it follows
that M(a, b) ≥ 2h − 1 after Step 2 and D1 is at least 2h − 1. If this is not the case then either
d(a,A) < h or d(b, A) < h (or both). Assume, wlog, that d(a,A) < h. In this case the Eccentricity
in H of at least one vertex from A is at least 2h+ 1 and hence D2 − 2 is at least 2h− 1.

Assume now that z = 2. If either d(a,A) ≥ h and d(b, A) > h or d(a,A) > h and d(b, A) ≥ h
then from Lemma 33 it follows that M(a, b) ≥ 2h after Step 2 and D1 is at least 2h. If this is not
the case then either d(a,A) ≤ h or d(b, A) ≤ h (or both). Assume, wlog, that d(a,A) ≤ h. In this
case the Eccentricity in H of at least one vertex from A is at least 2h + 2 and hence D2 − 2 is at
least 2h.

�

We now turn to we analyze the running time of Algorithm 5.

Theorem 34. The expected running time of Algorithm 5 is O(n2 log n).

Proof. The set A is computed by the center algorithm presented in Algorithm 4 with p = 1/
√
n.

From Lemma 30 it follows that the size of the set A is O(
√
n log n) and its construction time is

O(n2 log n) in expectation. For every w ∈ V the size of CA(w) is O(
√
n). Therefore, Step 1 takes

O(n×|CA(w)|2) = O(n2). Step 2 takes O(n2) time as well. In Step 3 we first compute an additive 2
spanner H on O(n1.5) edges. Knudsen [Knu17], following Dor, Halperin and Zwick [DHZ00] showed
how to do this in O(n2) time. We also compute |A| shortest paths trees in H. As H has O(n1.5)
edges, this step takes O(n2 log n) time. �

7.4 Near linear almost 5/3-approximation for Eccentricities

Algorithm 6 almost 5/3-Approximation for all Eccentricities

1: procedure 5/3-Approx-Ecc(G)
2: Run lines 2-11 of Algorithm 5, with H augmented with shortest paths trees for BA(u) ∪
{p(u)} for every u ∈ V

3: for every u ∈ V do
4: ε1(u) = maxv∈V M(u, v)
5: ε2(u) = εH(p(u))− d(u, p(u))− 2
6: ε3(u) = dH(u, y)− 2, where y = arg maxx∈A dH(u, x)
7: ε′(u) = max(ε1(u), ε2(u), ε3(u))

35

Next, we show how to update Algorithm 5 to obtain an almost 5/3 approximation for all
Eccentricities. We run lines 2-11 of Algorithm 5. The only difference is that H is augmented with
the edges of the shortest paths tree that span the set BA(u)∪{p(u)} for every u ∈ V . Then, for every
u ∈ V we compute ε1(u), ε2(u) and ε3(u), which are defined as follows: ε1(u) = maxv∈V M(u, v),
ε2(u) = εH(p(u)) − d(u, p(u)) − 2 and ε3(u) = dH(u, y) − 2, where y = arg maxx∈A dH(u, x). The
algorithm sets ε′(u) to max{ε1(u), ε2(u), ε3(u)} for every u ∈ V as an estimation to ε(u). The
pseudo-code is given in Algorithm 6.

We now prove:

Theorem 35. For every u ∈ V , Algorithm 6 computes in O(n2 log n) expected time a value ε′(u)

that satisfies: 3ε(u)
5 − 1 ≤ ε′(u) ≤ ε(u).

Proof. We start by analyzing the running time. Lines 2-11 of the algorithm are the same as
Algorithm 5, with one difference, the spanner H is augmented with the edges of the shortest paths
tree that span the set BA(u) ∪ {p(u)} for every u ∈ V . This adds at most O(n1.5) edges to H and
hence the cost of these lines remain O(n2 log n) time in expectation. The computation of ε1(u),
ε2(u) and ε3(u) for every u ∈ V costs O(n2) time in total.

Let u ∈ V be an arbitrary vertex and let ε(u) = d(u, t). We now turn to bound ε′(u).
In our analysis we will use the following simple observation:

Observation 36. In an undirected graph it holds for every u, v ∈ V that ε(u) ≥ ε(v)− d(u, v).

It is straightforward to see that both ε2(u) and ε3(u) are at most ε(u). Recall that ε2(u) =
εH(p(u))− d(u, p(u))− 2 ≤ ε(p(u))− d(u, p(u) ≤ ε(u) and ε3(u) = dH(u, y)− 2 ≤ d(u, y) ≤ ε(u).

We distinguish between two cases.
Case 1: BA(u)∩BA(t) 6= ∅. It follows from Lemma 32 that P (u, t)∩ (BA(u)∩BA(t)) 6= ∅ and

M(u, t) = ε(u). From Lemma 33 it follows that M(u,w) ≤ d(u,w) for every w ∈ V after Step 2.
Therefore, ε1(u) = ε(u). Since ε2(u) ≤ ε(u) and ε3(u) ≤ ε(u) we get that ε′(u) = ε(u).

Case 2: BA(u) ∩ BA(t) = ∅. Consider first the case that d(u, p(u)) ≤ ε(u)
5 − 1. From Ob-

servation 36 we get that εH(p(u)) ≥ εH(u) − dH(u, p(u)). As we augmented H with a shortest
paths tree that spans BA(u) ∪ {p(u)} we have d(u, p(u)) = dH(u, p(u)) and we get εH(p(u)) ≥
εH(u)−d(u, p(u)). Hence, we get that ε2(u) = εH(p(u))−d(u, p(u))−2 ≥ εH(u)−2d(u, p(u))−2 ≥
ε(u)− 2d(u, p(u))− 2. As before we have ε2(u) ≤ ε(u). Using d(u, p(u)) ≤ ε(u)

5 − 1 we get that:

ε2(u) ≥ ε(u)− 2ε(u)

5
≥ 3ε(u)

5
.

Assume now that d(u, p(u)) ≥ ε(u)
5 . This means that d(u,A)− 1 ≥ ε(u)

5 − 1.
Let S be the set of all vertices v ∈ V such that BA(u) ∩ BA(v) = ∅, that is, S = V \

∪w∈BA(u)CA(w). Let t′ = arg maxx∈S d(x,A)− 1. If d(t′, A)− 1 ≥ 2ε(u)
5 − 1 we get from Lemma 33

that M(u, t′) ≥ 3ε(u)
5 − 1. Assume now that d(t′, A) < 2ε(u)

5 . As t′ is the farthest vertex from A we

get that d(t, p(t)) < 2ε(u)
5 and d(u, p(t)) > 3ε(u)

5 . Therefore, ε3(u) = dH(u, y)− 2 ≥ d(u, p(t))− 2 ≥
3ε(u)

5 − 1.
From Lemma 32 and Lemma 33 it follows that ε1(u) ≤ ε(u) and the bound follows.

�

36

7.5 Algorithms for dense graphs using matrix multiplication

Here we will give O(n2.05) time approximation algorithms for Diameter and Eccentricities in dense
unweighted undirected graphs. The approximation guarantees of these algorithms are slightly
better than those in our O(n2 log n) time algorithm. In fact, the guarantees are exactly the same as
in the Õ(m

√
n) time algorithms for Diameter and Eccentricities of Roditty and V. Williams [RV13]

and Cairo et al. [CGR16].
To achieve this, we give an efficient implementation using fast matrix multiplication of the

Õ(m
√
n) time algorithms of [CGR16] and [RV13].

The main overhead of the Õ(m
√
n) time algorithms [CGR16, RV13] is in computing the dis-

tances from a set S = W ∪ {w} ∪ T of O(
√
n log n) nodes: the set S itself can be computed in

linear time using random sampling to form a set W , BFS from a dummy node to find the node
w farthest from W and then BFS from w to find the set T of closest

√
n nodes to w. After one

knows all distances from every s ∈ S to every v ∈ V , it takes linear time to output the Diameter
and Eccentricity estimates.

The main idea of our algorithms is as follows. If the Diameter is of size ≤ O(log n), then one
does not need all distances between S and V , but only those that are O(log n). Small distances
are easy to compute with matrix multiplication. Let A be the adjacency matrix and AS be its
submatrix formed by just the rows in S. Then we can find the distances for all pairs in S × V at
distance ≤ t by computing AS×At−1, which can be computed by performing t−1 matrix products
of dimension |S| ×n by n×n, and this can be accomplished in O(tn2.05) time [GU17, Le 12]. If on
the other hand the Diameter is D ≥ 100 log n, then one can use an Õ(n2) time algorithm by Dor et
al. [DHZ00] to compute estimates of all pairwise distances with an additive error at most 4 log n.
The maximum distance estimate computed, minus 4 log n, will be between 0.96D and D, giving a
really good approximation already. A similar argument works for Eccentricities, and also for S-T
Diameter.

Below we recap the guarentees of the Õ(m
√
n) time approximation algorithms of [CGR16,

RV13].

Theorem 37 ([CGR16, RV13]). The following can be computed in Õ(m
√
n) time:

1. an estimate D̂ of the graph Diameter D, such that 2
3D − 1

3 ≤ D̂ ≤ D,

2. for every node v, an estimate e(v) of its Eccentricity ε(v), such that 3
5ε(v)− 1

5 ≤ e(v) ≤ ε(v).

Using Seidel’s algorithm [Sei95] we can compute all the distances exactly, and hence the above
parameters as well, all in O(nω) time for ω < 2.373. We will show that for dense graphs, we can
obtain the same approximation guarantees as in Theorem 37, in time O(n2.05).

Let us compare to our O(n2 log n) time algorithms. For Diameter D = 3h+ z, the O(n2 log n)
time algorithm returns an estimate 2h− 1 when z = 0, 1 and 2h when z = 2. The estimate D̂ here
is ≥ (2D − 1)/3 = 2h+ (2z − 1)/3, which is ≥ 2h when z = 0 and ≥ 2h+ 1 when z = 1, 2.

For Eccentricities, the O(n2 log n) time algorithm returns estimates e(v) ≥ 3ε(v)/5 − 1, and
here we return a better estimate e(v) ≥ (3ε− 1)/5.

We will rely on two known algorithms. The first is from a paper by Dor, Halperin and
Zwick [DHZ00] on additive approximations of All-Pairs Shortest Paths (APSP). Among many
other results, [DHZ00] show that in Õ(n2) time, one can compute for all pairs of vertices u, v, an
estimate d′(u, v) of their distance d(u, v) so that d(u, v) ≤ d′(u, v) ≤ d(u, v) + a log n for an explicit
constant a ≤ 4.

37

The second is an algorithm for the following truncated multi-source shortest paths problem:
given an integer Q, a graph G = (V,E) and a set S, compute the distances d(s, v) for every s ∈ S
and v ∈ V for which d(s, v) ≤ Q.

The algorithm uses fast matrix multiplication and is quite straightforward. Let A be the n× n
Boolean matrix with rows and columns indexed by V , so that A[u, v] = 1 if there is an edge between
u and v or u = v, and A[u, v] = 0 otherwise; i.e. A is the adjacency matrix added to the identity
matrix. Let AS be the |S|×n submatrix of A consisting of the rows indexed by nodes of S. For an
integer i ≥ 1, let Ai be the i-th power of A under the Boolean matrix product. Here, Ai[u, v] = 1 if
and only if the distance between u and v is at most i. Define A0 as the identity matrix. Consider
AS ·Ai for any choice of i ≥ 0 (under the Boolean matrix product). Here, (AS ·Ai)[s, v] = 1 if and
only if the distance between s and v is at most i+ 1. Thus, if we compute Di := AS ·Ai for every
1 ≤ i < Q, we would know the distance from every s ∈ S to every v ∈ V , whenever this distance is
at most Q. Computing these matrix products can easily be done by performing the following Q−1
Boolean products of an |S| × n matrix by an n× n matrix: let D0 = AS ; then for each i from 1 to
t− 1, compute Di := Di−1 ·A. Thus, the running time is O(Q ·M(|S|, n, n)) where M(|S|, n, n) is
the runtime of multiplying an |S| × n matrix by an n× n matrix.

Armed with these two algorithms, let us recap Roditty et al.’s (and Cairo et al.’s) approxima-
tion algorithm and see how to modify it. The algorithm proceeds as follows: Let D, R and ε(v)
denote the Diameter and Radius of G and the Eccentricity of node v, respectively.

Algorithm 7 RV/CGR Algorithm

1: Using BFS (see [RV13] and [CGR16]), in O(m + n) time compute W,w, T , where W ⊆ V is
a uniformly chosen subset of size O(

√
n log n), w is the furthest node from W and T are the

closest
√
n nodes to w. Let S = {w} ∪W ∪ T .

2: For every s ∈ S and every v ∈ V , compute the distance d(s, v) between s and v; set ε(s) =
maxv d(s, v).

3: Set D̃ = maxx∈S ε(x).
4: Set for every v ∈ V , ε̃(v) = max{d(w, v),maxx∈W d(x, v),maxx∈T (ε(x)− d(x, v))}.

The runtime bottleneck in the above algorithm is step (2) which runs in Õ(mn1/2) time if one
uses BFS through each node of S. Let us describe how to modify the algorithm. We will replace
(2) with a truncated distance computation and also use the algorithm of Dor, Halperin and Zwick
to handle large distances that we might have ignored in the truncated computation.

Consider our modified algorithm, FasterApproximation. Now we will prove several claims.

Claim 38. The running time of algorithm FasterApproximation is Õ(M(
√
n, n, n)).

Proof. The Dor, Halperin, Zwick part of the algorithm (Step 3) runs in Õ(n2) time. Step 8 runs
in O((X + a log n) ·M(|S|, n, n)) time where S = {w} ∪ W ∪ T , using the iterated rectangular
matrix product algorithm. Recall that X+a log n = O(log n). Thus Step 8 runs in Õ(M(|S|, n, n))
time. Since |S| = Õ(

√
n) and we can partition an |S| × n × n matrix product into polylog n,

n1/2 × n × n matrix products, the runtime of the step is Õ(M(n1/(2), n, n)). Steps 10 and 13 run
in O(n|S|) < Õ(n2) time. The rest of the steps run in linear time. Since M(n1/2, n, n) ≥ n2 (one
must at least read the input), the total running time is Õ(M(n1/2, n, n)). �

38

Algorithm 8 Our Modified Approximation.

1: procedure FasterApproximation
2: First part: Handle Large Distances:
3: Use Dor, Halperin and Zwick’s algorithm to compute distance estimates d′(·, ·) so that for

every u, v ∈ V , d(u, v) ≤ d′(u, v) ≤ d(u, v) + a log n. Let X = 3a log n.

4: Set D̃1 = maxu,v∈V d
′(u, v)− a log n.

5: For every v ∈ V , set ε̃1(v) = maxu d
′(u, v)− a log n.

6: Second Part: Handle Small Distances:
7: Using BFS (see [RV13] and [CGR16]), in O(m + n) time compute W,w, T , where W ⊆ V

is a uniformly chosen subset of size O(
√
n log n), w is the furthest node from W and T are

the closest
√
n nodes to w. Let S = {w} ∪W ∪ T .

8: Let Q = 2(X + a log n) = 8a log n. For every s ∈ S and every v ∈ V whose distance d(s, v)
is at most Q, compute d(s, v). Let d≤(s, v) denote d(s, v) if we have computed it, and ∞
otherwise. Set ε≤(s) = maxv d≤(s, v).

9: Set D̃2 = maxx∈S ε≤(x).
10: ∀v ∈ V , set ε̃2(v) = max{d≤(w, v),maxx∈W d≤(x, v),maxy∈T (ε≤(y)− d≤(y, v))}.
11: Third Part: Set D̃, ε̃(·):
12: If D̃1 ≥ X, set D̃ = D̃1, and otherwise set D̃ = D̃2.
13: For every v ∈ V , if there exists some x ∈ S such that d′(x, v) ≥ X + a log n, then set

ε̃(v) = ε̃1(v), and otherwise ε̃(v) = ε̃2(v).

Claim 39. 2D−1
3 ≤ D̃ ≤ D.

Proof. Suppose that D̃1 ≥ X. The algorithm returns D̃ = D̃1 = maxu,v d
′(u, v) − a log n. By

the guarantee on d′, we have D − a log n ≤ D̃1 ≤ D. Hence D̃ ≥ D(1 − (a log n)/D) ≥ D(1 −
(a log n)/X) = 2D/3 ≥ (2D − 1)/3.

Suppose now that D̃1 < X. This means that D < X + a log n and every distance in the graph
is ≤ X + a log n. In the second part of the algorithm we set Q = 2(X + a log n), and hence every
distance is computed exactly: for every s ∈ S, v ∈ V , d≤(s, v) = d(s, v). Hence the second part of
the algorithm will be identical to the RV/CGR algorithm and hence we get the same guarantees:
(2D − 1)/3 ≤ D̃ ≤ D. �

Claim 40. For every node v, 3ε(v)−1
5 ε(v) ≤ ε̃(v) ≤ ε(v).

Proof. Fix v. Suppose first that there exists some x such that d′(x, v) ≥ X + a log n. Then
ε(v) ≥ ε̃1(v) = maxu d

′(u, v) − a log n ≥ ε(v) − a log n = ε(v)(1 − a log n/ε(v)). Since ε(v) ≥
d(x, v) ≥ d′(x, v)− a log n ≥ X, we get that ε̃1(v) ≥ ε(v)(1− a log n/X) = 2ε(v)/3.

Now suppose that for all x ∈ V , d′(x, v) < X + a log n. Then, also for all x ∈ V , d(x, v) <
X + a log n and ε(v) < X + a log n. Consider all the quantities needed in the second part of the
algorithm to compute ε̃2(v):

• d≤(w, v): since ∀x ∈ V , d(x, v) < X + a log n, d≤(wi, v) = d(wi, v) for each wi;

• d≤(x, v) for every x ∈W : as above, d≤(x, v) = d(x, v);

39

• ε≤(x)− d≤(x, v) for all x ∈ T : here, ε(x) ≤ ε(v) + d(x, v) ≤ 2ε(v) < 2(X + a log n). Since we
compute all distances from nodes in S up to 2(X + a log n) and x ∈ S, ε≤(x) = ε(x). Also as
in the above bullets, d≤(x, v) = d(x, v).

Thus all the quantities needed are the correct ones and ε̃(v) = ε̃2(v) inherits the same guarantees
as in the algorithm by Cairo et al. �

From Le Gall and Urrutia [GU17] (see also, [Le 12]) we obtain that M(
√
n, n, n) ≤ O(n2.044183).

We obtain:

Theorem 41. In O(n2.045) time, one can obtain an almost 3/2-approximation D̃ to the Diameter
D and almost 5/3-approximations e(v) to all Eccentricities ε(v):

1. 2D−1
3 ≤ D̃ ≤ D.

2. For every node v, 3ε(v)−1
5 ≤ ε̃(v) ≤ ε(v).

Finally we note that our approach also works to speed up our almost 2-approximation algorithm
for S-T Diameter as well, giving an O(n2.045) time almost-2 approximation algorithm. The main
reason is that, like in the Diameter approximation algorithm, if the S-T Diameter is very large
(say DS,T > 100a log n), then the +a log n APSP algorithm with a log n subtracted will return
an estimate that is at least DS,T − a log n > 0.99DS,T . On the other hand, our S-T Diameter
approximation algorithm only needs to know the distances up to DS,T to compute an estimate
of DS,T , and so if DS,T ≤ 100a log n, then we only need to compute O(log n) matrix products of
dimension O(

√
n log n)× n× n again.

References

[AB16] A. Abboud and G. Bodwin. The 4/3 additive spanner exponent is tight. In STOC,
pages 351–361, 2016.

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181,
1999.

[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of
weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.

[AG11] I. Abraham and C. Gavoille. On approximate distance labels and routing schemes with
affine stretch. In DISC, pages 404–415, 2011.

[AG13] Rachit Agarwal and Philip Brighten Godfrey. Brief announcement: a simple stretch 2
distance oracle. In ACM Symposium on Principles of Distributed Computing, PODC
’13, Montreal, QC, Canada, July 22-24, 2013, pages 110–112, 2013.

[AGM97] Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest
path problem. J. Comput. Syst. Sci., 54(2):255–262, 1997.

40

[AVW16] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation
and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 377–391,
2016.

[AWY15] Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the
polynomial method to algorithm design. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 218–230, 2015.

[BCH+15] Michele Borassi, Pierluigi Crescenzi, Michel Habib, Walter A Kosters, Andrea Marino,
and Frank W Takes. Fast diameter and radius bfs-based computation in (weakly
connected) real-world graphs: With an application to the six degrees of separation
games. Theoretical Computer Science, 586:59–80, 2015.

[BGSU08] Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. Distance oracles
for unweighted graphs: Breaking the quadratic barrier with constant additive error.
In Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms,
Automata, Complexity, and Games, pages 609–621, 2008.

[BK10] S. Baswana and T. Kavitha. Faster algorithms for all-pairs approximate shortest paths
in undirected graphs. SIAM J. Comput., 39(7):2865–2896, 2010.

[BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive
spanners and (alpha, beta)-spanners. ACM Trans. Algorithms, 7(1):5:1–5:26, 2010.

[BS06] Surender Baswana and Sandeep Sen. Approximate distance oracles for unweighted

graphs in expected O(n2) time. ACM Trans. Algorithms, 2(4):557–577, 2006.

[BS07] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Struct. Algorithms, 30(4):532–
563, 2007.

[CGR16] Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New bounds for approximating
extremal distances in undirected graphs. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 363–376, 2016.

[CGS15] Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic applications
of baur-strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM,
62(4):28:1–28:30, September 2015.

[Cha12] Timothy M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn)
time. ACM Trans. Algorithms, 8(4):34:1–34:17, 2012.

[Che13] S. Chechik. New additive spanners. In SODA, pages 498–512, 2013.

41

[Che15] Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 1–10, 2015.

[Chu87] F.R.K Chung. Diameters of graphs: Old problems and new results. Congressus Nu-
merantium, 60:295–317, 1987.

[CLR+14] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre
Tarjan, and Virginia Vassilevska Williams. Better approximation algorithms for the
graph diameter. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
1041–1052, 2014.

[CW16] Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and
more: Quickly derandomizing razborov-smolensky. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 1246–1255, 2016.

[CZ01] E. Cohen and U. Zwick. All-pairs small-stretch paths. J. Algorithms, 38(2):335–353,
2001.

[DHZ00] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29(5):1740–1759, 2000.

[EP04] Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general
graphs. SIAM J. Comput., 33(3):608–631, 2004.

[GU17] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication
using powers of the coppersmith-winograd tensor. CoRR, abs/1708.05622, 2017.

[Hir98] E. A. Hirsch. Two new upper bounds for SAT. In Proc. SODA, pages 521–530, 1998.

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[KI92] Naoki Katoh and Kazuo Iwano. Finding k farthest pairs and k closest/farthest bichro-
matic pairs for points in the plane. In Proceedings of the Eighth Annual Symposium on
Computational Geometry, SCG ’92, pages 320–329, 1992.

[Knu17] Mathias Bæk Tejs Knudsen. Additive spanners and distance oracles in quadratic time.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, pages 64:1–64:12, 2017.

[Le 12] François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 514–523, 2012.

[Le 14] François Le Gall. Powers of tensors and fast matrix multiplication. In International
Symposium on Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July
23-25, 2014, pages 296–303, 2014.

42

[LWCW16] T. C. Lin, M. J. Wu, W. J. Chen, and B. Y. Wu. Computing the diameters of huge
social networks. In 2016 International Computer Symposium (ICS), pages 6–11, 2016.

[LWW18] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. SODA, 2018. to appear.

[Pet04] S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor.
Comput. Sci., 312(1):47–74, 2004.

[PPSZ05] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm
for k-SAT. J. ACM, 52(3):337–364, 2005.

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398–1431, 2005.

[PR10] M. Pǎtraşcu and L. Roditty. Distance oracles beyond the thorup–zwick bound. In
Proc. FOCS, pages 815–823, 2010.

[PRT12a] Mihai Patrascu, Liam Roditty, and Mikkel Thorup. A new infinity of distance oracles
for sparse graphs. In FOCS, 2012.

[PRT12b] David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for network diameter
and girth. In Automata, Languages, and Programming: 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 660–672,
2012.

[RV13] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for
the diameter and radius of sparse graphs. In Proceedings of the 45th annual ACM
symposium on Symposium on theory of computing, STOC ’13, pages 515–524, New
York, NY, USA, 2013. ACM.

[Sch99] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In Proc. FOCS, pages 410–414, 1999.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
JCSS, 51:400–403, 1995.

[Som16] Christian Sommer. All-Pairs Approximate Shortest Paths and Distance Oracle Prepro-
cessing. In 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 55:1–55:13, 2016.

[Sto10] A. Stothers. On the complexity of matrix multiplication. Ph.D. Thesis, U. Edinburgh,
2010.

[SZ99] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with integer
weights. In Proc. FOCS, pages 605–614, 1999.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA, pages 1–10, 2001.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 2005.

43

[Vas15] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In 10th Inter-
national Symposium on Parameterized and Exact Computation, IPEC 2015, September
16-18, 2015, Patras, Greece, pages 17–29, 2015.

[VW10] V. Vassilevska Williams and R. Williams. Subcubic equivalences between path, matrix
and triangle problems. In Proc. FOCS, pages 645–654, 2010.

[Wil05] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2–3):357–365, 2005.

[Wil12] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 887–898. ACM, 2012.

[Wil14] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 664–673, 2014.

[Woo06] D. P. Woodruff. Lower bounds for additive spanners, emulators, and more. In Pro-
ceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’06, pages 389–398, 2006.

[Zwi02] U. Zwick. All pairs shortest paths using bridging sets and rectangular matrix multipli-
cation. J. ACM, 49(3):289–317, 2002.

44

