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Abstract. We study the power of a tournament organizer in manipu-
lating the outcome of a balanced single-elimination tournament by fixing
the initial seeding. This problem is known as agenda control for balanced
voting trees. It is not known whether there is a polynomial time algorithm
that computes a seeding for which a given player can win the tourna-
ment, even if the match outcomes for all pairwise player match-ups are
known in advance. We approach the problem by giving a sufficient condi-
tion under which the organizer can always efficiently find a tournament
seeding for which the given player will win the tournament. We then use
this result to show that for most match outcomes generated by a nat-
ural random model attributed to Condorcet, the tournament organizer
can very efficiently make a large constant fraction of the players win, by
manipulating the initial seeding.

Introduction

The study of election manipulation is an integral part of social choice theory.
Results such as the Gibbard-Satterthwaite theorem [8, 13] show that all voting
protocols that meet certain rationality criteria are manipulable. The seminal
work of Bartholdi, Tovey and Trick [1, 2] proposes to judge the quality of voting
systems using computational complexity: a protocol may be manipulable, but it
may still be good if manipulation is computationally expensive. This idea is at
the heart of computational social choice.

The particular type of election manipulation that we study in this paper is
called agenda control and was introduced in [2]: there is an election organizer who
has power over some part of the protocol, say the order in which candidates are
considered. The organizer would like to exploit this power to fix the outcome of
the election by making their favorite candidate win. [2] focused on plurality and
Condorcet voting, agenda control by adding, deleting, or partitioning candidates
or voters. We study the balanced binary cup voting rule, also called balanced
voting tree, or a balanced single-elimination (SE) tournament: the number of
candidates is a power of 2 and at each stage the remaining candidates are paired
up and their votes are compared. The losers are eliminated and the winners move



on to the next round until only one candidate remains. The power of the election
organizer is to pick the pairing of the players in each round. We assume that the
organizer knows all the votes in advance, i.e. for any two candidates, they know
which candidate is preferred. In this case, picking the pairings for each round is
equivalent to picking the initial tournament seeding.

Single-elimination is prevalent in sports tournaments such as Wimbledon or
March Madness. In this setting, a tournament organizer may have some informa-
tion, say from prior matches or betting experts, about the winner in any possible
match. The organizer creates a seeding of the players through which they are
distributed in the tournament bracket. The question is, can the tournament
organizer abuse this power to determine the winner of the tournament?

There is significant prior work on this problem. Lang et al. [10] showed that if
the tournament organizer only has probabilistic information about each match,
then the agenda control problem is NP-hard. Vu et al [17, 18] showed that the
problem is NP-hard even when the probabilities are in {0, 1, 1/2} and that it
is NP-hard to obtain a tournament bracket that approximates the maximum
probability that a given player wins within any constant factor. Vassilevska
Williams [16] showed that the agenda control problem is NP-hard even when
the information is deterministic but some match-ups are disallowed. [16] also
gave conditions under which the organizer can always make their favorite player
win the tournament with advance knowledge of each match outcome. It is still an
open problem whether the agenda control problem in this deterministic setting
can be solved in polynomial time.

The binary cup is a complete binary voting tree. Other related work has stud-
ied more general voting trees [9, 7], and manipulation by the players themselves
by throwing games to manipulate SE tournaments [12].

The match outcome information available to the tournament organizer can
be represented as a weighted or unweighted tournament graph, a graph such
that for every two nodes u, v exactly one of (u, v) or (v, u) is an edge. An edge
(u, v) signifies that u beats v, and a weight p on an edge (u, v) means that u will
beat v with probability p. With this representation, the agenda control problem
becomes a computational problem on tournament graphs.

The tournament graph structure which comes from real world sports tourna-
ments or from elections is not arbitrary. Although the graphs are not necessarily
transitive, stronger players typically beat weaker ones. Some generative models
have been proposed in order to study real-world tournaments. In this work, we
study a standard model in social choice theory attributed to Condorcet (see, e.g.,
Young [19]). The model was more recently studied by Braverman and Mossel [3].
We refer to this model as the Condorcet Random (CR) model1.

The CR model has an underlying total order of the players and the outcome
of every match is probabilistic. There is some global probability p < 1/2 with
which a weaker player beats a stronger player. This probability represents outside
factors which do not depend on the players’ abilities.

1 A previous version of this paper referred to the model as the Braverman-Mossel
model.



Vassilevska Williams [16] has shown that when p ≥ 16
√

ln(n)/n, with high
probability, the model generates a tournament graph T such that there is always
a poly-time computable seeding for which any given player is a single-elimination
tournament winner, provided all match outcomes occur as T predicts.

This result was initially surprising as the CR model is often considered to
be a good model of the real world. Recent work by Russell [11] confirmed the
theoretical results of [16] by giving experimental evidence that in real world in-
stances (from tennis, basketball and hockey tournaments) one can either quickly
find a winning seeding for any player, or decide that it is not possible. Russell’s
work uses a variant of the generalized CR model that we will define later.

The result from [16], however, was meaningful only for large n. For instance,
when n = 512, the noise parameter p ≥ 16

√
ln(n)/n is close to 1/2, and the result

is not at all surprising since then all players are essentially indistinguishable. A
natural question emerges: can we still make almost all players win with a much
smaller noise value? A second question is, can we relax the CR model to allow
a different error probability for each pair of players, and what manipulation is
then possible? We address both questions.

Finally, the CR model has been previously considered in fault-tolerant and
parallel computing. For instance, Feige et al. [6] consider comparison circuits that
are incorrect with probability p and develop algorithms to sort this noisy data.
In particular, one of their results uses tournaments for finding the maximum in
parallel. In a sense, their algorithm provides a better mechanism for finding ‘the’
winner (the top player in the underlying total order) in the CR model, although
this mechanism may not satisfy the other nice properties of SE tournaments.

Contributions. We continue the study begun in [16] on whether one can compute
a winning SE tournament seeding for a king player when the match outcomes are
known in advance. A king is a player K such that for any other player a, either
K beats a, or K beats some other player who beats a. Kings are very strong
players, yet the agenda control problem for SE tournaments is not known to be
polynomial-time solvable even for kings. We show that in order for a winning
seeding to exist for a king, it is sufficient for the king to be among the top
third of the players when sorted by the number of potential matches they can
win. Before our work only much stricter conditions were known, e.g. that it is
sufficient if the king beats half of the players. Our more general result allows us
to obtain better results for the Condorcet random model as well.

There are log n rounds in an SE tournament over n players, so a necessary
condition for a player to be a winner is that it can beat at least log n play-
ers. We consider a generalization of the Condorcet random model in which the
error probabilities p(i, j) can vary but are all lower-bounded by a global param-
eter p. The expected outdegree of the weakest player i in such a tournament is∑

j p(i, j) ≥ p(n − 1), and it needs to be at least log n in order for i to win an
SE tournament. Thus, we focus on the case where p is Ω(log n/n), as this is a
necessary condition for all players to be winners.

We consider tournaments generated with noise p = Ω(log n/n). The ranking
obtained by sorting the players in nondecreasing order of the number of matches



they can win is known to be a constant factor approximation to the Slater
ranking [14, 4], and is hence a good notion of ranking in itself. We show that for
almost all tournaments generated by the CR model, one can efficiently compute
a seeding so that essentially the top half of the players can be made SE winners.
We also show that there is a trade-off between the amount of noise and the
number of players that can be made winners: as the level of noise increases,
the tournament can be fixed for a larger constant fraction and eventually for
all of the players. While this result does not answer the question of whether it
is computationally difficult to manipulate an SE tournament in general, it does
show that for tournaments we might expect to see in practice, manipulation can
be quite easy.

Condorcet Random Model – Formal Definition

The premise of the Condorcet random (CR) model is that there is an implicit
ranking π of the players by intrinsic abilities so that π(i) < π(j) means i has
strictly better abilities than j. For ease of notation, we will assume that π is the
identity permutation (if not, rename the players), so that π(i) is i. When i and j
play a match there may be outside influences so that even if i < j, j might beat
i. The CR model allows that weaker players can beat stronger players, but only
with probability p < 1/2. Here, p is a global parameter and if i < j, i beats j
with probability 1−p. A random tournament graph generated in the CR model,
a CR tournament, is defined as follows: for every i, j with i < j, add edge (i, j)
independently with probability 1− p and otherwise add (j, i). In other words, a
CR tournament is initially a completely transitive tournament where each edge
is independently reversed with probability p.

We generalize the CR model to the GCR model, in which j beats i with
probability p(j, i), where p ≤ p(j, i) ≤ 1/2 for all i, j with i < j, i.e. the er-
ror probabilities can differ but are all lower-bounded by a global p. A random
tournament graph generated in the GCR model (GCR tournament) is defined as
follows: for every i, j with i < j, add edge (i, j) independently with probability
1− p(j, i) and otherwise add (j, i).

Unless noted otherwise, all graphs in the paper are tournament graphs over
n vertices, where n is a power of 2, and all SE tournaments are balanced. In
Table 1, we define the notation used in the rest of this paper. For the definitions,
let a ∈ V be any node, X ⊂ V and Y ⊂ V such that X and Y are disjoint.
Given a player A, A denotes Nout(A) and B denotes N in(A).

The outcome of a round-robin tournament has a natural graph representation
as a tournament graph. The nodes of a tournament graph represent the players,
and a directed edge (a, b) represents a win of a over b.

We will use the concept of a king in a graph. Although the definition makes
sense for any graph, it is particularly useful for tournaments, as the highest
outdegree node is always a king. We also define a superking, as in [16].

Definition 1. A king in G = (V,E) is a node A such that for every other x ∈ V
either (A, x) ∈ E or there exists y ∈ V such that (A, y), (y, x) ∈ E.



Notation

Nout(a) = {v|(a, v) ∈ E} Nout
X (a) = Nout(a) ∩X

N in(a) = {v|(v, a) ∈ E} N in
X (a) = N in(a) ∩X

out(a) = |Nout(a)| outX(a) = |Nout
X (a)|

in(a) = |N in(a)| inX(a) = |N in
X (a)|

Hin(a) = {v|v ∈ N in(a), out(v) > out(a)}
Hout(a) = {v|v ∈ Nout(a), out(v) > out(a)}

H(a) = Hin(a) ∪Hout(a)

E(X,Y ) = {(u, v)|(u, v) ∈ E, u ∈ X, v ∈ Y }
Table 1. A summary of the notation used in this paper.

Definition 2. A superking in G = (V,E) is a node A such that for every other
x ∈ V either (A, x) ∈ E or there exist log n nodes y1, . . . , ylogn ∈ V such that
∀i, (A, yi), (yi, x) ∈ E.

Kings that are also SE winners

Being a king in the tournament graph is not a sufficient condition for a player to
also be able to win an SE tournament. For instance, a player may be a king by
beating only 1 player who, in turn, beats all the other players. This king beats
less than log n players, so it cannot win an SE tournament. [16] considered the
question of how strong a king player needs to be in order for there to always
exist a winning SE tournament seeding for which they win the SE tournament.

Theorem 1. [16] Let G = (V,E) be a tournament graph and let A ∈ V be
a king. One can efficiently construct a winning single-elimination tournament
seeding for A if either Hin(A) = ∅, or out(A) ≥ n/2.

We generalize the above result by giving a condition which completely sub-
sumes the one in Theorem 1.

Theorem 2 (Kings with High Outdegree). Let G be a tournament graph
on n nodes and A be a king. If out(A) ≥ |Hin(A)|+ 1, then one can efficiently
compute a winning single-elimination seeding for A.

To see that the above theorem implies Theorem 1, note that if out(A) ≥ n/2,
then |Hin(a)| ≤ n/2 − 1 ≤ out(A) − 1. Also, if Hin(A) = ∅ and n ≥ 2, then
out(A) ≥ 1 ≥ 1 + |Hin(A)|.

Theorem 2 is more general than Theorem 1. In Figure 1 we have an example
of a tournament where node A satisfies the requirements of Theorem 2, but not
those of Theorem 1. Here, |Hin(A)| = n

4 and |Nout(A)| = n
4 + 1. The purpose

of node a is just to guarantee that A is a king. The example requires that
each node in N in(A) \ Hin(A) has lower outdegree than A; it suffices to use an
outdegree-balanced2 tournament for this set.

2 An outdegree-balanced tournament is a tournament in which every vertex has outde-
gree equal to half the graph; such a tournament can easily be constructed inductively.



Hin(A)

n/4 nodes

N in(A) \Hin(A)

n/2− 2 nodes

outdegree-balanced

A

n/4 + 1 nodes a n/4 nodes

N out(A)

Fig. 1. An example for which Theorem 1 does not apply, but Theorem 2 does apply.

The intuition behind the proof of Theorem 2 is partially inspired by our
recent results in [15]. There we show that a large fraction of highly ranked nodes
can be tournament winners, provided a matching exists from the lower ranked to
the higher ranked players. In this paper, we are working with a king node, and
are able to weaken the matching requirement. Instead, we carefully construct
matchings that maintain that A is a king over the graph, while eliminating the
elements of Hin(A) until we reduce the problem to the case of Theorem 1.

We will need a technical lemma from prior work relating the indegree and
outdegree of two nodes in order to prove Theorem 2. By definition, if a node
A is a king then for every other node b, Nout(A) ∩ N in(b) 6= ∅. The following
lemma is useful for showing a node is a king.

Lemma 1 ([16]). Let a be a given node, A = Nout(a), B = N in(a), b ∈ B.
Then out(a) − out(b) = inA(b) − outB(b). In particular, out(a) ≥ out(b) if and
only if outB(b) ≤ inA(b).

Proof of Theorem 2: We will design the matching for each consecutive round
r of the tournament. In the induced graph before the rth round, let Hr be the
subset of Hin(A) that is still live, Ar be the current outneighborhood of A
and Br be the current inneighborhood of A. We will keep the invariant that if
Br \ Hr 6= ∅, we have |Ar| ≥ |Hr|+ 1, A is a king and the subset of nodes from
the inneighborhood of A that have larger outdegree than A is contained in Hr.

We now assume that the invariant is true for round r − 1. We will show
how to construct round r. If Hr = ∅ we are done by reducing the problem to
Theorem 1, so assume that |Hr| ≥ 1. We begin by taking a maximal matching
Mr from Ar to Hr. Since |Ar| ≥ |Hr|+ 1, Ar \Mr 6= ∅ i.e. Mr cannot match all
of Ar. Now, let M ′r be a maximal matching from Ar \Mr to Br \ Hr.

If Ar\(M ′r∪Mr) 6= ∅, there is some node a′ leftover to match A to. Otherwise,
pick any a′ ∈ M ′r ∩ Ar. Remove the edge matched to a′ from M ′r and match a′

with A. To complete the matching, create maximal matchings within Ār =
Ar \ (M ′r ∪ Mr) \ {a′}, B̄r = Br \ Hr \ M ′r and Hr \ Mr. Either 0 or 2 of
|Ār|, |B̄r|, |Hr \Mr| can be odd and so there are at most 2 unmatched nodes
that can be matched against each other. Let M be the union of these matchings.

We will now show that the invariants still hold. Notice that A is still a king on
the sources of the created matching M . Now, consider any node b from Br \Hr

which is a source in M . We have two choices. The first is that b survived by
beating another node of Br so it lost at least one outneighbor from Br. Since



M ′r was maximal, b may have lost at most one of its inneighbors (a′). Hence,

outBr+1(b) + 1 ≤ (outBr (b)− 1 + 1) ≤ inAr (b)− 1 ≤ inAr+1(b).

By Lemma 1 this means that out(b) ≤ out(A). The second choice is if b survived
by beating a leftover node ā from Ar. This can only happen if Ar\(M ′r∪Mr) 6= ∅.
Thus, ā was in Ar \ (M ′r ∪Mr). However, since M ′r was maximal, ā must lose to
b, and so all inneighbors of b from Ar move on to the next round, and out(b) ≤
out(A). Thus A has outdegree at least as high as all nodes in Br+1 \ Hr+1.

Now we consider Ar+1 vs Hr+1. We have

|Ar+1| ≥ b(|Ar|+ |M ′r|+ |Mr| − 1)/2c, and

|Hr+1| ≤ d(|Hr| − |Mr|)/2e = b(|Hr|+ 1− |Mr|)/2c.
Since |Hr| ≥ 1 we must have |Mr| ≥ 1. If either |Mr| ≥ 2, |Ar| ≥ |Hr| + 2,

or |M ′r| ≥ 1 then it must be that |Ar+1| ≥ b(|Hr|+ 2)/2c ≥ |Hr+1|+ 1. Also, if
|Hr| is even then |Ar+1| ≥ |Hr|/2 = 1 + b(|Hr| − 1)/2c ≥ |Hr+1| + 1, and the
invariant is satisfied for round r + 1.

On the other hand, assume that |Mr| = 1, |M ′r| = 0, |Ar| = |Hr| + 1 and
|Hr| is odd. This necessarily implies that |Br \ Hr| ≤ 1. Since |Ar| = |Hr| + 1
is even, |Br| must be odd and so |Br \ Hr| must be even. |Br \ Hr| can only be
0. This means |Hr| = nr/2 − 1 (where nr is the current number of nodes). We
can conclude that A is a king with outdegree at least half the graph and the
tournament can be efficiently fixed so that A wins by Theorem 1. ut

Theorem 2 implies the following corollaries.

Corollary 1 Let A be a king in a tournament graph. If |Hin(A)| ≤ (n − 3)/4,
then one can efficiently compute a winning SE tournament seeding for A.

Corollary 2 Let A be a king in a tournament graph. If |H(A)| ≤ n/3− 1, then
one can efficiently compute a winning SE tournament seeding for A.

The proof of Corollary 1 follows by the fact that if |Hin(A)| = k, then
out(A) ≥ (n − k)/3. Corollary 2 simply states that any player in the top third
of the bracket who is a king is also a tournament winner.

Proof of Corollary 2: Let K = |H(A)|. Then the outdegree of A is at least
(n−K − 1)/2. Let h = |Hin(A)|. By Theorem 2, a sufficient condition for A to
be able to win an SE tournament is that out(A) ≥ h + 1. Hence it is sufficient
that n − K − 1 ≥ 2h + 2, or that 2h + K ≤ n − 3. Since 2h + K ≤ 3K, it is
sufficient that 3K ≤ n− 3, and since K ≤ (n− 3)/3 we have our result. ut

Condorcet Random Model

We can now apply our results to graphs generated by the CR Model. From prior
work we know that if p ≥ C

√
lnn/n for C > 4, then with probability at least

1 − 1/poly(n), any node in a tournament graph generated by the CR model



can win an SE tournament. However, since p must be less than 1/2, this result
only applies for n ≥ 512. Moreover, even for n = 8192 the relevant value of p is
> 13% which is a very high noise rate. We consider how many players can be
efficiently made winners when p is a slower growing function of n. We show that
even when p ≥ C lnn/n for a large enough constant C, a constant fraction of
the top players in a CR tournament can be efficiently made winners.

Theorem 3 (CR Model Winners for Lower p). For any given constant
C > 16, there exists a constant nC so that for all n > nC the following holds. Let
p ≥ C lnn/n, and G be a tournament graph generated by the CR model with error
p. With probability at least 1− 3/nC/8−2, any node v with v ≤ n/2− 5C

√
n lnn

can win an SE tournament.

This result applies for n ≥ 256 and also reduces the amount of noise needed.
For example, if C = 17 then when n = 8192, it is only necessary that p < 2%, as
opposed to > 13%. This is a significant improvement. The proof of Theorem 3
uses Theorem 2 and Chernoff-Hoeffding bounds.

Theorem 4 (Chernoff-Hoeffding). Let X1, . . . , Xn be random variables with
X =

∑
iXi, E[X] = µ. Then for 0 ≤ D < µ, Pr[X ≥ µ+D] ≤ exp(−D2/(4µ))

and Pr[X < µ−D] ≤ exp(−D2/(2µ)).

Proof of Theorem 3: Let C be given. Consider player j. The expectation of the
number nj of outneighbors of j in G is

E[nj ] = (1− p)(n− j) + (j − 1)p = n(1− p)− p− j(1− 2p).

This is exactly where we use the CR model. Our result is not directly applicable
to the GCR model because this is only a lower bound on the expectation of nj
in that model. We will show that with high probability, all nj are concentrated
around their expectations and that all players j ≤ n/2 are kings.

Showing that each nj is concentrated around its expectation is a standard
application of the Chernoff bounds and a union bound. Therefore, for C > 16
and n > 2, we have 2/nC

2/4 < 1/nC . Hence, with probability at least 1−1/nC−1

for every j, |E[nj ]− nj | ≤ C
√
n lnn.

We assume n is large enough so that n >>
√
n lnn and that p ≤ 1/4 so that

1 ≥ (1− 2p) ≥ 1/2. Now fix j ≤ n/2. By the concentration result, this implies

nj ≥ 3n/4− 1− j − C
√
n lnn ≥ n/4− 1− C

√
n lnn ≥ εn,

where ε = 1/8 works. The probability that j is a king is quite high: the proba-
bility that some node z has no inneighbor from Nout(j) is at most

n(1− p)nj ≤ n(1− C lnn/n)(n/(C lnn))·Cε lnn ≤ 1/nεC−1.

By a union bound, the probability that some node j is not a king is at most
1/nεC−2. Therefore, we can conclude that the probability that all the nj are



concentrated around their expectations and all nodes j ≤ n/2 are kings is at
least 1− (1/nC−1 + 1/nεC−2).

We now need to upper bound |Hin(j)|. We are interested in how many nodes
with i < j+2C

√
n lnn/(1−2p) appear in N in(j): if we have an upper bound on

them, we can apply Theorem 2 to get a bound on j. First, consider how small
nj − ni can be for any i:

nj − ni ≥ (i− j)(1− 2p)− 2C
√
n lnn.

So for i ≥ j + 2C
√
n lnn/(1− 2p), nj ≥ ni with high probability. The expected

number of nodes i < j that appear in N in(j) is (1− p)(j − 1). By the Chernoff
bound, the probability that at least (1− p)(j − 1) +C

√
j lnn of the j − 1 nodes

less than j are in N in(j) is ≤ exp(−C2j lnn/4j) = n−C
2/4. Therefore, with

probability at least 1 − 1/nC
2/4, the number of such i is at most (1 − p)(j −

1) + C
√
j lnn. By a union bound, this holds for all j with probability at least

1− 1/nC
2/4−1. Now, we can say with high probability that |Hin(j)| is at most

(1− p)(j − 1) + C
√
j lnn+

2C
√
n lnn

1− 2p
≤ (1− p)(j − 1) + 5C

√
n lnn.

By Theorem 2, for there to be a winning seeding for j, it is sufficient that
Hin(j) < nj or that

(1− p)(j − 1) + 5C
√
n lnn < n(1− p)− p− j(1− 2p)− C

√
n lnn.

Rearranging the above equation, it is sufficient if

j < n/2 +
pn

(2(2− 3p))
+

(1− 2p)

(2− 3p)
− 24C

√
n lnn/5,

and so for all j ≤ n/2− 5C
√
n lnn, there is a winning seeding for j with proba-

bility at least
1− (2/nC−1 + 1/nεC−2) ≥ 1− 3/nC/8−2.

ut

Improving the result for the GCR model through perfect matchings.

Next, we show that there is a trade-off between the constant in front of log n/n
and the fraction of nodes that can win an SE tournament. The proofs are based
on the following result of Erdős and Rényi [5]. Let B(n, p) denote a random
bipartite graph on n nodes in each partition such that every edge between the
two partitions appears with probability p.

Theorem 5 (Erdős and Rényi [5]). Let cn be any function of n, then consider
G = B(n, p) for p = (lnn + cn)/n. The probability that G contains a perfect
matching is at least 1− 2/ecn .



For the particular case cn = Θ(lnn), G contains a perfect matching with prob-
ability at least 1− 1/poly(n).

Lemma 2. Let C ≥ 64 be a constant. Let n ≥ 16 and G be a GCR tournament
for p = C lnn/n. With probability at least 1−2/nC/32−1, G is such that one can
efficiently construct a winning SE tournament seeding for the node ranked 1.

Proof. We will call the top ranked node s. We will show that with high proba-
bility s has outdegree at least n/4 and that every node in N in(s) has at least
log n inneighbors in Nout(s). This makes s a superking, and by [16], s can win
an SE tournament.

The probability that s beats any node j is > 1/2, the expected outdegree
of s is > (n − 1)/2. By a Chernoff bound, the probability that s has outdegree
< n/4 is at most exp(−(n−1)/16) << 1/nC/32−1. Given that the outdegree of s
is at least n/4, the expected number of inneighbors in Nout(s) of any particular
node y in N in(s) is at least (n/4) · (C lnn/n) = (C/4) lnn.

We can show that each node in N in(s) has at least log n inneighbors from
Nout(s) by using a Chernoff bound and union bound. By a Chernoff bound,
the probability that y has less than (C/8) lnn inneighbors from Nout(s) is at
most exp(−(C/32) lnn) = 1/nC/32. By a union bound, the probability that
some y ∈ N in(s) has less than (C/8) lnn inneighbors from Nout(s) is at most
1/nC/32−1. Therefore, s is a superking is with probability at least 1−2/nC/32−1

where n ≥ 16, n/4 ≥ log n,C > 64, and (C/8) lnn ≥ log n. ut

Lemma 2 concerned itself only with the player who is ranked highest in
intrinsic ability. The next theorem shows that as we increase the noise factor, we
can fix the tournament for an increasingly large set of players. As the noise level
increases, we can argue recursively that there exists a matching from n

2 + 1 . . . n
to 1 . . . n2 , and from 3n

4 +1 . . . n to n
2 +1 . . . 3n4 and so forth. These matchings form

each successive round of the tournament, eliminating all the stronger players.

Theorem 6. Let n ≥ 16, i ≥ 0 be a constant and p ≥ 64 · 2i lnn/n ∈ [0, 1].
With probability at least 1 − 1/poly(n), one can efficiently construct a winning
SE seeding for any of the top 1 + n(1− 1/2i) players in a GCR tournament.

Proof. Let G be a GCR tournament for p = C2i lnn/n, C ≥ 64. Let S be
the set of all n/2i−1 players j with j > n(1 − 1/2i−1). Let s be a node with
1 + n(1 − 1/2i−1) ≤ s ≤ 1 + n(1 − 1/2i). The probability that s wins an SE
tournament on the subtournament of G induced by S is high: there is a set X of
at least n/2i − 1 nodes that are after s. By Lemma 2, s wins an SE tournament
on X ∪ {s} with high probability 1− 2

(n/2i)C/32−1 .

In addition, by Theorem 5, with probability at least 1− 2
(n/2i)C−1 , there is a

perfect matching from X∪{s} to S \ (X∪{s}). For every 1 ≤ k ≤ i−1, consider

Ak = {x | 1 + n(1− 1/2k) ≤ x}, and

Bk = {x | 1 + n(1− 1/2k−1) ≤ x ≤ n(1− 1/2k)}.



Then Ak−1 = Ak ∪ Bk, Ak ∩ Bk = ∅, and |Ak| = |Bk| = n/2k. Hence p ≥
C ln |Ak|/|Ak| for all k ≤ i − 1. By Theorem 5, the probability that there is no

perfect matching from Ak to Bk for a particular k is at most 2/(n/2k)C2i−k−1.
This value is maximized for k = i, and it is 2/(n/2i)C−1. Thus by a union bound,
with probability at least 1 − 2i/(n/2i)C−1 = 1 − 1/poly(n), there is a perfect
matching from Ak to Bk, for every k.

Thus, with probability at least 1− 1/poly(n), s wins an SE tournament in G
with high probability, and the full bracket seeding can be constructed by taking
the unions of the perfect matchings from Ak to Bk and the bracket from S. ut

For the CR model we can strengthen the bound from Theorem 3 by combining
the arguments from Theorems 3 and 6.

Theorem 7. There exists a constant n0 such that for all n > n0 the following
holds. Let i ≥ 0 be a constant, and p = 64 · 2i lnn/n ∈ [0, 1]. With probability
at least 1− 1/poly(n), one can efficiently construct a winning seeding for any of
the top n(1− 1/2i+1)− (80/2i/2)

√
n lnn players in a CR tournament.

As an example, for p = 256 lnn/n, Theorem 7 says that any of the top
7n/8 − 40

√
n lnn players are winners while Theorem 6 only gives 3n/4 + 1 for

this setting of p in the GCR model.

Proof. As in Theorem 6, for every 1 ≤ k ≤ i, consider

Ak = {x | 1 + n(1− 1/2k) ≤ x}, and

Bk = {x | 1 + n(1− 1/2k−1) ≤ x ≤ n(1− 1/2k)}.
Then Ak−1 = Ak ∪Bk, Ak ∩Bk = ∅, and |Ak| = |Bk| = n/2k. By the argument
from Theorem 6, w.h.p. there is a perfect matching from Ak to Bk, for all k.

Consider Ai. By Theorem 3, with probability 1−1/poly(n), we can efficiently
fix the tournament for any of the first n/2i+1− 80

√
(n/2i) ln(n/2i) nodes in Ai.

Combining the construction with the perfect matchings between Ak and Bk, we
can efficiently construct a winning tournament seeding for any of the top

n− n

2i
+

n

2i+1
− 80

√
n

2i
ln(

n

2i
) ≥ n(1− 1

2(i+1)
)− 80

2i/2

√
n lnn nodes.

ut

Conclusions

In this paper, we have shown a tight bound (up to a constant factor) on the noise
needed to fix an SE tournament for a large fraction of players when the match
outcomes are generated by the CR model. As this model is believed to be a good
model for real-world tournaments, this result shows that many tournaments in
practice can be easily manipulated. In some sense, this sidesteps the question of
whether it is NP-hard to fix a tournament in general by showing that it is easy
on examples that we care about.
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