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Abstract

The fundamental property of the analytic signal is the split of identity, meaning the separation of qualitative and
quantitative information in form of the local phase and the local amplitude, respectively. Especially the structural
representation, independent of brightness and contrast, of the local phase is interesting for numerous image processing
tasks. Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic 2D structures, was proposed.
We show the advantages of this improved concept on ultrasound RF and B-mode images. Precisely, we use the 2D
analytic signal for the envelope detection of RF data. This leads to advantages for the extraction of the information-
bearing signal from the modulated carrier wave. We illustrate this, first, by visual assessment of the images, and
second, by performing goodness-of-fit tests to a Nakagami distribution, indicating a clear improvement of statistical
properties. The evaluation is performed for multiple window sizes and parameter estimation techniques. Finally, we
show that the 2D analytic signal allows for an improved estimation of local features on B-mode images.
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1. Introduction

The analytic signal (AS) enables to extract local, low-
level features from images. It has the fundamental prop-
erty of split of identity, meaning that it separates qual-
itative and quantitative information of a signal in form
of the local phase and the local amplitude, respectively.
These quantities further fulfill invariance and equivari-
ance properties (Felsberg and Sommer, 2001), allowing
for an extraction of structural information that is invari-
ant to brightness or contrast changes in the image. Ex-
actly these properties lead to a multitude of applications
in computer vision and medical imaging, such as reg-
istration (Carneiro and Jepson, 2002; Grau et al., Sept.
2007; Mellor and Brady, 2005; Zang et al., 2007; Zhang
et al., 2007), detection (Estepar et al., 2006; Mulet-
Parada and Noble, 2000; Szilágyi and Brady, 2009;
Xiaoxun and Yunde, 2006), segmentation (Ali et al.,
2008; Hacihaliloglu et al., 2008; Wang et al., 2009),
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and stereo (Fleet et al., 1991). Phase-based process-
ing is particularly interesting for ultrasound images be-
cause they are affected by significant brightness vari-
ations (Grau et al., Sept. 2007; Hacihaliloglu et al.,
2008; Mellor and Brady, 2005; Mulet-Parada and No-
ble, 2000).

For 1D, the local phase is calculated with the 1D an-
alytic signal. For 2D, several extensions of the analytic
signal are proposed, with the monogenic signal (Fels-
berg and Sommer, 2001) presenting an isotropic exten-
sion. The description of the signal’s structural informa-
tion (phase and amplitude) is extended by a geometric
component, the local orientation. The local orientation
indicates the orientation of intrinsic 1D (i1D) structures
in 2D images, see figure 1. This already points to the
limitation of the monogenic signal; it is restricted to the
subclass of i1D signals. Recently, Wietzke et al. (2009)
proposed the 2D analytic signal, which is an extension
to the monogenic signal that permits the analysis of in-
trinsic two dimensional (i2D) signals. Therefore, the
2D signal analysis is embedded into 3D projective space
and a new geometric quantity, the apex angle, is intro-
duced. The 2D analytic signal also has the advantage
of more accurately estimating local features from i1D
signals (Wietzke et al., 2009).
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Figure 1: Illustration of 2D signals with different intrinsic dimensionality. For i1D, we show the local orientation θ.

An initial version of this work was recently presented
at a conference (Wachinger et al., 2011). The present ar-
ticle offers more detailed derivations, an improved sta-
tistical analysis, and more experimental results. In the
remainder of this article, we show the advantages of
the calculation of the 2D analytic signal for radio fre-
quency (RF) and B-mode ultrasound images. Instead
of performing the demodulation of RF signals for each
scan line separately, we perform the demodulation in its
2D context with 2D Hilbert filters of first- and second-
order. This leads to advantages in the envelope detec-
tion. Since all further processing steps of the creation
of the B-mode image are based on the envelope, the
improvement of the 2D envelope detection propagates
to the quality of the B-mode image. Moreover, the re-
sult from the 2D envelope detection bears better statisti-
cal properties, as we illustrate with goodness-of-fit tests
with a Nakagami distribution, with its implications to
classification and segmentation. Finally, we show the
advantages of the 2D analytic signal for estimating local
features on B-mode images. All experiments are per-
formed on clinical ultrasound images.

2. 2D Analytic Signal

There are various concepts to analyze the phase of
signals, such as Fourier phase, instantaneous phase, and
local phase (Granlund and Knutsson, 1995). We are
primarily interested in the last two. For 1D signals,
g ∈ L2(R), the instantaneous phase is defined as the
argument of the analytic signal

φ = arg(g + i · H{g}), (1)

with H being the Hilbert transform and i =
√
−1. The

instantaneous amplitude is the absolute value of the an-
alytic signal

A =

√
g2 +H{g}2. (2)

Since real signals consist of a superposition of multiple
signals of different frequencies, the instantaneous phase,
although local, can lead to wrong estimates. The sig-
nal has to be split up into multiple frequency bands, by
means of bandpass filters, to achieve meaningful results,
as further described in section 2.2.

Considering 2D signals, f ∈ L2(R2), the intrinsic di-
mension expresses the number of degrees of freedom to
describe local structures (Zetsche and Barth, 1990). In-
trinsic zero dimensional (i0D) signals are constant sig-
nals, i1D signals are lines and edges, and i2D are all
other patterns in 2D, see figure 1. The monogenic sig-
nal is restricted to i1D signals and calculated with the
two-dimensional Hilbert transform, also referred to as
the Riesz transform. In the frequency domain, the first-
order 2D Hilbert transform is obtained with the multi-
plication of

H1
x(u) = i ·

x
||u||

, H1
y (u) = i ·

y
||u||

, (3)

with u = (x, y) ∈ C\{(0, 0)}.
For the calculation of the 2D analytic signal, higher

order Hilbert transforms are used (Wietzke et al., 2009).
The Fourier multipliers of the second-order Hilbert
transform 1 are

H2
xx(u) = −

x · x
||u||2

, H2
xy(u) = −

x · y
||u||2

, H2
yy(u) = −

y · y
||u||2

,

(4)
again with u = (x, y) ∈ C\{(0, 0)}. In contrast to Wiet-
zke et al. (2009), we do not present the formulas of the
Hilbert transforms in spatial but in frequency domain,
which is more versatile for filtering, see section 2.2.
Throughout the article we use upper case letters for fil-
ters and signals in frequency domain and lower case
ones for their representation in spatial domain.

1We want to thank the authors of (Wietzke et al., 2009) for discus-
sions.

2



Figure 2: Magnitude of 2D Hilbert transforms with log-Gabor kernels in frequency domain. From left to right: B, B�H1
x , B�H1

y , B�H2
xx, B�H2

xy,
B � H2

yy.
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Figure 3: Log-Gabor filter bank consisting of 5 filters (red) and ultrasound signal spectrum (x-axis: frequency in MHz). Ultrasound acquisition
frequency: 3.3 MHz.

2.1. Structural and Geometrical Features
The proposed extension of the 2D analytic signal is

obtained by an embedding in 3D projective space. This
allows for a differentiation of geometrical features (lo-
cal orientation, local apex) and structural features (lo-
cal phase, local amplitude). The filtered signal Fp, the
first-order Hilbert transformed signals Fx, Fy, and the
second-order Hilbert transformed signals Fxx, Fxy, Fyy

are calculated with the bandpass filter B and the point-
wise multiplication � in frequency domain as Fp

Fx

Fy

 =

 B � F
H1

x � B � F
H1

y � B � F

 (5)

and  Fxx

Fxy

Fyy

 =

 H2
xx � B � F

H2
xy � B � F

H2
yy � B � F

 . (6)

We illustrate the Hilbert transforms in frequency do-
main multiplied with log-Gabor bandpass filters in fig-
ure 2. In order to enable an interpretation of second-
order Hilbert transformed signals in projective space,
an isomorphism between the Hessian matrix and a vec-
tor valued representation is used (Wietzke et al., 2009),
leading to fs = 1

2 [ fxx + fyy], f+ = fxy, and f+− =
1
2 [ fxx − fyy].

Finally, the local features are calculated as follows.
The apex angle α, which differentiates between features
of different intrinsic dimensionality, is

α = arccos

√
f 2
+ + f 2

+−

|| fs||
. (7)

With the apex angle, the homogeneous signal compo-
nent fh of the signal fp in projective space is defined
as

fh =

√
1 + cosα

2
. (8)

The local orientation θ, local phase φ, and local ampli-
tude A are calculated with

θ =
1
2

arctan
f+
f+−

, (9)

φ = atan2
(√

[ f −1
h fx]2 + [ f −1

h fy]2, fp

)
, (10)

A =
1
2

√
f 2
p + [ f −1

h fx]2 + [ f −1
h fy]2. (11)

For i1D signals, the homogeneous component is fh = 1,
and the formulas above reduce to the ones known from
the monogenic signal.

2.2. Frequency Selection
Each signal f can be described with the Fourier se-

ries, decomposing the signal into components of dif-
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Figure 4: Transmission, from left to right. The combination of the modulation function and the carrier wave results in the transmit pulse. For
focusing and beam steering, various time delays are added. The activation of the elements with the pulse pattern leads to the creation of a sound
wave in the medium. The current center location is indicated as bold line.

ferent frequencies, each one having its own phase and
amplitude. The direct application of the Hilbert trans-
form on the original signal, which presents an accumu-
lation of local signals from different frequencies, does
therefore not adequately extract local features. Theo-
retically, we would need to calculate the analytic signal
for infinitely narrow bandwidths, i.e., Dirac deltas in the
frequency domain. Following the uncertainty principle
this results in filters with global support. Bandpass fil-
ters present an appropriate approximation for localiza-
tion in spatial and frequency domain.

Felsberg and Sommer (2001) apply the difference of
Poisson kernels for frequency selection. An interesting
property of the Poisson filter is that it creates a linear
scale-space (Felsberg and Sommer, 2004). Another fil-
ter that is commonly applied, especially in ultrasound, is
the log-Gabor filter (Boukerroui et al., 2004; Grau et al.,
Sept. 2007; Hacihaliloglu et al., 2008; Mulet-Parada
and Noble, 2000)

B(u) = exp
− ln2(||u||/γ)

2 ln2(κβ)

 , (12)

with the center frequency γ and κβ is related to the band-
width β through κβ = exp

(
− 1

4

√
2 ln(2)β

)
. Also in our

analysis on ultrasound images, we achieve better results
with the log-Gabor filter so that we concentrate on it in
the following. A drawback of the log-Gabor filter is,
however, that it has no analytic expression in the spatial
domain. This is also the reason why we presented the

Hilbert transforms in equations (3) and (4) in frequency
and not in spatial domain, as it is done in (Wietzke et al.,
2009).

The design of a filter bank requires to balance the
conflicting demands of uniform coverage of the spec-
trum and independence of each filter output. The im-
portant parameters are the filter bandwidth and the scal-
ing factor between successive filters η. Starting from a
base frequency γ0, we calculate the center frequency γk

of the k-th filter Bk with

γk = γ0 · η
k. (13)

In Kovesi (2008), a table of experimentally determined
values for κβ and η is presented that result in a minimal
overlap of the filter transfer functions, while achieving
an even spectral coverage. A filter bank with five log-
Gabor filters is illustrated in figure 3. A study of alter-
native bandpass filters is presented by Boukerroui et al.
(2004). For the further analysis, it is either possible to
focus on the signal at one specific scale, or accumulate
all responses from various scales, as it is e.g. done for
the phase congruency (Kovesi, 1999). In our study, we
also accumulate the responses from all filters Bk, as it is
done for the calculation of phase congruency.

3. 2D Analytic Signal on RF Data

In the last section, we introduced the concepts of the
2D analytic signal. In this section, we apply these ad-
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Figure 5: Reception, from right to left. The reflected sound waves in the medium are detected by the transducer elements. Each measured pulse is
time delayed to compensate for differences in traveled distance. All received pulses are weighted and summed up to create the receive pulse (blue
curve) for one location. The envelope (black curve) of the pulse is determined by calculating the absolute value of the analytic signal, consisting of
the receive pulse and its Hilbert transform (red curve).
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Figure 6: Exemplar ultrasound processing pipeline for RF to B-mode conversion.

vanced concepts for estimating the envelope of ultra-
sound RF data. Today’s ultrasound probes are mainly
transducer arrays, consisting of a group of closely ar-
ranged piezoelectric elements, where each element can
be excited separately. This allows for electronic beam
steering and focusing by delaying the firing of crystals.
Further, a dynamic aperture can be created by flexibly
activating a number of elements for transmission and re-
ception. A schematic overview of ultrasound transmis-
sion and reception is shown in figures 4 and 5, respec-
tively. The transmit pulse is created by convolving the
modulation function with a carrier wave. In the example
shown, we convolve a sinusoidal wave with a Gaussian
modulator. Subsequently, a specific time delay is added
to each element to account for focusing and steering.
The created wavefront propagates in the medium and is
reflected at inhomogeneities.

After the transmission, the elements are in receive
mode and detect arriving waves, see figure 5. Since the
traveled distance of the returning pulses is different for
the various elements, delays have to be added to com-
pensate for this. The delays change dynamically while
echoes from deeper reflectors arrive. In the beam for-

mer, the echoes are amplified and accumulated with an
additional weighting. This leads to the creation of a sin-
gle receive signal for each position. Current transducers
commonly operate with 128 elements, which leads in
combination with slight beam steering to 256 different
receive signals per image. The signal is subsequently
passed through a pre-amplifier and a time gain compen-
sation (TGC), which emphasizes signals from deeper
regions to compensate for attenuation. The resulting
signal is commonly referred to as radio-frequency (RF)
signal and can be accessed in ultrasound systems.

3.1. RF to B-mode Conversion

For the creation of B-mode images, a sequence of
processing steps is applied to the RF data (Hedrick et al.,
2004; Zagzebski, 1996). Figure 6 illustrates the basic
steps of the processing pipeline, including demodula-
tion, non-linear intensity mapping, and filtering. The
demodulation is one of the central parts and extracts
the information-bearing signal from a modulated car-
rier wave. In ultrasound processing, the demodulation is
commonly performed by an envelope detection. Hereby,
the amplitude of the analytic signal is calculated for
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 7: Magnified region of envelope detected 2D image for various envelopes.

each of the 1D scan lines separately. Figure 5 illustrates
the received signal (blue), the Hilbert transformed ver-
sion (red), and the absolute value of the analytic signal
(black), which is the envelope of the signal.

Interestingly, calculating the amplitude of the 1D an-
alytic signal is equivalent to the instantaneous ampli-
tude. In the literature of ultrasound imaging, it is noted
that the quality of ultrasound images can be increased
by multi-frequency decomposition and compounding of
the received signal, simply referred to as frequency com-
pounding (Cincotti et al., 2001). This is equivalent to
the local amplitude estimation. This constitutes an in-
teresting analogy, between the advantages of the fre-
quency compounded signal to the normal one, on the
one hand, and the advantage of the local amplitude in
comparison to the instantaneous amplitude, on the other
hand. We have neither seen this analogy noted in the
literature before, nor the application of local amplitude
and local phase techniques to RF data.

In contrast to the usually separate processing of each
scan line, we consider all scan lines at once and con-
struct the 2D analytic signal to estimate the local am-
plitude. This enables an improved envelope detection
because the signal is analyzed in its 2D context by also
considering information in lateral direction. The bal-
ance between influence from lateral and axial direction
can be adjusted by the bandwidth in each direction of
the bandpass filter, where the smaller spacing in axial
direction should be considered accordingly. Note that
we are not aware of any previous work that utilized any
2D extension of the analytic signal to perform the enve-
lope detection in 2D.

3.2. Envelope and B-mode Results
We acquired 9 ultrasound RF datasets from differ-

ent patients with an ultrasound system from Ultrasonix
(Richmond, Canada) using a L14-5/38 linear transducer
operated with a single focus region. Each dataset con-
sists of three acquisitions. We experimented with three
different acquisition frequencies, 3.3MHz, 6MHz, and
10MHz, and two different depth settings, 4cm and 6cm,
in order to evaluate the universality of our method. The
sampling frequency of the RF data is 40 MHz. We work
with 5 filter scales, k = 4, with the bandwidth related
κβ = 0.85 and the corresponding multiplicative factor
η = 1.3, as proposed in Kovesi (2008). We compare
the envelope detection for: (i) 1D analytic signal (1D
AS), (ii) 1D analytic signal with filter bank (1D ASF),
(iii) monogenic signal (MS), and (iv) monogenic signal
with filter bank (MSF), (v) 2D AS, and (vi) 2D ASF.
Exemplarily, we show the frequency spectrum of one
dataset acquired at 3.3Mhz together with the log-Gabor
filter bank in figure 3. We present magnified regions of
the various envelope images in figure 7. Note that we do
not show the results of the MS, because the more inter-
esting improvement is for 2D AS. However, we include
them into the analysis of noise statistics in section 3.3.
We can clearly observe that the 2D analytic signal leads
to a more accurate and consistent extraction of struc-
tures. This becomes particularly clear on the circular
structure on the top left, which appears rather ellipsoidal
on the estimates from the 1D analytic signals. We also
note the positive influence of the filter bank for the esti-
mation of the 2D analytic signal.

Regarding the results of the envelope detection with
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 8: Magnified regions of images after log-compression.

(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 9: Magnified regions of images after log-compression and MUCRO.

1D AS, we observe an artifact, where adjacent lines
seem to be misaligned. This is due to standard double
line density acquisitions, with every second line hav-
ing steering applied. The artifact is not a result of the
envelope detection but of the acquisition process, so in-
herently in the RF data. We observe that the artifact
diminishes in combination with the filter bank, where
especially the application of the 2D ASF leads to a sig-
nificant reduction.

We perform an RF to B-mode conversion of local
amplitude images A with a log-compression including
a translation of 25, log(A + 25). The results for 1D
ASF and 2D ASF on clinical data are shown in fig-
ure 8. The B-mode image resulting from the 2D an-
alytic signal clearly shows more consistent structures
and less noise. Typically, further filtering steps are ap-
plied to the log-compressed image to improve its visual
appearance. These processing steps are proprietary to
the manufacturer and generally not publicly accessible.
Ultrasonix (Redmond, Canada), however, distributes a
particular research system with a specific SDK includ-
ing their post-processing filter, called MUCRO. We ap-
ply MUCRO to the log-compressed images, with the re-
sults shown in figure 9. Even after the application of

MUCRO, the advantages of the images from the 2D an-
alytic signal are clearly visible. This is not self-evident
because the post-processing methods are designed to be
applied to 1D envelope detected images, still leaving
room for improvement by adapting the post-processing
to 2D envelope estimation. Finally, one of the reasons
for applying the post-processing filtering is to estab-
lish consistency between scan lines, which we already
achieve by the 2D envelope detection.

Next to clinical data, we also performed experiments
on ultrasound images of a QA phantom from ATS lab-
oratories (Bridgeport, CT, USA), Model 539 Multipur-
pose, which were acquired with the linear transducer at
6Mhz. The phantom contains monofilament line targets
at different depths. The focus is set on the top one. Fig-
ure 10 shows magnifications of the results of various
envelope detection techniques for the top line target.
Although it is not clinical data, the phantom presents
a more controlled environment, where we have a bet-
ter understanding of the structures in the image. Scan-
ning perpendicular to the line target, we expect a circu-
lar structure in the images. As previously, we observe
an improvement by applying the 2D envelope detection,
especially in combination with the filter bank.
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 10: Magnified region of envelope detected image for various techniques of line target of QA phantom.

Figure 11: Plot of Nakagami distribution for various shape parameters m and fixed scaling parameter ω = 0.7. From left to right: 0 < m < 0.5
(pre-Rician), m = 0.5 (generalized Rician), 0.5 < m < 1 (generalized Rician), m = 1 (Rayleigh), m > 1 (Rician).

3.3. Analysis of Envelope Statistics
Next to the visual assessment of the 2D envelope de-

tection, we are interested in supporting the improve-
ment by quantitative measurements. This is challeng-
ing because there does not exist a ground truth envelope
signal that we could compare to our results. Note that
also standard ultrasound simulation environments such
as Field II (Jensen, 1999) only produce RF data. Inter-
estingly, however, various noise distributions were de-
rived from a theoretical analysis of speckle, which ap-
pears if the signal is composed of a multitude of inde-
pendently phased additive complex components (Dutt,
1995; Goodman, 2006). The accumulation of all com-
ponents creates a random walk. Each component is the
result of a reflection of the pulse at a randomly located
scatterer in the medium. In ultrasound, microscopic in-
homogeneities due to the cellular nature of tissue are
responsible for scattering (Cobbold, 2007).

Depending on the scattering scenario in the resolu-
tion cell, so on the number of scatterers and whether a
coherent structure is existent, different statistical mod-
els have been proposed to model ultrasound data (Dutt,
1995). Among them there is Rayleigh (Kotropou-
los et al., 1994), Rician (Shankar et al., 1993), pre-
Rician K (Lord, 1954; Jakeman and Pusey, 1976), gen-
eralized K (Shankar, 1995), homodyned K (Dutt and
Greenleaf, 1994), as well as Rician Inverse of the Gaus-

sian (Eltoft, 2003). Common to all these distributions is
the inherent complexity, limiting its practical applicabil-
ity. In order to address this issue, the Nakagami distri-
bution (Nakagami, 1960) was proposed, because it ad-
mits an explicit analytical expression and it is versatile
enough to model various scattering scenarios. Further-
more, it is used in a multitude of applications to model
backscatter characteristics of US envelope data for seg-
mentation and classification, see (Destrempes et al.,
2009; Larrue and Noble, 2011; Shankar et al., 2002), as
well as registration (Myronenko et al., 2009; Wachinger
et al., 2012). In the following, we analyze the effects
of the 2D envelope detection on the speckle statistics
choosing the Nakagami model. In particular, we quan-
tify the impact of the 2D analytic signal with goodness-
of-fit tests. On the one hand, this allows to evaluate the
correspondence between the theoretical speckle model
and the calculated envelope. On the other hand, it in-
dicates the advantage for the aforementioned applica-
tions - segmentation, classification, registration - which
incorporate a statistical model based on the Nakagami
distribution.

The Nakagami distribution with shape m and scale ω
parameters is

p(x | m, ω) =
2mmx2m−1

Γ(m)ωm exp
(
−

m
ω

x2
)
,∀x ∈ R+. (14)
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Figure 12: RF image with sample distributions estimated for two areas. Data in region 1 is mixture of Nakagami distributed and data of region 2 is
single Nakagami distributed. Whereas MLE can fit nicely in region 2 (d) it expectedly performs poorly in region 1 (c), that can only be represented
properly by a mixture (b).

(a) 1D AS (b) 1D ASF (c) MS (d) MSF (e) 2D AS (f) 2D ASF

Figure 13: The P-values are calculated for all patches of an envelope image. Pixel brightness indicates P-value. We perform the calculation for
various envelope detection techniques. Comparing the P-value images to the B-mode image in figure 12, we see that the bright regions correspond
to homogeneous regions in the US image. The results shown correspond to patient 1, acquisition 1, and a large window size.

For m = 1, this corresponds to the Rayleigh distri-
bution. For varying m, the Nakagami distribution can
model pre- and post-Rayleigh as well as generalized Ri-
cian distributions (Shankar et al., 2001). Further, it is
a good approximation to the homodyned K distribution
(Destrempes and Cloutier, 2010). Figure 11 illustrates
the Nakagami distribution for various shape parameters
and fixed scale. Note that we only keep the scale fixed
for illustrative purposes, while it is estimated together
with the shape parameter during the fit.

3.3.1. Goodness-of-Fit Test
A goodness-of-fit (GOF) test evaluates if the data

d1, . . . , dn, under the assumption of i.i.d. samples,
comes from the given theoretical probability distribu-
tion p (D’Agostino and Stephens, 1986). Note that con-
ventional GOF tests are restricted to the case of single
distributions. For inhomogeneous regions in the image,
e.g. regions including tissue boundaries, a mixture of
Nakagami is more appropriate. We illustrate this sce-
nario in figure 12. Region 1 corresponds to an inho-
mogeneous region with reflections from the skin layers.

As seen in (b), a mixture of Nakagami achieves a per-
fect fit to the distribution of region 1, while the fit with
a single distribution in (c) is not satisfying. For the ho-
mogeneous region 2, a fit with a single Nakagami distri-
bution is sufficient, see (d). Consequently, we can only
achieve good results with the GOF test on homogeneous
image regions. The mixture case has to be further eval-
uated, with similar results to be expected.

For the GOF test, the range of the data is partitioned
into M bins βi, i = 1, . . . ,M, with Ni and the number
of samples per bin. Moore suggests to divide the data
into M = 2n

2
5 bins (D’Agostino and Stephens, 1986).

Furthermore, we assume the bins to be equiprobable as
suggested in (Bock and Krischer, 1998). In this regard,
we let pi be the integral of the distribution in the range
βi given the parameters of the distribution θ = {m, ω}

pi =

∫
βi

p(x | θ) dx. (15)

Hence, pi expresses the likelihood of a sample to be in
the bin βi (identical for all bins). The test statistics un-
derlying the GOF test is the sum of differences between
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Figure 14: Box plot of P-values for different envelope detections and window sizes for patient 1, acquisition 1.
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Figure 15: Box plot of P-values for different envelope detections and window sizes for patient 3, acquisition 3.

observed and expected outcome frequencies

X2 =

M∑
i=1

(Ni − npi)2

npi
. (16)

This yields a quadratic form in Ni that has approxi-
mately a χ distribution with M − N − 1 degrees of free-
dom and N = 2 the number of parameters of the dis-
tribution. In order to assess the GOF quantitatively, we
employ the P-value based hypothesis test. The P-value
serves as an indicator of how likely the null hypothesis
H0 is true. In our case, H0 is the hypothesis that the
observations are Nakagami distributed, leading to the
following calculation of the P-value

P =

∫ ∞

X2
χ2(M − N − 1) dx, (17)

employing equation (16) as the lower bound of integra-
tion.

3.3.2. Rao-Robson Statistic
Given the data, we first have to estimate the pa-

rameters m, ω of the Nakagami distribution before the
GOF test is performed. This is, however, oppos-
ing the general assumption that the parameters of the

distribution are a-priori given before the test is per-
formed. Therefore, another quadratic form in Ni has to
be used, with the Rao-Robson statistic being one possi-
bility (D’Agostino and Stephens, 1986; Lin et al., 2005;
Tao et al., 2006). Considering the parametric form of
the distribution p(x | θ) and the maximum likelihood
estimate θ̂, the Rao-Robson statistic is

RR = V>(θ̂)Q(θ̂)V(θ̂) (18)

with

V(θ) =
Ni − npi

(npi)1/2 (19)

Q(θ) = I + D(θ)[J(θ) − D>(θ)D(θ)]−1D>(θ) (20)

Di j(θ) = pi(θ)
1
2
∂pi(θ)
∂θ j

. (21)

J(θ) is the N × N Fisher information matrix and I is
an M × M identity matrix. The partial derivative with
respect to the distribution parameters ∂pi(θ)

∂θ j
is involved

and presented in Appendix A. The Rao-Robson statis-
tic is χ2 distributed with M − N − 1 degrees of freedom,
leading to P-values computed by

P =

∫ ∞

RR
χ2(M − N − 1) dx (22)
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with the Rao-Robson statistic RR as lower bound of in-
tegration.

3.3.3. Distribution Parameter Estimation
An essential step before the Rao-Robson statistics

can be calculated is the fitting of the Nakgami distri-
bution to the data, resulting in the distribution param-
eters θ. One possibility for calculating the fit is to ap-
ply maximum likelihood estimation (MLE). However,
as there is no closed-form solution this involves an iter-
ative optimization procedure such as Newton’s method.
An alternative approach for calculating the parameters
considers the 2nd and 4th moments

ω = E(x2) (23)

and

m =
[E(x2)]2

E[x2 − E(x2)]2 (24)

with the latter being referred to as inverse normalized
variance estimator (Abdi and Kaveh, 2000) and E the
expected value.

The distribution parameters are estimated for local
windows in the images. The size of the window is a
tradeoff between sufficient statistics for the estimation
and homogeneous structures in the patch. As detailed
previously, a mixture fit is more appropriate for cer-
tain regions (see figure 12), whereas it is more likely to
have homogeneous structures within smaller windows.
Moreover, for applications such as tissue characteriza-
tion and segmentation, the interest lies in working with
small windows to achieve a high spatial resolution of
the parameter map (Noble, 2010). The moment-based
estimation depends on local histograms, which are not
good approximations to the actual distribution for small
windows, and further, the estimation of the parameters
is unstable. The same holds for MLE. Larrue and No-
ble (2011) therefore propose the Gamma kernel density
estimation (GKDE) for Nakagami imaging to achieve a
good fit for a very limited number of data points. The
usage of non-symmetric Gamma kernels

Kx/b+1,b(t) =
tx/b · e−t/b

bx/b+1 · Γ(x/b + 1)
(25)

was shown to lead to better results for the estimation
of highly asymmetric distributions such as Nakagami or
Gamma (Chen, 2000). The resulting Gamma kernel
estimator for a window W containing the data d1, . . . , dl

is

p(x) =
1
l

l∑
j=1

Kx/b+1,b(d j). (26)

The smoothness is controlled by the parameter b, behav-
ing similarly to the variance in Gaussian-based density
estimation. Larrue and Noble (2011) achieved good re-
sults by setting b = 0.05, which performed favorably in
our experiments as well.

In our analysis, we work with three different window
sizes, 80 × 10, 60 × 6, and 20 × 3, with more pixels
being considered along the axial direction. For the two
larger patch sizes, we achieve similar results for MLE
and GKDE with moments, so that we work with the
MLE estimates. For the smallest patch size, we use
GKDE with moments because it leads to more robust
estimates than MLE.

3.3.4. Statistical Results
We perform the statistical evaluation on all 9 datasets,

each one consisting of 3 different acquisitions, resulting
in 27 different images. Further, we use three different
window sizes in order to evaluate the dependency on
the window size. This leads to 81 different configura-
tions for the estimation, where the Rao-Robson GOF
test is performed densely throughout the image for all
6 types of envelope detections. By performing the test
densely throughout the image, we can create a new im-
age with the intensity values being the P-values. We
show these images in figure 13 for the various envelope
detection schemes for one configuration. The brighter
the images, the higher the P-values, and consequently
the better for statistical applications because we achieve
better fits. We note that the bright regions are corre-
sponding to the homogeneous areas in the ultrasound
image because only these areas are appropriately mod-
eled with a single distribution, as discussed previously.

Additionally, we calculate the statistics of the P-
values. We show the box plot for four different con-
figurations in figures 14 and 15. We refer the reader to
the supplementary material for a complete list of box
plots for all different configurations. The red line indi-
cates the median and the box is constructed from the in-
terquartile range. Our results therefore show that the en-
velope detection without the filter bank produces better
fits, which makes sense, because the convolution with
log-Gabor filters changes the distribution of the sam-
ples. More importantly, however, we note the improve-
ment from 1D AS to MS, and further from MS to 2D
AS. This shows on the one hand, the advantage of ap-
plying 2D Hilbert transforms in contrast to 1D ones, and
on the other hand, the advantage of the 2D analytic sig-
nal in contrast to the monogenic signal. This confirms
the visually improved results for 2D envelope detection
from the previous section.

11



Table 1: The tables shows the percentage of P-Values above 0.85 for the various images and envelope detection schemes. The highest percentage
across the envelope detection techniques is marked in bold.

Patient Acqu Frequency Depth Window 1D AS 1D ASF MS MSF 2D AS 2D ASF

1 1 3.3Mhz 4cm
Large 1.61 1.83 4.10 0.66 4.76 1.83
Medium 2.77 2.38 5.04 1.83 6.59 2.60
Small 5.70 3.32 6.98 4.60 7.25 4.49

1 2 3.3Mhz 4cm
Large 1.83 1.50 2.16 0.78 4.71 1.27
Medium 2.60 1.77 4.60 1.38 6.37 2.60
Small 4.60 3.38 6.48 4.37 7.81 5.76

1 3 3.3Mhz 4cm
Large 1.38 2.38 2.99 0.83 4.37 1.38
Medium 2.60 1.77 4.60 1.38 6.37 2.60
Small 4.76 2.38 6.92 4.26 7.14 4.49

2 1 6Mhz 5cm
Large 2.77 0.78 3.32 1.11 4.32 2.55
Medium 3.10 1.11 4.43 1.66 5.43 2.21
Small 6.98 4.32 5.43 4.76 5.32 5.54

2 2 6Mhz 5cm
Large 3.10 1.66 2.66 1.55 3.88 1.66
Medium 3.43 1.00 4.54 1.55 4.65 3.21
Small 6.31 3.65 3.99 4.87 7.75 4.43

2 3 6Mhz 5cm
Large 4.21 0.78 2.44 1.22 3.54 1.33
Medium 2.88 1.77 3.77 2.88 6.31 3.10
Small 4.98 3.54 4.65 5.43 6.53 5.98

3 1 10Mhz 4cm
Large 3.29 0.68 3.00 0.78 3.59 1.36
Medium 5.04 1.55 4.65 0.58 6.40 1.94
Small 3.29 3.39 5.52 3.88 5.91 3.68

3 2 10Mhz 4cm
Large 3.00 0.39 2.33 0.87 3.39 0.58
Medium 3.59 1.84 3.88 1.74 5.91 1.16
Small 6.30 2.81 4.46 3.59 6.69 3.88

3 3 10Mhz 4cm
Large 2.33 0.87 1.74 0.97 3.29 0.87
Medium 3.78 1.16 4.26 2.03 6.30 2.52
Small 4.17 2.91 5.04 4.17 7.17 3.78

4 1 6Mhz 5cm
Large 1.74 0.10 1.26 0.68 1.94 0.58
Medium 2.62 0.78 2.62 1.36 4.26 1.65
Small 3.88 3.00 4.46 4.65 5.43 4.26

4 2 6Mhz 5cm
Large 1.26 0.29 1.55 0.78 3.00 1.45
Medium 2.81 1.74 2.91 2.13 3.59 1.84
Small 4.26 3.10 5.23 3.59 5.91 3.10

4 3 6Mhz 5cm
Large 1.55 0.39 1.45 0.58 2.62 0.68
Medium 2.52 0.48 4.07 1.55 5.33 1.65
Small 4.94 2.62 4.55 4.84 4.65 5.23

5 1 10Mhz 4cm
Large 0.97 0.19 1.55 0.48 2.23 0.87
Medium 2.23 1.16 1.94 1.26 4.94 1.65
Small 4.46 2.23 4.65 3.49 5.91 3.59

5 2 10Mhz 4cm
Large 1.55 0.39 2.13 0.87 2.23 0.87
Medium 2.03 0.87 2.33 0.29 5.23 1.55
Small 5.04 3.59 6.10 4.55 4.07 3.68
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Table 2: The tables shows the percentage of P-Values above 0.85 for the various images and envelope detection schemes. The highest percentage
across the envelope detection techniques is marked in bold.

Patient Acqu Frequency Depth Window 1D AS 1D ASF MS MSF 2D AS 2D ASF

5 3 10Mhz 4cm
Large 0.97 0.19 1.07 0.58 2.42 0.48
Medium 2.62 0.97 3.00 1.07 3.68 1.36
Small 3.88 2.23 4.07 3.29 5.62 3.88

6 1 6Mhz 4cm
Large 2.13 0.68 2.62 1.55 3.68 1.84
Medium 4.55 1.74 4.46 1.65 5.72 3.39
Small 5.43 2.71 5.23 4.17 4.75 5.52

6 2 6Mhz 4cm
Large 3.49 0.78 2.81 2.13 4.65 1.65
Medium 4.84 1.36 4.84 1.84 6.30 2.23
Small 5.81 3.49 5.23 4.17 6.69 4.65

6 3 6Mhz 4cm
Large 2.91 0.78 3.20 1.45 3.78 1.74
Medium 4.26 1.26 4.07 2.42 5.72 2.71
Small 6.20 3.10 5.91 4.75 6.10 5.04

7 1 10Mhz 4cm
Large 2.62 0.58 3.59 0.78 4.36 1.94
Medium 3.88 1.84 4.36 1.55 5.04 2.91
Small 5.04 3.10 5.62 4.46 6.10 5.04

7 2 10Mhz 4cm
Large 3.20 0.87 3.49 1.45 3.88 1.07
Medium 4.55 1.84 4.07 1.45 5.33 2.42
Small 5.43 3.00 5.43 4.26 6.59 3.88

7 3 10Mhz 4cm
Large 2.62 0.78 3.00 0.87 4.46 2.33
Medium 3.49 1.45 5.04 1.55 5.62 2.13
Small 3.88 2.91 5.91 4.75 5.72 5.14

8 1 6Mhz 5cm
Large 2.23 0.68 2.52 0.78 3.97 3.00
Medium 3.00 1.36 3.59 2.42 5.72 3.39
Small 4.94 2.33 4.84 5.14 6.10 4.17

8 2 6Mhz 5cm
Large 2.13 0.68 2.71 1.16 4.65 1.16
Medium 3.59 0.87 4.36 2.52 5.43 3.59
Small 5.72 3.20 5.33 5.04 6.20 3.78

8 3 6Mhz 5cm
Large 2.81 0.48 3.29 1.74 3.97 0.97
Medium 3.29 1.36 3.97 2.33 5.81 2.81
Small 4.36 3.10 5.72 4.75 6.01 3.29

9 1 10Mhz 5cm
Large 1.45 0.48 2.23 0.78 2.52 0.78
Medium 2.03 0.97 2.91 0.78 3.29 1.84
Small 3.39 2.71 5.33 4.55 6.59 4.84

9 2 10Mhz 5cm
Large 0.78 0.97 2.23 0.58 3.29 0.78
Medium 3.10 1.65 3.59 1.07 4.75 1.36
Small 3.49 3.00 5.14 3.20 6.20 3.97

9 3 10Mhz 5cm
Large 1.16 0.48 1.36 0.29 2.62 1.26
Medium 2.03 0.68 2.42 1.55 4.75 2.13
Small 3.78 3.20 4.75 4.36 6.20 4.36
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Figure 16: Ultrasound image with biopsy needle (left). Calculated local orientation for monogenic signal (middle) and 2D analytic signal (right).
Center line of the needle is indicated with the dashed white and black line, respectively.

While the images give a good overview about the spa-
tial distribution of the P-values and the boxplots nicely
illustrates their statistics, it is difficult to show the results
for all 81 configurations compactly. Consequently, we
quantify the percentage of P-values that are above 0.85
for each image, corresponding to appropriate fits. The
results are shown in tables 1 and 2. Generally, better
fits are achieved for smaller window sizes. This is com-
prehensible, because smaller windows are more likely
to contain homogeneous tissue. In the tables, we high-
light the percentage of the envelope detection scheme
in bold that performed best. The envelope detection
with the 1D AS is best in 3.7%, the MS in 2.5%, the
2D AS in 91.4%, and 2D ASF in 2.5% of the cases.
This clearly shows that the application of the 2D ana-
lytic signal leads to advantages in the statistical analysis
in most of the cases. Just regarding these numbers, one
is tempted to assume that 1D AS performs better than
MS. This is, however, not the case because the MS out-
performs the 1D AS in most of the cases that 2D AS
performs best.

4. 2D Analytic Signal on B-mode Images

Next to the benefits of the 2D analytic signal for the
demodulation of RF data, it also allows for a more accu-
rate estimation of local features on B-mode images (Wi-
etzke et al., 2009). This has the potential to increase
the quality of follow-up applications such as registra-
tion (Grau et al., Sept. 2007; Mellor and Brady, 2005;
Zhang et al., 2007), segmentation (Hacihaliloglu et al.,
2008), and detection (Mulet-Parada and Noble, 2000),
which use the local features as input. To demonstrate
this, we calculate the local orientation on B-mode im-
ages showing a biopsy needle. In figure 16, we illustrate
the local orientation that is estimated from the mono-
genic signal and the 2D analytic signal, both with filter-
ing. The correct location of the needle is overlaid with
a dashed line. The estimation from the monogenic sig-
nal shows no consistent orientation information in the
region of the needle. In contrast, the improved concept

of the 2D analytic signal indicates a consistent result.
These images can be integrated in common algorithms
for needle detection in ultrasound, such as the sticks al-
gorithm (Czerwinski et al., 1999). Our results are in line
with the findings in Wietzke et al. (2009), stating that
the 2D analytic signal also leads to a more accurate esti-
mation of i1D features in comparison to the monogenic
signal.

5. Conclusion

We demonstrated that the application of the 2D an-
alytic signal has multiple advantageous for RF and B-
mode data. The demodulation of RF signals with the
2D analytic signal enables a more consistent extraction
of structures, because the signal is analyzed in its natural
2D context. We further showed that the improved enve-
lope detection enables the creation of B-mode images
of enhanced quality. To validate this, we applied a pro-
prietary post-processing filtering for ultrasound on the
log-compressed images and compared the result of 1D
and 2D analytic signal. Moreover, we illustrated the im-
proved statistical properties of envelope data resulting
from the 2D analytic signal by performing goodness-
of-fit tests to a Nakagami distribution. This is done for
multiple patients and multiple window sizes. We ap-
plied the Gamma kernel density estimation in order to
be able to work with small window sizes. Finally, the
advanced signal model of the 2D analytic signal leads
to benefits in the estimation of local features in B-mode
images, as we have illustrated for the case of needle de-
tection.

For the demodulation, we focused on scans from a
linear transducer. For curved linear transducers, the ap-
plication of 2D Hilbert transforms without a previous
scan conversion can be achieved with the polar Fourier
transform (Averbuch et al., 2006). The integration of
the bandpass filter is more challenging because of the
large variation in lateral distance along the beam. This,
together with the incorporation of mixture models in the
statistical analysis, remains as future work.
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∂
∫ bi

ai
Γ (x | α, β) dx

∂β
= −(α2Γ (α))−1 [

− (aiβ)α 2F2(α, α; 1 + α, 1 + α; −aiβ) + (biβ)α 2F2(α, α; 1 + α, 1 + α; −biβ) (27)

+ α2Γ (α, biβ) ln (biβ) − α2Γ (α) ln (biβ) − α2Γ (α, aiβ) ln (aiβ) + α2Γ(α) ln(aiβ) − α2Γ(α, biβ)Ψ(α) + α2Γ(α, aiβ)Ψ(α)
]
.
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Appendix A. Derivative of Nakgami Distribution

Making use of the Nakagami-Gamma relationship

Y ∼ N(x | µ, ω) ⇒ Y2 ∼ Γ(x | µ,
ω

µ
), (A.1)

the data can be transformed to follow the Gamma dis-
tribution. Hence, the required derivations of the deriva-
tives w.r.t. to the parameters can be performed on the
Gamma distribution.

Most previous approaches that perform GOF tests on
ultrasound data restrict their analysis to the simpler case
of Gaussian distributions (Lin et al., 2005). The Gamma
distribution is

Γ (x | α, β) =
βαxα−1e−xβ

Γ (α)
. (A.2)

For the calculation of the of the Rao-Robson statistics
(cf. equation 21), the partial derivative of the binned dis-
tribution in the interval [ai, bi] with respect to both pa-
rameters {α, β} is required. The derivation with respect
to the first parameter α is

∂
∫ bi

ai
Γ (x | α, β) dx

∂α
=

(biβ)α e−biβ − (aiβ)α e−aiβ

βΓ (α)
.

(A.3)
Denoting the generalized hypergeometric function by

2F2, we obtain equation (27) for the derivation with re-
spect to β.
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