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Abstract

Respiratory motion is a challenging factor for image acquisition and image-guided procedures in the abdominal and
thoracic region. In order to address the issues arising from respiratory motion, it is often necessary to detect the
respiratory signal. In this article, we propose a novel, purely image-based retrospective respiratory gating method
for ultrasound and MRI. Further, we apply this technique to acquire breathing-affected 4D ultrasound with a wobbler
probe and, similarly, to create 4D MR with a slice stacking approach. We achieve the gating with Laplacian eigenmaps,
a manifold learning technique, to determine the low-dimensional manifold embedded in the high-dimensional image
space. Since Laplacian eigenmaps assign to each image frame a coordinate in low-dimensional space by respecting
the neighborhood relationship, they are well suited for analyzing the breathing cycle. We perform the image-based
gating on several 2D and 3D ultrasound datasets over time, and quantify its very good performance by comparing it
to measurements from an external gating system. For MRI, we perform the manifold learning on several datasets for
various orientations and positions. We achieve very high correlations by a comparison to an alternative gating with
diaphragm tracking.
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1. Introduction

Respiration is a cyclic, irregular motion that leads to
deformations in the abdominal and thoracic region. The
respiratory signal monitors the current breathing phase
of the patient. For numerous applications, it is neces-
sary to assign each image the corresponding respiratory
phase in which it was acquired. One example is im-
age mosaicing, where only the fusion of images from
the same breathing state leads to consistent panorama
images (Wachinger et al., 2008; Wachinger and Navab,
2009).An alternative to breathing gating are breath-hold
acquisitions, but they further complicate the procedure
and are dependent on the patients ability for breath-
hold. A further application is radiation therapy, where
organ motion due to respiration can lead to inaccura-
cies during target localization (Flampouri et al., 2006).
These inaccuracies require the treatment margins to be
much larger than the tumor size, resulting in exposure
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of the healthy tissue in the surroundings to a high radia-
tion dose (Colgan et al., 2008). It is therefore necessary
to study the respiratory motion in the planning process
to decrease treatment margins. For an accurate analysis,
4D imaging techniques are necessary in order to han-
dle the motion of the organs over time (Remmert et al.,
2007; Li et al., 2008). Prospective and retrospective
gating methods exist, with advantages of retrospective
approaches being discussed in (Rohlfing et al., 2001).
We describe the creation of 4D ultrasound (US) and 4D
magnetic resonance (MR) data with a retrospective ap-
proach in further details throughout the article.

The measurement of the breathing phase is generally
achieved with external gating systems, attached to the
patient. The disadvantage of the usage of such systems
are long setup times, the prolongation of the overall ac-
quisition, and its high costs. Additionally, the image
data stream and the respiratory signal have to be syn-
chronized, which is not trivial. For certain imaging de-
vices, such as CT and MR scanners, solutions for the
synchronization exist, however, we are not aware of
such a possibility for ultrasound; leaving the synchro-
nization to the user. The consequence is that gating
systems are rarely used in practice. In this article, we
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Figure 1: Wobbler angle (blue) and respiratory phase (gray) over time. Dashed lines indicate respiratory change d within one sweep. Dash dotted
line indicates frames from same angle over several breathing cycles.

propose a purely image-based retrospective respiratory
gating system using manifold learning. The proposed
method is fully automatic and does not need any prior
information about the anatomy, training data, or user in-
teraction. The basic performance of our algorithm is to
assign to a stream of images acquired from the same
position over time the corresponding respiratory signal.
It builds upon the assumption that the breathing cycle
forms a continuous manifold in image space with points
at similar positions on the manifold related by the state
of the breathing cycle. In this work, we deal with 2D
images, however, we are not limited to it. In the follow-
ing, we explain how we apply this basic technique for
the creation of 4D ultrasound and 4D MR data. A pre-
liminary version of this work was previously presented
at conferences (Wachinger et al., 2010b; Yigitsoy et al.,
2011).

1.1. 4D Ultrasound with Wobbler

One application that we investigate in more details,
and for which we have not yet found a solution proposed
in the literature, is the acquisition of breathing-affected
4D ultrasound with a mechanically steered transducer,
also referred to as wobbler. The problems for using a
wobbler in such a scenario is that images in one sweep
do not contain consistent information, but represent the
anatomy in different breathing states. We illustrate this
in Figure 1, where we schematically plot the deviation
angle of the wobbler together with the respiratory signal
over time. The phase difference d indicates the range of
breathing phases accumulated in one sweep. We pro-
pose to select all frames acquired from the same angle
(dash dotted line) and apply the image-based gating on
each of these sets of images. Having the respiratory sig-
nal estimated for each angle, we align these local curves
and apply a robust spline curve fitting to create a glob-
ally consistent respiratory signal. This, consequently,

allows us to reconstruct volumes for specific breathing
stages.

An alternative to the application of a wobbler to ob-
tain 4D ultrasound would be a native 3D transducer with
elements arranged on a 2D array. Such systems, how-
ever, are still expensive and the access to data streaming
and radio frequency data is very restricted. Our pro-
posed method is, nevertheless, also interesting in con-
junction with 2D array transducers, because we can per-
form the breathing-gating on the acquired volumetric
data.

1.2. 4D MRI with Navigator Slices
Several techniques based on MRI have been pro-

posed in the literature to handle the respiratory motion.
Among these are breath-hold and slice stacking tech-
niques. The problem with breath-hold is that patients
may not be able to hold their breath during the acquisi-
tion. von Siebenthal et al. (2007) use the slice stacking
method where 2D slices from different locations having
the same breathing state are stacked together to recon-
struct a 3D image for that state. They acquire dedicated
high quality slices, called navigator slices, at a fixed lo-
cation to determine a similarity criterion to be applied
during the sorting of data slices.

The acquisition process for the slice stacking ap-
proach is illustrated in Figure 2. It is differentiated be-
tween data slices Dp

i with p indicating the position and
i indicating time and navigator slices Ni. As already
mentioned, the navigator slices are acquired at a fixed
location and are used to estimate the breathing phase.
An alternating acquisition scheme,

{. . . ,Ni,D
p
i+1,Ni+2,D

p+1
i+3 ,Ni+4,D

p+2
i+5 , . . .}, (1)

is applied to interleave the data slices and navigator
slices, as shown in Figure 2. Further details about the
acquisition process are presented in (von Siebenthal,
2008).
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Figure 2: (a) Sagittal slices from the volume of interest. Data slices D1,D2,D3 and the dedicated navigator slice, N. (b) The interleaved acquisition
of data and navigator slices. Solid squares indicate navigator slices while the others indicate data slices with the position number displayed in the
boxes. In this case only 3 positions are illustrated. Courtesy of von Siebenthal et al. (2007).

In order to find data slices that are acquired in the
same breathing state, its surrounding navigator slices
are compared. The rationale is to assume that if the en-
closing navigator slices are similar, then the data slices
are in the same breathing state. For comparing navi-
gator slices, non-rigid registrations are performed (von
Siebenthal, 2008). Although this produces the desired
results, the processing time, ranging from 10 to 100
hours, is the major drawback of this method for us-
age in clinical practice. Our proposed method is able
to recover the breathing signal from the navigator slices
within seconds. It can either be applied on its own or
as a pre-processing step for the non-rigid registration by
defining a search window. This significantly reduces the
processing time for the non-rigid registration because of
the pre-selection of navigator slices to be registered.

Once 4D MRI data is available, it can be used to build
a continuous motion model by interpolating between the
discrete time points of the 4D data set. To this end, a
respiratory phase needs to be assigned to each volume
in the set, in order to solve for the motion model coef-
ficients (Rijkhorst et al., 2010). In our experiments, we
show that the proposed method is suitable for identify-
ing the respiratory phase on such data.

1.3. Comparison of Both Applications

The described applications for 4D imaging with ul-
trasound and MR are very similar. Both build upon the
retrospective gating of 2D slices. With the gating in-
formation, it is possible to select frames that were ac-
quired in the same breathing state and to consecutively
construct a volume for each state. The major difference

between both applications is the acquisition of naviga-
tor slices for MR. The availability of the navigator slices
facilitates the application because the extracted respira-
tory signal serves as global gating signal and the sorting
of the data slices is done relatively to it. As we will de-
scribe later on in more details, the proposed technique
for 4D ultrasound imaging aligns local breathing curves
to construct the global signal.

2. Related work

There are many articles on image-based gating in ul-
trasound for detecting the cardiac motion (Treece et al.,
2002; Zhu et al., 2003; de Winter et al., 2003; Kara-
dayi et al., 2006). These approaches apply techniques
that are either (i) specific to detecting the cardiac sig-
nal e.g. centroid algorithm (Karadayi et al., 2006), (ii)
based on user interaction (Treece et al., 2002), or (iii)
designed for intravascular ultrasound (Zhu et al., 2003;
de Winter et al., 2003). In (Sundar et al., 2009), a gen-
eral technique for breathing gating is proposed and ap-
plied to ultrasound data. It bases on the phase correla-
tion technique to estimate the motion between succes-
sive frames. The breathing phase is estimated from the
energy change between consecutive frames. The inher-
ent limitation of the phase correlation algorithm is that it
finds the global translation in the image plane. Consid-
ering that ultrasound images and MR slices are 2D cross
sections of the body, the organ motion is not necessarily
in-plane, and consequently, there is no uniform global
translation. This issue is further discussed in Section 4.
In von Siebenthal (2008), the non-rigid registration of
navigator slices is applied for image-based breathing
gating in MRI.
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Several manifold learning techniques were pro-
posed in the literature with common techniques being
Isomap (Tenenbaum et al., 2000), locally linear embed-
ding (Roweis and Saul, 2000), and Laplacian eigen-
maps (Belkin and Niyogi, 2003). Since its introduc-
tion, manifold learning has been applied for a mul-
titude of applications, including segmentation (Zhang
et al., 2006), registration (Rohde et al., 2008; Hamm
et al., 2009; Wachinger and Navab, 2010), track-
ing (Lee and Elgammal, 2007), recognition (Arand-
jelovic and Cipolla, 2007; Wachinger et al., 2010a), de-
tection (Jamieson et al., 2010; Suzuki et al., 2010), com-
putational anatomy (Gerber et al., 2009), and 4D CT re-
construction of the lung (Georg et al., 2008). For the re-
construction approach, manifold learning is performed
on slabs, where a manual inspection is necessary to crop
the slabs to contain only lung tissue. Further, Isomap is
used to create the low-dimensional embedding. In our
work, we focus on Laplacian eigenmaps, since it pro-
vided us with better results in comparison to Isomap.
Further, we deal with the specific challenges of the in-
tegration of 4D ultrasound wobbler data and 4D MRI
slice stacking. Since each 4D imaging technique has its
own acquisition protocol, the common manifold learn-
ing framework has to be adapted accordingly, as dis-
cussed in the next section.

3. Manifold Learning

The general idea of manifold learning is to project
a manifold in high-dimensional space RN to a low-
dimensional space Rn, while preserving the local neigh-
borhood. We propose the application of Laplacian
eigenmaps (Belkin and Niyogi, 2003) for the respiratory
phase estimation because the technique is well founded
on mathematical concepts (Laplace Beltrami operator)
and computationally efficient. Laplacian eigenmaps
build upon the construction of a neighborhood graph
that approximates the manifold, on which the data
points lie. Subsequently, the graph Laplacian is applied
to calculate a low-dimensional representation of the data
that preserves locality.

Considering k points a1, . . . , ak in RN lying on a man-
ifoldM, we want to find a set of corresponding points
b1, . . . ,bk in the low-dimensional space Rn (n � N).
We define weights W between all pairs of input points,
which reflect the locality of points. One possibility for
the weights proposed in (Belkin and Niyogi, 2003) is
derived from the heat kernel

Wi, j = exp(−||ai − a j||
2
2/t). (2)

The parameter t weights the influence of neighbor-
ing points. The optimization in Laplacian eigenmaps
that tries to preserve the locality of points in low-
dimensional space is

arg min
{b1,...,bk}

∑
i, j

Wi, j · ||b j − bi||
2
2. (3)

We see that points that are close in high-dimensional
space should be arranged close in low-dimensional
space to avoid a high cost caused by the high weight.
Calculating the diagonal matrix Di,i =

∑
j Wi, j, we can

construct the Laplacian matrix L of the graph

L = D −W. (4)

With the relationship
∑

i, j Wi, j · ||b j − bi||
2
2 = 2 ·

trace(B>DB − B>WB), the optimization can be formu-
lated as trace minimization

min
B ∈ Rk×n

B>DB = I
b(l)>D1 = 0

trace(B>LB) (5)

with B = [b1, . . . ,bk]> and further considering column
vectors b(l), enabling to write B = [b(1), . . . ,b(n)]. The
constraints guarantee, among others, the orthogonality
of the different dimensions, preventing a collapse onto a
subspace of dimension less than n. Many dimension-
ality reduction techniques can be formulated as trace
optimization problems (Kokiopoulou et al., 2011). The
optimal solution of the optimization problem is given by
the first n eigenvectors corresponding to the lowest, non-
zero eigenvalues of the generalized eigenvalue problem
(D −W)v = λDv. The solution is unique up to unitary
transformations (Kokiopoulou et al., 2011).

3.1. Manifold Learning for Gating
Considering k images U = {u1, . . . ,uk} that are ac-

quired over several breathing cycles, we want to find
the corresponding breathing phase φi of each image ui.
In terms of manifold learning, the images correspond
to the high-dimensional points, ai = ui, and the phase
to the low-dimensional embedding, bi = φi. We con-
sider one dimension of the ambient space for each im-
age pixel, so N is corresponding to the resolution of
the images. For the low-dimensional space, we inves-
tigated n = {1, 3} as possible dimensions. We also ex-
perimented with the two dimensional space, however,
the results were similar to the one dimensional case.
This behavior may be due to the repeated eigendirec-
tions problem, which is associated to the specific shape
of the manifold, as discussed in (Gerber et al., 2007).
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Figure 3: (a) Local breathing signals from manifold learning before alignment. Illustrated is the case for 3 angles (3 colors). X-axis indicates
ultrasound frame number. (b) Local breathing signals after alignment. (c) Reconstructed global breathing signal (red) is calculated by robustly
fitting a spline curve through the aligned local signals (green crosses). The ground truth signal is shown in blue. Dotted lines indicate the separation
of the breathing cycle into several stages. For each stage a volume is compounded.

The manifold learning m then assigns each image a
coordinate in the low-dimensional space

m : RN → Rn (6)
ui 7→ φi, (7)

with 1 ≤ i ≤ k. The suggestion that images dur-
ing free breathing lie on a low-dimensional manifold
in the ambient space is justified because variations be-
tween neighboring slices are smooth, and further, slices
from the same respiratory phase but different acquisition
times are similar. Each image in the respiratory cycle
corresponds to a point in high-dimensional space. Dur-
ing breathing, we are moving back and forth along this
manifold or trajectory in high-dimensional space. The
underlying optimization problem of manifold learning
tries to optimally preserve local information, cf. equa-
tion (3), meaning that similar images are mapped to sim-
ilar positions in the low-dimensional space. With mani-
fold learning, we are therefore able to project the man-
ifold in high-dimensional space, with the images lying
on it, to low dimensions. Since the dominant change
in the images in the abdominal region is due to respi-
ration, the respiratory information is obtained with the
first or first few lower dimensions. Consequently, it is

reasonable to use φi as an estimate of the respiratory
phase. Important to notice is that we do not use a pa-
rameterization of the expected motion, as it is the case
in (Sundar et al., 2009) with global translation. The
proposed method can therefore deal with complex mo-
tion patterns, e.g. local translation, rotation, deforma-
tion, out-of-plane motion, because the low-dimensional
embedding is only based on the similarity of images.

The similarity measure is important for neighborhood
selection and weighting, where the calculation of the
Euclidean distance between the points is equivalent to
calculating the sum of squared differences (SSD) be-
tween the images. A vast number of similarity mea-
sures is proposed in the context of medical image reg-
istration (Hajnal et al., 2001). Since we deal with
monomodal data for our application, we investigate the
performance of SSD and the correlation coefficient. The
calculation of correlation coefficient is up to additive
and multiplicative constants equivalent to the calcula-
tion of SSD on normalized input images (Viola, 1995).
We therefore only have to normalize the input images to
achieve the performance of the correlation coefficient.
The normalization is done by subtracting the mean and
by dividing by the standard deviation. Once the neigh-

5



Figure 4: 3D rendering of compounded volume for one of the breath-
ing stages.

borhood graph is constructed, the eigenvectors of the
graph Laplacian provide the embedding map.

3.2. Global Consistency in 4D US

The image acquisition processes for US and MR bear
certain similarities, however, the availability of naviga-
tor slices for MR facilitates the application. For MR, we
only perform the manifold learning on navigator slices,
which are acquired at the same position, leading directly
to a global respiratory signal. For ultrasound, we do not
have those specific slices and have to perform the mani-
fold learning on the data slices. The idea is to estimate a
local breathing signal for each deflection angle and, sub-
sequently, calculate the global respiratory signal from
the local ones.

Given U the set of all acquired images, we partition
the set in disjunct subsets U1, . . . ,Uα, corresponding
to the number of different deflection angles α of the
wobbler (dash dotted region in Figure 1). We perform
the manifold learning for each of the subsets separately
m j(ui) = φ

j
i , with 1 ≤ j ≤ α. So depending on the

acquisition angle of the ultrasound image ui, the corre-
sponding manifold learning m j is performed. Consid-
ering all the phases estimated from one angle, we have
the local respiratory signals Φ j = {φ

j
1, . . . , φ

j
v}, with v

the number of frames per angle. Each local signal con-
tains a consistent estimation of the breathing signal. It
is, however, not possible to directly compare local sig-
nals, because the 1D projection of the manifold learning
can be in an arbitrary range. This is illustrated in Fig-
ure 3(a) with exemplary three local signals correspond-
ing to three angular positions. A simple normalization
of each of the local signals Φ j is not sufficient because
the extreme positions of the breathing cycle may not be
reached within them. Consequently, we affinely register
local signals in order to retrieve the best scaling s j and
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Figure 5: Analysis of the gating techniques for synthetic images.
Three different motion scenarios are illustrated in the top row. The
corresponding gating curves for the phase correlation are shown in the
middle row. The last row shows results for manifold learning. Note
that in this case the gating results for all three scenarios are identical
and corresponding to the surrogate signal.

translation t j

Φ j 7→ s j · Φ j + t j. (8)

Note that this is a 1D affine registration and that scaling
and translation are only performed in breathing phase
direction (y-axis). We do not have to register in tempo-
ral direction, because the acquisition time of the images
is provided by the ultrasound system. This is, in fact,
a groupwise registration scenario, where we choose to
align each pair of neighboring curves with a pairwise
registration, starting from the middle one. The sum of
the Euclidean distances between the temporally closest
points serves as cost function. The result of the align-
ment is shown in Figure 3(b).

The values of the partial signals Φ j are now compa-
rable, but may still contain outliers. Consequently, we
apply a robust curve fitting to all the sample points to
retrieve the global breathing signal. We experimented
with various curve models, including Fourier, sum of
sine waves, and splines. We achieved best results with
fitting a spline curve because it allows for the most flex-
ibility, which is important due to irregularity of free
breathing. The value of the fitted curve then represents
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the breathing phase of the ultrasound frames, see Fig-
ure 3(c).

In a final step, the breathing cycle is classified into
several breathing stages. For each of the breathing
stages, the ultrasound frames along the various angles
are gathered, and compounded into a final volume, see
Figure 3(c) and 4.

4. Experiments for 4D Ultrasound

For our experiments we use an ultrasound system
from Ultrasonix (Richmond, Canada) and an optical
tracking system from A.R.T. (Weilheim, Germany).
Both systems are connected to a workstation PC. For the
synchronization, we time stamp the data on the tracking
system and use a network time server to calculate the
time offset. For the ultrasound data, we use the direct
streaming of B-mode images over the network. We per-
form tests on eight patient datasets acquired from differ-
ent positions, focusing on the liver and kidney. We ac-
quire 2D ultrasound images over time with a curved lin-
ear transducer (C5-2/60) and for the 3D+t experiments
we use a wobbler probe (4DC7-3/40). The acquisition
frequency was in the range of 3-5 MHz and the depth
setting varied between 14 and 20 cm. All acquisitions
were performed with the patient lying in the supine po-
sition.

In order to validate our results, we compare them
to the measurements of an external gating system.
Martinez-Möller et al. (2007) compared four different
gating systems and obtained the best results with an
elastic belt and an optical tracking system. We place
a tracking target, consisting of 7 retro-reflective marker
balls, on the chest of the patient. Our setup is more
accurate than the one in (Martinez-Möller et al., 2007)
for PET tracking, because our field of view is not hin-
dered by the tube, enabling the tracking with four cam-
eras from different views. Since we are only interested
in the relative motion of the tracking target, and not in
the absolute pose, constant target offsets and calibration
errors do not influence the result; leading to a precise
monitoring of the respiratory motion. The tracking sys-
tem provides the pose of the tracking target in 3D space,
which consists of 3 translational and 3 rotational com-
ponents. We apply a principal component analysis of
the 6D tracking data to find the principal component
along which direction we measure the breathing motion.
This is, for instance, done analogously for motion mod-
eling in lung radiotherapy (McClelland et al., 2006).
Further, we low-pass filter the signal to remove cardiac
motion and extract the respiratory signal. We refer to the
tracked signal as ground truth, which is not completely
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Figure 7: Breathing gating results for 2D (red solid: estimated signal,
blue dashed: ground truth, green dash-dotted: phase correlation).

2D Corr Coeff

liver1 95.4 %
liver2 94.4 %
liver3 93.6 %
kidney 97.3 %

Table 1: 2D+t results

3D Corr Coeff

liver 30◦ 94.3 %
liver 45◦ 95.8 %
liver 60◦ 96.8 %

kidney 45◦ 94.4 %

Table 2: 3D+t results

correct because it contains tracking errors. However,
it is the best that can currently be achieved (Martinez-
Möller et al., 2007) and is sufficient to validate the per-
formance of our image-based approach.

We compare our approach to the phase correlation
technique for 2D+t images applied in (Sundar et al.,
2009) 1. In order to have a fair comparison, we use 2D
images sequences over time from different parts of the
liver. Unfortunately, with the phase correlation tech-
nique, we do not achieve meaningful results for our
datasets. We think that this is due to the limitation of the
approach to approximate the 3D motion with a global
translation in 2D. In order to illustrate this limitation, we
produced synthetic images that show periodic motion.
The first scenario consists of a rectangle moving up and
down, see Figure 5. For the second, we add a fixed rect-
angle, and for the third we add a rectangle that grows
and shrinks (see additional material for videos). We plot
the corresponding energy curves of the phase correla-
tion technique. We further show the gating results for
our manifold learning approach in Figure 5, which are
identical for all three scenarios and corresponding to the
ground truth signal. The result with the phase correla-
tion technique for the first scenario (blue) is approximat-
ing the true signal. The addition of a fixed object (red)

1We want to thank the authors of (Sundar et al., 2009) for sharing
source code.
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Figure 6: 2D Ultrasound images over time from liver (abdomen, right upper quadrant, oblique section) and kidney (left lateral decubitus position,
right intercostal flank section).

leads to a signal with double frequency and the addition
of the shrinking/growing object (green), leads to a fur-
ther distortion of the motion signal. Since the results
are already not optimal for this easy synthetic case, it is
comprehensible that this approach is not best suited for
breathing estimation in a noisy ultrasound or MR envi-
ronment with 3D anatomy moving in and out of plane.
Additional results of the phase correlation technique on
real data are discussed in following paragraphs.

The resolution of our ultrasound images is 640 × 480
pixels. We downsample the images in each direction by
a factor of 2, leading to N = 1

4 · 640 · 480. This enables
a faster processing and leads to no noticeable degrada-
tion of the manifold learning. We show excerpts of two
data sets in Figure 6. We perform all our experiments
with a graph neighborhood of l = 14. The number of
images for manifold learning varies between 100 and
300, where we did not notice a dependency of the per-
formance on the number of input samples. For the low-
dimensional space, we perform experiments with em-
beddings to 1D and 3D. In the case of the ultrasound
images, however, the results are very similar, so that we
concentrate on the 1D case.

In Figure 7, we show the result of the respiratory gat-
ing for one of the 2D datasets together with the ground
truth signal. For comparison, we also plot the result
of the phase correlation technique, which confirms the
findings in the synthetic experiments. We also calculate
the correlation coefficient (CC) between the detected
and ground truth signal for multiple 2D data sets, shown
in table 1. It is remarkable that the ground truth signal
is almost perfectly detected. All peaks in the ground
truth signal also appear in the detection. Further, the

calculation of the correlation, which is in the range of
95%, confirms the visual similarity of the graphs. We
also experimented with normalizing the images before
passing them to the manifold learning, noticed however
no significant improvement.

For the 4D experiments, we show the result of a fitted
curve in Figure 3. We also calculate the correlation co-
efficient between the fitted curves and ground truth for
four datasets, see table 2. We experimented with three
different angular ranges, 30◦, 45◦, and 60◦ (maximum
of probe), for which the probe steers to 15, 21, and 29
different angular positions. We split the breathing sig-
nal into 9 different breathing stages, and compound a
3D volume for each of the stages. A volume rendering
of one of the volumes is shown in Figure 4. The addi-
tional material contains a video showing the 4D volume
rendering.

We perform one-sided significance tests for unknown
mean and unknown standard deviation to assess the
statistical properties of our results. Under the null-
hypothesis H0 that the correlation between tracking and
gating is lower than 93.6%, we obtain a p-value lower
than p < 0.005. The null-hypothesis can therefore be
rejected and the result is considered to be statistically
significant.

All image-based approaches rely on ultrasound ac-
quisitions from the same position, because otherwise it
is not possible to differentiate between probe motion
and breathing motion. To investigate this assumption,
we attached a tracking target to the transducer and ana-
lyzed its trajectory. This analysis showed only a negligi-
ble deviation. The still position therefore does not limit
the applicability of our method, which is also confirmed

8



Figure 8: Sample slices selected from one breathing cycle. Red-square markers indicate the slice locations in the signal. The auxiliary line assists
in observing the liver movement.
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Figure 9: Breathing gating results for MRI navigator slices from ETH dataset (red solid: estimated signal, blue dashed: ground truth, green dash-
dotted: phase correlation). The correlation between the manifold learning and ground truth is 98%, between phase correlation and ground truth is
2%.

by our good gating results.

We perform statical tests to analyze the significance
of our results. Under the null-hypothesis H0 that the
correlation between tracking and gating is lower than
93.6%, we obtain a p-value lower than p < 0.005. The
null-hypothesis can therefore be rejected and the result
is considered to be statistically significant.

All image-based approaches rely on ultrasound ac-
quisitions from the same position, because otherwise it
is not possible to differentiate between probe motion
and breathing motion. To investigate this assumption,
we attached a tracking target to the transducer and ana-
lyzed its trajectory. This analysis showed only a negligi-
ble deviation. The still position therefore does not limit
the applicability of our method, which is also confirmed
by our good gating results.

5. Experiments for 4D MRI

We perform experiments on four different MRI
datasets to evaluate the proposed method. Two of
them originate from ETH and two from UCL. For
each dataset, diaphragm tracking is performed to have
a ground truth (GT) signal to compare to. More de-
tails on the utilized diaphragm tracking are presented
in (Timinger et al., 2005; Nguyen et al., 2009; King
et al., 2009). The general disadvantage of diaphragm
tracking is its limitation to certain slice positions and
orientations. For our experiments this is fine because
we only need a reference signal and we can select the
slice with the best visibility of the diaphragm for track-
ing. A further advantage of the proposed method is that
it is applicable to almost any slice orientation and po-
sition, as is shown in following. Moreover, diaphragm
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Table 3: Statistical analysis of results for gating on MRI. Correlation coefficients are calculated for all orientations and all positions for 3 datasets.
Mean CC and standard deviations for each orientation are indicated. We further calculated the CC for the null hypothesis such that the p-value of a
one-tailed t-test is p < 0.005.

Datasets Orientation Number of Positions Mean CC STD CC CC s.t. (p < 0.005)

ETH
Sagittal 25 98.5 % 0.90 98.0 %
Coronal 164 99.2 % 0.31 99.1 %

Axial 256 99.1 % 0.66 99.0 %

UCL
Sagittal 78 97.1 % 1.37 96.7 %
Coronal 143 95.4 % 2.61 94.8 %

Axial 288 94.2 % 4.46 93.5 %

UCL (filtered)
Sagittal 78 97.7 % 0.94 97.4 %
Coronal 143 95.7 % 2.60 95.1 %

Axial 288 94.4 % 3.19 93.9 %

UCL Motion Model
Sagittal 159 98.9 % 0.54 98.8 %
Coronal 168 98.7 % 0.98 98.5 %

Axial 200 98.5 % 1.13 98.3 %

tracking necessitates the manual placement of a track-
ing window, while the proposed method is totally auto-
matic.

5.1. ETH Datasets
The first dataset is the navigator slices acquired at

ETH by von Siebenthal et al. (2007), as described in
Section 1.2. These slices have a spatial resolution of
255 × 255, a temporal resolution of about 2.7 Hz, and
are acquired with a Philips 1.5T Achieva. The sagittal
plane was chosen as the imaging plane due to its ease
of tracking vascular structure with minimal out-of-plane
motion, since the dominant motion of the liver is in the
superior-inferior direction (Rohlfing et al., 2004). A re-
constructed breathing cycle with sample MR images is
shown in Figure 8. We further show a comparison be-
tween the reconstructed signal of all navigator slices and
the ground truth respiratory signal in Figure 9. The vi-
sual similarity of the curves is confirmed by a correla-
tion of 98%. Also illustrated is the signal obtained from
the phase correlation technique, leading to a correlation
of 2%.

von Siebenthal (2008) proposes two methods for ret-
rospective sorting. The first one involves the tracking
of regions of interest. The disadvantage is that these
regions have to be defined manually, taking the track-
ability and out-of-plane motion of vascular structures
into account (von Siebenthal, 2008). More compara-
ble to our method is the second approach, where a de-
formable registration is performed between all naviga-
tor slices, leading toO(k2) deformable registrations with
k the number of images. Although this still requires

the segmentation of the liver on one of the slices, the
manual interaction is reduced. In our case, most costly
is the calculation of the neighborhood graph with the
weights, leading to O(k2) calculations of SSD. Since
SSD is evaluated in each iteration of the deformable
registration, we clearly see the computational benefit of
our approach, next to the advantage of being fully auto-
matic.

The second dataset is the publicly available 4D data
from ETH2, which is created following the slice stack-
ing principle. Each volume consists of 256 × 256 × 25
voxels with a spatial resolution of 1.37×1.37×4mm3. 14
volumes are available for one breathing cycle. We per-
form manifold learning on 2D slices at all possible po-
sitions and orientations, leading to 537 separately esti-
mated respiratory signals with manifold learning in this
experiment. This provides further insights whether cer-
tain regions or orientations are better suited for gating,
which is further discussed in Section 6. We plot the
correlation coefficient with respect to the GT signal for
all orientations and positions in Figure 10. Also in this
figure, we show cross-sectional views to have a better
overview to which slice position and orientation a spe-
cific result corresponds. We further perform a statis-
tical analysis of these results, which is summarized in
table 3. We exclude the results of coronal slices show-
ing only background from the statistics. Shown is the
mean correlation coefficient, the standard deviation, and
the correlation coefficient of the null-hypothesis of the t-
test such that we obtain significant results (p < 0.005).

2http://www.vision.ee.ethz.ch/4dmri/
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Figure 10: The three graphs show the correlation coefficient of the estimated signal with the ground truth for the different orientations of the ETH
dataset. For each slice position and orientation, a separate gating is performed, leading to 537 separate gatings in this experiment. The images in
the second row are cross-sections, with the x-axis of the graph and the image corresponding. To provide an overview of sagittal slices, for instance,
we show an axial view.

Consider the coronal ETH slices, for instance, the hy-
pothesis that the correlation between the ground truth
and tracking signal is above 99.1% is statistically sig-
nificant (p < 0.005). The CC in the test is lower for
the sagittal direction because of the lower number of
slices, which determines the degrees of freedom of the
student’s t distribution function. But nevertheless, the
CC is in the range of 98.0% to 99.1%.

5.2. UCL Datasets
The third dataset consists of free-breathing MR scans

from UCL with a field-of-view covering the whole ab-
domen. A balanced-SSFP sequence (TR/TE=4.3/1.46
ms, 30◦ flip angle) was used to obtain high-resolution
4D dynamic scans during free breathing using a 1.5 T
MR scanner (Philips Achieva, Best, The Netherlands)
at Guy’s Hospital, London. Parallel imaging with a 32-
channel coil array using a SENSE acceleration factor
of 4.6 resulted in scan times of approximately one sec-
ond per dynamic volume. Since the largest liver motion
normally occurs in the sagittal plane (von Siebenthal
et al., 2007; Rijkhorst et al., 2010), the highest recon-
struction resolution of 1.4 × 1.4 mm was chosen in this
plane, resulting in a slice thickness of 4 mm. This leads

288 × 288 × 78 voxels in the volume. 25 volumes were
acquired over 4 breathing cycles. Once again, mani-
fold learning is performed on 2D slices for all possible
positions and orientations. We plot the correlation coef-
ficient with respect to the GT signal for all orientations
in Figure 11. The statistical analysis is summarized in
table 3. In contrast to the ETH dataset, the UCL dataset
contains more noise. This is comprehensible because
the ETH dataset is the result of a sophisticated and time
consuming slice stacking approach, while the volumes
of the UCL dataset are acquired in real-time with a fast
imaging protocol. This leads to slightly worse gating
results. We are, however, able to improve the result by
pre-processing the data with median filtering. The re-
sults of the gating on the original slices and noise re-
duced slices are shown in Figure 11. The results of the
statistical analysis are summarized in table 3. The mean
CC before filtering ranges between 94.2% and 97.1%,
while after the filtering it is between 94.4% and 97.7%.
The standard deviation is decreased by about 40% in
sagittal and axial orientations after filtering.

The fourth 4D dataset is created by using a motion
model similar to the one presented in (Rijkhorst et al.,
2010). A set of dynamic 4D MR data was acquired
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Figure 11: The three graphs show the correlation coefficient of the estimated signal with the ground truth for the different orientations of the UCL
dataset. The red solid line shows the results of gating on original data, the blue dashed line shows the the results on filtered data. For each slice
position and orientation, a separate gating with only those slices is performed, leading to 509 separate gatings in this experiment. The images in
the second row are cross-sections, with the x-axis of the graph and the image corresponding. To provide an overview of coronal slices, for instance,
we show a sagittal view.

as described above, and tissue displacements through-
out the liver were computed by registering each volume
within the set to a reference volume using a non-rigid
fluid registration method (Crum et al., 2005). A ground
truth surrogate respiratory signal is computed by posi-
tioning a sector inside each MR volume, and using a
navigator window at the location of the diaphragm. By
combining the signal with the registration results, a sec-
ond order polynomial is fitted at each spatial location,
allowing for the creation of motion fields at arbitrary
time points. We apply the motion model to a separately
obtained breath-hold 3D MRI to create 4D MRI. The
resolution is 1.25 × 1.25 × 1.5 mm and 190 × 200 × 160
voxels. Once again, manifold learning is performed on
2D slices at all possible positions and orientations. We
plot the correlation coefficient with respect to the GT
signal for all orientations in Figure 12. The last position
on sagittal slices is constant, due to boundary effects of
the motion model, and does consequently not lead to
usable gating results. The statistical analysis is sum-
marized in table 3, with the mean CC ranging between
98.5% and 98.9%.

5.3. Embedding Dimensionality
In this section, we want to further analyze the dimen-

sionality of the embedding space and perform experi-
ments for 3D and 1D. The projection of the ETH navi-
gator slices to 1D space is shown in Figure 13, and the
projection to 3D space in Figure 15. We arbitrarily se-
lect one of the slices as reference slice. We then look
for the closest points in 1D and 3D space with respect
to the reference image, calling them the best match in
1D and 3D, respectively. As distance measure we use
the Euclidean distance. The image corresponding to the
1D best match is shown in the left column of Figure 14,
and the 3D best match is shown in the right column.
Considering the auxiliary lines, circles, and arrows, we
observe that the breathing state of the reference image
and 1D best match is not equivalent. In contrast, the
slice corresponding to the 3D best match is almost com-
pletely identical to the reference image. Showing that
the embedding to 3D has advantages in finding similar
slices. In order to get further insights, we also show the
best match in 3D on the 1D signal in Figure 13 and the
best match in 1D on the 3D plot in Figure 15. We ob-
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Figure 12: The three graphs show the correlation coefficient of the estimated signal with the ground truth for the different orientations of UCL
dataset created with the motion model. For each slice position and orientation, a separate gating with only those slices is performed, leading to 550
gatings in this experiment. The images in the second row are cross-sections, with the x-axis of the graph and the image corresponding. To provide
an overview of coronal slices, for instance, we show a sagittal view.

serve that the 1D best match is pretty far away from the
reference image in the 3D plot.

For some applications, like finding the closest slice,
the embedding into 3D is fine. For other purposes, such
as visualization, instantiation of a motion model (Ri-
jkhorst et al., 2010), or comparison to a 1D ground
truth, a 1D signal is more appropriate. If we want to
reduce the 3D signal to 1D, we have to perform an-
other dimensionality reduction. Considering Figure 15,
it seems possible to achieve an improved 1D embed-
ding by performing a second dimensionality reduction
on the 3D embedding. The successive application of
multiple manifold learning causes no problems. In Fig-
ure 16, we compare the direct embedding to 1D and the
combination of first an embedding to 3D and a succes-
sive reduction to 1D on navigator slices. We observe
that the plots are very similar, which is confirmed by
correlations of 98.2% and 98.8%, respectively. We per-
form the same experiment on the UCL motion model
data. The results are very similar, with correlations of
99.8% and 99.9%, respectively. These results show that
two successive dimensionality reductions do not signif-
icantly improve the result and that a direct embedding
to 1D is reasonable, if a 1D signal is needed.

6. Discussion

For ultrasound, we achieved correlations between the
proposed method and external gating of around 95%.
For the ETH and UCL motion model data, the correla-
tion is in the range of 98%. For the UCL free-breathing
MR data it is in the range of 95%, with a slight improve-
ment after filtering. Noticeable is the very low standard
deviation. This shows that the proposed method is very
versatile and leads in almost all scenarios to excellent
gating results. For the two UCL datasets, we achieved
the lowest performance on axial slices, and the best re-
sults on sagittal slices. This is in line with previous ob-
servations (von Siebenthal et al., 2007). The slightly
lower correlation for the sagittal planes on the ETH data
is a bit surprising and may be due to the large slice thick-
ness.

Our experiments have further shown that the phase
correlation technique was not able to extract the respi-
ratory signal from the data. Diaphragm tracking is a
valid alternative, does however require user interaction
by placing the window and is further limited to views
showing the diaphragm. Our results show that the pro-
posed method can be applied to arbitrary orientations
and that even gating on axial planes leads to good re-
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Figure 15: Scatter plot of manifold learning results using 3D. Red-
diamond: reference slice, green-circle: 3D best match, black-square:
1D best match

sults. For ultrasound, diaphragm tracking is even more
limited, because it is difficult to have a nice view of the
diaphragm during the entire breathing cycle; showing a
clear advantage of our method.

The respiratory signal is displaying the current respi-
ratory state of the patient. It is, however, not entirely
clear, how this state is defined. One possibility would
be to measure the amount of air in the lungs, another
possibility would be to measure the displacement of the
diaphragm. While there is definitely a high correla-
tion between such quantifications, they are not identical.
Since we want to automatically extract the respiratory
signal from the data, it is important for our evaluation
to relate to a ground truth respiratory signal. Due to
the lack of a global consensus, we compared our results
to the tracking results from an external tracking system
and the tracking of the diaphragm, which are both com-
monly used procedures. We also want to point out that
these respiratory signals are prone to errors during ac-

quisition, however, the error is generally low enough to
make the comparison in our scenario meaningful.

The discussion about the definition of the respiratory
signal is continued when it comes to the dimensionality.
Our experiments show, that we achieve a better discrim-
ination for MR with an embedding to 3D than 1D. The
3D signal over time can definitely not be as nicely vi-
sualized as the 1D signal, however, it may as well be
considered as an adequate representation. The question
whether we first have to extract a 1D signal out of the
3D signal to have a usable respiratory signal cannot be
generally answered, but is dependent on the specific ap-
plication. If the interest lies in finding the closest slices,
as it is the case for 4D imaging, this search can directly
be performed in 3D space. For an easy visualization
and comparison to an alternative gating signal, we may
however be interested in a 1D signal. We showed in
our experiments that a 1D signal can be obtained from
a 3D embedding through the subsequent application of

14



0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

 

 
Ground Truth
ND−>3D−>1D
ND−>1D

(a) ETH navigator slices

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

 

 
Ground Truth
ND−>3D−>1D
ND−>1D

(b) UCL data

Figure 16: Gating experiment performed on the ETH navigator slices and UCL data to evaluate the difference between a direct 1D embedding and
a 3D embedding with a successive 1D reduction. For the ETH data, the CC between the direct embedding to 1D and the GT is 98.2% and the CC
between the 3D→1D embedding and GT is 98.8%. For the UCL data, the CC between the direct embedding to 1D and the GT is 99.8% and the
CC between the 3D→1D embedding and GT is 99.9%.

second manifold learning, the performance is, however,
similar to a direct reduction to 1D. Finding closest slices
could also be performed in the original image space, it
does, however, not respect the geometry of the mani-
fold, which can lead to inaccuracies for a larger num-
ber of required neighbors. In contrast, manifold learn-
ing does respect the geometry and the number of near-
est neighbors chosen for the graph construction can be
much lower than the number of slices selected for re-
construction.

With the presented embedding to 1D and 3D we were
not able to differentiate between images from inspira-
tion and expiration. It is, however, possible to differ-
entiate between them by looking at the extracted sig-
nal. The only requirement is to have several frames per
cycle, which is the case for the presented applications.
An analysis of the direct differentiation with manifold
learning is subject to future research.

7. Conclusion

We presented an automatic, image-based respiratory
gating method for ultrasound and MR using manifold
learning. Moreover, we proposed a solution for acquir-
ing 4D breathing data with a wobbler probe and also
acquiring 4D MR with the slice stacking approach. Our
method has the advantage that it is fully automatic and
does not require a training phase or prior information
about the underlying anatomy, nor the interaction of the
user. To analyze the performance of our algorithm for

ultrasound, we perform experiments on various datasets
showing different organs and sections. The results of
these experiments were very good, for both, 2D and
3D ultrasound data over time. For MRI, we worked
on four different datasets and performed manifold learn-
ing on all positions and orientations. A comparison to
a tracking-based gating approach is performed, leading
to almost similar results and very high correlation. Fi-
nally, our approach presents an attractive alternative to
external tracking and gating systems with their various
setup issues and synchronization problems.

The proposed method is not limited to analyzing
breathing motion, but could also be applied for study-
ing cardiac motion. For the cardiac application, the mo-
tion curve was reported to be more regular (Brant and
Helms, 2007) than respiratory motion which requires
more flexibility during free breathing. Therefore, using
a Fourier-based curve model may be more appropriate
for studying cardiac motion (Ionasec et al., 2010).
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9. Multimedia Material

We attach several videos to this submission for illus-
tration. These include 2D+t breathing series, with the
result of the manifold learning shown in the video, and
a volume rendering of a constructed 4D ultrasound data
set from the liver. Moreover, we show the gating results
on a 2D+t MR sequence from ETH. Please open the file
readme.html for an easy navigation.
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