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Abstract

The standard approach to multi-modal registration is to apply sophisticated similarity metrics such as mutual infor-
mation. The disadvantage of these metrics, in comparison to measuring the intensity difference with e.g. L1 or L2
distance, is the increase in computational complexity and consequently the increase in runtime of the registration. An
alternative approach, which has not yet gained much attention in the literature, is to find image representations, so
called structural representations, that allow for the application of the L1 and L2 distance for multi-modal images. This
has not only the advantage of a faster similarity calculation but enables also the application of more sophisticated op-
timization strategies. In this article, we theoretically analyze the requirements for structural representations. Further,
we introduce two approaches to create such representations, which are based on the calculation of patch entropy and
manifold learning, respectively. While the application of entropy has practical advantages in terms of computational
complexity, the usage of manifold learning has theoretical advantages, by presenting an optimal approximation to one
of the theoretical requirements. We perform experiments on multiple datasets for rigid, deformable, and groupwise
registration with good results with respect to both, runtime and quality of alignment.
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1. Introduction

The objective of image registration is to find the
correct spatial alignment between corresponding struc-
tures in images. This task is made difficult by inten-
sity variations between images. Such variations can
originate from a multitude of sources, such as illumina-
tion changes in optical images, field inhomogeneities in
magnetic resonance (MR) images, and, simply, different
imaging modalities. A common approach in iconic reg-
istration methods is to integrate similarity metrics that
are robust to those intensity variations, assuming a func-
tional or statistical intensity relationship, instead of an
identical one. On the other hand, geometric registration
approaches that build upon an automatic keypoint ex-
traction and description have to apply methods that are
robust to intensity variations. Widespread descriptors
such as SIFT [16] and GLOH [20] achieve such robust-
ness by building upon intensity differences, rather than
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absolute intensity values, by calculating histograms of
image gradients. The registration of images from differ-
ent modalities is, however, affected by more substantial
intensity variations.

In this article, we introduce a representation of im-
ages that is only dependent on the depicted structures
and not on the intensities used to encode them. Such a
structural representation can assist several image pro-
cessing tasks, while we focus on registration in this arti-
cle. We obtain structural representations by calculating
a dense set of descriptors that capture the structural in-
formation of each of the local patches. Subsequently,
the input images are replaced by the dense set of de-
scriptors, on which a regular intensity-based registra-
tion is performed. This guarantees a seamless integra-
tion into existing registration frameworks. The advan-
tage of the structural representation is that the simple L1
or L2 distance can be used for the registration of multi-
modal images. These metrics are computationally less
expensive than mutual information and allow therefore
a faster registration. This is even more important for
groupwise registration, where the speed improvement
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becomes quadratic, as we discuss in section 3.2. More-
over, an efficient optimization scheme, the efficient sec-
ond order minimization (ESM, [4, 37]), can be applied
for multi-modal registration. Finally, L1 and L2 dis-
tances are better suited for parallelization than complex
multi-modal similarity measures, which is important
with respect to transferring the computation to GPUs
for further speed-up. A preliminary of version of this
work was presented at conferences [39, 38]. This arti-
cle expands the conference papers with a more detailed
description and differentiation of both approaches, to-
gether with more extensive experiments.

In sections 3 and 4, we describe the integration of
structural images for registration and theoretically ana-
lyze the properties of a structural representation. In sec-
tion 5, we show that the minimal coding length for trans-
ferring a patch over a channel, calculated with the Shan-
non entropy, properly captures the information content
of a patch invariant to the intensity. The created en-
tropy images therefore present an exemplary structural
representation. There is, however, a risk of ambigui-
ties, i.e. several patches can lead to the same entropy
value. In order to address this issue, we propose to in-
tegrate spatial information to the density estimation. In
section 6, we introduce an alternative structural repre-
sentation, based on the application of manifold learn-
ing. The representation created with Laplacian eigen-
maps has superior theoretical properties, because it op-
timally fulfills one of the requirements for a structural
representation, the preservation of locality. This means
that patches, which are close in high-dimensional patch
space, are mapped to a close structural representation.
Moreover, this technique exploits the internal similari-
ties across modalities, similar to [25], for the structural
embedding. We refer to the images created with Lapla-
cian eigenmaps shortly as Laplacian images. In sec-
tions 7 and 8, we evaluate the performance of entropy
and Laplacian images.

2. Related Work

There are two groups of related work, first, methods
that are related because they deal with transforming a
multi-modal registration to a mono-modal one, and sec-
ond, articles that are related to our proposed representa-
tions (see sections 2.1 and 2.2).

Techniques that reduce a multi-modal to a mono-
modal registration can be differentiated into two classes.
The first ones try to simulate one modality from the
other. Examples are X-Ray to CT (Computed Tomog-
raphy) registration with the creation of digitally recon-
structed radiographs [26] and ultrasound to CT registra-

tion with the simulation of ultrasound images [43]. In
our case, we are interested in a general structural rep-
resentation, so that the application of these specific ap-
proaches is not applicable.

The second group consists of methods that transfer
both images into a third, artificial modality. Examples
are (i) the application of morphological tools [18], (ii)
recoloring images depending on the variances of the
image regions [1], (iii) the usage of edge- and ridge-
information [17], (iv) cross-correlating gradient direc-
tions [9], and (v) the creation of shadow-invariant op-
tical images [27]. Approaches (ii) and (iv) use cross-
correlation for the comparison, indicating that the de-
scription is not truly identical. The morphological ap-
proach [18] mainly leads to a surface extraction, and
although it employs gray values instead of only bi-
nary values, much internal information is lost. Finally,
edge, ridge, and gradient estimation is problematic for
points where more than two regions are meeting, e.g.
T-junctions, as discussed in section 7.

2.1. Entropy Images

Concepts from information theory, specifically the
entropy, have a significant influence on image registra-
tion. The widely utilized mutual information (MI) [44,
6] is building upon the entropy calculation of joint
and marginal probability distributions. Similarly, the
congealing framework [12, 47], which is commonly
used for the simultaneous alignment of multiple im-
ages, evaluates the entropy of a pixel stack. In [5], the
entropy of the difference image is calculated to align
mono-modal images. Also based on the calculation of
the entropy is the scale saliency algorithm [11]. Salient
regions are identified in images with the criterion of un-
predictability in feature and scale space, where the local
entropy is used for quantifying the unpredictability.

2.2. Laplacian Images

As we will describe in more details in section 6, the
application of Laplacian images for multi-modal regis-
tration relies on the assumption of similar internal sim-
ilarities in images across modalities. This was previ-
ously exploited in a novel framework for multi-modal
registration based on internal similarity [25]. The two
approaches are similar because small image patches are
compared to find local similarities inside images. The
consecutive utilization of this information is, however,
entirely different. While in [25] a few internal similarity
structures are identified and then transferred to the im-
age from the other modality, we use all the patch infor-
mation to build a neighborhood graph, approximating
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Figure 1: Schematic illustration of structural registration. From the
original images, structural representations are calculated. In this dia-
gram, entropy images are shown. Subsequently, these images are used
in the standard intensity-based registration framework, with L1 or L2
distance as possible similarity measures.

the patch manifold embedded in high dimensions. The
internal similarity in images is also exploited in [33],
however, only locally for constructing image descrip-
tors.

Finally related is the approach for learning similarity
measures for multi-modal registration [14]. For the su-
pervised learning a max-margin structured output learn-
ing is used. The approach seems related because also
learning is considered, however, we are interested in
finding structural representations, instead of learning
the similarity measure, and our unsupervised learning
with Laplacian eigenmaps does not need any training.
The training is not simple because correctly aligned im-
ages from the target modalities must be available. It
is even more challenging for magnetic resonance (MR)
images, which vary significantly in their appearance for
different echo and repetition times (TE/TR).

3. Structural Image Registration

Consider two images I, J : Ω → I defined on the
image grid Ω with intensity values I = {1, . . . , λ}. The
registration is formulated as

T̂ = arg max
T∈T

S(I, J(T )), (1)

with the space of transformations T and the similarity
measure S. For a more complex intensity relationship
than the identity, such as an affine, a functional, or a sta-
tistical one, typical choices for S are the correlation co-
efficient, correlation ratio [30], and mutual information,
respectively. These are, however, more computationally
expensive than the L2 distance. Our goal is therefore to
find structural representations DI and DJ that replace I
and J in the optimization of equation (1) and for which

we can apply mono-modal metrics. The registration is
then formulated as follows

T̂ = arg max
T∈T

S(DI ,DJ(T )), (2)

with S being the L1 or L2 distance, even for images
from different modalities. We illustrate the entire pro-
cess schematically in figure 1.

3.1. Efficient Optimization

One part of a fast registration is the discussed sim-
ilarity measure, but not less important is an efficient
optimization scheme. The efficient second-order mini-
mization is an extension of Gauß-Newton (GN) and was
shown to converge faster than other gradient-based opti-
mizers [4, 37]. The efficient second order minimization
(ESM) builds a second-order approximation of the cost
function without the explicit calculation of the second
derivative. This is achieved by combining the image
gradients of the moving and fixed image ∇I + ∇J. We
refer to the mentioned references for further details. For
multi-modal images this combination of image gradi-
ents is not meaningful, and consequently, ESM has not
yet been applied to multi-modal registration. The struc-
tural representation of images, however, enables us to
apply ESM for multi-modal images, as shown in sec-
tion 7. Further for deformable registration, the applica-
tion of MI-based similarity measures causes non-sparse
matrices for GN, leading to high computational com-
plexity [21, Ch.9].

There are also other optimization schemes like the
registration algorithms based on the Fourier trans-
form [28, 23] or the batch alignment by sparse and low-
rank decomposition [24] that can benefit from structural
images. Fourier-based approaches calculate the corre-
lation between images and assume linearly correlated
images, analogously to [24]. This assumption is gener-
ally too limiting for multi-modal registration. The appli-
cation of structural representations has the potential to
make those approaches even applicable to multi-modal
registration.

3.2. Efficient Groupwise Registration

For groupwise registration it is even more important
to have an efficient registration process, since the com-
putational cost increases significantly when moving to
the alignment of multiple images. There exist various
techniques, such as the congealing framework [12] or
the accumulation of pairwise estimates (APE, [37, 40]),
to measure the similarity of a group of images. In [37],
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Figure 2: Patch 1 and 2 show the same structure but encoded with
different intensities. All three patches have the same entropy of 2.0749
using an identical spatial weighting. Integrating a location dependent
weighting with the modified Gaussian weighting mask shown on the
right, we can differentiate patch 3 from the others.

the derivation of ESM for APE is presented. Assuming
a group of N images {I1, . . . , IN}, APE is formulated as

APES(I1, . . . , IN) =

N∑
i=1

N∑
j=1, j,i

S(Ii, I j). (3)

In this case, N ·(N−1) pairwise similarity measures have
to be calculated for simultaneous registration. Conse-
quently, the influence of the speed-up of simple match-
ing functions is quadratic. To conclude, structural repre-
sentations for multi-modal registration enable the usage
of an efficient optimizer, needing less steps, and further,
they permit a faster calculation of each update step.

4. Structural Representation

In this section, we analyze the theoretical require-
ments on a structural representation. We break the prob-
lem of finding a structural representation for images
down to the simpler problem of finding a structural rep-
resentation for image patches. We denote patches that
are defined on the local neighborhood Nx around x as
Px : Nx → I. Our objective is to find a function
f : Px 7→ Dx that assigns each patch a descriptor Dx

so that the descriptor captures the structural informa-
tion of the patch. Since we calculate a descriptor for
each location x, we obtain a new image with the original
intensities replaced by the descriptors. Moreover, we
differentiate between patches of different images, with
Px being part of I and Qx being part of J, and further
f ′ : Qx 7→ D′x.

We define two patches Px, Py to be structurally equiv-
alent Px ∼ Py, if there exists a bijective function g :
I → I such that

∀z ∈ Nx : Px(z) = g(Py(z)).

For an illustration, the first two patches in figure 2 are
structurally equivalent, in contrast to the third one. The
requirements f and f ′ have to fulfill are

(R1) Locality preservation:

||Px − Py|| < ε =⇒ || f (Px) − f (Py)|| < ε′ (4)

(R2) Structural equivalence:

Px ∼ Qx ⇐⇒ f (Px) = f ′(Qx) (5)

with reasonable ε and ε′ depending on the chosen norm.
The motivation behind the first property is to ensure that
similar patches are mapped to similar descriptors, which
is important for the robustness to noise and the capture
range of the registration. The second property states
that descriptors are identical, if and only if, the patches
are structurally equivalent. This ensures, on the one
hand ’⇒’, the desired structural representation, and on
the other hand ’⇐’, a perfect discrimination of patches.
Generally, the discrimination for a dense descriptor is
less critical than for a sparse descriptor.

Note that in (R1) only patches from the same image
are compared, because the calculation of the norm ||.||
between patches from different modalities is not mean-
ingful. In contrast, we require the structural equivalence
(R2) only for patches of different images, because no
intensity mapping is required in the same image. This
model is no longer satisfiable by a global function f , so
that we have to employ a local function for each modal-
ity, indicated with f and f ′.

4.1. Structural Equivalence vs. Modality Invariance
We would like to point out that the structural repre-

sentation is different to a modality invariant representa-
tion, which would be the final goal. Each imaging de-
vice has its own characteristics, leading to images with
specific artifacts and noise. Also, structures visible in
one of the images may not be observable in the second
one. As an example, compare the CT and MR images in
figure 5, whose appearance is significantly different. It
is also clear that structural images cannot detect struc-
tures, where there are none. However, we can expect to
be robust to such changes, so that those structures that
are present in all images can guide the registration. This
problem is not specific to structural images, but is rooted
in the multi-modal registration scenario, and therefore
also affects multi-modal measures like MI. The applica-
tion of robust metrics for comparing structural images,
such as the robust M-estimation [15], can limit the in-
fluence of those outliers.

5. Entropy Images

A possible interpretation of the similarity between
images is to consider whether intensity changes occur
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Figure 3: Illustration of the process for calculating entropy images.
For each pixel in the image, the local neighborhood patch is selected.
For these patches, the PDF of the intensity is estimated, in this exam-
ple with the Parzen-window method. Finally, the entropy is computed
and the result is stored in the corresponding location in order to create
the entropy image.

Figure 4: Multi-modal images (T1, T2, PD) from BrainWeb dataset
together with entropy images used for rigid registration.

at the same locations. An example to quantify the inten-
sity change is the calculation of the image gradient [9].
This is, however, not suitable for a structural representa-
tion because of its dependency on the similarity values.
A more general concept is to quantify the information
content or, analogously, the bound for a lossless com-
pression, as stated by Shannon’s theorem, which is both
achieved with the entropy. The Shannon entropy of a
random variable Y with possible values I is

H(Y) = −
∑
i∈I

p(Y = i) · log p(Y = i), (6)

assuming p to be the probability density function (PDF)
of Y . Calculating the entropy on a dense image grid
leads to

DI
x = H(I|Nx ). (7)

The construction of entropy images is illustrated in fig-
ure 3.

5.1. Verification of Structural Properties
In this section, we verify whether the entropy images

fulfill the theoretical requirements on a structural rep-
resentation. Since the entropy is calculated on images
from both modalities, we do not have a local function f
for every modality. We could therefore only fulfill (R1)
and (R2) if we relax the requirements and allow patches
Px,Qx to be from I as well as J. Verifying these re-
laxed requirements, we see that (R1) is fulfilled because
small changes in the patches also lead to small changes
in the entropy, because of the smoothness. The struc-
tural equivalence, “⇒” of (R2), is also fulfilled because
the value of the entropy is invariant to the permutation
of the bins in a histogram, which is the effect of the in-
tensity mapping g.

In order to be able to assess the discrimination ability
of the descriptors,“⇐” of (R2), we quantify the number
of structurally different patches. Let λ = |I| be the num-
ber of intensity levels, and k = |Nx| be the cardinality of
the patch. We assume λ ≥ k, with typical values for
λ = 256 and k = 10 × 10. For these numbers, we exem-
plarily indicate the order of magnitude of the number of
patches in the subsequent analysis. The total number of
different patches η1 is calculated with

η1 = λk ≈ 10240. (8)

The number of patches that vary in structure is equiva-
lent to the Bell number B

η2 = B(k) =
1
e

∞∑
l=0

(
lk

l!

)
≈ 10115. (9)

This corresponds to the number of equivalence classes
of the structural equivalence relation ∼. Patch 1 and
2 in Fig. 2 are in the same class, and are therefore
counted only once. The Bell numbers generally indicate
the number of ways a set with k elements can be parti-
tioned into nonempty subsets. This is also the number of
patches an optimal function f would be able to differen-
tiate. From a practical point of view, however, it would
require more than 47 bytes per pixel to store up to 10115

different values, which could exceed the memory limit
for volumetric data and decelerate the registration.

The number of different distributions is

η3 =

(
λ + k − 1

k

)
≈ 1090, (10)

which corresponds to ball picking of unordered samples
with replacement.

In order to make distributions fulfill the structural
equivalence, we have to sort the entries of the distri-
bution

p′ = sort(p). (11)
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Figure 5: Images from RIRE dataset (T1, T2, PD, CT) together with
entropy images used for rigid registration.

The number of sorted distributions p′ is

η4 = P(k) ≈
1

4k
√

3
eπ
√

2k/3 ≈ 108 (12)

with the partition function P. This represents the num-
ber of ways of writing an integer as a sum of positive
integers, where the order of addends is not considered
significant.

The final step, the mapping from ordered histograms
to real values, is performed with the entropy formula in
equation (6). For k = 2, the entropy uniquely assigns
each ordered histogram a scalar. However, for k ≥ 3
the mapping is no longer injective and consequently η4
presents an upper bound to the number of different en-
tropy values for patches. Generally, the desired number
η2 is much higher than the maximally achievable η4, so
that “⇐” of property (R2) is not fulfilled. Although the
discrimination is more critical for a sparse than for a
dense descriptor, we try to improve it by adding a spa-
tial weighting in the density estimation in section 5.2.2.

5.2. Details on Entropy Estimation
There are several processing steps in the entropy esti-

mation that influence the appearance of the entropy im-
age, compare figures 5 and 6, where different parame-
ters are used to create the entropy images. We evaluate
the effect of those parameters for rigid and deformable
registration. We present details about the experimental
setup of the evaluation in section 7.

5.2.1. Local Neighborhood
The size of the local neighborhood is important be-

cause it determines the cardinality of the samples for
the density estimation. Consequently, there is a trade-
off between a small local neighborhood, in order to keep

Figure 6: Multi-modal images (T1, T2, PD, CT) from RIRE dataset
together with entropy images used for deformable registration.

the estimation local, and a large neighborhood, to have
sufficient statistics for an accurate estimation. For rigid
registration, we evaluate local neighborhoods ranging
from 5 × 5 to 21 × 21 pixels, where we found patches
of size 11 × 11 to be a good compromise. For de-
formable registration, we prefer smaller patch sizes to
have a more local description, and therefore test them in
the range from 5×5 to 13×13, with good results for 7×7
patches. In 3D, we achieved good results with 9 × 9 × 9
patches, where we adapt the neighborhood accordingly
for anisotropic spacing.

An interesting effect of changing neighborhood sizes
is the smoothness of the entropy images. We show im-
ages that are created with patch sizes ranging from 5×5
to 21 × 21 in figure 8. We observe smoother entropy
images for larger patch sizes. This is useful for regis-
tration, because a common approach is to perform reg-
istration on several resolution and smoothness levels.
However, instead of filtering with a Gaussian kernel, we
change the neighborhood size. The similarity graphs
for various neighborhood sizes for T1-PD registration
in figure 8 show wider cost functions for larger patch
sizes, as we would expect them for Gaussian filtering
with different variances.

5.2.2. Spatially-weighted Density Estimation
We use histogramming and the kernel-based Parzen

window method for the non-parametric PDF estimation,
with the latter yielding more robust results for a small
number of samples. For both, the bin size has to be
specified. A large number of bins makes the entropy
image more sensitive to noise, while a low number de-
teriorates the unique patch description.

As discussed previously, we are interested in increas-
ing the discrimination of the entropy estimation, be-
cause of the large difference between η2 and η4. Con-
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Figure 8: Entropy images for varying patch sizes of BrainWeb T1. Similarity plot for rotation between entropy images of T1 and PD. Color of the
curves as specified below the images.

Figure 7: Images from RIRE dataset with PET image (PET of lower
resolution, 128 × 128) and corresponding entropy images.
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Patch

Histogram

Figure 9: The spatially varying weight for the histogram calculation
is illustrated by the size of the balls. The discrimination of patches is
improved, because two patches with the same intensity values, but at
different locations, may lead to different histograms. The discrimina-
tion is dependent on the selected spatial weighting.

sider, for instance, the three patches in Fig. 2. While
it is desirable to assign patch 1 and 2 the same value,
this does not hold for patch 3. However, the PDF is
the same under permutation of pixels in the patch, so
that all three patches have the same entropy. To address
this issue, we propose to modify the density estimation
with plug-in estimators. When constructing the image
histogram h, each pixel’s intensity has the same con-
tribution to the respective bin. We introduce a spatial
weighting function ω : Nx → R, assigning a weight to

Figure 10: Image patch (gray) with the corresponding spatial weight-
ing (color) used for the histogram calculation. Illustrated is a Gaussian
weighting.

each patch location. The histogram update changes to

∀y ∈ Nx : hx[I(y)] ← hx[I(y)] + ω(y). (13)

This is illustrated in Fig. 9. We obtain the Parzen win-
dow density estimation by convolution with a Gaussian
kernel and corresponding normalization.

In our experiments, we use a Gaussian, a modified
Gaussian, and the identity as weighting functions ω.
The identity corresponds to the usual density estima-
tion. For the Gaussian we set ω(y) = Gσ(‖y − c‖) with c
the patch center, see Fig. 10 for an illustration. The dis-
crimination between patches is not optimal because the
Gaussian is rotational symmetric. We therefore modify
the Gaussian weighting function, see Fig. 2, giving it a
unique weight at each patch location. We assign simi-
lar values to neighboring locations to ensure the locality
preservation.

Although each location has a different weight for
the modified Gaussian, the sum of several values, as
it is done in the histogram calculation, can lead to the
same value, and therefore ambiguities. An optimal as-
signment of weights to the |Nx| patch locations in the
weighting mask, so that they are unique with respect to
addition and that the dynamic range is minimal, is to use
21, 22, . . . , 2|Nx |. However, even then the dynamic range
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is too high, considering 249 ≈ 1015, leading to locations
that become negligible in the entropy calculation.

5.2.3. Intensity Normalization
In order to use the whole range of the histogram, we

normalize the intensity values of patches Px. For this,
we can either use the global minimum and maximum

minx = inf
y∈Ω

I(y) maxx = sup
y∈Ω

I(y) (14)

or the local extrema in the patch

minx = inf
y∈Nx

I(y) maxx = sup
y∈Nx

I(y). (15)

Our experiments confirm that a global approach is better
suited for rigid, while the local approach is better suited
for deformable registration. We show entropy images
with the global approach in figures 4, 5, and 7 whereas
the local approach is illustrated in figure 6.

5.2.4. Entropy Measure
The Shannon entropy is one in a group of measures

to calculate the entropy of a random variable, so that
we evaluate its influence on registration. A whole class
of entropy measures is deduced from the Rényi en-
tropy [29]

Hα(Y) =
1

1 − α
log

∑
i∈I

p(Y = i)α
 (16)

defined for α ≥ 0 and α , 1. For α → 1, it converges
to the Shannon entropy, H1 = H. Commonly used in
the group of Rényi entropies is the case for α = 2. An
alternative entropy measure, not in the group of Rényi
measures is the Burg entropy [19]

HBurg(Y) =
∑
i∈I

log p(Y = i). (17)

6. Laplacian Images

As an alternative structural representation, we pro-
pose the application of manifold learning. Laplacian
eigenmaps present an optimal solution to one of the re-
quirements for a structural representation. This is the
preservation of locality, meaning that patches that are
close in high-dimensional patch space are mapped to
a close structural representation. The requirement of
structural equivalence across modalities is guaranteed
by the comparable internal similarity.

Input Image Manifold Graph Structural ImageEmbedding

align

Figure 11: Structural representation with Laplacian eigenmaps.
Patches of images lie on a manifold in high-dimensional patch space.
The manifold is approximated by the neighborhood graph. The low-
dimensional embedding is calculated with the graph Laplacian. Em-
beddings from different modalities have to be aligned to obtain the
final representation.

Manifold learning is an approach applied for non-
linear dimensionality reduction and data representation.
The task of dimensionality reduction is to find the un-
derlying structure in a large set of points embedded in
a high-dimensional space and to map these points to a
low-dimensional space preserving the structure. Mani-
fold learning has recently gained much attention to as-
sist image processing tasks such as segmentation [46],
registration [31, 10], tracking [13, 41], recognition [2,
36], and computational anatomy [8]. Common tech-
niques for manifold learning are Isomap [35], local lin-
ear embedding [32], and Laplacian eigenmaps [3]. We
focus on Laplacian eigenmaps because the technique is
well founded on mathematical concepts (Laplace Bel-
trami operator) and computationally efficient.

An overview of the calculation of Laplacian images is
presented in figure 11. We use all the patches in an im-
age to build a neighborhood graph, approximating the
manifold embedded in high dimensional patch space.
Subsequently, the graph Laplacian is calculated to find
an optimal mapping to low-dimensional space. Since
the embedding in low-dimensional space is arbitrary, as
long as it preserves the locality, we have to align em-
beddings from different modalities with an affine point-
based registration. This finally leads to the structural
representation that is used in the intensity-based regis-
tration

6.1. Laplacian Eigenmaps

Considering k points a1, . . . , ak in RN lying on a man-
ifoldM, we want to find a set of corresponding points
b1, . . . ,bk in the low-dimensional space Rn (n � N).
We assume a twice differentiable function m : M →
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Rn, ai 7→ bi. It is shown in [3] that the following holds
for the relationship between the distances on the mani-
fold and embedding space

||m(ai) − m(a j)|| ≤ dM · ||∇m(ai)|| + o(dM), (18)

with ai, a j ∈ M and dM = distM(ai, a j) the manifold
distance. We see that ||∇m(ai)|| indicates how close
nearby points are mapped. Consequently, a map that
best preserves locality on average is found with the fol-
lowing minimization

arg min
||m||L2(M)=1

∫
M

||∇m(ai)||2 dai. (19)

It is this optimization problem, for which Laplacian
eigenmaps provide an optimal solution, by calculating
eigenfunctions of the Laplace Beltrami operator.

6.2. Verification of Structural Properties
The optimal locality preservation as it is provided by

the Laplacian eigenmaps, see equation (19), is exactly
what was required for the structural representation in
(R1). We only have to identify the points ai, a j with the
patches Px, Py. The mapping m is therefore a suitable
candidate for the function that provides the structural
representation f .

For the second property (R2), we consider manifolds
M and M′ for two different modalities with patches
Px ∈ M and Qx ∈ M

′. The mappings m and m′ pro-
vide m : Px 7→ px and m′ : Qx 7→ qx, with px and
qx being the low-dimensional representations. Since the
intensity, with which objects are depicted in the images,
varies with the modality, the two manifoldsM andM′

are not directly comparable. Considering, however, the
assumption that the internal similarity of both modali-
ties is equivalent, as in [25], we conclude that the struc-
ture or shape of both manifolds is similar. Since Lapla-
cian eigenmaps preserve locality when embedding the
manifold in a low-dimensional space, this structure is
preserved in low dimensions. We could then directly use
the coordinates of px as descriptor for the corresponding
location Dx. This is, however, not possible because the
embedding of the structure in low-dimensional space is
arbitrary, as long as it preserves the locality. The em-
beddings of both manifolds M and M′ are therefore
only similar when correcting for rotation, translation,
and scale. Consequently, an affine registration between
the point sets P = {px : x ∈ Ω} and Q = {qx : x ∈ Ω} has
to be performed. Recently, an affine ICP for point set
alignment was proposed in [7] that performs a fast reg-
istration. The coordinates of the registered embeddings
finally provide the structural descriptors.

We conclude that m fulfills the requirements (R1) and
(R2) for a structural representation. It has therefore the-
oretical advantages in comparison to entropy images,
since they only fulfill the relaxed properties, and further,
the preservation of locality is optimal for m.

6.3. Application of Laplacian Eigenmaps
In this section, we describe the application of Lapla-

cian eigenmaps to our problem in more details. We con-
sider one dimension of the ambient space for each im-
age pixel of the patches. We use patches of size 15×15,
so that N = 225. This size proved to be a good com-
promise between too small patches that do not contain
enough structural information, and too large patches
that contradict the required locality and further lead to a
higher computational burden.

We construct a graph with a node for each point Px

and with edges connecting neighboring nodes. The
neighborhood can be defined with an δ-neighborhood
around each point, so Py is in the δ-neighborhood of Px

if ||Px − Py||
2 < δ, with ||.|| the Euclidean norm. Al-

though this is geometrically motivated, a disadvantage
is the selection of the parameter δ. In our implementa-
tion, we search instead for the l = 500 nearest neighbors
and add edges between them in the adjacency graph.
Further, heat kernel-based weights are assigned to the
edges with wxy = e−||Px−Py ||

2/(2·σ2) and σ2 the variance.
We select n = 1 as dimension for the low-dimensional

space. The reasons for not increasing this value are,
first, that we obtain good results, and second, that for
n > 1 we would have to store a vector in each pixel
position instead of a scalar. This increases the computa-
tional complexity and memory consumption of the reg-
istration, and moreover, makes the visualization more
challenging. Additionally, the low dimensionality facil-
itates the affine alignment to a correction of scale and
shift. In fact, a robust normalization accounting for out-
liers and flipping, makes the point-based registration in
this case even superfluous. This holds the advantage of
making the Laplacian images more comparable to en-
tropy images, because they, as well, do not need any
intermediary step.

Although the Laplacian images have superior theo-
retical properties than entropy images, this comes at a
much higher computational cost. For the construction
of the neighborhood graph, all patches have to be com-
pared among each other. This means that the computa-
tional complexity increases quadratically with the num-
ber of patches. Thinking about its application for the
alignment of volumetric data, this becomes even more
challenging for the comparison of all subvolumes. This
is different for entropy images, where the complexity
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Figure 12: Similarity plots for RIRE dataset (black: SSD, blue: MI,
red: eSSD).

increases only linearly. The Laplacian images present
a global approach to the creation of structural images,
while the entropy images work entirely locally.

7. Experiments with Entropy Images

For entropy images, we conduct experiments on T1,
T2, and PD-weighted MR images from the BrainWeb
database1 and CT, T1, T2, PD, and PET (Positron Emis-
sion Tomography) images from the Retrospective Im-
age Registration Evaluation (RIRE) database2. We work
with BrainWeb images containing 3% noise and 20%
intensity non-uniformity, in order to achieve realistic re-
sults. For both databases the ground truth alignment is
provided. We depict axial slices of the original and en-
tropy images in figures 4, 5, 6, and 7. The average time
for the creation of an entropy image in C++ is 0.078s
for a slice of 256 × 256, and 11.01s for a volume of
512 × 512 × 29.

For our deformable experiments we use the freely
available deformable registration software DROP3,
which applies free-form deformations based on cubic
B-Splines and an efficient linear programming with a
primal-dual scheme. To emphasize that we consider de-
formable registration as an available tool, we perform
all experiments with the standard settings of DROP,
without any optimization towards the application of en-
tropy images. This guarantees that similar results are
obtainable with alternative registration approaches.

1http://www.bic.mni.mcgill.ca/brainweb/
2http://www.insight-journal.org/rire/
3http://www.mrf-registration.net

7.1. Rigid Registration

For rigid registration, the standard configuration for
the entropy images is: 11 × 11 patches (in 2D) and
9 × 9 × 9 patches (in 3D), 64 bins, Gaussian weighting,
global normalization, Parzen-window estimation, and
Shannon entropy. We evaluate the usage of SSD, MI,
and SSD on entropy images (eSSD) for the rigid align-
ment by analyzing the similarity plots for the various
multi-modal combinations of both datasets. In Fig. 12
we show an excerpt, with a complete list of graphs in the
supplementary material. The plots are created by rotat-
ing the images around the image center for the range of
[-40◦, 40◦], with 0◦ corresponding to the correct align-
ment. Generally, we observe that SSD fails, which was
to be expected, whereas MI and eSSD indicate the cor-
rect alignment. In most cases eSSD provides smoother
curves with a wider basin than MI, which is advanta-
geous for registration, because it enables a larger cap-
ture range. Remarkable is also the problem of MI for
the registration of PET images.

We further run a pairwise registration study for the
various combinations of the multi-modal volumes, with
an initial random deviation of maximal ±20 mm in
translation and ±20◦ in rotation from the correct pose,
to compare the performance of eSSD and MI. For each
configuration 100 registrations are performed using the
best neighbor optimizer. In tables 1 and 2, we show
the absolute mean error for each pose parameter and the
total mean error for translation ttotal and rotation rtotal
for the two datasets. Additionally, we indicate the stan-
dard deviation of the error for translation tstd and rota-
tion rstd. On the BrainWeb dataset eSSD and MI lead
to comparable results. The large values of the standard
deviation for MI indicate that some of the registrations
did not converge correctly. Compared to the low stan-
dard deviations for eSSD, we conclude that the regis-
tration is more robust with eSSD. On the MR volumes
of the RIRE dataset, eSSD performs significantly bet-
ter than MI, matching with our observations from the
similarity plots. For the alignment with CT volumes the
registration error increases for both eSSD and MI. The
experiments for the PET registration are performed on
volumes with a lower resolution to match the resolution
of the PET volume (128 × 128 × 29). The registration
with eSSD achieves excellent results, in contrast to MI.
The good registration results for eSSD on the RIRE data
are confirmed by the low standard deviations. Compar-
ing the errors for the different pose parameters, we ob-
serve that the translational error along the z-axis tz is
commonly larger than along the other axes. This is due
to the lower resolution along the z-axis. The low res-
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Table 1: Pairwise random registration study for BrainWeb with translational error t in mm, rotational error r in degree.

Data Set Sim tx ty tz rx ry rz tstd rstd ttotal rtotal

T1-T2 MI 0.189 0.247 0.162 0.430 0.331 0.122 1.570 2.849 0.376 0.579
T1-T2 eSSD 0.165 0.209 0.622 0.051 0.056 0.282 0.077 0.170 0.695 0.317

T1-PD MI 0.251 0.319 0.257 0.359 0.417 0.165 1.906 2.303 0.506 0.621
T1-PD eSSD 0.155 0.119 0.538 0.047 0.064 0.334 0.077 0.152 0.5929 0.365

T2-PD MI 0.171 0.112 0.143 0.192 0.156 0.119 0.792 0.861 0.274 0.290
T2-PD eSSD 0.046 0.041 0.141 0.045 0.040 0.044 0.039 0.025 0.161 0.085

Table 2: Pairwise random registration study for RIRE with translational error t in mm, rotational error r in degree.

Data Set Sim tx ty tz rx ry rz tstd rstd ttotal rtotal

T1-T2 MI 0.719 0.395 1.531 1.594 2.252 1.467 0.235 0.177 1.754 3.139
T1-T2 eSSD 0.042 0.224 0.396 1.120 1.582 0.538 0.046 0.057 0.461 2.013

T1-PD MI 0.190 0.251 0.856 0.635 0.877 0.546 0.290 0.180 0.944 1.231
T1-PD eSSD 0.061 0.048 0.431 0.344 0.648 0.558 0.050 0.048 0.442 0.926

T2-PD MI 0.196 0.344 2.068 2.365 1.196 0.952 0.718 2.186 2.141 2.976
T2-PD eSSD 0.093 0.110 1.065 1.984 1.196 0.308 0.279 0.493 1.080 2.355

CT-T1 MI 1.925 1.004 1.312 1.718 2.951 0.763 2.394 5.529 2.710 3.951
CT-T1 eSSD 0.963 1.269 0.702 2.433 0.728 0.169 2.990 9.577 1.997 3.089

CT-T2 MI 4.567 1.501 2.314 3.896 9.738 1.332 4.543 9.783 5.806 11.634
CT-T2 eSSD 1.288 8.488 6.025 35.905 1.903 0.885 7.932 28.631 11.063 36.896

CT-PD MI 2.348 0.613 1.394 1.395 4.056 0.805 2.677 5.622 2.943 4.784
CT-PD eSSD 0.770 0.988 0.475 1.487 0.248 0.248 1.824 5.971 1.442 1.619

PET-T1 MI 9.071 7.730 13.409 29.226 23.578 4.945 13.373 22.343 20.869 46.234
PET-T1 eSSD 0.053 0.057 0.089 0.040 0.038 0.042 0.051 0.023 0.135 0.078

PET-T2 MI 9.027 8.566 11.631 35.444 22.239 5.522 11.545 20.217 20.705 52.131
PET-T2 eSSD 0.043 0.038 0.057 0.040 0.040 0.042 0.034 0.024 0.093 0.079

PET-PD MI 10.131 7.685 13.354 27.693 24.451 4.565 12.853 20.023 21.165 45.606
PET-PD eSSD 0.048 0.056 0.194 0.043 0.056 0.043 0.065 0.033 0.217 0.094

olution is also the reason for the lower rotational error
around the z-axis rz in comparison to rx and ry.

We measure an average computation time for the
evaluation of SSD being a factor of 15 faster than MI.
This leads to a quick amortization of the additional pro-
cessing time needed for the creation of the entropy im-
ages.

7.2. Deformable Registration

We first evaluate the application of gradient im-
ages [9] for deformable registration. In figure 13 we
show two synthetic images that model a possible multi-
modal scenario, with image regions being depicted in
different colors. We calculate the gradient fields of
both images and overlay them, once for the upper and
once for the lower T-junction. Further, we smooth

the synthetic images to create a more realistic scenario
and show the gradient fields again. We observe that
the gradients are pointing in different directions, where
the smoothing propagates this effect to a larger region.
Contrary, the entropy images consistently represent the
structure of the images, leading to good registration re-
sults.

On the medical databases, we deform one of the two
images with a deformation dg serving as ground truth.
Next, we run the registration with the deformed im-
age as target and the image from the other modality as
source to calculate the estimated deformation dc. We
calculate the average euclidean difference of the defor-
mation fields τ = 1

|Ω|

∑
x∈Ω ‖dc(x)−dg(x)‖ for quantifying

the residual error of the registration.
The results for the experiments are shown in fig-
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Figure 13: Illustration of two synthetic multi-modal images (1st & 2nd) together with a zoom on gradient fields (3rd & 4th), gradient fields of
smoothed images (5th & 6th) and entropy images (7th & 8th). The best structural representation is achieved with entropy images.

Table 3: Registration errors τ in mm for various configurations for calculating the entropy images. (B: Brainweb, R: RIRE dataset)

Technique T1-T2B T1-PDB T2-PDB T1-T2R T1-PDR T2-PDR CT-T1R PET-T2R

NMI (reference) 0.63 0.79 0.66 0.94 1.04 1.33 1.84 3.42

Local Norm. 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Global Norm. 0.99 2.08 0.87 2.76 4.30 4.11 6.87 1.83

Parzen Window 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Histogramming 0.54 0.91 0.66 0.94 1.12 1.42 6.02 0.97

Shannon 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Rényi, H2 0.47 1.11 0.64 0.49 0.54 0.64 6.39 1.25

Burg 1.82 4.61 2.43 2.81 2.37 2.68 6.71 3.46

ures 14 and 15, and table 3. The error of the regis-
tration with the original images using normalized mu-
tual information is stated in the table as reference. The
standard configuration for the entropy image for de-
formable registration is: 7×7 patches, 16 bins, Gaussian
weighting, local normalization, Parzen-window estima-
tion, and Shannon entropy. In our experiments, we eval-
uate each of the parameters by changing one of them
from the standard configuration and letting the others
constant.

From figures 14 and 15, we see that best results are
achieved around 16 bins. While reducing it further to
8 bins also leads to good results, increasing it further
to 32 bins leads to an increase in error. A good com-
promise in the patch size for the different datasets and
modalities is approximately 7 × 7. Larger patch sizes
still lead to good results on the RIRE images, but on
the Brainweb images we observe a significant increase
of the error. Smaller patches lead to an inaccurate den-
sity estimation because of the small number of samples.
For the weighting, we observe a general reduction of
the error when using a more advanced weighting than
the standard identical one.

From table 3, we see that a local normalization of
the intensity values and the Parzen window method for
the density estimation are essential for good deformable
registration results. For the entropy estimation, we ob-
tain best results for the Shannon entropy. The results for
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Figure 16: Groupwise convergence study for BrainWeb (left) and
RIRE (right) volumes.

the special Rényi entropy H2 are comparable, while the
ones for the Burg entropy are not good.

The results of the deformable registration on T1, T2,
and PD images show a slight advantage for normalized
mutual information (NMI) on the Brainweb dataset,
while for the RIRE dataset the entropy images lead to a
significant improvement. The registration with CT and
PET is more challenging, because of the significant dif-
ferences in the images. The registration of CT with en-
tropy images is inferior to NMI. For the registration of
PET, entropy images are superior to NMI.

The registration with eSSD is on average 6.6 times
faster than with NMI. This includes the time for the cre-
ation of the entropy images.
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Figure 14: Evaluation of error τ for deformable registration for varying bin number, patch size, and spatial weighting on Brainweb.
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Figure 15: Evaluation of error τ for deformable registration for varying bin number, patch size, and spatial weighting on RIRE.

7.3. Groupwise Registration

We perform a simultaneous, rigid registration study
for the BrainWeb and RIRE volumes. We compare the
usage of ESM with eSSD, Gauß-Newton with eSSD,
and Gauß-Newton on the original images with MI. We
run 50 registrations, each starting from a random initial
position. Each initial position has an accumulated RMS
error of 45 over all volumes from the correct alignment,
weighting 1mm equal to 1◦. The average residual error
for each step is shown in Fig. 16. We observe that ESM
converges significantly faster than GN. For BrainWeb,
GN on the original and entropy images are compara-
ble. For RIRE, GN on the entropy images works well.
For GN on the original dataset with MI, however, most
registrations do not converge, confirming our previous
experiments.

7.4. Bias field

A typical situation that challenges the application of
mutual information is the registration of images, which
contain high intensity non-uniformity due to the bias
field. Recently, the residual complexity [22] was pre-
sented as a technique that can cope with such situations.
They motivated their approach with synthetic images,

−50 0 50
0

0.2

0.4

0.6

0.8

1

Translation

S
co

re

Figure 17: First line, synthetic images with bias field [22]. Second
line, entropy images. Third line, similarity plot with SSD (blue), MI
(black, dashed), and eSSD (red).
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Figure 18: T1 (left), T2 (middle), and PD (right) images. First line:
original images. Second line: entropy images. Third line: Laplacian
images.

similar to those in figure 17. We create plots of SSD
and MI by translating the images, analogously to [22].
As expected, they fail in indicating the correct align-
ment. In contrast, eSSD correctly indicates the perfect
alignment. We show a second set of images affected
by bias field in the supplementary material with similar
results. There is an interesting parallel, because it was
shown that the usage of local statistics for the MI cal-
culation [45] is more robust to intensity non-uniformity.
For the calculation of entropy images we also use local
statistics. However, we have the advantage of estimat-
ing only marginal instead of joint distributions, which is
more robust for few samples from small local neighbor-
hoods.

8. Experiments with Laplacian Images

We already mentioned in section 6.3 that the com-
putational complexity of the Laplacian images prohibits
its practical usage on a large scale at the moment. We
nevertheless want to validate if the theoretical advan-
tages also lead to better registration results. We limit
the analysis to 2D regions of the BrainWeb images (3%
noise, 20% intensity non-uniformity) and RIRE images.

Table 4: Registration study for Laplacian images. Errors for transla-
tion t in mm and rotation r in degree.

Datasets Similarity r tx ty RMS

T1-T2

L2 4.879 9.019 6.471 7.000
MI 2.325 3.768 5.226 3.954

Entropy 2.084 4.539 5.231 4.180
Laplacian 2.584 2.061 2.168 2.271

T1-PD

L2 2.760 6.422 5.755 5.227
MI 2.304 4.138 4.907 3.937

Entropy 2.283 4.782 4.750 4.108
Laplacian 1.750 3.007 1.929 2.297

T2-PD

L2 1.784 2.947 2.916 3.942
MI 2.161 4.628 3.812 3.680

Entropy 1.723 4.296 3.780 3.450
Laplacian 1.171 2.350 1.984 1.900

In figure 18 we show the original images, the entropy
images, and the Laplacian images. We can clearly ob-
serve the different nature of the entropy and Laplacian
images. Entropy images resemble gradient images, pro-
nouncing boundaries and changes in the images. The
Laplacian images, however, look like the original im-
ages, but with a different coloring. We can further ob-
serve that the assumption of comparable internal simi-
larities in the images is justified, because the appearance
of the Laplacian images across the modalities is very
similar. In figure 21 we show the results for the RIRE
images with T1, T2, and CT. The assumption of com-
parable internal similarity between MR and CT brain is
more challenging, because of the low contrast of inter-
nal brain structures in CT.

In order to quantify the promising visual appearance
for image registration, we show surface plots of the sim-
ilarity measures for translation and rotation in figures 19
and 20, respectively. We compare the usage of the L2
distance on the original images, MI on the original im-
ages, and L2 distance on entropy and Laplacian images
for all combinations of multi-modal alignment. The
maxima indicate the best alignment. MI shows a very
sharp peak at the correct position, but seems to have a
limited capture range. Entropy images also indicate the
correct position, but the cost functions contain several
local maxima. We observe the cost function with the
largest capture range for the Laplacian images.

Although similarity plots give a good intuition about
the performance of different similarity measures, it is
only a registration study that shows the final quality. We
perform a registration study for all multi-modal image
combinations. The random starting position deviates up
to ±15 mm in translation and ±15◦ in rotation from the
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Figure 19: Plot of similarity measures with respect to rotation of images in figure 18. Maxima indicate best alignment.

Figure 21: T1 (left), T2 (middle), and CT (right) images. First line:
original images. Second line: Laplacian images.

correct pose. We show the average absolute error for
translation and rotation, together with the overall root
mean squared error (RMS), for 100 registration runs for
each configuration in table 4. We weight 1 mm equal
to 1◦ to quantify translational and angular displacement
from the ground truth in one single value. We see that
the positive impression of the Laplacian images from
the similarity plots is confirmed by the registration re-
sults. We obtain a significantly lower error in compari-
son to MI and entropy images. Our experiments there-
fore confirm the theoretical advantages of Laplacian im-
ages in comparison to entropy images in practice.

9. Discussion

We extensively evaluated the performance of entropy
images for rigid, deformable, and groupwise registra-
tion. The results on the BrainWeb data are compara-
ble to the application of MI. The registration results on
the RIRE database are dependent on the modalities. We

obtain very good results for the alignment of PET im-
ages, and in most other cases we are comparable or
slightly better than MI. The application of ESM on en-
tropy images did not cause any problems, and we ob-
tained the expected faster convergence in comparison to
Gauß-Newton. Finally, we indicated that entropy im-
ages are robust to intensity non-uniformity.

For the Laplacian images, we were able to validate
that their superior theoretical properties also lead to bet-
ter registration results. The computational complexity
for the creation of these representations is, however,
limiting. We think that the juxtaposition of entropy
and Laplacian images is interesting because they present
two completely different approaches for obtaining struc-
tural representations. While entropy images could be
seen as non-linear filtering of an image, the Laplacian
images identify self-similarities in an image. Entropy
images present a local approach, and Laplacian images
a global approach to the calculation of structural repre-
sentations.

Thinking along the line of entropy images, one could
imagine several alternative techniques to quantify the
structure of a patch. We experimented, for instance,
with the compressibility of patches or the calculation
of the entropy from gradient instead of intensity his-
tograms, with examples shown in the supplementary
material. These approaches, however, bear no obvious
advantages for our applications and are more complex
to compute. We are convinced that the simplicity of
the entropy images together with the fast calculation
and good performance leads to a high practical value.
Further, there are many articles in the computer vision
literature [34, 42] that deal with a fast local histogram
calculation, such as integral histograms, distributive his-
tograms, and the efficient histogram-based sliding win-
dow, that allow for a reduction of the processing time
for certain configurations of entropy images.
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10. Conclusion

In this article, we analyzed structural image represen-
tations for multi-modal registration. We formulated the-
oretical properties that such a structural representation
should fulfill. Generally, the registration with such rep-
resentations has the advantage that mono-modal simi-
larity measures can be used for multi-modal registra-
tion. Further, we show that a more efficient optimization
scheme becomes applicable. Throughout the article we
introduced two possible structural representations, the
entropy and Laplacian images. The entropy images only
fulfill certain requirements of a relaxed version of the
theoretical properties, however, they are fast to compute
and lead to good alignments, making them a very practi-
cal solution. The Laplacian images fulfill all the theoret-
ical requirements, the preservation of locality even op-
timally. These superior theoretical properties also lead
to better registration results, however, these advantages
come at a significantly higher computational cost. Fi-
nally, we think that the application of structural repre-
sentations for multi-modal registration is an interesting
research direction, which presents an alternative to the
usage of sophisticated similarity metrics.
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Figure 20: Plot of similarity measures with respect to translation in x and y direction. Maxima indicate best alignment.
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