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1 DERIVATION OF SSD FROM THE PROBA-
BILISTIC FRAMEWORK

We mentioned in the main article that it is possible
to derive several similarity measures from the log-
likelihood term log p(Ij |Ii). In order to foster intuition
about these derivations, we present the deduction of SSD
as an example, with further information provided in [1]–
[3]. For the derivation of SSD we assume a Gaussian
distribution, i.i.d. coordinate samples, and the intensity
mapping to be the identity. This allows us to write:

log p(Ij |Ii) = log
∏
p∈Ω

p(Ij(p)|Ii(p)) (1)

=
∑
p∈Ω

log

[
1√
2πσ

exp

(
− (Ij(p)− Ii(p))2

2σ2

)]
(2)

∝ − 1

2σ2

∑
p∈Ω

(Ij(p)− Ii(p))2 (3)

∝ −SSD(Ij , Ii) (4)

with variance σ2. The maximization of the log-likelihood
function corresponds to the minimization of SSD.

2 EQUIVALENCE OF VOXEL-WISE SSD AND
APE SSD
An interesting equality exists between voxel-wise SSD
and accumulated pairwise estimates (APE) for SSD:∑
sk∈Ω

n∑
i=1

(Ii(sk)− µk)
2 !
=

1

2n

n∑
i=1

n∑
j=1

∑
sk∈Ω

(Ii(sk)− Ij(sk))2.

(5)

We show the key steps of the proof of the equality. In
figure 1, we show the deduction of the left-hand side
in equation (5) and in figure 2 the right-hand side. The
equality of both sides shows that equation (5) holds.
This equality between APE SSD and voxel-wise SSD
is a reason and motivation to investigate the general
relationship between APE and Congealing.

3 CONNECTION BETWEEN APE AND CON-
GEALING

We show the connection between the two approxima-
tions, by starting with the Markov-congealing, see equa-
tion (10) in main article, and derive the formula of APE
from it:

p(I1, . . . , In) (11)

=
∏
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pk(Ii(sk)|INi(sk)) (12)

Bayes
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∏
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∏
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Applying the logarithm and assuming a maximal neigh-
borhood leads to

log p(I1, . . . , In) (14)

=
∑
sk∈Ω

n∑
i=1

∑
j 6=i

(
log pk(Ij(sk)|Ii(sk))− log pk(Ij(sk))

)
+
∑
sk∈Ω

n∑
i=1

log pk(Ii(sk)). (15)

An assumption that is different between the pair-wise
and voxel-wise approach, per design, is that the voxel-
wise coordinate samples are not identically distributed.
To relate the two approaches, we set the distribution of
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Fig. 1. Deduction of left-hand side in equation (5).
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Fig. 2. Deduction of right-hand side in equation (5).

the coordinate samples identical

log p(I1, . . . , In) (16)

=

n∑
i=1

∑
j 6=i

(log p(Ij |Ii)− log p(Ij)) +

n∑
i=1

log p(Ii)

=

n∑
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∑
j 6=i

log p(Ij |Ii) +
n∑

i=1

log p(Ii)−
n∑

i=1

∑
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log p(Ij)

=

n∑
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∑
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log p(Ij |Ii) +
n∑
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log p(Ii)− (n− 1)

n∑
j=1

log p(Ij)

Comparing this result to equation (6) of the main article,
we observe that both are equivalent up to the term
−(n − 1)

∑n
j=1 log p(Ij). Again assuming that no prior

information is available, we conclude that the approx-
imations with APE and Markov-congealing are equal,
under the consideration of a maximal neighborhood,
conditional independent images and an identical distri-
bution of coordinate samples.

4 GRADIENT

In this section, we provide further details about the
gradient calculation in section 3.3 of the main article.
We begin by stating the product of the Jacobians of the
transformation

[Jw]p · Je =

 0 pz −py 1 0 0
−pz 0 px 0 1 0
py −px 0 0 0 1

 (17)

for a specific point p. Considering the Jacobian matrices
not with respect to one specific point, but in their general
form, we get:
• JSMi,j

is a 1 × N vector containing the derivatives
of the similarity metric on the diagonal

=

Gradient Scheme

Fig. 3. Schematic illustration of the Jacobian matrices
and the resulting update. Only the colored boxes are
unequal zero.

• JIj is an N × 3N matrix with the image gradients
in all 3 directions on the diagonals

• Jw is a 3N × 12 matrix
• Je is a 12× 6 matrix

with N the number of points in the grid. The product
Jw · Je is an extension of matrix in equation (60) in the
main article to N points and has the following structure

Jw · Je =



0 p1
z −p1

y 1 0 0
...

...
...

...
...

...
0 pNz −pNy 1 0 0
−p1

z 0 p1
x 0 1 0

...
...

...
...

...
...

−pNz 0 pNx 0 1 0
p1
y −p1

x 0 0 0 1
...

...
...

...
...

...
pNy −pNx 0 0 0 1


. (18)
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Fig. 4. Plot of condition numbers for different similarity measures during optimization (x-axis: iteration number, y-axis:
condition number of Hessian).

We schematically depict the scheme of the Jacobian
matrices in figure 3. The illustration is corresponding to
an image consisting of N = 4 pixels, 3 dimensions, and
3 transformation parameters (3 translations).

5 CONDITIONING OF HESSIAN APPROXIMA-
TION

We run new experiments aligning only two images. We
loaded data from the RIRE dataset and applied a small
transformation. We calculate the condition number of the
approximated Hessian J>J for each step of the optimiza-
tion. The graphs for the different similarity measures
are displayed in figure 4. We observe a slight increase
of the condition number of the Hessian during the opti-
mization, meaning that the sensitivity to errors increases.
Following the theoretical analysis, we expected such an
increase of the condition number.
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