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Simultaneous Registration of Multiple Images:
Similarity Metrics and Efficient Optimization
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Abstract—We address the alignment of a group of images with simultaneous registration. Therefore, we provide further insights into a
recently introduced framework for multivariate similarity measures, referred to as accumulated pair-wise estimates (APE), and derive
efficient optimization methods for it. More specifically, we show a strict mathematical deduction of APE from a maximum-likelihood
framework and establish a connection to the congealing framework. This is only possible after an extension of the congealing framework
with neighborhood information. Moreover, we address the increased computational complexity of simultaneous registration by deriving
efficient gradient-based optimization strategies for APE: Gauss-Newton and the efficient second-order minimization (ESM). We present
next to SSD the usage of intrinsically non-squared similarity measures in this least-squares optimization framework. The fundamental
assumption of ESM, the approximation of the perfectly aligned moving image through the fixed image, limits its application to mono-
modal registration. We therefore incorporate recently proposed structural representations of images, which allow us to perform multi-
modal registration with ESM. Finally, we evaluate the performance of the optimization strategies with respect to the similarity measures,
leading to very good results for ESM. The extension to multi-modal registration is in this context very interesting because it offers further
possibilities for evaluations, due to publicly available data sets with ground-truth alignment.

Index Terms—Registration, Groupwise, Simultaneous, Optimization, Similarity Measures, Multi-modal.
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1 INTRODUCTION
The analysis of a group or population of images re-
quires their alignment to a canonical pose. Examples
are the alignment of handwritten digits or face images
for their later identification [1]–[4], the alignment of 3D
tomographic images for the creation of an atlas [5], or
the creation of mosaics from ultrasonic volumes [6].
First approaches to this groupwise registration problem
identified one image as template, and registered all other
images to it with a pair-wise approach. While this is
a valid strategy for certain applications where such a
template exists, in most cases it leads to an undesired
introduction of bias with respect to the a priori chosen
template. Simultaneous registration presents a method to
circumvent this problem, however, it necessitates mul-
tivariate similarity measures and an optimization in a
higher-dimensional space.

The direct estimation of multivariate measures with
high-order joint density functions is prohibitive, because
for a reliable estimation of the joint density, the number
of samples would have to grow exponentially with the
number of images, however, it only grows linearly. Ap-
proximations are therefore necessary, like the congealing
framework presented by Learned-Miller [1]. Another
approach was presented by Wachinger et al. [6], which
accumulates pair-wise estimates (APE). The derivation of

C. Wachinger is currently with the Computer Science and Artificial Intel-
ligence Lab, Massachusetts Institute of Technology and the Department of
Neurology, Massachusetts General Hospital, Harvard Medical School. This
work was completed while he was with the chair for Computer Aided Medical
Procedures, Technische Universität München.
N. Navab is with the chair for Computer Aided Medical Procedures, Tech-
nische Universität München, Germany.
E-mail: wachinge@in.tum.de, navab@in.tum.de

APE was mainly based on analogies. Moreover, the
relationship between congealing and APE has not yet
been investigated.

When aligning multiple data sets simultaneously, in-
stead of successively, one has to consider two conse-
quences for the optimization method. First, the reg-
istration scenario becomes more complex because the
parameter space increases linearly with the number of
images. And second, the evaluation of the multivariate
similarity measure is more expensive. One is therefore
interested in an efficient optimization procedure, which
finds the optima robustly and with a minimal amount
of evaluations of the objective function. We focus on
gradient-based methods because they promise a fast
convergence rate due to the guidance of the process by
the gradient.

In this article, we address the afore mentioned prob-
lems of simultaneous registration. First, we present a
strict mathematical deduction of APE from a maximum
likelihood framework. Second, we describe an extended
version of congealing, enriched with neighborhood in-
formation, which allows us to show the connection
between APE and congealing. Third, we derive efficient
gradient-based optimization strategies for simultaneous
registration with APE as multivariate similarity frame-
work.

The direct application of ESM to multi-modal regis-
tration is not possible because the addition of gradi-
ent images from different modalities is not meaning-
ful. Recently, structural images were proposed [7], [8],
which represent the structural information in images,
to a certain extent independent of brightness and color.
In combination with structural images, we can there-
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fore apply ESM for multi-modal registration, because
it is transferred to a mono-modal registration problem.
The application of multi-modal simultaneous registra-
tion gives us additional means for validation because
public datasets exist, where particular effort has been
taken to measure the ground truth transformation with
bone-implanted fiducial markers [9].

1.1 Related Work

Simultaneous registration has many applications in com-
puter vision, pattern recognition, and medical imaging
when it comes to the alignment of multiple images.
Learned-Miller [1] proposed the congealing framework
for the alignment of a large number of binary im-
ages from a database of handwritten digits and for
the removal of unwanted bias fields in magnetic res-
onance images. Congealing sums up the entropy of
pixel stacks over the image. Huang et al. [2] applied
congealing to align 2D face images, essential for their
later identification. In [1]–[4], a sequential update of the
registration parameters is performed. Zöllei et al. [5]
used congealing for the simultaneous alignment of a
population of brain images for brain atlas construction.
Studholme and Cardenas [10] construct a joint density
function for multivariate similarity estimation, which
has the afore mentioned problem for larger image sets.
Cootes et al. [11] use the minimum description length
for the alignment of a group of images in order to create
statistical shape models. This criterion demands a great
deal of memory so that it only works for a limited
number of volumes [5]. Sidorov et al. [12] use a stochastic
optimization approach for groupwise registration of face
images. One image is selected at a time and aligned
to the remaining images using a similarity term that
is close the voxel-wise variances, see section 2.2.1. It is
argued that by randomly selecting the image to update
the warp, an approximation to a fully simultaneous
registration is achieved. Wachinger et al. [6] proposed
simultaneous registration for volumetric mosaicing. This
poses slightly different requirements on the multivariate
similarity measure, because the number of overlapping
images varies and can be rather small on specific loca-
tions. The therein introduced APE is flexible enough to
deal with such situations. APE is a general framework to
extend pairwise to multivariate similarity measures. The
specific case of APE with sum of squared differences was
used by Cox et al. [3], [4], referring to it as least squares
congealing. Recently, APE was applied for simultaneous
deformable registration of time-resolved images [13]. A
spatio-temporal registration is performed by embedding
the images in 4D space and deforming all of them si-
multaneously. A similar approach was proposed in [14],
working with voxel-wise variances.

A popular class of optimization techniques are
gradient-based methods. The utilization of the deriva-
tives of the cost function helps in finding the optimum
more efficiently in comparison to techniques that only

rely on the function values. Gradient-based techniques
are widely applied, where we focus on their applica-
tion in image alignment [15], [16]. A good overview
of gradient-based optimization methods is provided in
Baker and Matthews [17] and Madsen et al. [18]. Based
on their results, we do not consider the Levenberg-
Marquardt algorithm because of its very similar behavior
to Gauss-Newton. A new method, which is not cov-
ered in these articles, comes from the field of vision-
based control. It is an efficient-second order optimization
method introduced by Benhimane and Malis [19]. They
showed that ESM has striking advantages in conver-
gence rate and convergence frequency in comparison
to Gauss-Newton (GN) and steepest-descent (SD). Ver-
cauteren et al. [20] achieved good results for the pairwise
alignment of 2D images with ESM.

Once the update is calculated, either an additive or a
compositional scheme for applying the update to the cur-
rent transformation can be used. In several articles [17],
[21]–[23] the advantages of a compositional update are
noted, which we consequently also apply in our work.

1.2 Outline

The remainder of the article is structured as follows. In
section 2, we present the derivation of multivariate simi-
larity measures from a common probabilistic framework.
We deduce APE, as well as, congealing and analyze
their relationship by introducing Markov congealing.
Subsequently, we focus on APE as similarity framework
and derive gradient-based optimization techniques in
section 3, most prominently ESM. In section 4, we in-
troduce multi-modal registration with ESM by calcu-
lating structural images. The experimental results for
ultrasound mosaicing and multi-modal registration are
presented in section 5. Parts of this work were previously
presented at a conference [24].

2 MULTIVARIATE SIMILARITY METRICS

In this section, we present a deduction of APE from
a maximum likelihood (ML) framework and show its
connection to congealing. Considering n images I =
{I1, . . . , In} and the transformation parameters x, the ML
framework for intensity-based registration is formulated
as:

x̂ = arg max
x

log p(I1, . . . , In; x) (1)

with the joint density function p, and the estimated
alignment x̂ [25]. We present more details on the actual
transformation parameterization in section 3, where for
this section it is only important that x contains the
parameters for all images and can represent arbitrary
transformations. For notational ease, we will no longer
consider x explicitly in the density function.
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2.1 Accumulated Pair-Wise Estimates

APE approximates the joint likelihood function with
pair-wise estimates [6]:

log p(I1, . . . , In) ≈
n∑

i=1

∑
j 6=i

log p(Ij |Ii). (2)

Assuming a Gaussian distribution of the density p, i.i.d.
coordinate samples, and various intensity mappings be-
tween the images, popular similarity measures such as
sum of squared differences (SSD), normalized cross cor-
relation (NCC), correlation ratio (CR), and mutual infor-
mation (MI) can be derived from the log-likelihood term
log p(Ij |Ii) [26]–[28]. APE therefore presents a framework
for similarity measures. We provide more insights on the
derivation of similarity measures by deducing SSD in
appendix 1.

In order to deduce APE, we first derive a pair-wise ap-
proximation with respect to image In using the product
rule and conditional independence:

p(I1, . . . , In)
Prod.Rule

= p(I1, . . . , In−1|In) · p(In) (3)

Cond.Indep.
=

n−1∏
i=1

p(Ii|In) · p(In). (4)

Second, we take the n-th power of the joint density
function and perform the derivation of equation (4) with
respect to each of the images, leading to:

p(I1, . . . , In)n =

n∏
i=1

p(Ii) ·
n∏

i=1

∏
j 6=i

p(Ij |Ii). (5)

Third the logarithm is applied:

log p(I1, . . . , In)n =

n∑
i=1

log p(Ii) +

n∑
i=1

∑
j 6=i

log p(Ij |Ii)

leading to the desired approximation of the high dimen-
sional density:

log p(I1, . . . , In) =
1

n

n∑
i=1

log p(Ii) +
1

n

n∑
i=1

∑
j 6=i

log p(Ij |Ii)

(6)

≈
n∑

i=1

∑
j 6=i

log p(Ij |Ii) (7)

wherein we no longer consider the multiplicative con-
stant 1

n and the prior term
∑n

i=1 log p(Ii). The prior may,
however, be used in future applications to incorporate
further knowledge about the registration problem. The
presented deduction is not limited to similarity measures
and presents a general approximation of higher order
densities by pairwise ones.

2.2 Congealing

In the congealing framework [1], independent but not
identical distributions of the coordinate samples sk ∈ Ω
in the grid Ω are assumed:

p(I1, . . . , In) =
∏
sk∈Ω

pk(I1(sk), . . . , In(sk)). (8)

Assuming further i.i.d. input images Ii leads to:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

pk(Ii(sk)). (9)

In the following, we derive a more general form of
congealing that applies, instead of the assumption of
independent images, the Markov property. This means
that images are independent, if we know a certain local
neighborhood of images around the current one. While
the consideration of neighboring pixels, surrounding a
sample sk, was already discussed in [1], referred to as
pixel cylinder, the consideration of neighboring images
has not yet been proposed. So, instead of independent
images, we assume that each image Ii depends on a
certain neighborhood Ni of images:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

pk(Ii(sk)|INi(sk)). (10)

We refer to this approximation as Markov-congealing.
The size of the neighborhood depends on the structure
in the image stack. If there is no further information
about the images, considering a maximal neighborhood
INi = (I1, . . . , Ii−1, Ii+1, . . . , In) seems reasonable. If
there is, however, a certain order or evolution in the stack
(camera parameters, motion, etc.), the neighborhood can
be chosen appropriately to reflect this structure.

2.2.1 Voxel-wise Variances

The Markov-congealing allows us to derive the voxel-
wise variances as proposed in [6] and applied in [12],
[14]. The term voxel-wise estimation [5] is used, since
the approach taken in the congealing framework focuses
on certain pixel or voxel locations at a time. Voxel-
wise variances combine the approach of a voxel-wise
similarity estimation with the assumptions underlying
SSD, which are Gaussian distributed intensity values and
the identity as intensity mapping.

We incorporate the neighborhood information by esti-
mating the mean µk for each voxel location sk with:

µk =
1

n

n∑
l=1

Il(sk). (11)

Following the formal definition of a local neighborhood
Ni in the Markov sense, the calculation of the mean
should not include the image Ii itself [29]. This leads,
however, to higher computational costs because for each
image and for each voxel location a different mean has
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to be calculated. We therefore go ahead with the more
practical approximation, leading to:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

1√
2πσ

exp

(
− (Ii(sk)− µk)2

2σ2

)
(12)

with variance σ2. This leads to the formula for voxel-
wise SSD:

log p(I1, . . . , In) ≈ −
∑
sk∈Ω

n∑
i=1

(Ii(sk)− µk)2. (13)

Looking at the formula, we can see that voxel-wise SSD
leads to the calculation of the variance at each location
and subsequently accumulates the values [30]. The vari-
ance is one of the measures to express the statistical dis-
persion of a random variable [31]. In contrast to entropy,
which measures the structuredness of a variable, it can
only deal with mono-modal matchings. An interesting
equality exists between voxel-wise SSD and APE SSD:∑
sk∈Ω

n∑
i=1

(Ii(sk)−µk)2 =
1

2n

n∑
i=1

n∑
j=1

∑
sk∈Ω

(Ii(sk)− Ij(sk))2,

(14)
with the proof shown in appendix 2.

2.3 Comparison of APE and Congealing

In the last sections, we discussed APE and congealing as
separate approximations to the high dimensional density
with a connection for SSD. In this section, we investigate
if there is a direct theoretical relationship between the
two approaches. It is in fact possible to deduce a connec-
tion between APE and Markov-congealing. The detailed
proof is stated in appendix 3. Therein we start with the
Markov-congealing and derive APE. In order to make
the derivation possible, the following assumptions have
to be incorporated: (a) maximal neighborhood, (b) condi-
tional independence of images, and (c) i.i.d. distribution
of coordinate samples. While (c) was explicitly chosen
by the design of congealing and (b) by the deduction
of APE, the novel part is the neighborhood (a), which
relates these two approaches. The Markov-congealing in
equation (10) presents therefore an intermediate between
APE and congealing.

To conclude, for congealing no specific distribution
has to be selected, because the similarity can directly be
calculated with the sample entropy. Markov-congealing
and APE do not present actual similarity measures, but
frameworks, where further information about the distri-
bution has to be provided to derive similarity measures.
Incorporating e.g. a Gaussian distribution and an identity
intensity mapping leads to an SSD like extension. APE,
in contrast to congealing, assumes an identical distri-
bution of coordinate samples, which makes a reliable
estimation for a small number of overlapping images
possible. For congealing, a larger number is necessary,
because the estimation is done with the information

at one location at a time. Consequently, the choice,
which multivariate similarity approximation to choose,
is application dependent. We will focus on APE in the
remaining article because it seems most versatile.

3 EFFICIENT OPTIMIZATION METHODS

In this section, we present efficient gradient-based op-
timization methods for simultaneous registration. More
precisely, we focus on APE as similarity measure and 3D
rigid transformations as transformation model, where
the parameterization can be easily adapted to different
types of alignments. In contrast to [1]–[4], we do not
update one parameter at a time, but update all param-
eters at once. Problems with the sequential update are
illustrated in [4].

3.1 Transformation Parameterization
We parameterize the spatial transformations with Lie
groups because 3D rigid transformations do not form
a vector space. We perform a geometric optimization
using local canonical coordinates. It has the advantage
that the geometric structure of the group is taken care of
intrinsically [32], [33]. This enables us to use an uncon-
strained optimization. Alternatively, one could embed
them into the Euclidean space and perform a constrained
optimization with Lagrange multipliers.

Each rigid 3D transformation x is an element of SE(3),
the special Euclidean group. It is possible to describe
them with a 4×4 matrix having the following structure:

x =

[
R t
0 1

]
(15)

with the rotational part R, element of the special orthog-
onal group SO(3), and the translational part t ∈ R3.

SE(3) forms a manifold and is a group under standard
matrix multiplication, therefore it is a Lie group. On Lie
groups, the tangent space at the group identity defines a
Lie algebra. The Lie algebra captures the local structure
of the Lie group. The Lie algebra of SE(3) is denoted by
se(3), and is defined by:

se(3) =

{[
Ω v
0 0

]
|Ω ∈ R3×3,v ∈ R3,Ω> = −Ω

}
.

The standard basis of se(3) is L = {l1, . . . , l6} with:

l1 =

 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 l4 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 (16)

l2 =

 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 l5 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 (17)

l3 =

 0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 l6 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (18)

Each element H ∈ se(3) can be expressed as a linear
combination of matrices H =

∑6
i=1 hili with hi varying
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over the manifold [34] and h = [h1, . . . , h6]>. The expo-
nential map relates the Lie algebra to the Lie group:

exp : se(3)→ SE(3) (19)

H 7→ exp

(
6∑

i=1

hili

)
=

∞∑
j=0

1

j!

(
6∑

i=1

hili

)j

.

It exists an open cube V around 0 in se(3) and an open
neighborhood U of the identity matrix I ∈ SE(3) such
that the group exponential is smooth and one-to-one
onto, with a smooth inverse, therefore a diffeomorphism.
An explicit expression for the calculation of the exponen-
tial for elements in SE(3) exists, as shown in [35, pp.413].
For the restriction to SO(3), the explicit formula is known
as Rodrigues’ formula.

Using the local coordinate charts, there exists for any
y ∈ SE(3) in some neighborhood of x a vector in the
tangent space H ∈ se(3), such that:

y = x ◦ exp(H) = x ◦ exp

(
6∑

i=1

hili

)
. (20)

Let us further denote the transformation of a point p =
[x, y, z, 1]> ∈ R4 in homogeneous coordinates through
the mapping y ∈ SE(3) with w(y,p):

w : SE(3)× R4 → R4 (21)
(y,p) 7→ w(y,p) = p′. (22)

Finally, for ease of notation we define an extension of
the exponential, enabling the direct application of the
parameter vector exp(h) := exp(H).

3.2 Optimization Methods
The global transformation x = [x1, . . . ,xn], with xi ∈
SE(3), maps the points from each of the image spaces to
the joint image space, R4 → R4,p 7→ w(xi,p). The cost
function E that we want to optimize is a sum of squared
smooth functions:

E(x) =
∑
i 6=j

Fi,j(x) =
∑
i 6=j

1

2
‖fi,j(x)‖2 (23)

with Fi,j representing the pair-wise similarity measure.
Regarding equation (23), we see that we deal with a

non-linear least-squares problem. Therefore, efficient op-
timization methods were proposed that achieve in many
cases linear, or even quadratic, convergence without the
explicit calculation of the second derivatives.

The starting point from all the following optimization
methods is a Taylor expansion of the cost function
around the current transformation x along the gradient
direction h:

E(x ◦ exp(h)) ≈ E(x) + JE(x) ·h +
1

2
h> ·HE(x) ·h (24)

with JE(x) = ∂E(x◦exp(h))
∂h

∣∣∣
h=0

and HE(x) =

∂2E(x◦exp(h))
∂h2

∣∣∣
h=0

the Jacobian and Hessian, respectively,

of E at the point x. The global gradient direction h is
a combination of local elements hi, resulting in h =
[h1, . . . ,hn]. The Newton (NT) method then has the
following compositional update:

HFi,jh
NT
i,j = −J>Fi,j

x← x ◦ exp(hNT). (25)

The global update hNT is obtained by summing up the
pairwise updates, following the structure of the cost
function E in equation (23), leading to

hNT =

[∑
i

hNT
i,1 , . . . ,

∑
i

hNT
i,n

]
. (26)

Unfortunately, the explicit calculation of the Hessian
causes problems because it is numerically not well-
behaved and computationally expensive, so that its us-
age is not recommended [17]. In the field of non-linear
least squares optimization most of the methods use
an approximation of the Hessian [18]. In the following
we present different possibilities for approximating the
Hessian by a positive definite matrix Ĥ.

3.2.1 Steepest-Descent
For SD, the Hessian is approximated by the identity Ĥ =
α · I, leading to the update:

α · hSD = −J>E(x) x← x ◦ exp(hSD)

with α the step length. Consequently, SD only consid-
ers a first-order Taylor expansion of E and has linear
convergence.

3.2.2 Gauss-Newton
The approximation of the Hessian for Gauss-Newton is
based on a linear approximation of the components of f
in a neighborhood of x. For small ‖h‖ we obtain from
the Taylor expansion:

f(x ◦ exp(h)) ≈ f(x) + Jf (x) · h. (27)

For notational ease, we often write f instead of fi,j when
no reference to the images i and j is necessary. Setting
this linear approximation in our cost function E, as
defined in equation (23), gives:

E(x ◦ exp(h)) ≈
∑
i 6=j

1

2
‖fi,j(x ◦ exp(h))‖2 (28)

=
∑
i 6=j

1

2
fi,j(x ◦ exp(h))>fi,j(x ◦ exp(h)) (29)

=
∑
i 6=j

(
Fi,j(x) + h>J>fi,j fi,j +

1

2
h>J>fi,jJfi,jh

)
. (30)

By comparison with equation (24), and considering the
gradient JF = J>f f , we can see that the Hessian is
approximated by Ĥ = J>f Jf .

We get the global Gauss-Newton step hGN by the
pairwise optimal steps hGN

i,j , analogously to the Newton
method, see equation (26). This leads to the update:

(J>fi,jJfi,j )hGN
i,j = −J>fi,j fi,j x← x ◦ exp(hGN)
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with hGN =
[∑

i hGN
i,1 , . . . ,

∑
i hGN

i,n

]
. Gauss-Newton has

only in specific cases quadratic convergence [18], [19].

3.2.3 ESM

The efficient second-order minimization procedure orig-
inally comes from the field of vision-based control [19].
It is very related to GN because it also considers least-
squares problems. ESM achieves, however, significantly
better results by incorporating further knowledge about
the specificity of the optimization problem. It was
shown that ESM has a cubic convergence rate [36].

More precisely, ESM uses the fact, that if the images
are aligned with the optimal transformation, the im-
ages and therefore also their gradients should be very
similar to each other. This can be used to ameliorate
the search direction of the Newton methods. For the
standard Newton method, the first and second order
derivatives around x are used to build a second-order
approximation, see equation (25). The Gauss-Newton
method considers only the first derivative of f around x
and can therefore only build a first-order approximation.
For ESM, the first-order derivatives of f around x and
x ◦ exp(h) are used to build a second-order approxima-
tion without the necessity of an explicit calculation of a
second-order derivative.

To deduce ESM, we start with a second-order Taylor
approximation of the function f :

f(x ◦ exp(h)) ≈ f(x) + Jf (x) · h +
1

2
h> ·Hf (x) · h. (31)

Subsequently, we do a second Taylor expansion around
x, but this time of the Jacobian of f :

Jf (x ◦ exp(h)) ≈ Jf (x) + Hf (x) · h. (32)

Plugging this first-order series in the approximation
shown in equation (31), we get a second-order approxi-
mation without second-order derivatives:

f(x ◦ exp(h)) ≈ f(x) +
1

2
[Jf (x) + Jf (x ◦ exp(h))]h. (33)

The problem about this approximation is the calculation
of the Jacobian Jf (x ◦ exp(h)), which is dependent on
the update h that we want to solve for, and therefore do
not know yet. We illustrate a solution for this problem
in section 3.3.3.

Comparing equations (27) and (33) shows the similar-
ity between the Gauss-Newton and ESM procedure. For
the development of the update rule we proceed therefore
analogously to Gauss-Newton. The only difference is the
usage of JESM

f = 1
2 [Jf (x)+Jf (x◦ exp(h))] instead of only

Jf (x). This leads to an approximation of the Hessian by
Ĥ = JESM>

f JESM
f . The compositional update is:(

JESM>

fi,j JESM
fi,j

)
hESM
fi,j = −JESM>

fi,j fi,j x← x◦exp(hESM)

with hESM =
[∑

i hESM
i,1 , . . . ,

∑
i hESM

i,n

]
.

3.3 Gradient Calculation

In the last section, we introduced the gradients JE , Jf ,
and JESM

f without further explaining their calculation.
This will be the subject of this part, together with an
analysis on how the gradient calculation changes for
different similarity measures.

3.3.1 Steepest-Descent
We begin with the gradient for the general cost function
E by considering one moving image at a time. W.l.o.g.,
we assume Ii as fixed and Ij as moving image leading
to Fi,j(x ◦ exp(h)) = SM(Ii(x), Ij(x ◦ exp(h)), with SM
a pair-wise similarity measure. The point-wise gradient
has the form:

[JE(x)]p =

[
∂E(x ◦ exp(h))

∂h

∣∣∣∣
h=0

]
p

(34)

=
∑
i 6=j

∂SM(Ii(x), Ij(x ◦ exp(h)); p)

∂h

∣∣∣∣
h=0

=
∑
i 6=j

[JSMi,j
(x)]p · [JIj (x)]p · [Jw(x)]p · Je(x).

The Jacobian [JSM(x)]p is a scalar value, corresponding
to the derivative of the similarity measure:

[JSMi,j
(x)]p =

∂SM(Ii(x), Ij(x ◦ exp(h)); p)

∂h

∣∣∣∣
h=0

=
∂SM(Ii(x), I; p)

∂I

∣∣∣∣
I=Ij(x◦exp(0))=Ij(x)

= ∇SM(Ii(x), Ij(x); p). (35)

The Jacobian [JIj (x)]p is a matrix of dimension (1 × 3),
corresponding to the spatial derivative of the moving
image under the current transformation x:

[JIj (x)]p =
∂Ij(w(x ◦ exp(h),p))

∂h

∣∣∣∣
h=0

(36)

=
∂Ij(w(x, w(exp(h),p)))

∂h

∣∣∣∣
h=0

(37)

=
∂Ij(w(x, z))

∂z

∣∣∣∣
z=w(exp(0),p)=p

(38)

= ∇Ij(w(x,p)). (39)

The Jacobian [Jw(x)]p is of dimension (3 × 16), corre-
sponding to the derivative of the vector w(Z,p) with
respect to the elements of the matrix Z:

[Jw(x)]p =
∂w(x ◦ exp(h),p)

∂h

∣∣∣∣
h=0

(40)

=
∂w(Z,p)

∂Z

∣∣∣∣
Z=x◦exp(0)=x

(41)

=

 p> 0 0 0
0 p> 0 0
0 0 p> 0

 . (42)

The Jacobian Je(x) is of dimension (16× 6), correspond-
ing to the derivative of the exponential mapping with
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respect to each of the transformation parameters hi:

Je(x)i =
∂ exp(h)

∂hi

∣∣∣∣
h=0

=
∂ exp(

∑6
i=1 hili)

∂hi

∣∣∣∣∣
h=0

(43)

= exp

(
6∑

i=1

hili

)∣∣∣∣∣
h=0

· li = li (44)

Stacking the vectorized basis vectors [li]v of se(3) leads
to:

Je(x) = [[l1]v, . . . , [l6]v] (45)

In appendix 4, we provide further insights into the
form and dimensionality of the Jacobian matrices, when
not focusing on a point-wise derivative. Based on this
analysis we calculate the Jacobian of the cost function as
an accumulation of all point-wise Jacobians:

JE(x) =
∑
p∈Ω

[JE(x)]p. (46)

3.3.2 Gauss-Newton
For the derivation of the gradient Jf , which is part of
the Gauss-Newton optimization, we have to guarantee
that the cost function fulfills further presumptions. The
Gauss-Newton procedure was deduced by starting at
a least-squares problem E(x) =

∑
i 6=j

1
2‖fi,j(x)‖2, see

equation (23). When considering SSD we can simply set
E(x) =

∑
i 6=j SSDi,j(x), since SSD is intrinsically a least-

squares problem.
This is not the case for other similarity measures

like correlation ratio or mutual information. In order to
ensure the least-squares nature, we square the similarity
measures, leading to E(x) =

∑
i 6=j ‖SMi,j(x)‖2. Obvi-

ously, optimizing the squared similarity measure has
far-ranging consequences, which we investigate further
in section 3.3.4. Moreover, issues concerning the condi-
tioning of the Hessian may arise, which we discuss in
section 3.3.5. The gradient Jf is calculated as:

[Jfi,j (x)]p =
∂fi,j(x ◦ exp(h))

∂h

∣∣∣∣
h=0

(47)

=
∂SM(Ii(x), Ij(x ◦ exp(h)))

∂h

∣∣∣∣
h=0

(48)

= [JSMi,j
(x)]p · [JIj (x)]p · [Jw(x)]p · Je(x)

(49)

Stacking all the point-wise derivatives leads to the
Jacobian of f :

Jfi,j (x) =

 [Jfi,j (x)]p1

...
[Jfi,j (x)]p|Ω|

 (50)

3.3.3 ESM
The last gradient that remains is JESM

f for the ESM. Here
we also consider the squared similarity measures like
for GN. The calculation of JESM

f is difficult because part
of its calculation is Jf (x ◦ exp(h)), which depends on h

that we want to solve for. In order to address this issue,
Benhimane and Malis [19] consider the optimal update
step hopt for the current location x, leading to the perfect
alignment xopt = x ◦ exp(hopt). To consider the influence
of this optimal update step for the product:

Jfi,j (x ◦ exp(hopt)) · hopt =
∂fi,j(x ◦ exp(h))

∂h

∣∣∣∣
h=hopt

· hopt,

we have to analyze each of the four factors resulting
from the derivation, see equation (49).

We proceed from right to left, starting with the Je.
In [37, pp. 157], a proof is presented that:

Je(x) · hopt = Je(x
opt) · hopt

utilizing the properties of the Lie algebra and the expo-
nential map. Next, the derivative of the transformation
Jw is the same for x and x ◦ exp(hopt) [19]. In order
to have an approximation of the third term, the main
assumption of ESM is incorporated. The gradient of
the perfectly aligned image ∇Ij(x ◦ exp(hopt)) can be
approximated by the gradient of the fixed image ∇Ii(x),
leading to:

JIj (x ◦ exp(hopt)) ≈ JIi(x). (51)

This takes the specificity of our optimization problem
into account, because for image registration the possi-
bility exists to approximate this gradient. Naturally, this
is only feasible for images of the same modality. The
last term is the derivative of the similarity measure,
which we approximate by JSM(x). This finally leads to
the overall approximation:

Jfi,j (x◦exp(hopt)) ≈ JSMi,j
(x) ·JIi(x) ·Jw(x) ·Je(x). (52)

Considering the definition of the gradient JESM
f =

1
2 (Jf (x) + Jf (x ◦ exp(h))), and equations (49) and (52),
we finally get:

JESM
fi,j =

1

2
· JSMi,j

· [JIi + JIj ] · Jw · Je. (53)

evaluated at the current alignment x.

3.3.4 Gradient of Similarity Measures
As mentioned in the last section, we optimize the
squared similarity measure for the statistic metrics to
ensure the least-squares nature of the optimization prob-
lem. For sum of squared differences this is not necessary.
The interesting question is about the consequences of
optimizing the squared function instead. Assuming a
function φ and its squared version Φ = φ2. The first
and second derivatives of Φ are Φ′ = 2 · φ · φ′ and
Φ′′ = 2 · (φ′)2 + 2 · φ · φ′′. Problematic is the introduction
of new extrema for φ = 0 and the change of their
type for φ < 0. NCC, CR, and MI have lower bounds,
which are -1, -1, and 0, respectively. We avoid these
optimization problems, by adding a constant ν to the
similarity measures SMi,j +ν, guaranteeing that they are
in the positive range.
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We list the actual derivatives of the similarity mea-
sures in the supplementary material for completeness,
but they can also be found in e.g. [38]. Especially MI has
frequently been applied for registration with a steepest-
descent approach [38]–[41]. The densities are estimated
following a kernel-based Parzen window approach [42].
For the estimation of the kernel window size, several
methods were proposed. One common technique consid-
ers the maximization of a pseudo likelihood [43], which
has the drawback of a trivial maximum at zero [40].
Instead, a leave-one-out strategy was proposed [38], [43].
The reported Parzen window kernel size that led to best
results was five [40], which we adopted in our experi-
ments. Note that for the calculation of the update h of
the least-squares problems, either an LU- or Cholesky-
decomposition could be used on the normal equations
(J>f Jf )h = −Jf f , or a QR-decomposition on Jfh = −f .
Since the normal equations worsen the numerical condi-
tion of the problem, the QR-decomposition presents the
stabler choice.

3.3.5 Singularity of Hessian Approximation
For Gauss-Newton, equation (30) shows that the gradi-
ent is JF = J>f f and the Hessian is approximated by
Ĥ = J>f Jf . For the perfect alignment xopt, the gradient
JF = J>f f is zero. In contrast to SSD, the similarity
function f is nonzero at xopt for NCC, CR, and MI.
Consequently, Jf has to be zero at xopt, leading to an
approximation of the Hessian Ĥ that is singular at xopt.
The same analysis holds for ESM, because the factor
driving the gradient to zero is JSM, equally appearing
in the gradient of ESM. In practice, it is unlikely that
the matrix is singular due to image noise, image inter-
polation, and approximation of the perfect alignment.
We analyzed the condition number close to the ground
truth alignment, with results shown in appendix 5. In
our experiments, we noticed only a slight increase of
the condition number, while approaching the optimum.
The condition number represents the sensitivity of the
solution to errors.

Newton optimization for pairwise registration with
mutual information was reported in [44], [45]. A first-
order approximation of the Hessian was used, which is
identical to the approximation of the Hessian in Gauss-
Newton. It was noted in [46] that it is more appropriate
to work with the actual Hessian of mutual information,
instead of the approximation, because problems with the
definiteness can occur. We studied the definiteness of
the Hessian in our experiments, but have not observed
problems. Helpful when running into such problems
may be the usage of a line-search procedure.

3.3.6 Relationship to Forward/Inverse Compositional
Update
In [17], the differences between forward and inverse
compositional updates are discussed. The inverse up-
date scheme has computational advantages, because the

image gradient can be pre-computed. In our case of
simultaneous registration, where all images move, we
are no longer able to pre-compute the gradient image,
and consequently the difference vanishes. It is, however,
interesting to look at ESM from this perspective, because
instead of either considering the gradient of the fixed
or moving image, both gradients are combined. Hence,
ESM presents a combination of forward and inverse
compositional update.

4 MULTI-MODAL REGISTRATION WITH ESM
The fundamental assumption of ESM, the approximation
JIj (x◦exp(hopt)) ≈ JIi(x), prevents its direct application
to multi-modal registration. The reason is that for multi-
modal images, the gradient directions and orientations
are not comparable. A solution to address this issue has,
however, recently been proposed with the creation of
structural images [7], [8]. The idea is to create repre-
sentations of images that are focusing on the structures
in the images, and not on the intensities or colors in
which they are depicted. A standard intensity-based
registration is subsequently performed on the structural
representations, however, not with sophisticated simi-
larity measures like MI, but with mono-modal metrics
like SSD. The structural representations are therefore
converting a multi-modal registration problem into a
mono-modal one. The positive effect on ESM is that they
make the approximation in equation (51) meaningful
and ESM therefore applicable. In [7], the multi-modal
registration of T1, T2, PD-weighted MR and CT images
was investigated, which we also focus on in this study.
The application in other scenarios of multi-modal regis-
tration depends on the availability of suitable structural
representations.

A positive aspect of structural representations is that
simple similarity measures can be applied. This obviates
the problems of working with more complex similarity
measures in a least-squares framework, as discussed in
sections 3.3.4 and 3.3.5. Moreover, it enables a faster
similarity evaluation, which is even more important
for simultaneous registration, where the multivariate
similarity metrics are more demanding to calculate. For
the case of APE, the influence of the faster similarity
evaluation is quadratic, since all combinations of pair-
wise estimates are calculated in equation (23).

Finally, structural representations in combination with
ESM yield advantages for the validation of registration
results. The validation of rigid registration is generally
easier than deformable registration, because under the
assumption of a rigid object, it is possible to measure the
camera pose to obtain ground truth data. The drawback
is, however, that there are rarely volumetric acquisitions
of group of images from a static object. One example are
volumetric ultrasound acquisitions. Another interesting
application is the alignment of multi-modal volumes for
neurosurgery. Effort has been taken to exactly measure
the location with bone-implanted fiducial markers in
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Fig. 1. Mosaic of baby phantom from 4 acquisitions.

order to provide ground truth data [9]. This data is
well suited for rigid registration experiments because the
acquisitions are acquired with a short time difference,
and further, the skull provides a rigid frame, avoiding
deformations. This validation is, however, only possible
in combination with structural representations, as men-
tioned previously. The structural representation that we
employ in combination with ESM are entropy images.
We briefly explain their calculation in the following
section.

4.1 Structural Representations with Entropy Images
For entropy images the entropy is calculated on local
sub-volumes and subsequently stored in form of a dense
descriptor. Be I an image and DI the corresponding
entropy image. For each spatial location sk in the grid
of DI we set the intensity value to be

DI(sk) = H(I|N (sk)), (54)

with N (sk) a local neighborhood around sk. The entropy
H is then calculated on the sub-volume I|N (sk).

We use 9× 9× 9 sub-volumes for the case of isotropic
voxel spacing. For anisotropic spacing we adapt the
neighborhood accordingly. Further, we perform a spa-
tially weighted density estimation using a Gaussian
weighting scheme together with a kernel-based Parzen
window method. We select 64 bins and a global normal-
ization of the intensity values. The Shannon entropy was
chosen to measure the entropy.

5 EXPERIMENTS

We perform experiments for two different applications
to test APE in combination with the described optimiza-
tion procedures. One application is the registration of
multiple ultrasound volumes for volumetric ultrasound
mosaicing, and the second application is the alignment
of a group of multi-modal volumes.

5.1 Ultrasound Mosaicing
For ultrasound mosaicing, the experiments were con-
ducted on four 3D ultrasound acquisitions from a baby

phantom, having a resolution of 64× 64× 64 voxels and
a bit depth of one byte, see figure 1 and the video in the
supplementary material. The registration of ultrasound
images is challenging because of the degradation with
speckle noise and the viewing angle dependent nature
of the volumes. We displaced the volumes randomly
from the correct position, guaranteeing an accumulated
residual error of 30 over all the volumes. The correct
position is obtained from manual alignment. We weight
1mm equal to 1◦ to make translational and angular dis-
placement from the ground truth comparable. Starting
from the random initial position we run 100 simulta-
neous registrations for each configuration to assess its
performance.

In figures 2 and 3, the average residual error is plotted
with respect to the iteration number. For the calculation
of the residual error, we first compensate for a global
shift between the ground truth and registration result.
Subsequently, we evaluate the root mean squared error
(RMSE) between the ground truth and the registration
result. Finally, the mean RMSE over all trials gives the
average residual error. Note that diverging trials lead to
a large residual error that is averaged over, causing an
increasing instead of decreasing error curve. We discuss
this further in section 6.

For SSD, see figure 2(a), we only have one plot because
we do not have to consider the squared variant of it, like
already mentioned. The best performance is obtained
with ESM, leading to the fastest convergence. But also
the Gauss-Newton method leads to a robust conver-
gence. The gradient-descent does not perform well. Al-
though it seems to approach the correct alignment nicely
at the beginning, it diverges into another optimum. In
the table in figure 2(b), the number of registrations that
diverged are listed. We consider a registration diverged,
when the residual error after 30 steps is larger than half
the initial error.

For CR, see figure 2(c), the results for GN and ESM are
not good. All of the 100 runs diverged. Steepest-descent,
although slower, performs much better. The situation
changes a lot, when optimizing the squared function,
see figure 2(d). The ESM quickly approaches the correct
alignment. Also GN improves, but the result is still
not good. We also plot the curve for SD as reference,
although it is the one of CR, because we do not use the
squared variant for SD.

For NCC and MI, see figure 3, the situation is pretty
similar to CR. The performance of GN and ESM when
using the non-squared similarity measures is insufficient,
leading to a high divergence rate. The situation improves
enormously when optimizing the squared function in-
stead. ESM always performs better than GN, both, with
respect to speed and robustness. Furthermore, the per-
formance of SD is interesting. Although the convergence
is slower, compared to the others, it is in most cases
robust.

All the registrations are performed on an Intel dual-
core 2.4 GHz processor having 2 GB of RAM. The time
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Fig. 2. Plot of the average residual error for each iteration step for SSD, CR, and squared CR. Comparing CR and
squared CR shows the improved performance of GN and ESM. ESM converges the fastest and leads to the smallest
residual error. We plot the curve of SD also for squared CR to facilitate the comparison.

for one registration, where we allowed for 30 iterations,
is below one minute.

5.2 Multi-Modal Registration
For multi-modal registration, we conduct experiments
on T1, T2, and PD-weighted MR images from the Brain-
Web database1 and CT, T1, T2, and PD images from
the Retrospective Image Registration Evaluation (RIRE)
database2. We work with BrainWeb images containing
3% noise and 20% intensity non-uniformity, in order to
achieve realistic results. For both databases the ground
truth alignment is provided. Cross-sectional slices of the
original volumes and entropy volumes from Brainweb
are shown in figure 4 and from RIRE in figure 5.

In the simultaneous registration study, we compare
ESM on entropy volumes to Gauss-Newton on entropy
and original volumes. For Gauss-Newton on the original
volumes, we select mutual information as similarity

1. http://www.bic.mni.mcgill.ca/brainweb/
2. http://www.insight-journal.org/rire/

metric, which is corresponding to the sate-of-the-art
configuration. Further, we use SSD as similarity measure
for the registration with entropy volumes. We run 50
registrations, each starting from a random initial po-
sition. Each initial position has an accumulated RMS
error of 45 over all volumes from the correct alignment,
again weighting 1mm equal to 1◦. The average residual
error for each step is shown in figure 6. We observe
that for the BrainWeb dataset the convergence of GN on
the original volumes with MI and GN on the entropy
images with SSD is identical, as to be expected. ESM
converges, however, significantly faster than GN. On the
RIRE data, most registrations do not converge for GN
on the original volumes. GN with entropy images leads
to good registration results. The convergence of ESM is,
however, once again significantly faster than the one of
GN.

6 DISCUSSION
The experiments show the good performance of si-
multaneous registration using the APE framework and
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Fig. 3. Plot of the average residual error for each iteration step for NCC, squared NCC, MI, and squared MI. The
convergence of GN and ESM is significantly improved for the squared similarity measures. ESM is converging the
fastest. We plot the curve of SD also for squared NCC and MI to facilitate the comparison.

Fig. 4. Multi-modal images (T1, T2, PD) from BrainWeb
dataset together with entropy images.

gradient-based optimization. The performance of the
optimization methods, however, depends on the chosen

similarity measure. In our experiments, the squared
versions of NCC, CR, and MI performs better for GN
and ESM. For all measures, the fastest approximation to
the correct results are obtained with ESM. In most cases
GN was faster than SD.

The convergence graphs are not all monotonic, as
one would expect; approaching the ground truth further
with each iteration until the convergence is achieved.
The reasons for the increase lie, on the one hand, in the
averaging over the 100 registrations, thus diverging trials
lead to a large residual error that is averaged over. And
on the other hand, we see the reasons in the conditioning
of the Hessian approximation and the complex regis-
tration scenario. For ultrasound mosaicing, the volumes
are inherently contaminated by speckle patterns, mak-
ing it a difficult registration problem. Analogously, the
registration of multi-modal volumes is challenging. The
performance of ESM indicates that it is more robust in
such noisy scenarios because the gradient information of
both images is considered. Finally, our results show that
structural representations and ESM nicely complement
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Fig. 5. Images from RIRE dataset (T1, T2, PD, CT)
together with entropy images.

each other.

7 CONCLUSION

We presented further insights into multivariate similarity
measures and optimization methods for simultaneous
registration of multiple images. First, we deduced APE
from a ML framework and showed its relation to the
congealing framework. This required an extension of the
congealing framework with neighborhood information.
Second, we focused on efficient optimization methods
for APE. We started the deduction of the optimization
methods from the same Taylor expansion, to provide
the reader a good overview of the methods and further
insights into the relatively unknown ESM. We further
presented the optimization of intrinsically non-squared
similarity metrics in a least-squares optimization frame-
work. Finally, we illustrated the usage of ESM for multi-
modal registration with structural representations. Our
experiments showed a superior performance of ESM
with respect to speed and accuracy for the case of
ultrasound mosaicing and multi-modal registration.

For further illustration, we attach a video encoded
with the Xvid codec (www.xvid.org) showing a com-
parison of optimization procedures for simultaneous
registration. Also in the supplementary material is a list
of derivatives of similarity measures.
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