1 Gradients of Similarity Measures

In the following we state the gradients of the similarity measures - mutual information, correlation ratio, and correlation coefficient. This completes the article and gives the reader all the necessary information for implementing an efficient gradient-based optimization of the multivariate cost function. A good reference, with detailed deduction of the derivatives, is the work of Hermosillo et al. [1].

The gradient that we show in the following was in the article denoted by

$$J_{SM,j}(x) = \frac{\partial SM(I_j(x), I_j(x \circ \exp(h))); p)}{\partial h}\bigg|_{h=0}$$

$$= \nabla SM(I_j(x), I_j(x); p).$$

We consider I_i to be the fixed and I^j_i to be the moving image. We add the symbol \downarrow to indicate the moving image, with respect to which we derive. We define the following auxiliary variables (mean, variance) with i_1 an intensity in I_i and i_2 an intensity in I^j_i

$$\mu_1 = \int i_1p(i_1)di_1$$

$$\mu_2 = \int i_2p(i_2)di_2$$

$$\mu_{2|1} = \int i_2p(i_1, i_2)\frac{di_1}{p(i_1)}$$

$$v_1 = \int i_1^2p(i_1)di_1 - \mu_1^2$$

$$v_2 = \int i_2^2p(i_2)di_2 - \mu_2^2$$

$$v_{1,2} = \int i_1i_2p(i_1, i_2)d(i_1, i_2) - \mu_1 \cdot \mu_2$$

$p(i_1)$ the probability for intensity i_1 in I_i and $p(i_1, i_2)$ the joint probability.

We apply a kernel-based Parzen window method for the non-parametric PDF estimation [2], working with Gaussian kernels. For the estimation of the kernel window size, several methods were proposed. One common technique considers the maximization of a pseudo likelihood [3], which has the drawback of a trivial maximum at zero [4]. Instead, a leave-one-out strategy was proposed [3], [1]. The reported Parzen window kernel size that led to best results was five [4], which we adopted in our experiments.

1.1 Mutual Information

The formula for mutual information is

$$MI(I_i, I^j_i) = H(I_i) + H(I^j_i) - H(I_i, I^j_i)$$

$$= \int_{R^2} p(I_i, I^j_i) \log \frac{p(I_i, I^j_i)}{p(I_i) \cdot p(I^j_i)}$$

with H the entropy. The derivation is

$$\nabla MI(I_i, I^j_i) = G_\Psi \frac{1}{|\Omega|} \left(\frac{\partial}{\partial I_i} p(I_i, I^j_i) - \frac{\partial}{\partial I^j_i} p(I_i, I^j_i) \right)$$

with the Gaussian G_Ψ and the image grid $|\Omega|$.

1.2 Correlation Ratio

The formula for correlation ratio is

$$CR(I_i, I^j_i) = 1 - \frac{\mathbb{E}(\text{Var}(I^j_i | I_i))}{\text{Var}(I^j_i)}.$$

The derivation is

$$\nabla CR(I_i, I^j_i) = G_\Psi \frac{\mu_2 - \mu^{2|1} + CR(I_i, I^j_i) \cdot (i_2 - \mu_2)}{\frac{1}{2} \cdot v_2 \cdot |\Omega|}.$$

1.3 Correlation Coefficient

The formula for correlation coefficient is

$$CC(I_i, I^j_i) = \frac{\langle I_i - \mu_1 \rangle \langle I^j_i - \mu_2 \rangle}{\sqrt{v_1 \cdot v_2}}$$

and its derivation

$$\nabla CC(I_i, I^j_i) = -\frac{2}{|\Omega|} \left[\frac{v_{1,2}}{v_2} \left(\frac{i_1 - \mu_1}{v_1} \right) + CC(I_i, I^j_i) \left(\frac{i_2 - \mu_2}{v_2} \right) \right].$$
REFERENCES

